
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6. No. 1, January-February 2007

Cite this column as follows: Douglas A. Lyon and Francisco Castellanos “The Saverbeans
Screensaver and Initium RJS System Integration: Part 5”, in Journal of Object Technology, vol. 6.
no. 1, January-February 2007, pp. 35-57 http://www.jot.fm/issues/issue_2007_01/column3

The Saverbeans Screensaver and Initium
RJS System Integration: Part 5

Douglas Lyon and Francisco Castellanos

Abstract
This paper describes the integration of our Java-based screensaver framework with our
Initium Remote Job Submission (IRJS) grid computing middleware. Initium RJS is a
Java Web Start (JAWS) based grid-computing technology. This is part 5 of a 5 part
series. In parts 1, 2, and 3, we described screensavers for MS Windows, Xwindows,
and the Macintosh. Part 4, describe automatic deployment of the screensavers into the
MS Windows and XWindows systems.
This paper introduces the use of our grid system. We provide an example that shows
how to take a von Neumann style program, break it up, and deploy it to our grid system.

1 INTRODUCTION

This article describes the process followed to integrate the IRJS screensaver with the
IRJS grid computing middleware. Our goal is to provide a minimally invasive CPU
scavenging technology. The IRJS screensaver launches a Compute Server (CS) when the
computer enters a quiescent state. The CS joins the grid and volunteers its resources. The
IRJS screensaver terminates the CS when any user input is detected. We use the
[Saverbeans] framework to create our screensaver and to allow such behavior.

The primary goal of this paper is to describe an example of the transformation of a
von Neumann style program into a concurrent program that makes use of our grid
framework. We shall confine ourselves to a simple first example that makes use of a
well-known fractal computation called the Mandelbrot set. We also summarize the basis
theory of operation of our grid framework.

2 INTEGRATION OF A SAVERBEANS SCREENSAVER AND A
GRID SYSTEM

We use a Compute Server (CS) that uses multicasting to discover a Lookup Server (LUS)
over a local network. The CS announces that it is available, and provides benchmark data

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

to the LUS. The benchmark data describes computer resources, and it is used by the LUS
to allocate tasks to the CS. The LUS holds a pool of previously partitioned jobs that need
to be processed, and it allocates these jobs to available resources. The main task of the CS
is to process or compute the job and to transmit the results back to the LUS [Pawel and
Lyon]. The role of the screensaver is to detect user-computer quiescence and use this
interval to volunteer CPU cycles to the LUS.

The SaverBeans framework provides two methods that can be shadowed to alter the
behavior of screensaver initiation and termination. These two methods are init() and
destroy(), and they are defined in the abstract class ScreensaverBase. We subclass the
SimpleScreensaver in order to create our own screensaver. The init() method is
called during the screensaver startup. In our Java class IRJS Saver we have implemented
the init() method to not only initiate the state of our screensaver, but also to invoke the
CS as shown in Example 2-1.

Example 2-1
public void init() {
 ScreensaverSettings settings = getContext().getSettings();
 Component c = getContext().getComponent();
 int width = c.getWidth();
 int height = c.getHeight();
 randomizePoint(p1, width, height);
 ….

 /*Initiate Compute Server and Monitor once.
 Init method is invoked more than once during the execution the
screensaver.
 */the variable iCount is static.

iCount = iCount + 1;
 if (iCount < 2){
 startComputeServer();
 launchLogMonitor();
 }
 }

The startComputeServer() method called in Example 2-1 invokes the Compute Server
application using Java Web Start as shown in Example 2-2. Notice the parameters passed
to the exec method in the Runtime object rt. They are the application name “javaws”
(Java Web Start), the command –Xnosplash to avoid any splash screens, and the location
or URL of the CS.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 37

Example 2-2
private void startComputeServer(){
 Runtime rt;
 Process p;

 String[] params = {"javaws", "-Xnosplash",
"http://www.myjavaserver.com/~fsophisco/" +
 "net.rmi.pawelGrid.LusCs.CsMain.jnlp"};

 rt = Runtime.getRuntime();
 try{
 p = rt.exec(params);
 p.waitFor();

 }catch(Exception e){
 System.out.println("Error @ startComputeServer()");
 e.printStackTrace();
 }
 }

Example 2-1 shows a call to the launchLogMonitor() method and this is listed in
Example 2-3. It has the purpose of creating a thread that periodically monitors and reads
from the CS log file to find the state of the CS. We use the state of the CS to help create a
display in the screensaver frame, and it occurs in the shadowed paint() method, which is
discussed later in this section.

Example 2-3
 private void launchLogMonitor(){

 Thread t = new Thread(new Runnable(){
 public void run(){
 try{
 while (true){
 Thread.sleep(5000);
 readCSLog();
 }
 }catch(Exception e){
 e.printStackTrace();
 }
 }
 //Read CS status from Log. Set message to be
displayed.
 public synchronized void readCSLog(){
 try{
 fout = new RandomAccessFile(cslogFile,
"rw");
 message = fout.readLine();
 if (ms_length != message.length())
 {
 ms_length = message.length();

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

 new_ms = true;
 }
 fout.close();
 }catch(Exception e){
 e.printStackTrace();
 }
 }
 });
 t.start();
 }

3 DETECTION OF USER INPUT AND TERMINATION OF
COMPUTE SERVER

The CS has been built with the capability of monitoring and detecting termination
messages from an external application. In the case of receiving a termination message,
the CS proceeds to perform any cleanup and communicates with the LUS, and finally
terminates execution. This process restores the CS to its initial state when the user returns
to use his/her computer.

Subclasses of SimpleScreensaver can optionally implement the destroy() method to
perform any cleanup before the screensaver is destroyed. In our case we want to
communicate with the Compute Server to inform it that user input has been detected and
that it needs to terminate itself. We accomplish this by creating a directory in a common
place that the CS monitors periodically, as shown in Example 3-1.

Example 3-1
private static String fileSep = System.getProperty("file.separator");
private static String tmpDir = System.getProperty("java.io.tmpdir");
public final static File killFile = new File(tmpDir +
 fileSep +
 "killcs");

protected void destroy(){

 cal= Calendar.getInstance();
 killFile.mkdir();
 System.out.println("CS Stoping at "+
cal.getTime().toString());
 }

4 PAINTING THE NEXT FRAME

We have shadowed the method paint() to enable a screen display. The method
LaunchLogMonitor(), shown in Example 2-3 starts a monitor to periodically obtain the
status of the computer and to place it, in a string format, into an instance variable. For the
purpose of observing the status of the Compute Server in the screen, we have included

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 39

the string message obtained from the monitor as shown in Example 4-1. The String
simply bounces against the walls, and it is changed every time the Compute Server’s
status changes as shown in Figure 4-1 and Figure 4-2.

Example 4-1
public void paint(Graphics g) {

 Component c = getContext().getComponent();
 int width = c.getWidth();
 int height = c.getHeight();
 Point c_point = new Point();

 //Write SS Name
 g.setFont(new Font("Arial", Font.BOLD , 25));
 g.setColor(Color.red);
 g.drawString(ssName, 30, 30);

 ….
 g.setFont(new Font("Arial", Font.BOLD , 25));
 g.drawString(message, p1.x, p1.y);

 // Erase old drawings:
 Point pe = points[indx_b];
 if (pe != null)
 {
 g.setColor(c.getBackground());
 g.setFont(new Font("Arial", Font.BOLD , 25));
 g.drawString(message, pe.x, pe.y);
 }

 // Move points and bounce off walls:
 bounce(p1, dir1, width, height);

 //Draw String
 g.setColor(Color.blue);
 g.setFont(new Font("Arial", Font.BOLD , 25));
 g.drawString(message, p1.x, p1.y);
 …..
 }

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Figure 4-1 IRJS Screensaver: Compute Server is launching

Figure 4-2 IRJS Screensaver: CS is connecting to LUS

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 41

5 SETTING YOUR OWN SAVERBEANS SCREENSAVER
PROJECT

The following steps describe how to create your own screensaver project. For details
about requirements, and building and compiling the project, please refer to [Lyon and
Castellanos].

1. Make a copy of the startup directory located in the SaverBeans home, as shown in
Figure 5-1.

Figure 5-1. Creating a copy of Saverbeans Startup project.

2. The file building.properties.sample inside the rename startup directory should be
copied to build.properties. This file contains the one important property, the location
of the SaverBeans sdk home, and it should be set to the appropriate location.

See http://jdic.dev.java.net/
saverbeans.path=C:/saverbeans-sdk-0.2

3. Edit build.xml. Replace the bouncingline names and locations with new names as

shown in Figure 5-2. For example, change:

<property name="screensaver" value="bouncingline" />
 <property name="screensaver.class"

value="org.jdesktop.jdic.screensaver.bouncingline.BouncingLine" />
To :
<property name="screensaver" value="rjssaver" />
 <property name="screensaver.class"
 value="org.jdesktop.jdic.screensaver.rjssaver.RjsSaver" />

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Figure 5-2 Contents of build.xml File

4. Rename your directories and files to match with the ones edited in the build.xml file.
Most files and directories exist within the src folder. Below are the files and
directories to be renamed:

4.1. Rename the configuration file bouncingline.xml located at src/config
4.2. Rename the directory bouncingline located at

src/java/org/jdesktop/jdic/screeensaver.
4.3. Rename the java class bouncingline.java located at

src/java/org/jdesktop/jdic/screeensaver/<new name>/bouncingline.java.
Remember to change the name of the package and class name inside the
file as shown in Example 5-1.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 43

Example 5-1
package org.jdesktop.jdic.screensaver.rjssaver;

import org.jdesktop.jdic.screensaver.SimpleScreensaver;
….

public class RjsSaver
 extends SimpleScreensaver
{

4.4. Lastly before making any modifications to the java class or anything else.
Run ant debug command to make sure that the project is working correctly
as shown in Figure 5-3. The screensaver should launch inside a frame.

Figure 5-3. Shows the output after executing ant debug.

6 PARTITIONING A VON NEUMANN-STYLE SAMPLE PROGRAM

To demonstrate the use of the IRJS System, computable jobs must be submitted to it. In
this section, our goal is to take a von Neumann style program and to partition it into
executable pieces. The initial sample program produces an image of the Mandelbrot set.
The main goal is to process an image using the Mandelbrot set algorithms, and to display
the output image into a frame as shown in Example 6-1.

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Example 6-1
public void testMandelbrot() {
 final Dimension dim = new Dimension(400, 400);
 ClosableJFrame cjf = new ClosableJFrame("mandlebrot") {
 public void paint(Graphics g) {
 Dimension d = getSize();
 Image i = getMandelbrot(d.width, d.height);
 g.drawImage(i, 0, 0, null);
 }
 };
 cjf.setSize(dim.width, dim.height);
 cjf.setVisible(true);
}

The getMandelbrot() method, called in Example 6-1, takes two parameters, the width and
height of the image to be processed. It uses these parameters to create an image bean,
where all the data is stored. It continues to call the Mandelbrot() method and passes the
RGB arrays from the image bean. Example 6-2 shows getMandelbrot() method.

Example 6-2
public Image getMandelbrot(int w, int h)
{
ShortImageBean sib = new ShortImageBean(w, h);
 mandelbrot(sib.getR(), sib.getG(), sib.getB());
 return sib.getImage();
}

The Mandelbrot() method applies the Mandelbrot set algorithms and generates data into
the RBG bean arrays as shown in Example 6-3.

Example 6-3
public void mandelbrot(short[][] r, short[][] g, short[][] b) {
 int height = r[0].length;
 int width = r.length;
 int Clr;
 float pixelr, pixeli;
 for (int y = 0; y < height; y++)
 for (int x = 0; x < width; x++) {
 pixelr
 = mandleBrotDimensions.getxMin() +
 (float) x / width *
 (
 mandleBrotDimensions.getxMax() -
 mandleBrotDimensions.getxMin());
 pixeli
 = mandleBrotDimensions.getyMin() +
 (float) y / height *
 (
 mandleBrotDimensions.getyMax() -
 mandleBrotDimensions.getyMin());

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 45

 Clr = getColor(pixelr, pixeli);
 if (Clr == -1) {
 r[x][y] = 255;
 g[x][y] = 128;
 b[x][y] = 0;
 } else {
 r[x][y] = mandelTables.colorR[Clr %
mandelTables.maxIter];
 g[x][y] = mandelTables.colorG[Clr %
mandelTables.maxIter];
 b[x][y] = mandelTables.colorB[Clr %
mandelTables.maxIter];
 }
 }
 }

The output image is shown in Figure 6-1.

Figure 6-1. Shows the output image from the Von Neumann style program

The next task is to modify the sample program, so the task at hand can be divided into
smaller logical parts. The Mandelbrot method was overloaded to apply the Mandelbrot
set algorithm to a single point as shown in Example 6-3.

Example 6-3
public void mandelbrot(int x, int y, short[][] r, short[][] g,
short[][] b) {
 int height = r[0].length;

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

 int width = r.length;
 int Clr;
 float pixelr, pixeli;

 pixelr
 = mandleBrotDimensions.getxMin() +
 (float) x / width *
 (
 mandleBrotDimensions.getxMax() –
 mandleBrotDimensions.getxMin());
 pixeli
 = mandleBrotDimensions.getyMin() +
 (float) y / height *
 (
 mandleBrotDimensions.getyMax() –
 mandleBrotDimensions.getyMin());
 Clr = getColor(pixelr, pixeli);
 if (Clr == -1) {
 r[x][y] = 255;
 g[x][y] = 128;
 b[x][y] = 0;
 } else {
 r[x][y] = mandelTables.•olor[Clr % mandelTables.maxIter];
 g[x][y] = mandelTables.colorG[Clr %
mandelTables.maxIter];
 b[x][y] = mandelTables.colorB[Clr %
mandelTables.maxIter];
 }
 }

Using this method we synthesize selected areas of the image as show in Example 6-4 and
Figure 6-2.

Example 6-4

 short[][] r = sib.getR();
 short[][] g = sib.getG();
 short[][] b = sib.getB();

 int height = 150;
 int width = r.length;

 for (int y = 0; y < height; y++)
 for (int x = 0; x < width; x++) {

 mandelbrot(x, y, r, g, b);
 }

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 47

Figure 6-2. Partial processed area of an image

Part of the requirements of the IRJS System is that each single job submitted must
generate a jar file with the answer of the job as contents. In this example, it is a partial
image. Example 6-5 shows the method used by independent jobs that will work with
different sections of the image. Part of the parameters passed to this method is region of
the image, and the jar file name for the answer. The result of this method is a jar file
containing a section of the image.

Example 6-5
public static void computeStrip(Dimension d, Point position, Point
from, Point to, String outputFileName) {

ShortImageBean sib = new ShortImageBean(d.width, d.height);
FractalShortImageBean s = new FractalShortImageBean(position,
from, to);

FractalLogic fl = new FractalLogic();

 s.setR(sib.getR());
 s.setG(sib.getG());
 s.setB(sib.getB());
 System.out.println("Processing piece Image fp=" + from.x + "
tp=" + to.y);
 for (int y = from.y; y < to.y; y++) {
 for (int x = from.x; x < to.x; x++) {
 fl.mandelbrot(x, y, s.getR(), s.getG(), s.getB());
 }
 }

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

String ds = SystemUtils.getUserHome() +
SystemUtils.getDirectorySeparator() +
 "rjs" + SystemUtils.getDirectorySeparator();

 File f = new File(ds);
 if (!f.exists()) f.mkdir();
 String fn = ds + outputFileName;
 f = new File(fn);

 Image i = s.getProcessedImage();
 ImageUtils.saveAsPPMJar(i, f); // saving the image as jar
 System.exit(0);
 }

The last step is to create the jobs. For this example we have created eight jobs. Example
6-6 shows the code for one of them. The original program was also modified to read the
images from jar files and to build them together to form the original output image.

Example 6-6
public class FractalsJob_1 {
 public static void main(String[] args) {
 Point from = new Point(0, 0);
 Point to = new Point(400, from.y + 100);
 Utils.computeStrip(from, to, "Fractals_out1.ppm.jar");
 }}

7 SUBMITTING JOBS TO THE IRJS SYSTEM

In this section we describe an example on how to write jobs that can be submitted to the
IRJS System. We use the [Mandelbrot] set to create jobs that are suitable for submitting
to the IRJS system. The IRJS system accepts tasks or jobs that have the following
characteristics:

• They are written in the Java language.
• The class to execute has a main(...) method.
• They are independent tasks that do not require any user input during their

execution.
• They are known to be large CPU-time consumers.
• They do not require any GUI.
• They are deployed using Java Web Start.
• The outputs of the jobs are written into a jar file.

We have created eight different jobs that use the Mandelbrot algorithms to process a large
image. Each job processes a section of the image which horizontal and vertical locations
are specified as parameters of the job as shown in Example 7-1.

Example 7-1

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 49

public class FractalsJob_1 {

 public static void main(String[] args) {
 Point from = new Point(0, 0);
 Point to = new Point(400, from.y + 100);
 Utils.computeStrip(from, to, "Fractals_out1.ppm.jar");
 }
}

The jobs are packaged and deployed as Java Web Start applications into a web server
using the [Initium] utility. Initium performs a dependency study of the class that will be
deployed, in our case class FractalsJob_1. It continues to package only the dependencies
to this class and generates a jar file. The jar file is signed with the credentials of the IRJS
system, and a JNLP file is generated. These two outputs, the signed jar file and the JNLP
file, are deployed to the web server where they will be available to the IRJS system.
Initium provides an interface that is used to enter all the parameters necessary to package
and deploy the jobs as shown in Figure 7-1.

Figure 7-1 Initium Graphical User Interface

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

The results from the Initium utility are eight Java Web Start applications as shown in
figure 7-2. Each JWS application is ready to process a section of an image applying the
Mandelbrot algorithms.

Figure 7-2 Results of Initium: List of eight Java Web Start applications

8 IRJS SYSTEM PROCESSING JOBS

LAN

Figure 8-1 IRJS components

The IRJS System is composed of four main modules as depicted in figure 8-1. These four
components are stand-alone JWS applications. The first module, the IRJS Web Server

User PC / CS

Web Server

2. IRJS Look Up

1. IRJS Web Server
4. IRJS Screensaver

3. IRJS Compute Server

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 51

located at [IRJS Web Server], has the responsibility of pulling jobs on demand from an
external location (for our example, it is the location where the eight jobs are placed). The
second module, the Lookup server (LUS) located at [IRJS LUS], is responsible of
managing several activities including job-resource matching, available resources, leasing,
and feeding answers back to the web server module. The third component is the Compute
Server (CS), located at [IRJS CS]. The CS is triggered by the fourth component, the IRJS
screensaver, located at [IRJS SS]. The CS announces its availability and benchmark data
to the LUS and waits for jobs to be submitted. Figure 8-2 shows the events mentioned
between the IRJS system components.
Compute Servers

 1. Multicast Signal – LUS Discovery 2. Pull Jobs (JNLP links)

3.Send JNLP Links to CS

4. Download and Execute Jobs Look up Server Web Server

5. Send Answers back to LUS (jars) 6. Post Jars into Web Server

Figure 8-2. IRJS System Events.

For the example at hand, all the components must be launched. We use a separate server
to launch the IRJS Web server and the LUS. On separate computers we install the IRJS
screensaver. The screensaver display status messages as shown in figures 4-1 and 4-2.

The interface of the LUS is used to start the execution of the system when all
components are running. Figure 8-3 shows the LUS interface depicting the available
compute servers and their characteristics.

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Figure 8-3. LUS interface shows available Compute Servers.

We use the LUS interface to pull available jobs by clicking the Get Jobs button, as shown
in Figure 8-4. Once the jobs are downloaded they are matched to available CS(s) and
deployed. The CS(s) execute the jobs and returns jar files as answers. When the LUS
receive the answers, it logs them on the interface, as shown in Figure 8-4.

Figure 8-4. Once jobs are completed and answers received, they are logged into the LUS interface.

Lastly, we use the eight answers to build the whole image, as shown in Figures 8-5 and 8-
6.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 53

Figure 8-5. This is the set of eight different Images already processed (Mandelbrot Set) by the IRJS
System.

Figure 8-6. The complete processed image.

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

9 EXPERIMENTAL RESULTS

We experimented the IRJS system to observe the benefits and disadvantages that the
system offers. The eight jobs created for the Mandelbrot set example, mentioned in
chapter 9, were used to benchmark the IRJS system. Four computers were used, and the
IRJS screensaver was installed in each of them for the experiment. To notice the
processing time gained, the amount of total processing time for the eight jobs was taken
in different scenarios. We first used a single computer and then incremented the amount
of computers by one for each experiment. The four computers have the following
characteristics:

In order of addition:

A. Linux Fedora Core 4, PIII, 500 MHz, 512 m Ram.
B. Windows XP, Celeron M, 1.5 GHz, 512m Ram
C. Linux Fedora Core 2, Celeron, 500 MHz, 512 Ram
D. Windows XP, P4, 3.0GHz, 1G Ram

Experiment # Experiment Desc. Computers Number of Jobs Total Processing Time
1 One CS A 8 2m 53 sec
2 Two CS(s) A, B 8 1m 7 sec
3 Three CS(s) A, B, C 8 1 m 2 sec
4 Four CS(s) A, B, C, D 8 50 sec

Table 9-1. Experimental Results

As shown in Table 9-1, we observed that the amount of processing time decreases as the
amount of computers/CS(s) increases. This is perhaps the greatest benefit of the
computing grid. Between experiment 1 and 2, the jobs were processed in 1 minute and 46
seconds less, or in ~ 38% of the initial processing time. Between experiment 2 and 3, the
jobs were processed in 5 seconds less, or 92% of the processing time in experiment 2.
Between experiment 3 and 4 the jobs were processed in 12 seconds less, or ~ 80% of the
processing time in experiment 3.

Our second observation is that the IRJS System is as strong as the weakest link. The
smallest gain in time was observed after computer C was added to experiment 3. This
computer was the slowest computer of the group. In experiment 4, the CS in computer C
was the last to complete, 10 seconds later than the rest of the computers, that represents ~
25% more time, as shown in Figure 9-1.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 55

IRJS System Experimental Results

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4

Compute Servers

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
Se

c.

 .

Figure 9-1 Graph of experimental results

10 SUMMARY

A screensaver is capable of detecting user input. We have used this feature to serve as a
launching facility for the CS. Through this process the resources of a computer maybe
volunteered and utilized close to 100%. The IRJS Screensaver is minimally intrusive,
detects user input, and terminates any additional execution of the CS. In addition, we
have put to use technologies that promise cross platform solutions such as Java, Java Web
Start, and Saverbeans.

THE SAVERBEANS SCREENSAVER AND INITIUM RJS SYSTEM INTEGRATION: PART 5

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

REFERENCES
[Lyon and Castellanos] The Initium RJS Screensaver: Part1, MS Windows by Douglas A.

Lyon and Francisco Castellanos, in Journal of Object Technology, vol. 5, no.
4, May-June 2006, pp. 7-16.

[Initium] Project Initium: Programmatic Deployment by Douglas A. Lyon, Journal of
Object Technology, vol. 3, no. 8, September-October 2004, pp. 55-69

[IRJS CS] http://show.docjava.com:8086/book/cgij/code/jnlp/net.rmi.rjs.pk.main.CSMain
ForSS.jnl Last accessed September 12, 2006

[IRJS LUS] http://show.docjava.com:8086/book/cgij/code/jnlp/net.rmi.rjs.pk.main.Cr320
Lus.jnlp Last accessed September 12, 2006

[IRJS SS] http://show.docjava.com:8086/book/cgij/code/jnlp/net.rmi.rjs.fc.ssinstaller.Mai
n.jnlp Last accessed September 12, 2006

[IRJS Web Server] http://show.docjava.com:8086/book/cgij/code/jnlp/net.rmi.rjs.pk.
main.WebServerMain.jnlp Last access September 12, 2006

[Mandelbrot] Mandelbrot set. (2006, August 5). In Wikipedia, The Free Encyclopedia.
Retrieved 18:44, August 5, 2006, from http://en.wikipedia.org/w/index.php?
title=Mandelbrot_set&oldid=67754296.

[Pawel and Lyon] Remote Job Submission Security by Pawel Krepstzul and Douglas A.
Lyon, in Journal of Object Technology, vol. 5, no. 1, January-February 2006,
pp. 13-29 http://www.jot.fm/issues/issue_2006_01/column2

[SaverBeans] https://jdic.dev.java.net/documentation/incubator/screensaver/index.html
Last accessed March 14, 2005.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 57

About the authors

Douglas A. Lyon (M'89-SM'00) received the Ph.D., M.S. and B.S.
degrees in computer and systems engineering from Rensselaer
Polytechnic Institute (1991, 1985 and 1983). Dr. Lyon has worked at
AT&T Bell Laboratories at Murray Hill, NJ and the Jet Propulsion
Laboratory at the California Institute of Technology, Pasadena, CA. He
is currently the Chairman of the Computer Engineering Department at

Fairfield University, in Fairfield CT, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. Dr. Lyon has authored or co-authored
three books (Java, Digital Signal Processing, Image Processing in Java and Java for
Programmers). He has authored over 30 journal publications. Email: lyon@docjava.com.
Web: http://www.DocJava.com.

Francisco Catellanos earned his B.S. (Hons) degree in computer
science at Western Connecticut State University. Francisco Castellanos
worked at Pepsi Bottling Group in Somers, NY as a software developer.
Currently he is working on a thesis to complete his M.S. degree in
Electrical and Computer Engineering from Fairfield University. His
research interests include grid computing. He is currently employed by

Access Worldwide in Boca Raton, FL as a software developer. Email:
fsophisco@yahoo.com

