
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6. No. 1, January-February 2007

Cite this article as follows: Donald G. Firesmith: “Common Requirements Problems, Their Negative
Consequences, and Industry Best Practices to Help Solve Them”, in Journal of Object Technology, vol. 6,
no. 1, January-February 2007, pp. 17-33 http://www.jot.fm/issues/issue_2007_01/column2

Common Requirements Problems, Their
Negative Consequences, and the
Industry Best Practices to Help Solve
Them

Donald Firesmith, Software Engineering Institute, U.S.A.

Abstract
In this column, I summarize the 12 worst of the most common requirements engineering
problems I have observed over many years working on and with real projects as a
requirements engineer, consultant, trainer, and evaluator. I also list the negative
consequences of these problems, and most importantly suggest some industry best
practices that can help you avoid these problems, or at least fix them once they have
raised their ugly heads. Although there is nothing really new here, these problems are
well worth revisiting because they are still far too common, probably because the
associated industry best practices are still far from being widely put into practice.

1 INTRODUCTION

From the standpoint of state-of-the-art best industry practices as opposed to state-of-the-
average practice, requirements engineering is a relatively mature discipline with many
well-known methods and techniques for identifying, analyzing, specifying, managing,
verifying, and validating a system’s requirements. But if that is so, why are there still so
many defects in requirements specifications? Why are requirements mistake still a major
root cause of many project failures in terms of significant cost and schedule overruns,
failures to deliver all of the functionality specified, and systems that do not have adequate
quality? Do we need new and radically improved requirements engineering methods,
techniques, and tools? Or do we just need to put into practice the best industry practices
that currently exist?

In this column, I will summarize a dozen of the worst most common requirements
engineering problems that I have observed over many years working on and with real
projects as a requirements engineer, consultant, trainer, and evaluator. These are the
problems that I have seen most often and that have caused the most damage. For each of
these problems, I list its major negative consequences, and most importantly suggest

COMMON REQUIREMENTS PROBLEMS, THEIR NEGATIVE CONSEQUENCES, AND

INDUSTRY BEST PRACTICES TO HELP SOLVE THEM

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

some industry best practices that can help you avoid the problems, or at least fix them
once they have raised their ugly heads. Although there is nothing really new here, these
problems are well worth revisiting because they continue to occur far too often.

2 REQUIREMENTS PROBLEMS AND THEIR SOLUTIONS

The following are some of the most important of the many problems associated with how
requirements engineering is practiced today:

1) Poor Requirements Quality

• Problem
In practice, the actual quality of many specified requirements is poor. These
requirements do not exhibit the accepted properties that should characterize all
well engineered requirements. By poor requirements quality , I specifically mean
that far too many ‘requirements’ specified in real requirements specifications are
ambiguous, not cohesive, incomplete, inconsistent, incorrect, out-of-date,
specified using technical jargon rather than the terminology of the user or
business/application domain, not restricted to externally-visible behavior or
properties of the system, infeasible to implement or manufacture, not actually
mandatory (i.e., merely nice-to-haves on someone’s wish list), irrelevant to the
system being built, lacking in necessary metadata such as priority and status,
untraced, in a form that is unusable to the requirements many stakeholders,
unverifiable, and unvalidatable [Firesmith 2003].
This problem arises because many requirements engineers who are inadequately
trained, have inadequate access to stakeholders and other sources of the
requirements, and who are given inadequate resources or authority to properly
engineer the requirements. Other major causes of this problem are the prevalent
myths that it is too costly, too difficult, and even impossible to produce good
requirements, especially nonfunctional requirements. These myths are especially
prevalent with regard to quality and specialty engineering requirements (e.g.,
availability, interoperability, performance, portability, safety, security, and
usability), where there is still a prevailing but mistaken belief that it is impossible
to specify these requirements in a verifiable form containing actual minimum
acceptable thresholds. Not only is it possible to specify explicit quality thresholds,
without them it is impossible for architects to know when their architectures are
good enough and how to properly make architectural trade-offs between different
quality requirements; without thresholds, it is also impossible for testers to
produce proper quality tests and to generate associated test completion criteria.

• Negative Consequences
Requirements engineering is the first engineering activity during which major
mistakes can be made, and the negative consequences of these mistakes are felt

VOL. 6, NO.1 JOURNAL OF OBJECT TECHNOLOGY 19

during all downstream activities such as architecting, design, implementation, and
testing. Poor-quality requirements greatly increase development and sustainment
costs and often cause major schedule overruns. As long ago as the early 1990s, it
was well known that defects discovered once a system is fielded cost 50 to 200
times as much to correct as they would have had they been found during
requirements evaluations [Boehm and Papaccio 1988], and these depressing
figures have not changed significantly since then. As noted in [Wiegers 2001],
“Industry data suggests that approximately 50 percent of product defects originate
in the requirements. Perhaps 80 percent of the rework effort on a development
project can be traced to requirements defects.” Because these defects are the cause
of over 40% of accidents involving safety-critical systems [HSE 1995], the
unnecessary engineering of poor requirements has even been the ultimate cause of
both death and destruction.

• Solutions
Poor requirements quality is currently the number one problem in requirements
engineering, and solving it will go a long way towards improving software and
system development. Requirements engineers, stakeholders with whom they must
collaborate, and requirements evaluators (e.g., inspectors and reviewers) need to
be properly trained in the characteristics of good requirements including examples
of both good and bad requirements, and they need to be taught how to tell the
difference between them. Where practical, inspection should be used rather than
(or in addition to) the less formal reviews and walkthroughs to verify and ensure
that all of the requirements have the appropriate characteristics (e.g.,
unambiguous, complete, correct, mandatory, readable, etc.). You should use
simple tools to identify inherently vague words being used in the requirements.
Involve members of the architecture and test teams when verifying the quality of
requirements to ensure that the requirements are feasible and verifiable. Ensure
that the requirements engineers are enabled and required to collaborate with
stakeholders until the requirements have sufficient quality. Finally, requirements
engineers should rework or delete all requirements that lack the required
characteristics of good requirements.

2) Over Emphasis on Simplistic Use Case Modeling

• Problem
Currently, there is a major overemphasis on use case modeling as the only
technique for identifying and analyzing requirements. Use cases seem to have
become the hammer that makes every requirements problem a nail. Unfortunately,
use cases are best suited for engineering functional requirements. Other
techniques are much more appropriate for the engineering of non-functional
requirements (NFRs), such as interface requirements, data requirements, quality
requirements (i.e., requirements mandating minimum acceptable levels of the
‘ilities’ such as affordability, availability, interoperability, portability, reliability,
safety, security, and usability), and architectural, design, implementation, and

COMMON REQUIREMENTS PROBLEMS, THEIR NEGATIVE CONSEQUENCES, AND

INDUSTRY BEST PRACTICES TO HELP SOLVE THEM

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

configuration constraints.
Additionally, many projects only develop use case diagrams rather than creating
sequence/swim lane diagrams to capture the normal and exceptional paths through
the use cases. They also fail to use text to capture use case path preconditions,
triggers, steps, and postconditions. Perhaps worst of all, only the primary ‘sunny
day’ path through the use case is often developed. Unfortunately, there are usually
many more exceptional ‘rainy day’ paths through the typical use case than ‘sunny
day’ paths. In other words, what the system should do under normal
circumstances may be captured, but not what the system should do when it can’t
do what it normally should do.

• Negative Consequences
There are four major problems with the current use of use case modeling. Firstly,
many NFRs are not being engineered at all, and those NFRs that are being
engineered often end up as ambiguous, incomplete, unfeasible, and unverifiable
goals rather than as true requirements. Secondly, producing incomplete use cases
models results in simple stories rather than actual requirements. Thirdly, ignoring
most if not all of the exceptional paths leaves much of the required behavior
unspecified. Finally, if the requirements do not specify what the system should do
under all credible combinations of inputs and states, then the developers will end
up either making incorrect assumptions or ignoring possible cases, leading to
systems that are unreliable, unstable, and unsafe.

• Solutions
Requirements engineers should utilize all aspects of use case modeling to ensure
that all credible paths through the use case are identified and analyzed. They
should also utilize use case modeling as an identification and analysis technique,
rather than as a requirements specification technique. They can use the use cases
to identify, analyze, functional requirements. Inspection of the use case models
will also help ensure that they are adequately complete.
Requirements engineers should use appropriate requirements analysis techniques
for the type of requirements being engineered. For example, they should use a
risk-based approach built upon the analysis of vulnerable assets, attackers, threats,
and attacks for engineering security requirements. They should also use checklists
and a robust quality model that identifies and defines all of the major quality
factors (i.e., ‘ilities’) so that no major type of quality requirement is accidentally
overlooked.

3) Inappropriate Constraints

• Problem
In practice, many requirements are not actually mandatory. Instead, too many of
them are architecture, design, implementation, and installation/configuration
constraints that are unnecessarily specified as requirements. Because stakeholders
and/or requirements engineers sometimes incorrectly assume that a common way

VOL. 6, NO.1 JOURNAL OF OBJECT TECHNOLOGY 21

to implement a requirement is actually the only way to implement the
requirement, they confuse the implementation with the requirement and
inappropriately specify how to build the system rather than what the system
should do or how well the system should do it.
This problem is largely due to the fact that requirements engineers are not
sufficiently qualified in the problem domain and specialty engineering areas (e.g.,
safety and security) to act as sources of the requirements and they are neither
qualified nor authorized to architect, design, and implement the system. Similarly,
many of the different kinds of stakeholders (e.g., users, customers, marketing,
operators, maintainers, etc.), who are appropriate sources of the requirements,
may be too caught up in the current system to envision how it could be
significantly improved by new technologies and business process reengineering.

• Negative Consequences
By unnecessarily specifying constraints, the requirements needlessly tie the hands
of the architects, designers, implementers, and installers. This often prevents a
better solution to the problem from being selected. Worse, it often prevents
innovative solutions that can significantly improve the system and associated
business processes, and eliminates an opportunity to differentiate both the system
and its enterprise from the competition.
Perhaps the canonical example of this occurs when specifying security
requirements. Too often, instead of the specifying necessary levels of user
identification and authentication, requirements engineers unnecessary specify the
use of textual user identifiers and passwords, which are architectural constraints
mandating specific security countermeasures. Mandating user IDs and passwords
not only eliminates the selection of more modern countermeasures such as
biometrics, smartcards, and digital signatures; it also mandates the use of
countermeasures that have proven to provide the weakest level of security.

• Solutions
The most important solution to this problem is to ensure that all collaborators in
the requirements engineering process are aware of it. Looking for improperly
specified constraints (i.e., specifications of how rather than what and how well)
should be one of the most important items on the requirements inspection
checklist. Finally, architects and specialty engineers should take part in the
requirements evaluation process and question every requirement that potentially
specifies an architectural or design decision.

4) Requirements Not Traced

• Problem
Although the value of requirements tracing is widely recognized, is often
mandated in contracts, and is included in many requirements engineering methods
and training classes, many requirements are still not properly traced in practice.
The sources of requirements (e.g., higher level requirements, other documents,
and stakeholders) are not documented. Similarly, requirements are often neither

COMMON REQUIREMENTS PROBLEMS, THEIR NEGATIVE CONSEQUENCES, AND

INDUSTRY BEST PRACTICES TO HELP SOLVE THEM

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

allocated to architecture and design elements nor to the test sets that verify them.
On many projects, the very large number of requirements makes requirements
tracing impossible to perform manually and difficult and resource-intensive to
perform even with the modern tool support. The mapping from functional
requirements to architecture and design elements is anything but one-to-one, and
this mapping has become more difficult with the advent of modern technologies
such as object, agent, and aspect orientation and the common use of middleware
and other frameworks. Similarly, non-functional requirements are often
implemented by many components scattered across an architecture. As a result, it
is not at all uncommon for functional requirements to be traced to only the most
important architectural elements and for non-functional quality requirements to
not be traced at all.

• Negative Consequences
This lack of tracing makes it difficult, if not impossible, to know the impact of
proposed and actual changes, both to the requirements themselves and the
architecture, design, and implementations derived from them. When changes
occur as they will on any real endeavor, the requirements and both the upstream
and downstream work products get out of synch as inconsistencies develop among
them. Architecting, designing, implementing, and testing also become more
difficult, expensive, and time consuming to perform.

• Solutions
Ensure that requirements tracing is mandated in the contract and explicitly
specified in the requirements engineering method. Also be sure to mandate and
verify the tracing of all requirements, not just the functional requirements. Provide
user friendly and scalable tool support for requirements tracing. Ensure
management understands the negative consequences of not tracing requirements,
and obtain support for proper tracing, including providing adequate resources to
trace the requirements. Ensure that tracing occurs both early in the project
development cycle as well as later during design, development, and maintenance.
Finally, ensure that the evaluation of requirements tracing is a documented part of
the requirements verification method.

5) Missing Requirements

• Problem
Midsized systems often have hundreds of requirements and many large systems
can end up with several thousand separate requirements, especially when one
considers the derived requirements that are allocated to subsystems and their
subsystems. Still, it is not at all uncommon for important bits of functionality to
slip through the cracks. Given an iterative, incremental development cycle, these
minor slips do not usually cause much harm so long as the omissions are
identified and added to later builds or releases. In fact, many information systems
often are specified to have numerous features that are not used by almost all users

VOL. 6, NO.1 JOURNAL OF OBJECT TECHNOLOGY 23

and possibly not needed at all. Overlooking such requirements is not what this
problem is primarily about.
The real problem is that many architecturally-significant requirements are
accidentally overlooked. These are usually nonfunctional requirements, most
commonly quality requirements specifying minimum acceptable amounts of some
type of quality such as availability, interoperability, performance, portability,
reliability, robustness, safety, security, stability, and usability. This typically
happens because the stakeholders who are the source of the requirements often
assume that such requirements are obvious and go without saying.

• Negative Consequences
Because missing requirements are much harder to spot during requirements
evaluations than incorrect or poorly-specified requirements, their absence is often
missed until the system is integrated, undergoing operational testing, being
manufactured, or being deployed. Worst case scenario, the missing requirements
may not be discovered until the system is in use by hundreds, thousands, or an
even larger number of users. Such requirements are typically much more difficult
and expensive to fix then, especially if they are architecturally-significant
requirements. For example, it is often difficult to add on performance, reliability,
safety, and security to an existing architecture. Major system failures and
accidents are often caused by missing requirements.

• Solutions
Requirements engineers must actively elicit requirements rather than merely
relying on stakeholders to tell them what they want. The requirements team
should collaborate with specialty engineering teams (e.g., reliability, safety,
security, and usability) and representatives from all groups of stakeholders when
eliciting requirements. Mature methods and techniques (e.g., state modeling)
should be used to ensure that the system knows how to handle all credible inputs
and requests under all conditions. Instead of only drawing use case diagrams, use
case modeling should include the production of sequence/swim lane diagrams and
path descriptions that address all credible ‘sunny day’ and ‘rainy day’ paths with
their associated preconditions, trigger conditions, and postconditions.

6) Excessive Requirements Volatility including Unmanaged Scope Creep

• Problem
Because most systems have long development cycles and lifecycles, it is obvious
that requirements will change. They must. Systems have to evolve as business
needs change (e.g., with the advent of new competitors and new technologies). In
spite of past heroic attempts to conform to strict waterfall development cycles, it
is effectively impossible to freeze requirements in practice. This need to
continually change requirements is a major reason why industry is adopting the
use of iterative, incremental, and parallel development and life cycles.
But changing a system’s requirements to meet the system’s stakeholders’
changing needs is not without its own problems. Stakeholders will want to

COMMON REQUIREMENTS PROBLEMS, THEIR NEGATIVE CONSEQUENCES, AND

INDUSTRY BEST PRACTICES TO HELP SOLVE THEM

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

constantly add a few new requirements here and change one or two existing
requirements there. But when this happens in an uncontrolled manner, you get the
perennial problems of excessive requirements volatility and scope creep.

• Negative Consequences
Unmanaged and unexpected changes to requirements can raise havoc with
existing architectures, designs, implementations, and testing. Without a minimum
amount of stability, developers cannot do their jobs and deliver new systems or
increments to existing systems. The cycle of testing and fixing defects becomes
endless.
Scope creep almost always results from more requirements instead of less. Thus,
it typically significantly increases the cost and time required to build new systems
or versions of existing systems. Unfortunately, project budgets and schedules are
often neither sufficiently flexible nor updated to remain consistent with the new
requirements. This causes projects to rapidly go over budget and milestones to
slip.

• Solutions
The primary solution is not to chisel existing requirements in granite and prohibit
the addition of any new requirements. Using a modern lifecycle to allow for
requirements changes is a good idea. But changes to the requirements must be
properly managed. For each release of the system, the requirements must be
baselined and frozen at appropriate milestones within the development/update
cycle. Baselined requirements should be placed under configuration control like
any other major work product, and the impact of changes to these requirements
needs to be determined before the changes are authorized to take place. Finally,
budgets and schedules need to be updated whenever there is any nontrivial change
to the requirements.

7) Inadequate Verification of Requirements Quality

• Problem
This problem is not about the verifying whether the as-built system implements its
requirements. Rather, it is about verifying sufficiently early in the development
process whether the requirements have sufficient quality to avoid the many
negative consequences resulting from poor requirements.
Often, requirements are informally verified during small peer reviews and/or as a
side effect of major ‘dog and pony show’ stakeholder reviews. While both
reviews are somewhat helpful, they have not proven effective in identifying
requirements defects.

• Negative Consequences
Requirements defects that are not identified during the requirements engineering
process will negatively impact all subsequent activities. When eventually
discovered, these defects will be significantly more expensive and take

VOL. 6, NO.1 JOURNAL OF OBJECT TECHNOLOGY 25

significantly more time to fix than they would had they been found and fixed
during early requirements verification.

• Solutions
When ever practical, evaluators should use inspection rather than (or in addition
to) the less formal reviews and walkthroughs to verify and ensure that all of the
requirements have the appropriate characteristics (e.g., unambiguous, complete,
correct, mandatory, readable, etc.). Projects should develop and/or reuse
checklists of the most common and damaging requirements defects. Requirements
engineers and evaluators should use simple tools to scan the requirements and
identify inherently vague words in the requirements. The requirements
verification team should contain representatives from all major types of
stakeholders, whereby multiple inspections are held with small, cohesive groups
of stakeholders. The requirements evaluation team should contain members of the
architecture and test teams to verify whether the requirements are feasible and
verifiable. Finally, the requirements team should be authorized and mandated to
rework or delete all requirements that lack the required characteristics of good
requirements.

8) Inadequate Requirements Validation

• Problem
A major task of requirements engineering is to have the stakeholders validate their
requirements to ensure that the requirements completely and correctly specify
their needs. Unfortunately, requirements are not always properly validated by
their stakeholders.
One root cause of this is that the requirements engineers often do not have
adequate access to stakeholder representatives. This is especially a problem on
projects where there are contractual and procedural limitations on the availability
of stakeholders to validate the system requirements. For example, there may be
one organization that elicitates stakeholder needs and produces an operational
specification of user needs that is passed on to via an acquisition organization to
the development organization, which must then produce the system’s technical
requirements. In this situation, there are two organizations separating the system’s
requirements teams from the system’s stakeholders, making it difficult to get the
requirements properly validated.
A second root cause of this may be that the project’s requirements engineering
method may not include requirements validation, perhaps due to ignorance of the
tasks comprising requirements engineering or a lack of resources to properly
perform all of the requirements engineering tasks. Sometimes requirements
validation is dropped due to a lack of stakeholder time, project schedule, or
project funding.

• Negative Consequences
A lack of proper requirements validation with the stakeholders typically results in
requirements that are incomplete because they fail to specify important

COMMON REQUIREMENTS PROBLEMS, THEIR NEGATIVE CONSEQUENCES, AND

INDUSTRY BEST PRACTICES TO HELP SOLVE THEM

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

stakeholder needs or they are incorrect because of misunderstandings between the
requirements engineers and the stakeholders. The resulting system may then be
unacceptable to major classes of stakeholders even if it has been verified by
testing to meet its requirements. Fixing these problems later can have major
negative impacts on cost and schedule, and some functionality may be missing
upon delivery.

• Solutions
Ensure that requirements validation is a fundamental component of any
requirements method, one that will not be dropped the first time that project
resources become scarce. Ensure that requirements validation is included into the
project’s schedule and budget as well as the schedules and budgets of the system’s
stakeholders. Finally, remove all unnecessary obstacles separating the
stakeholders and the requirements team.

9) Inadequate Requirements Management

• Problem
Many projects do not adequately manage their requirements. They store their
requirements in paper documents or in simple spreadsheets. Different kinds of
requirements are also stored separately in different media controlled by different
teams such as the marketing team, the management team, the requirements team,
and specialty engineering teams. For example, functional requirements may be
stored in a requirements database, interface requirements may be stored in
interface control documents, data requirements may be stored as data design
definitions in one or more data dictionaries, security requirements may be stored
in multiple organizational security policy documents, and other quality
requirements may be stored in a supplementary requirements specification. Often,
there is little support for access control to these requirements including limits on
who has what kind of access (e.g., create, read, update, and delete). The
requirements are often missing important metadata, such as priority, type, status,
source, rationale, etc.

• Negative Consequences
Requirements stored in paper form rather than in a requirements repository are
difficult if not impossible to create, manipulate, and maintain. Scattered
requirements are hard to find, sort, query, and maintain. Lack of access control
makes it difficult to limit access to sensitive requirements and to achieve proper
change control. Lack of centralized, automated management of requirements also
makes it difficult to capture, analyze, and report requirements metrics (e.g.,
requirements stability, maturity, and completion).

• Solutions
To deal with the large number of requirements and the constant changes to them,
store the requirements in a database or the repository of a requirements tool. Store
the requirements models and diagrams with or linked to the requirements. Store

VOL. 6, NO.1 JOURNAL OF OBJECT TECHNOLOGY 27

all important attributes about a requirement (a.k.a., metadata) with the
requirement so that they are easy to manage and maintain. Do not scatter different
kinds of requirements; instead, keep them all in the same repository. Ensure that
the requirements repository (and tool) supports access control, including
prohibition of unauthorized access to sensitive requirements (e.g., proprietary
information and classified data). If you need different kinds of requirements
specifications for different audiences or purposes, generate them automatically
from the requirements repository.

10) Inadequate Requirements Process

• Problem
On many projects, the actual requirements method used is largely undocumented.
It is often incomplete in terms of either missing or inadequately documenting
important tasks, techniques, roles, and work products. The as-followed
requirements engineering process is often inconsistently followed and
significantly different from the as-documented requirements engineering method.
The requirements engineering method is often based on a single technique (e.g.,
use case modeling) that is unfortunately intended to be used for all types of
requirements, rather than having the requirements engineering method include
appropriate techniques for engineering functional, interface, data, and quality
requirements as well as for mandated constraints. Often documented in a
requirements engineering plan, system/software engineering plan, or requirements
standards and procedures documents, the requirements engineering method is
typically much too brief (1 to 2 pages) and incomplete. The method used is often
chosen because it was used more or less successfully once before by a member of
the requirements team, rather than because it is appropriate for the engineering of
the requirements of the specific system to be developed or updated. Another cause
of inadequate requirements engineering processes is the widespread use of
standard, generic, out of the can (or book) development methods, which do not
meet the needs of the specific project. As with any other development process and
discipline, one size does not fit all.

• Negative Consequences
A poor as-documented method is enacted as poor as-performed processes that
produce poor products, which in this case are poor-quality requirements and
requirements specification documents. Inappropriate methods are inefficient and
ineffective. When different requirements engineers and requirements engineering
teams use poorly documented methods, they produce inconsistently specified
requirements, which are difficult for architects, designers, implementers, and
testers to use. Methods lacking of necessary detail cause the requirements
engineers to waste time arguing over what to do and how to do it. They will also
make unwarranted assumptions about how parts of the method should be
performed.
The use of a generic requirements engineering method often results in a mismatch

COMMON REQUIREMENTS PROBLEMS, THEIR NEGATIVE CONSEQUENCES, AND

INDUSTRY BEST PRACTICES TO HELP SOLVE THEM

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

with the specific needs of the project. If the generic requirements engineering
method is not properly tailored or if a project-specific method is not developed
(e.g., constructed by selecting and integrating reusable requirements-related
method components), then the resulting suboptimal method will not produce
optimal results.
All of these subproblems and associated specific negative consequences
ultimately cause budget and schedule overruns as well as the delivery of system
with missing capabilities and added defects.

• Solutions
Have an experienced requirements engineer and process engineer collaborate to
ensure that the requirements engineering method is complete, incorporating all of
the important method components including tasks, techniques, roles and
responsibilities, and work products. The quality organization should also audit the
requirements engineering process. Ensure that the method components are mature
and have been successfully used on projects that were similar in size, complexity,
and type and that developed similar systems. Ensure that the method components
are properly documented, easily understood by their target audiences, and contain
the appropriate level of detail based on the training and experience of the people
who will use them.
Where practical, construct a project-specific requirements engineering method
that meets your specific needs by reusing mature method components instead of
either reusing a generic but inappropriate canned method or developing and
documenting a requirements engineering method from scratch. For example, you
may wish to consider using a commercial tool (e.g., RUP from IBM/Rational,
which seems to be the most commonly mentioned process engineering tool in the
software engineering community1). On the other hand, you may wish to consider
reusing free, open source method components to construct your project-specific
requirements engineering method, whereby the OPEN Process Framework
Repository Organization (http://www.opfro.org) has the most extensive repository
of free, open source method components including requirements engineering
tasks, techniques, roles, teams, and work products.

11) Inadequate Tool Support

• Problem
Many requirements engineers do not have or do not use adequate tool support
when engineering their requirements. For example, many requirements engineers
still use a requirements specification document as their combined requirements
specification and requirements repository, while others use a simple spreadsheet
or relational database table. Few requirements engineers use a real requirements

1 The Rational Unified Process (RUP) tool is merely given as a popular example of a commercial process
engineering tool; naming it as opposed to naming tools from competing vendors is not intended as an
endorsement of any one tool over another.

VOL. 6, NO.1 JOURNAL OF OBJECT TECHNOLOGY 29

management tool (e.g., Borland CaliberRM, IBM/Rational’s RequisitePro, or
Telelogic’s DOORS2) that enables them to store individual requirements with
their associated attributes (metadata).
Diagrams (e.g., UML use case diagrams, sequence/swimlane diagrams, and state
charts) are a major part of most requirements models, and when it comes to
drawing diagrams, it is hard to beat whiteboards. Still, the diagrams must be
eventually being captured if they are going to be documented for later use. When
it comes to requirements identification and analysis, many requirements engineers
use simple drawing tools while others use CASE tools (e.g., IBM/Rational Rose
or Telelogic’s Rhapsody2) to draw diagrams. The requirements and their
associated models and diagrams are often developed and stored in two (or more)
different and incompatible tools. Traceability from the requirements in one tool to
the architecture, design, implementation, and testing in two, three, or four
additional tools is often not supported by the tools and must be maintained
manually.

• Negative Consequences
Many requirements models are not properly documented and stored to back up the
actual requirements. It is extremely labor-intensive to manually produce and
maintain a non-trivial amount of requirements. Without tool support,
inconsistencies significantly increase and the documented requirements easily get
out-of-date.

• Solutions
Use a powerful, yet user-friendly, requirements management tool that enables the
storing of requirements metadata. Use a powerful, yet user-friendly requirements
modeling tool to capture requirements diagrams and associated text. Ensure that
these tools support the configuration management of the requirements and their
models. Where practical, choose an integrated toolset that supports traceability as
well as the forward engineering of requirements through architectures and designs
to implementations and tests and reverse engineering from these back to the
requirements. When practical, develop scripts or other software that links the tools
together if you cannot obtain a fully integrated or interoperable set of
requirements tools, which is likely given the current state of the industry. Do due
diligence when evaluating requirements and related tools, and beware of tool
vendor marketing descriptions and promises.

12) Unprepared Requirements Engineers

• Problem
There is a common myth held by certain managers that because requirements are
usually specified using native languages such as English, then any reasonably
literate person should be able to talk to a few stakeholders and write down what
they want. The belief is that, unlike design and programming require specific

2 As in previous paragraphs, these tools are merely used as examples; no recommendation or endorsement
is intended.

COMMON REQUIREMENTS PROBLEMS, THEIR NEGATIVE CONSEQUENCES, AND

INDUSTRY BEST PRACTICES TO HELP SOLVE THEM

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

technical experience and training, requirements engineering is a soft discipline
that anyone can perform. Another myth is that domain experts (e.g., business
analysts and marketing personnel) who understand the application domain, but
who know nothing about requirements engineering can also magically become
requirements engineers overnight. While these two myths are patently untrue, it is
not uncommon to see people Peter-Principled into the position of requirements
engineer without training in requirements engineering and without any experience
or an apprenticeship to gain that experience.
Requirements engineering is often a position that is little valued by technical
people, who do not understand that it is an engineering discipline in its own right
with its own methods, techniques, and tools. In fact, being a good requirements
engineer requires some of the same characteristics of a good architect. Both need
to be able to have a big-picture viewpoint and be able to communicate well with
non-technical people as well as technical people. Often, the position of
requirements engineer is looked down upon as not having good prospects for
career advancement. In general, it is not considered to be fun by most technical
people, who mistakenly consider the role to be closer to that of management than
technologist.

• Negative Consequences
Requirements engineers without training, expertise, or motivation do not tend to
understand and follow good requirements methods and therefore do not tend to
produce good requirements. For such people, the job can be frustrating and a
source of low morale and self-esteem. In such organizations, the position of
requirements engineer becomes viewed as a no-fun, dead-end job for performers,
a viewpoint that becomes a self-fulfilling prophesy. Thus, poor productivity and
excessive staff turnover can result.

• Solutions
Carefully select people with the right combination of training, experience,
motivation, mindset, and people skills to be good requirements engineers. Provide
them with significant amounts of training, including classes, conference tutorials,
books, and journals. Apprentice beginners to more experienced requirements
engineers. Then, formally give them the mandate including responsibility and
authority to properly do their job. Ensure that others, including both management
and the technical staff, understand the importance of the role they play in project
success.

3 CONCLUSION

In this column, I have briefly described the twelve most important problems negatively
impacting the engineering of requirements for software-intensive systems. For each
problem, I have described some of its major negative consequences, and the most
important things we can do to either avoid these problems or fix them.

VOL. 6, NO.1 JOURNAL OF OBJECT TECHNOLOGY 31

Reading the previous descriptions, you may have noted that some of these problems
are synergistically related. The bad news is that they feed off of each other so that if you
have one of the problems, you are likely to have more and that some of their negative
consequences have common causes. The good news, however, is that several of the
solutions are also synergistically related. Applying one industry best practice to solve or
avoid one problem will often help solve or prevent several other problems.

Although these may be perennial requirements engineering problems, they fortunately
all have well-known industry best practices as solutions. Thus, our primary challenge is
not to develop new and improved requirements engineering methods and techniques.
Rather, it is to put into practice what many professional requirements engineers have
been recommending for years. And that leads to a new problem; solving these twelve
problems will take a considerable amount of consciousness raising, training, and
management support. The bottom line is the following two questions:

• How many of us will put these industry best practices into practice?
• How many of us will continue to suffer the negative consequence if we don’t?

REFERENCES

[Boehm and Papaccio 1988] Barry W. Boehm and Philip N. Papaccio, “Understanding
and Controlling Software Costs,” IEEE Transactions on Software
Engineering, Vol. 14, No. 10, October 1988, pp. 1462-1477

[Firesmith 2003] Donald Firesmith, “Specifying Good Requirements,” Journal of Object
Technology (JOT), 2(4), Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland, pp. 77-87, July/August 2003.
http://www.jot.fm/issues/issue_2003_07/column7

[Wiegers 2001] Karl E. Wiegers, “Inspecting Requirements,” StickyMinds.com Weekly
Column, 30 July 2001, http://www.stickyminds.com

ACKNOWLEDGEMENTS

Many thanks go to my colleagues Peter Capell and Mary Popeck, who reviewed this
column and provided helpful observations and recommendations.

Disclaimers
The Software Engineering Institute is a federally funded research and development center
sponsored by the U.S. Department of Defense.

COMMON REQUIREMENTS PROBLEMS, THEIR NEGATIVE CONSEQUENCES, AND

INDUSTRY BEST PRACTICES TO HELP SOLVE THEM

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

The views and conclusions contained in this column are solely those of the author and
should not be interpreted as representing official policies, either expressed or implied, of
the Software Engineering Institute, Carnegie Mellon University, the U.S. Air Force, the
U.S. Department of Defense, or the U.S. Government.

VOL. 6, NO.1 JOURNAL OF OBJECT TECHNOLOGY 33

About the author
Donald Firesmith is a senior member of the technical staff at the
Software Engineering Institute (SEI), where he helps the US
Government acquire large, complex, software-intensive systems.
Working in industrial software development since 1979, he has worked
primarily with object technology since 1984 and has written 5 books on
the subject. During the last five years, he has developed the world’s

largest (1,100+ webpage), free, and open source informational website of reusable
process engineering components for constructing project-specific development methods.
Based on the OPEN Process Framework (OPF), it is located at http://www.opfro.org.
Currently completing his next book on the engineering of safety- and security-related
requirements for software-intensive system, he can be reached at dgf@sei.cmu.edu.

