
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 10, November-December 2007

Cite this article as follows: Ashley McNeile, Nicholas Simons: “A Typing Scheme for
Behavioural Models”, in Journal of Object Technology, vol. 6, no. 10, November-December
2007, pp. 81-94 http://www.jot.fm/issues/issue_2007_11/article2/

A Typing Scheme for Behavioural
Models

Ashley McNeile and Nicholas Simons, Metamaxim Ltd., London, UK

Abstract
State machines can be used to specify the behaviour of objects in a system by
describing the relationships between the states of the object and its ability to
respond to events presented to it. Suitable choice of semantics for state machines
allow multiple machines to be composed in the description of a single object.
We describe an extension to this approach whereby different machines in the
composition of a single object have different semantic types covering necessary
behaviour, encouraged behaviour and discouraged behaviour. This provides
expressive power to model the way software interacts with the domain to encourage
or discourage events.

1 INTRODUCTION

Background

This paper describes a technique for modelling object behaviour that enables different
types of behaviour rule to be composed in the description of an object, whereby the
behaviour of an object is governed by rules that represent not only what is possible
but also what is allowed or desired. The ideas presented in this paper have emerged
from experience over 15 years in building and using tools that support the behavioural
design of transactional business systems.

Our particular interest has been to provide tools that allow behavioural models to
be executed and tested early in the development lifecycle, so that the risk that severe
behavioural problems are found at late stages of testing, when rectification can be
very expensive, is significantly reduced. The executable models can be viewed as a
form of prototype, and the testing and exploration of such prototypes provides a
vehicle for users and other stakeholders to engage in and contribute to the modelling
process, even if they have no understanding of the notations and concepts used to
build the model.

Domain of Interest

The systems we are concerned with are those normally termed “transactional business
systems”. This class includes such familiar applications as accounting, order

A TYPING SCHEME FOR BEHAVIOURAL MODELS

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

processing, workflow, stock control, etc. For the purposes of this paper, we make the
following assumptions about the form and behaviour of such a system:

• Behaviour of the system is entirely event driven, events being presented to the
system one at a time by its environment.

• Between successive events the system has a static and well defined global
state, referred to as a stable state. Events are only presented to the system
when it is in a stable state.

• When an event is presented to a system, the system will either accept it and
move to a new stable state, or refuse it and undergo no change.

• Behaviour is deterministic, so that the new stable state that a system reaches as
the result of accepting an event is uniquely determined by the combination of
the stable state before the event and the type and attributes of the event itself.

Here an “event” (properly, an “event instance”1) is the data representation of an
occurrence of interest in the real world domain. Examples of such real world
occurrences are “Customer Fred places an order for 100 widgets to be delivered on
12th August” or “Policy holder Jim makes a claim for £250 against policy number
P1234”. These occurrences are considered to be atomic and instantaneous in the
domain. An event represents such an occurrence as a set of data attributes or
parameters. Every event is an instance of an event-type and the type of an event
determines its metadata (or attribute schema), this being the set of data attributes that
completely define an instance of the event-type. In a banking system, for instance, an
event-type might be “Withdraw” with metadata (Account Id, Date and Time,
Amount). The passage of time is also modelled as events, such as “end of day”. This
approach to modelling events is identical to that used in other event based modelling
approaches, for instance Jackson System Development [Jac83] and Syntropy [Coo94].

The set of assumptions given above are over-restrictive for “real” systems, as
timing issues are completely ignored. In particular, it may not be acceptable or
sensible to serialise the processing of events by waiting for the system to reach a new
stable global state after each event before presenting the next event. However, we
work on the basis that the functional behaviour of transactional systems is a separable
concern from the timing or performance behaviour. Thus once a model has been
prototyped successfully to confirm correct functional behaviour, software with the
same functional behaviour and required performance characteristics can be created by
combining the behavioural model with standard transaction processing concurrency
strategies and load distribution/ balancing techniques.

Structure of this Paper

This paper is organised as follows:
In Section 2 we provide a summary of the definition of the protocol machine, as

described in our earlier paper, Protocol Modelling [Mcn05]. This summary is intended
to provide the reader with enough understanding of the underlying theory to follow

1 We will use “event” for event instance throughout this paper. Where we need to refer to an event

type, we will use the explicit term.

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 83

the rest of the current paper. In Section 3 we describe a concrete syntax for protocol
machines using state transition diagrams, and provide a small example.

In Section 4, we discuss the reason for modelling different kinds of behaviour,
thus motivating our idea of different behavioural types. We go on to show how
protocol machines can be given different semantics, and describe a deontic type
system that enumerates the different semantics that may be given to a protocol
machine. To illustrate the technique, we extend the example introduced in Section 3.

Finally, in Section 5 we provide a view of possible tool support, and how the
technique and tool can be used in practice.

2 PROTOCOL MODELLING

Protocol Machines

The basis of the modelling approach is an abstract construct called a protocol
machine. Protocol machines have the property that large, complex protocol machines
can be assembled from small, simple ones. We use them to build models of systems
that comprise objects and, in this use, the smallest protocol machines are more fine-
grained than objects, but the largest represent whole systems.

A summary of the definition of a protocol machine follows2:
a) A protocol machine (hereafter we will use just “machine”) is event driven;

events being presented to it one at a time by its environment. Consumption of
an event causes the machine to move from one state to another. Between
events the machine has a static stable state. A machine can only be presented
with an event when in a stable state.

b) A machine has a local state which only it can alter and only when moving to a
new state in response to an event. The local state of a machine can be thought
of as a set of slots that the machine uses to store its own data. We denote the
local state of a machine, m, by σ(m).

c) A machine also has access to a wider state, called its state environment, which
it cannot alter. For the purposes of this paper, we take the state environment of
a machine to be the union of the local states of all other machines in the
model.

d) A machine has a repertoire which specifies the events that it understands. If it
is presented with an event that is not in its repertoire it will ignore it. For the
purposes of this paper, we take a repertoire of a machine to be a set of event-
types. We denote the repertoire of a machine, m, by λ(m).

e) When presented with an event that is in its repertoire, a machine will either
accept it or refuse it. Which the machine does is determined by rules that the
machine applies to the states both before and after the event.

Composition of Protocol Machines

Two machines can be composed in parallel to yield a new machine, using a parallel
composition semantics essentially the same as that introduced by Hoare in his process

2 This is a simplification. For a full discussion, see [Mcn05].

A TYPING SCHEME FOR BEHAVIOURAL MODELS

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

algebra, Communicating Sequential Processes (CSP) [Hoa85]. If two machines, m1
and m2, are composed the resultant machine, m3, is defined as follows:

a) σ(m3) = σ(m1) U σ(m2).
b) λ(m3) = λ(m1) U λ(m2).
c) When presented with an event that is not in its repertoire, m3 ignores it.
d) When presented with an event that is in its repertoire, m3 will refuse it if either

m1 or m2 refuses it. Otherwise m3 accepts it.
Note that if m3 refuses the event, there is no permanent change to the values of the
local states of either m1 or m2, even if one of these on its own were capable of
accepting the event.

Protocol Models

A protocol model is an object model built from protocol machines. Composition is
used in two ways to build a model.

Firstly, an object is defined by one or more machines, composed in parallel. Each
of the machines that belong to a given object share an object-id that ties it to the
object whose partial definition it represents.

Secondly, a model is defined as a set of objects, each with its own unique object
id, composed in parallel. The effect of this is that where an event instance involves
multiple objects, all of the participating objects must accept the event, otherwise it is
refused and no change of state in the system takes place. For instance, in a simple
Project Administration system, an event that assigns a person to a project (an
“Assign” event) might require that the person is in the state “available” and the
project is in the state “active”. Presentation of an Assign event would be refused by
the model if either the Person or the Project specified in the event were not in the right
state.

The building blocks for creating protocol models are elementary machines, ones
that are not defined as the composition of other machines. The next section describes
a syntax for defining the behaviour of an elementary machine.

3 A SYNTAX FOR PROTOCOL MACHINES

Concrete Syntax

In this section, we describe a state/transition syntax for defining the behaviour of an
elementary protocol machine. For each event-type in the machine’s repertoire3, a
definition must be given of:

• The tests that the machine applies to determine whether or not it can accept a
instance of that event-type, and

• The updates that the machine applies to its local state to reflect an event.
There are two variants of the notation, as shown in Figure 1, each of which is a partial
description of a machine.

3 The specification of a repertoire entry actually requires more than an event-type. See [Mcn05] for a

full discussion.

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 85

Figure 1. The Two Notational Variants for Protocol Machines

In both variants, the circles represent states of the machine, and the transition
represents the effect of an event. In both cases, the diagram represents a successful
event acceptance scenario for an event type E in the repertoire of the machine.

In the left hand variant, the states “s1” and “s2” are values of a distinguished
stored variable (the “state variable”) in the local state of the machine. The semantics
of this diagram is:

a) The scenario applies if the value of the state variable in the local state of the
machine before the event is “s1”.

b) The scenario results in a set of updates, specified by “Update Spec”, being
applied to the local state of the machine.

c) In addition to the updates specified by Update Spec, the scenario results in the
machine’s state variable being set to “s2” after the event, this being the only
mechanism whereby the state variable can be changed.

In the right hand variant, the circles (this time with a double outline) represent values
that are computed by the machine, using a distinguished function called the machine’s
“state function”. This is a function on the local state and state environment of the
machine that returns an enumerated type, of which “f1” and “f2” are two possible
values. Again, the diagram represents a successful event acceptance scenario, but with
the following semantics:

a) The scenario applies if the value returned by the state function before the event
is “f1” and the value returned by the state function after the event is “f2”.

b) The scenario results in a set of updates, specified by “Update Spec”, being
applied to the local state of the machine.

The full behaviour of a machine is specified by a set of diagrams of the above form.
An event presented to the machine is accepted if and only if there is a corresponding
success scenario for the event-type. Note the following:

• The two variants are not mixed within a given machine. A machine is either
“stored state” in which case it has a single, distinguished, state variable as part
of its local state and only uses left hand variant scenarios; or it is “derived
state” in which case it has a single, distinguished, state function that returns its
state value and only uses right hand variant scenarios.

• The success scenario diagrams for a single machine type can be “stitched
together” to form a single graphical state transition diagram that represents the
behaviour of the machine.

s1 s2 f1 f2
Update Spec. Update Spec.

E E

A TYPING SCHEME FOR BEHAVIOURAL MODELS

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

Example

As an example, Figure 2 shows possible elementary machine definitions for the
simple Project Administration system mentioned earlier.

Figure 2. A basic Protocol Model for a Project Administration System.

In this model, two machines are used to define Project and one to define Person. Note
the following:

• Updates to the local state of the machine take the form x := y. Here x refers to
a variable, or slot, of the local state of the machine, and y is an expression
computed from the state accessible to the machine and the values of the event
attributes. The latter are shown in the form event_name.attribute_name. For
simplicity, not all updates are shown.

• The fact that the Assign event appears in both Project and Person means that
this event cannot take place unless the Project involved is in the state Active
and the Person involved is in the state Available.

• The second (lower) machine for Project specifies that when an adjustment,
which can be positive or negative, is made to the budget of the project, the
result of the adjustment must be that the budget exceeds zero, as a zero or
negative budget is meaningless. This machine uses the right hand variant from
Figure 1 but, as we are not interested in the state before the Adjust, no starting
state is needed.

Assigned Available

Left

Leave

Assign

Release

Join

Assigned_to :=
Assign.project

Assigned_to
:= null

Start
Active Done

Finish

Adjust

Assign

Budget :=
Budget +

Adjust.amount

Budget :=
Start.budget

Positive
Budget

State Function:
If Budget > 0 return “Positive Budget”
Else return “Negative Budget”

Adjust

Project

Person

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 87

4 DEONTIC BEHAVIOUR TYPES

Indicative and Optative Descriptions

When modelling, it is possible to distinguish between two types of description: those
that refer to the application domain independently of the existence of the system, and
those that pertain to the role of the system in its interaction with the domain. The
motivation for this distinction has been made, for instance by Jackson and Zave
[Jac95] and Parnas [Par95]. Jackson uses the word indicative to refer to descriptions
of the domain, and optative to refer to descriptions pertaining to the role of the
system.

In general, both kinds of description are necessary when developing a system.
The reason for making indicative descriptions is that a system tracks the states of an
external reality4, in the sense that a project administration system tracks projects and
people, a stock control system tracks stock levels, and an air traffic control system
tracks aircraft. The system is then able to provide its users with information about the
reality:

• To which project is Jim assigned?
• How many widgets do we have?
• Where is flight XX123?

When designing a system it is necessary to understand what states are possible in the
domain because the system, in order to track the reality, must be able to mirror these
states. Indicative models describe these states.

But a system will also enforce, or help to enforce, user defined rules or policies:
• If the project budget is greater than £x it must be approved by a director.
• The number of widgets must not fall below the safety stock level.
• Two aircraft must not approach within a minimum distance of each other.

These reflect requirements of the system, as they describe what we want to be true
when the domain and the system interact, and are the subject matter of optative
descriptions.

Violation of the rules and policies contained in optative descriptions is both
meaningful and possible, the degree of actual compliance depending on the nature of
the interaction between the system and the domain. Where a system is embedded and
controlling a mechanical domain, such as a computer based electro-mechanical speed
limiter connected to the engine of a bus, there is reasonable guarantee that the speed
will remain within the desired limit. Where humans are involved, for instance if the
computer simply displays a warning to the driver if the bus is going too fast, there is
no such guarantee. In particular, when designing business systems that are to be
embedded in human organisations, it is not appropriate to make any assumptions
about the likelihood or extent of compliance. We explore the consequences of this in
the following section.

4 Not all systems do this. This is not true, for instance, of authoring systems such as word processing

or CAD.

A TYPING SCHEME FOR BEHAVIOURAL MODELS

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

Optative Machines

Protocol machines can be used to make both indicative and optative descriptions
concerning relationships between states and events.

In the discussion so far, and the example shown in Figure 2, we have been using
protocol machines to make indicative behaviour descriptions. In the context of
indicative descriptions, refusal of an event by a model denotes that the model is
unable to ascribe a meaning to the event and is therefore unable to adopt a new stable
state. We now extend the use of protocol machines to optative descriptions. Here the
semantics of “acceptance” and “refusal” have to be different, as it both possible and
meaningful for events to take place that violate the rules of optative descriptions.
Instead of causing the event to be rejected as unprocessable, acceptance or refusal by
machines with optative semantics causes feedback to the source of the event (a user,
or possibly another system) on the event’s appropriateness. The form of such
feedback is discussed later, in Section 5.

There are two types of optative machine semantics, corresponding to whether
feedback is associated with acceptance or refusal, as shown in the table below.

Type Significant Event
Disposition

Semantics

Type D Acceptance An accepted event is Desired.
Example: Replenishing stock that has fallen below the safety
stock level.

Type A Refusal A refused event is not Allowed.
Example: Borrowing a reference book.

The second column indicates which disposition (accepted or refused) of an event by a
machine causes feedback to be returned to the source of the event. The third column
maps the two types of machine to natural meanings, which we refer to as deontic
semantics as they correspond roughly to the ideas of “obligatory” and “forbidden” (or
“encouraged” and “discouraged”) in deontic logic systems5.

Together with machines that describe indicative behaviour (which we refer to as
Type E6) we now have a vocabulary of three deontic types of machine (E, D, and A)
for describing object behaviour. It is to be emphasized that refusal of an event by a
Type D or Type A machine does not prevent the event being processed by the model -
– only machines with deontic type E can do this.

Form and Syntax for Optative Machines

Our general goal is to use the same syntax, as described in Figure 1, for machines of
all deontic types, as this facilitates changing the type of a machine in the context of
developing behaviour models. However the different nature of optative machines
(Types D and A) means that they are subject to special rules of form and syntax,
which we now describe.

Suppose that an object o is described by a heterogeneous set of machines of all
three deontic types. Without loss of generality, we can take it that o is described by
exactly three machines (mE, mD and mA), one of each type. This is because:

5 See, for instance, Hilpinin [Hil71].
6 E stands for Essential, an alternative term meaning the same as Indicative.

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 89

• We allow multiple machines of a given deontic type to be composed, using the
composition rules described in Section 2, to yield a single machine of the same
type.

• If o has no machine of a particular type, we can add a machine with an empty
repertoire7 to establish the complete complement of types.

The two rules that must be observed if the model of o is to be well formed are:
a) λ(mD) U λ(mA) ⊆ λ(mE)
b) σ(mD) U σ(mA) = {}

The first of these rules states that the repertoire of the optative machines is a subset of
the repertoire of the indicative machine. In other words, the optative machines mD and
mA do not introduce any new repertoire (event-types) for the object o, but only qualify
the event behaviour already defined in mE through the feedback they provide.

The second rule says that the optative machines have no local state. This is
because optative machines are purely advisory and it is not appropriate for the
permanent state of the model to reflect whether the advice was taken or not8. This rule
has two consequences for the syntax used to describe optative machines:

• They only use the derived state form, shown in the right hand side variant in
Figure 1. This is because, with no local state, optative machines do not have
the capacity to handle the stored state value required by the left hand side
variant.

• They do not have any update specification associated with their transitions.
Again, their lack of local state gives them no capacity to record the result of an
update.

Example (Continued)

As an example, Figure 3 shows two further machines for the Project Administration
system described in Section 3 (Figure 2).

Figure 3. Additional Machines (Type E and Type D) for Project.

7 A machine with an empty repertoire ignores all events presented to it.
8 Except, perhaps, that it should be logged for audit purposes. We assume that such logging is a

separate aspect not of concern in the kind of behaviour modelling we describe here.

Project
(Additional machines)

State Function:
If Budget > £5000 && Unapproved

Return “Approval Needed”
Else return “No Approval Needed”

Approve

Start

Unapproved Approved

Approve

Approval
Needed

Type E Type D

A TYPING SCHEME FOR BEHAVIOURAL MODELS

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

Both these machines belong to the Project object, which already had 2 machines in
Figure 2 (both Type E) and now has 4 machines (three Type E and one Type D).

The two new machines in Figure 3 model project approval, whereby a project
that has a budget over £5000 has to be approved by senior management. The left hand
machine is Type E, and specifies that the Approve event is only meaningful for a
Project that is unapproved. Note, however, that it does not say that approval must
happen. The right hand machine specifies that approval is desired if the Project is
currently unapproved and the budget exceeds £5000. Note that the state of the left
hand machine is part of the state environment of the right hand machine, allowing the
latter to access the former in its state function.

Now we suppose that the Project object has a method self.estimated_cost()that
calculates the estimated cost of the project based on its duration and the people
assigned to work on it. This requires that the model has some extra attributes (e.g.,
duration for Project and daily rate for Person) which we have not shown. Figure 4
shows a further machine for Project, determining when it is allowed to add resources
to a Project.

Figure 4. Additional Machine (Type A) for Project.

The rule described by this machine is that assignment of a Person to a Project is not
allowed unless the estimated cost of the project both before and after the assignment
is less than the budget. This machine has deontic type A so will not prevent
assignment, but will provide feedback if the rule is broken.

The definition of the Project object now comprises 5 machines, 3 of Type E and
one each of Type D and Type A. Part of the motivation of the modelling approach
described is that it is possible to explore different behaviours, using a prototype
system yielded by direct execution of the model, by changing the deontic types of the
machines and hence the “strength” of the rules they represent. For instance, changing
the type of the machine in Figure 4 from Type A to Type E (indicative) will cause
breaching of the budget by assignment of a Person to a project to become impossible
in the system. Whether constraints are to be treated as indicative or optative can have
a significant effect on the form and behaviour of a model: for instance, the model of
Person in Figure 2 contains the indicative constraint that a Person is only assigned to
one Project at one time. Perhaps this is the company policy, but is it really correct to
model it as an indicative constraint?

State Function:
If self.estimated_cost() > Budget return “Over Budget”
Else return “Within Budget”

Within
Budget

Assign

Project
(Additional machine)

Type A

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 91

5 TOOL SUPPORT

As mentioned in the introduction, our interest is in using behavioural models to
explore requirements early in the systems development process. We do this by using
tools that yield executable prototypes from behavioural models of the form described
in this paper. A full discussion of tool support is beyond the scope of this paper, but
one issue of relevance to deontic semantics is how the information about whether
events are possible, allowed and desired is presented to the user.

Agility and speed in the requirements modelling process requires that tool
support delivers a prototype from a model as easily and quickly as possible. One
capability in a tool that contributes significantly to this is the ability to provide a user
interface for a prototype automatically, so that no user interface programming is
required in order to be able to run a model for demonstration to or evaluation by users.
In this section we show how the semantics of the different deontic types can be
manifested at the user interface in a standard way that can be derived from the model
without further programming.

Figure 5 shows the appearance that the user interface might take when running
the Project Administration model.

Figure 5. User Interface for the Project Administration model.

The boxes on the left hand side allow the user to browse the contents of the model.
The user selects an Object Type (Project in this case) whereupon a list of instances is
displayed below. A key aim of prototyping is to make the behaviour of the model
accessible and understanding to non-technical stakeholders who do not necessarily
understand the modelling formalisms used. For this reason, the user interface presents
the model in terms of objects and events but hides the internal machine level structure
of the objects.

On selecting an instance in the list on the lower left side, the attributes of that
instance are shown to the right along with a list of the events that are available on that
instance. The list of available events is generated from the model and colour coded as
follows:

a) If the event is not possible according to the Type E machines of the object, it is
grey (= disabled).

Object Types

Project
Person

Instances

(New)
Decipher Linear A
Locate Holy Grail

Decipher Linear A

Unapproved

£6,000

£1,500,000

Events

Adjust
Approve
Assign
Finish
Start

Name:

Status:

Budget:

Estimated Cost:

A TYPING SCHEME FOR BEHAVIOURAL MODELS

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

b) If it is possible but not allowed by the Type A machines of the object it is red.
c) If it is possible and desired by the Type D machines of the object it is green.
d) If both b and c apply, it is yellow (not shown here, and not very common).
e) Otherwise it is black.

Events in grey are disabled, so selecting one of these has no effect. When an event
that is not grey is selected from this list, controls are displayed to allow the attributes
of the event to be entered and the event submitted for processing.

The colour coding is based on the constraints imposed on the event by the current
stable state of the model. A different treatment is needed for constraints imposed by
the outcome of an event, as is the case for the lower left hand machine in Figure 2 and
the machine in Figure 4. The approach here is to display a model alert after
submission of the event to inform the user of violation of the constraint. Figures 6 and
7 show examples.

Figure 6. User Interface after attempt to Adjust the Budget.

Figure 6 shows an attempt to reduce the budget of a project below zero, violating the
post-constraint specified in the Type E machine in Figure 2. A model alert is
displayed informing the user that the event is not possible. The only option presented
is Cancel and this causes the event to be abandoned so that the state of the model is
unchanged and the budget remains at £6,000.

Figure 7. User Interface after attempt to Assign a new Person to a Project.

Figure 7 shows the result of an attempt to assign a new person to a project that
breaches the budget. In this case a model alert is generated because the state resulting

Object Types

Project
Person

Instances

(New)
Decipher Linear A
Locate Holy Grail

Locate Holy Grail

Approved

£2,000,000

£700,000

Events

Adjust
Approve
Assign
Finish
Start

Name:

Status:

Budget:

Estimated Cost:

Jacques Derrida Assign

Submit

Event Not Allowed:
Over Budget

ContinueCancel

Object Types

Project
Person

Instances

(New)
Decipher Linear A
Locate Holy Grail

Decipher Linear A

Unapproved

£6,000

£1,500,000

Events

Adjust
Approve
Assign
Finish
Start

Name:

Status:

Budget:

Estimated Cost:
- £6,500 Amount:

Submit

Event Not Possible:
Negative Budget

Cancel

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 93

from the transition is not “Within Budget” as required by the post-constraint in Figure
4. The alert gives the user two options: either to cancel the event, in which case the
assignment of Jacques Derrida does not take place, or to continue in which case it
does. This is in accordance with the semantics of optative descriptions, namely that
violation of the constraint does not prevent processing.

The handling of violation of a Type D post-constraint is handled in a similar way.
If such a constraint is violated a model alert appears with a green message “Event not
Desired” and giving the user the same two options, either to cancel or continue.

Together, the capabilities described here provide a default implementation of the
different semantics supported by the modelling language, allowing deontic behaviour
to be exercised and explored. Because the tool creates a user interface that is entirely
model driven, both in its appearance and behaviour, it supports rapid iterative
behavioural prototyping. In practical use this helps ensure high quality modelling,
both because the realised executable semantics leave little room for ambiguity or
diversity of interpretation and because it enables people who are not comfortable with
abstract modelling notations to participate in reviewing emerging models.

REFERENCES

[Coo94] Cook, S., and Daniels, J., Designing Object Systems – Object-Oriented
Modelling with Syntropy, Prentice Hall International, 1994.

[Hil71] Hilpinen, R., Føllesdal, D., “Deontic Logic: An Introduction” in Deontic
Logic: Introductory and Systematic Readings, D. Reidel, Dordrecht 1971,
pages 1-35.

[Hoa85] Hoare, C., Communicating Sequential Processes, Prentice-Hall
International, 1985.

[Jac83] Jackson, M., System Development, Prentice Hall 1983.

[Jac95] Jackson, M., and Zave, P., “Deriving Specifications from Requirements:
An Example” in ICSE17, vol. 1995, pages 15-24.

[Mcn05] McNeile, A., and Simons, N., “Protocol Modelling” in The Journal on
Software and System Modeling, vol. 5, no. 1, April 2006, pages 91-107.

[Mcn03] McNeile, A., and Simons, N., "State Machines as Mixins" in Journal of
Object Technology, vol. 2, no. 6, November-December 2003, pages 85-
101. http://www.jot.fm/issues/issue_2003_11/article2/

[Met07] Metamaxim website, www.metamaxim.com .

[Par95] Parnas, D., and Madey, J., “Functional Documentation for Computer
Systems Engineering” in Science of Computer Programming (Elsevier)
vol 25, no.1, October 1995, pages 41-61.

A TYPING SCHEME FOR BEHAVIOURAL MODELS

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

About the authors

Ashley McNeile is a practioner with 25 years of experience in
systems development and IT related management consultancy. His
focus is research into requirements analysis techniques and model
execution, and in 2001 he founded Metamaxim Ltd. to pioneer new
techniques in this area. He has published and presented on object
oriented development methodology and systems architecture. He
can be reached at ashley.mcneile@metamaxim.com.

Nicholas Simons has been working with formal methods of system
specification since their introduction, and has over 20 years
experience in building tools for system design, code generation and
reverse engineering. In addition, he lectures on systems analysis
and design, Web programming and project planning. He is a co-
founder and director of Metamaxim Ltd., and can be reached at
nick.simons@metamaxim.com.

