
Vol. 6, No. 2, Special Issue OOPS Track at SAC 2006, February 2007

Interaction between Objects in powerJava

Matteo Baldoni, Università degli Studi di Torino - Italy
Guido Boella, Università degli Studi di Torino - Italy
Leendert van der Torre, University of Luxembourg - Luxembourg

In this paper we start from the consideration that high level interaction between
entities like web services has very different properties with respect to the interaction
between objects at the lower level of programming languages in the object oriented
paradigm. In particular, web services, for security, usability and user adaptability
reasons, offer different operations to different users by means of access control and
keep track of the state of the interaction with each user by means of sessions. The
current vision in object orientation, instead, considers attributes and operations of
objects as being objective and independent from the interaction with another object,
which is sessionless. To introduce these features in the interaction between objects
directly in object oriented programming languages, we take inspiration from how access
control is regulated by means of roles. Roles allow objects to offer different operations
depending on the type of the role, of the type and identity of the player of the role,
and to define session-aware interaction.
We start from a definition of roles given in ontologies and knowledge representation
and we discuss how this definition of roles can be introduced in Java, building our
language powerJava.

1 INTRODUCTION

Object orientation is a leading paradigm in programming languages, knowledge
representation, modelling and, more recently, also in databases. The basic idea
of object orientation is that the attributes and operations of an object should be
associated with it. The interaction with the object is made possible by the public
attributes specified by the class which the object is an instance of and by its public
operations. The implementation of an operation is encapsulated in the class of the
object and can access its private state. This structure allows programs to fulfill
the data abstraction principle: the public attributes and operations are the only
possibility to manipulate an object and their implementation is not visible to the
other objects manipulating it; thus, the implementation of the class can be changed
without changing the interaction capabilities of its instances.

This view can be likened with the way we interact with objects in the world:
the same operation of switching a device on by pressing a button is implemented in
different manners inside different kinds of devices, depending on their functioning.

However, in computer science, other kinds of interaction between entities have
been devised at levels higher than programming languages. In particular, the inter-

Cite this document as follows: Baldoni, M., Boella, G. and van der Torre, L.: Interaction
between Objects in powerJava, in Journal of Object Technology, vol. 6, no. 2, Special Issue
OOPS Track at SAC 2006, February 2007, pages 5–30,
http://www.jot.fm/issues/issues 2007 02/article1

http://www.jot.fm/issues/issues_2007_02/article1

INTERACTION BETWEEN OBJECTS IN POWERJAVA

action at the level of web services has different properties, in order to satisfy security,
usability and user adaptation requirements: different operations are offered to dif-
ferent users, the execution of an operation depends on the identity of the caller of
the operation, and the state of the interaction with a user is maintained in a session.

Albeit these features can be introduced by programming, e.g., by means of pat-
terns, the lack of these abstractions at the lower level limits sometimes the poten-
tialities of object oriented languages:

1. Despite the method invocation mechanism is based on the metaphor of sending
messages to objects, there is no notion of the sender of a message. Thus, the
caller object (e.g., the this in Java) invoking a method of another object (the
callee) is not taken into account for the method execution. Hence, when an
operation is invoked its meaning can not depend on the caller’s identity and
class.

2. All caller objects of whatever classes can access all the public attributes and
invoke all the public operations of every other callee object. Hence, it is not
possible to distinguish which attributes and operations are visible for which
classes of caller objects.

3. The callee object can exhibit a single interface to all the callers, and methods
can have only one implementation in the callee.

4. The values of the private and public attributes of a callee object are the same
for all other caller objects. Hence, the callee object exhibits only one state.

5. The interaction with a callee object is sessionless since the invocation of an
operation does not depend on the identity of the caller (1) and there is only
one state (4). Hence, the value of attributes and, consequently, the meaning
of operations cannot depend on the previous interactions between the callee
and each caller object.

6. Finally, the operational interface of abstract data types induces an asymmetri-
cal semantic dependency of the callers of operations on the operation provider:
the caller takes the decision on what operation to perform, passes the values of
the parameters, and then it relies on the provider to carry out the operation,
without further interaction.

The limitations 2-4 hinder modularity, since it would be useful to keep distinct
the core behavior of an object from the different interaction possibilities which it
offers to different kinds of objects. Some programming languages offer ways to give
multiple implementations of interfaces, but the dependance from the caller cannot
be taken into account, unless the caller is explicitly passed as a parameter in all
methods. The limitation 5 complicates the modelling of distributed scenarios where
communication is based on protocols and sessions are required. The first and last
ones complicate coordination of components: method invocation does not allow

6 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

1 INTRODUCTION

objects to reach a minimum level of “control from the outside” of the participating
objects [3].

The reason of these problems rests in the philosophy behind object orientation,
which is based on the ontological assumption that attributes and operations of ob-
jects are objective: they are the same whatever is the caller object, unless it is
passed as an explicit parameter. To solve this problem at the level of programming
constructs we take inspiration from the solution used to control access to the services
of a system. For security reasons, it is necessary to make explicit the notion of caller
of an operation. In particular, in the role based access control model (RBAC) [38],
access rights are associated with roles and users - the callers of operations - are
made members of appropriate roles, thereby acquiring the roles’ permissions. More-
over, sessions are mappings between a user and an activated subset of roles that are
assigned to the user.

Like in the RBAC model, in our paper roles are based on an organizational
metaphor: roles describe the way persons can interact with and within an organiza-
tion, assigning them institutional powers. The particular way of interaction with an
organization depends on the properties of the person it is interacting with and to
what the organization allows him to do in the role he plays. So, an organization does
not offer only a direct single way of interacting with it, but it is possible to interact
with the organization only via roles, where roles are defined by the organization
itself.

Instead, most other works on roles in programming languages adopt a dif-
ferent perspective: roles are seen as a way to extend the behavior of an object
(e.g., [16, 21, 23, 26, 37]) and not as a way to model how an object offers different
possibilities of interaction to different kind of players and maintains the session of
interaction. Thus, we pass from a player-centered vision of roles to an organizational-
centered one.

Our definition of roles emerges from the analyses of organizational roles made
in ontologies and knowledge representation [13, 15, 28, 29]. Thus, we not only
introduce roles in object oriented programming languages motivated by practical
considerations, as discussed above, but we also introduce a notion of role which is
well founded and on which there is wide agreement among authors in ontologies and
knowledge representation.

The methodology we use is to introduce roles in a real programming language,
Java, one of the most used object oriented languages. To prove the feasibility of this
approach, and give a semantics, we translate the new language, called powerJava,
to pure Java by means of a pre-compilation phase.

The structure of the paper is as follows. First we introduce our ontological
definition of roles taking inspiration from a running example. Then we present the
powerJava language and its translation. Related work and summary close the paper.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 7

INTERACTION BETWEEN OBJECTS IN POWERJAVA

2 THE INTERACTION WITH OBJECTS VIA ROLES

Despite several proposals have been made about how to introduce roles in program-
ming languages, there is little consensus on which are their properties and their
purpose. A possible reason for this divergence is that the notion of role is a com-
monsense one, and, thus, it is fuzzy: everyone has an intuitive understanding of this
notion, but partially different from the others.

To avoid resorting to intuition only, in this paper we introduce roles in object
orientation starting from the analyses performed in the field of ontology and knowl-
edge representation, also by the authors of this paper [13, 15], so to have a precise
definition of roles on which there is widespread agreement and which is justified
independently from the practical problems we want to solve with it. This definition
of roles uses a metaphor taken directly from organizational management. Organi-
zations, and more generally institutions, are not like standard objects which can be
manipulated from the outside (e.g., a radio can be switched on). Rather, institu-
tions are objects belonging to the social reality, and the interaction with them can
be performed only via the roles which they offer [14].

Roles are useful not only to model domains that include institutions and organi-
zations. Rather, every object can be considered as an institution or an organization
structured in roles, if it is necessary to model in different ways the interaction of
this callee object with different types of caller objects, depending on their class and
on their aims, or to keep track of the interaction with each caller object.

To make an example, let us suppose to model a class Printer. The interaction
possibilities offered by the class are different and depend on which objects invoke
its methods. For example, some objects have more privileges than other ones, and
thus they can invoke methods which are not available to other objects interacting
with the same printer. Moreover, some methods keep track of the interaction with
each specific object invoking them. For example, print counts the number of pages
printed by each object invoking it to check whether the quota assigned to the object
is respected. However, objects with more privileges do not have a quota of printed
pages.

The Printer can be seen as an institution which supplies two different roles
for interacting with it (the set of methods a caller can invoke): one role of normal
User, and the other role of SuperUser. The two roles offer some common methods
(roles are classes) with different implementations, but they also offer other different
methods to their players (and there is no direct way to interact with the Printer).
For example, Users can print their jobs and the number of printable pages is limited
to a given maximum; thus, the number of pages is counted (the role associates new
attributes with the player): each User should be associated with a different state
of the interaction (the role has an instance with a state which is associated with its
player). The User can print since the implementation of its methods has access
to the private methods of the Printer (the methods of the User access the private
attributes and operations of another object, the institution). SuperUsers have the

8 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

2 THE INTERACTION WITH OBJECTS VIA ROLES

method print with the same signature, but with a different implementation: they
can print any number of pages; moreover, they can reset the page counter of Users (a
role can access the state of another role, and, thus, roles coordinate the interaction).

A role like SuperUser can access the state of the other User roles and of the
callee object (the institution Printer) in a safe way only if it encapsulated in the
institution Printer. Thus the definition of the role must be given by the same
programmer who defines the institution (the class of the role belongs to the same
namespace of class of the institution, or, in Java terminology, it is included in it).

In order to interact as User or SuperUser it is necessary to exhibit some re-
quested behavior. For example, in order to be a User a caller object must have an
account (it must be a Accounted), which is printed on the pages (returned by a
method offered by the player of the role). A SuperUser can have more demanding
requirements.

Finally, a role User can be played only when there is an instance of Printer and
an instance of a class implementing Accounted which can play the role.

This example highlights the following properties that organizational roles have
in our ontological model we discuss in [13, 15]:

• Foundation: a (instance of) role must always be associated with an instance
of the institution it belongs to, besides being associated with an instance of
its player (extending Guarino and Welty [22]).

• Definitional dependence: the definition of the role must be given inside the
definition of the institution it belongs to.

• Institutional empowerment: the operations defined for the role in the definition
of the institution have access to the attributes and operations of the institution
and of the other roles: thus, we call them powers. Instead, the operations that
a class must offer for playing a role are called requirements.

These features are considered also by other authors in ontologies and knowledge
representation, as discussed in Section 5.

Contrary to natural classes like person, roles lack rigidity: a player can enter and
leave a role without losing its identity; a person can stop being a student but not
being a person. Finally, a role can be played by different kinds of players. For exam-
ple, the role of customer can be played by instances of person and of organization,
two classes which do not have a common superclass. The role must specify how to
deal with the different properties of the possible players. This requirement is in line
with UML, which relates roles and interfaces as partial descriptions of behavior.

Hence, we propose quite a general definition of roles, independently from pro-
gramming languages. But the example above illustrates how these features can be
mapped on an object oriented scenario to solve the problems described in Section 1,
as we discuss in the next section.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 9

INTERACTION BETWEEN OBJECTS IN POWERJAVA

rolespec ::= "role" identifier ["extends" identifier*]
"playedby" identifier interfacebody

classdef ::= ["public"|"private"|...] "class" identifier
["extends" identifier] ["implements" identifier*] classbody

classbody ::= "{" fielddef* constructors* methoddef* roleimpl* "}"

roleimpl ::= "definerole" identifier rolebody

rolebody ::= "{" fielddef* constructors* methoddef* "}"

rcast ::= (expr.identifier) expr

keyword ::= that | ...

Figure 1: The extension of the Java (1.4) syntax in powerJava.

3 INTRODUCING ROLES IN JAVA: POWERJAVA

In this section we introduce our extension of Java by following three steps. First
of all, roles are classes with private and public attributes and methods, but we will
also describe how to specify them in an abstract way in terms of the signatures
of the “requirements” and “powers”, independently from their implementation in
an institution. We call this description a role specification. A role specification is
like a double-faced interface, reflecting the two aspects of the role. Second, we will
introduce the way in which a role is implemented by a class in an institution with
a particular attention to the definitional dependence of a role with respect to the
institution within which it exists. We will do this inspired by Java inner classes.
Last, we will show how an object can enter a role and, by playing the role, it can
exercise its powers. The syntax of powerJava is illustrated in Figure 1.

Specification of powers and requirements

A role should be specified, for the sake of modularity, independently from its possible
implementations as classes in specific institutions. To promote the view “program to
an interface, not to an implementation” [19], we introduce role abstract specifications
which must be respected by their implementations. Moreover, for Steimann and
Mayer [41], roles define a certain behavior (or protocol) demanded in a context
independently of how or by whom it is to be delivered. Thus, in order to make role
systems reusable, it is necessary that a role can be played by more than one class
only.

Specifying a role implies specifying both what is required to a caller in order to

10 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

3 INTRODUCING ROLES IN JAVA: POWERJAVA

play it, and which powers the player acquires in the institution in which the role
is implemented. Thus, a role specification has a list of abstract signatures of the
methods offered to objects playing the role (powers) and a list of abstract signatures
of the methods required to be implemented by the objects in order to be able to
play the role (requirements). The latter ones are modelled as an interface associated
with the role construct by the keyword playedby.

In this way, objects offering a role and objects which can play it can be developed
independently of each other. In particular, any class implementing the requirement
interface can play the role.

Let us consider again the Printer of the previous section: a normal User acquires
the powers to print and to know the number of printed pages getPrintedPages,
and it is required to provide its login (getLogin). The role specification for the user
is the following, where the keyword playedby associates with an interface body spec-
ifying the powers the requirements specified by the separate interface Accounted:

role User playedby Accounted {
int print(Job job);
int getPrintedPages();

}

interface Accounted {
Login getLogin();

}

The SuperUser, instead, must have both an account and a certificate to guar-
antee its profile, and it has additional powers:

role SuperUser playedby Certified {
int print(Job job);
int getTotalPrintedPages();
void resetPrinterCounter(User user);

}

interface Certified extends Accounted {
Certificate getCertificate();

}

Institutions and role implementation

As discussed in Section 2, roles are always associated with an instance of an insti-
tution, and are definitionally dependent on it. We call the methods offered by roles
“powers” because they offer the possibility to modify the private state and access

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 11

INTERACTION BETWEEN OBJECTS IN POWERJAVA

private methods of the institution which defines them and the state of the other roles
defined in the same institution. In this way roles allow a player to interact with(in)
an institution. In our running example, the method print, both of a User and a
SuperUser, will access a private counter of the printer for updating the total number
of printed pages. The method resetPrinterCounter of SuperUser, instead, allows
a player of the role SuperUser to change the state of a different role. Powers, thus,
are methods which seem to violate the standard encapsulation principle, where the
private variables are visible only to the class they belong to. However, here, the
encapsulation principle is preserved by the definitional dependence property: the
definition of all the roles of an institution depends on the definition of the institu-
tion; so it is the institution itself which gives to the roles access to its private fields
and methods. Since it is the programmer of institution itself which implements its
roles, there is no risk of abuse by part of the role of its access possibilities. Enabling
a class to belong to the namespace of another class without requiring it to be defined
as “friend”, and thus endangering modularity, is achieved in Java by means of the
inner class construct. The construct definerole allows the programmer to define a
sort of inner class in order to implement a role specification inside an institution (the
outer class). For example, the code in Figure 2 defines the class Printer, which
contains the implementations of the above mentioned User and SuperUser role.
The name of the class of these role implementation is respectively Printer.User

and Printer.SuperUser. Note that, role specifications cannot be implemented in
different ways in the same institution and we do not consider the possibility of ex-
tending role implementations (possible with inner classes). Even if in a preliminary
version [8] this possibility has been considered, we omit it here because it would
introduce some problems in requirement handling. If a role extends another role,
the most specific inherits also the requirements of the other but, as we will better
see in the next section, our translation cannot handle multiple requirements.

In order for an object to play a role it is necessary that it conforms to the role
requirements. Since the role requirements are a Java interface, it is sufficient that
the class of the object implements the methods of such an interface, e.g.:

class AccountedPerson implements Accounted {
Login login; // ...
Login getLogin() {

return login;
}

}

A CertifiedPerson is defined in a similar way by implementing the Certified

interface. Note that also other classes can implement the requirement interface and
thus play the roles.

Since roles are classes which can be instantiated and the behavior of a role in-
stance depends on its player, in the role method implementation, the player instance
can be retrieved via a new reserved keyword: that. So this keyword refers to that

12 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

3 INTRODUCING ROLES IN JAVA: POWERJAVA

class Printer {
final static int MAX_PAGES_PER_USER;
private int totalPrintedPages = 0;

private void print(Job job, Login login) {
totalPrintedPages += job.getNumberPages();
// performs printing

}
private boolean validCertificate(Certificate cert) {

// checks the certificate cert
}
definerole User { // implementation of the role User

private int counter = 0;
public int print(Job job) {

if (counter > MAX_PAGES_USER)
throws new IllegalPrintException();

counter += job.getNumberPages();
Printer.this.print(job, that.getLogin());
return counter;

}
public int getPrintedPages(){

return counter;
}

}
definerole SuperUser { // implementation of the role SuperUser
public SuperUser() {

//first, verify the identity of the player
if (!validCertificate(that.getCertificate()))
throw new Exception("You are not allowed to enter this role");

}
public int print(Job job) {

Printer.this.print(job, that.getLogin());
totalPrintedPages += job.getNumberPages();
return totalPrintedPages;

}
public int getTotalPrintedpages() {

return totalPrintedPages;
}
public void resetPrinterCounter(User user) {
((Printer.User)user).counter = 0;

}
}

}

Figure 2: The class Printer with its User and SuperUser roles.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 13

INTERACTION BETWEEN OBJECTS IN POWERJAVA

object which is playing the role at issue, and it is used only in the role implemen-
tation. An example is the invocation of that.getLogin() as a parameter of the
method print in Figure 2. The value of that is initialized when the constructor
of the role implementation is invoked. The referred object has the type defined
by the role requirements given by the playedby keyword in the role specification.
The fact of having two links, one to the player (that) and one to the institution
(Printer.this), is actually an invariant of every role in our extension of Java.

For creating instances of the inner classes implementing roles, we use the Java
inner class syntax: starting from an institution instance the keyword new allows the
creation of an instance of the role like it were an instance of the inner class, for
example:

Printer laser = new Printer();
AccountedPerson chris = new AccountedPerson();
CertifiedPerson sergio = new CertifiedPerson();
laser.new User(chris);
laser.new SuperUser(sergio);

The first instructions create a Printer object laser and two objects, chris (an
AccountedPerson) and sergio (a CertifiedPerson). chris becomes a normal
User while sergio becomes a SuperUser. Indeed, the last two instructions define
the roles of these two objects with respect to the created Printer. Note that all the
constructors of role implementations have a first (implicit) parameter which must
be bound to the player of the role and whose value becomes the value of that.

Playing a role

When an object is seen under the perspective of a role, it has a specific state for
it, which is different from the player’s one. This state is associated with the pair
of objects “institution” and “player”. It is the state of the interaction between the
caller and the callee object and it evolves as a consequence of the invocation of
methods on the role (or on other roles of the same institution as we have seen in the
running example). In the printer example the variable counter of User keeps track
of the number of printed pages for each different user. We will come back to this a
little ahead.

When an object uses the methods offered by a role, it should be able to invoke
them without any explicit reference to the instance of the role. In this way the
association between the object instance and the role instance is transparent to the
programmer. The object should only specify in which role it is invoking the method.
For example, if an AccountedPerson is a User and it has to print something, it must
be able to invoke the method print on the AccountedPerson as a User without
referring to the role instance. Note that this does not exclude the possibility of
assigning the reference to a role instance to a variable then using the variable for

14 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

3 INTRODUCING ROLES IN JAVA: POWERJAVA

invoking the role methods (see the variable user in the code below). Roles belong
always to an institution. Hence, an object can play at the same moment the same
role more than once, albeit in different institutions. Instead, we do not consider the
case of an object playing the same role more than once in the same institution. An
object can play several roles in the same institution. In order to specify the role
under which an object is referred, we evocatively use the same terminology used for
casting by Java: we say that there is a casting from the object to the role. However,
to refer to an object in a certain role, both the object and the institution where it
plays the role must be specified, thus reflecting the foundation property. We call
this methodology role casting. Role casting is a means for stating that an object
will act according to the powers that allow it to interact in a given institution. In
the following the two Users invoke method print on laser. Notice that the page
counter is maintained in the role state and persists through different calls to methods
performed by a same player towards the same institution as long as it plays the role.

((laser.User) chris).print(job1);
((laser.SuperUser) sergio).print(job2);
System.out.println("Chris has printed " +

((laser.User) chris).getPrintedPages() + " pages");
System.out.println("The printer laser has printed a total of " +

((laser.SuperUser) sergio).getTotalPrintedPages() + " pages");

User user = ((laser.User) chris);
user.print(job3);
System.out.println("Chris has printed " +

((laser.User) chris).getPrintedPages() + " pages");

Supposing that job1 consists of ten pages, job2 of twenty pages and job3 of fifteen,
the first output operation will print ten, the second one thirty (the sum of the lengths
of job1 and job2), the third one twentyfive (the sum of job1 and job3).

By maintaining a state, a role can be seen as realizing a session-aware interaction,
in a way that is analogous to what done by cookies or Java sessions for JSP and
Servlet. So in our example, it is possible to visualize the number of currently printed
pages by the user chris.

Since an object can play multiple roles, the same method will have a different
behavior, depending on the role which the object is playing when the method is
invoked. However, there will be no conflict among roles, since only the powers of
one role at a time can be exercised. To play a role it is sufficient to specify which is
the role of a given object we are referring to. In the next example sergio becomes
also a normal User of laser, besides being a SuperUser, since a CertifiedPerson
is also an implementation of the interface Accounted:

laser.new User(sergio);
((laser.SuperUser) sergio).print(job4);
((laser.User) sergio).print(job5);

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 15

INTERACTION BETWEEN OBJECTS IN POWERJAVA

Figure 3: The UML diagram representing our running example.

Notice that in this case two different sessions will be kept: one for sergio as normal
User and the other for sergio as SuperUser. Only when it prints its jobs as a
normal User the page counter in the role instance is incremented.

A role instance can be left by a player or transferred to another player satisfying
the requirements. In the first case, the invariant imposing the foundation of a role
on its player is violated. The invocation of a method on such a role instance (which
is possible since the role instance could have been assigned to a variable before the
player gives up its role or it is destroyed) gives raise to an exception. However, we
do not deal with these issues in this work, see [34] for a discussion.

4 ROLE REPRESENTATION AND TRANSLATION INTO PURE JAVA

In this section we will present the translation of powerJava in pure Java illustrating
it with a UML diagram, showing a portion of our example, see Figure 3.

For what concerns the translation phase into pure Java, this is done by means of
a pre-compilation phase. The pre-compiler has been implemented by means of the
tool javaCC, provided by Sun Microsystems.

First of all, role requirements are an interface, specifying which methods must be
defined in a class whose instances play the role. Powers, instead, are a new concept
related to the role construct, representing the methods acquired by role players:
the abstract signatures of power specifications are translated into an interface too,
related to the interface requirements by the relation RQ in Figure 3:

16 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

4 ROLE REPRESENTATION AND TRANSLATION INTO PURE JAVA

interface User {
int print(Job job);
int getPrintedPages();

}

interface Accounted {
Login getLogin();

}

interface SuperUser {
int print(Job job);
int getTotalPrintedPages();
void resetPrinterCounter(User user);

}

interface Certified extends Accounted {
Certificate getCertificate();

}

Second, the implementation of roles inside the institution is translated as inner
classes, which implement the interface which results from the translation of the
role power specification. Inner classes express the fact that the namespace of the
institution is visible from the role implementation. For instance, in Figure 3, in the
institution Printer the roles User and SuperUser are inner classes. The fact that
inner classes belong to the namespace of the outer class is represented in UML by
the arrow with a plus sign within a circle at the end attached to the namespace.

The difference with inner classes is that while an inner class can be instantiated
given an instance of its outer class, an inner class defining the implementation of a
role does not create an object which exists independently also from the object which
plays the role. In other words, the instance of the role must be connected both with
its player and its institution. In Figure 3 the references to such unnamed objects
corresponding to the role instances are respectively represented by the composition
arrows with the labels Printer.this and that. The following is an excerpt of the
translation of the class Printer:

class Printer {
final static int MAX_PAGES_PER_USER;
private int totalPrintedPages = 0;
private void print(Job job, Login login) {
totalPrintedPages += job.getNumberPages(); // performs printing

}
private boolean validCertificate(Certificate cert) {

// checks the certificate cert
}

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 17

INTERACTION BETWEEN OBJECTS IN POWERJAVA

class UserPower implements User {
Accounted that;
public UserPower(Accounted that) {

this.that = that;
((ObjectWithRoles)this.that).setRole(Printer.this, this);

}
// role’s fields and methods ...

}

class SuperUserPower implements SuperUser {
Certified that;
public SuperUser(Certified that) {

this.that = that;
((ObjectWithRoles)this.that).setRole(Printer.this, this);
//first, verify the identity of the player
if (!validCertificate(this.that.getCertificate()))
throw new Exception("You are not allowed to enter this role");

}
// role’s fields and methods ...

}
}

When an inner class implements a role, the role name specified by the definerole

keyword is simply added to the interfaces implemented by the inner class. The cor-
respondence between the player and the role instance, represented by the construct
that, is pre-compiled in a field called that of the inner class. This field is automat-
ically initialized by means of the constructors of role classes which are extended by
the pre-compiler by adding a first parameter to pass the suitable value. The con-
structor also adds to the role player referred by that a reference to the role instance.
The remaining link between the instance of the inner class and the outer class defin-
ing it is provided automatically by the language Java (e.g., Printer.this). Note
that this translation also explains why the keyword playedby can be followed by
just one identifier. The reason is that it would not be possible to assign a correct
static type to that. One possibility for overcoming this limitation would be to rely
on union types, as proposed, for example, by Igarashi and Nagira [24].

To play a role an object must be enriched by some methods and fields to main-
tain the correspondence with the different role instances it plays in the different
institutions. In this way, in role casts the role instance can be retrieved from its
player given the role name and a reference to the institution. This is obtained by
adding, at pre-compilation time, to every class a structure for book-keeping its role
instances. This structure can be accessed by the methods whose signature is spec-
ified by the ObjectWithRole interface (see Figure 3). Since every object can play
a role, it is worth noticing that the ideal solution would be that the Object class
itself implements ObjectWithRole:

18 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

4 ROLE REPRESENTATION AND TRANSLATION INTO PURE JAVA

interface ObjectWithRoles {
public void setRole(Object inst, Object role);
public Object getRole(Object inst, String roleName);

}

The two methods that are introduced by the pre-compiler are setRole and getRole
which, respectively, adds a role instance to an object, specifying where the role is
played, and returns the role instance played in the institution passed as parameter
together with the role name. Further methods can be added for leaving a role,
transferring it, etc.:

class AccountedPerson implements Accounted, ObjectWithRoles {
private java.util.Hashtable roleList = new java.util.Hashtable();
public void setRole(Object inst, Object role) {
roleList.put(inst.hashCode() + role.getClass().getName(), role);

}
public Object getRole(Object inst, String roleName) {
return roleList.get(inst.hashCode() +

inst.getClass().getName() + "$" + roleName);
}
// class’ fields and methods ...

}

The setRole and getRole methods make use of a private hash-table roleList.
As key in the hash-table we use the institution instance address and the name of
the inner class. As an example, the class AccountedPerson plays the role User
via the interface Accounted. So its instances will have a hash-table that keeps
the many roles played by them. Role casting is pre-compiled using these methods.
The expression referring to an object in its role (an AccountedPerson as a User,
e.g., (laser.User) chris) is translated into the selector returning the reference to
the inner class instance, representing the desired role with respect to the specified
institution. The translation will be chris.getRole(laser, "UserPower"). The
string "UserPower" is provided because in our solution the name of the role class is
used as a part of the key of the hash-table:

((Printer.UserPower)chris.getRole(laser, "UserPower")).print(job1);
((Printer.SuperUserPower)sergio.getRole(laser, "SuperUserPower")).

print(job2);

With respect to Java, additional checking is introduced to verify the consistency
of the newly introduced constructs. For example, allowing classes prefixed by vari-
ables (e.g., laser.User), in the style of the Scala language [35], in the role cast
constructs, introduces ambiguities which pure Java is not aware of.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 19

INTERACTION BETWEEN OBJECTS IN POWERJAVA

5 RELATED WORK

The concept of role is used quite ubiquitously in Computer Science: from
databases to multiagent systems, from conceptual modelling to programming lan-
guages. According to Steimann [40], the reason is that even if the duality of objects
and relationships is deeply embedded in human thinking, yet there is evidence that
the two are naturally complemented by a third, equality fundamental notion: that of
roles. Although definitions of the concept of role abound in the literature, Steimann
maintains that only few are truly original, and that even fewer acknowledge the
intrinsic role of roles as intermediaries between relationships and the objects that
engage in them. There are three main views of role: (a) names for association
ends, like in UML or in Entity-Relationship diagrams; (b) dynamic specialization,
like in the Fibonacci [2] programming language; (c) adjunct instances, like in the
DOOR programming language [44] or ObjectTeams [23]. The two last views are
more relevant for modelling roles in programming languages.

We stick to the adjunct instance perspective, with an important difference with
most previous work, with the partial exception of [23, 30, 42]: the role instance is
always associated with both the player of the role and the callee object which the
role belongs to.

Most other works on roles in programming languages adopt a different perspec-
tive: roles are seen as a way to extend the behavior of an object and not as a way to
model how an object offers different possibilities of interaction to different kind of
players. Thus, there is a deep difference with our approach: we pass from a player-
centered vision of roles to an organizational-centered one. The different perspective
is also signalled by the terminology used. When other works use the phrase “the
role of an object” they mean “the role played by a (caller) object” (since there is no
explicit context offering that role). Instead, by “the role of an object” we mean the
role a callee offers to play to a caller object in order to enable the caller to interact
with the callee. In the player-centered approach, the printer example we propose
could be modelled only by adding roles like user and superuser to instances of the
class person without any systematic relation with the class printer, thus preventing
the possibility that the role and the institution share their namespace. The reason
of this difference is that these proposals, even when they share some similarities with
our work, aim at solving different kind of practical problems than allowing callee
objects to exhibit specific behaviors to specific callers.

In this respect our perspective is more similar to the use of role in security, e.g.,
in the role based access control (RBAC) model [38]. In RBAC roles are used to
distinguish different set of authorizations to interact with the resources of a system,
and sessions are mappings between a user and an activated subset of roles that are
assigned to the user. However, in our model, methods of roles do not exist without
the role offering them. For this reason attributes and operations are described by
means of classes. In the RBAC model, instead, roles are only groupings of rights
concerning operations defined directly in the system, and the operations have the

20 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

5 RELATED WORK

same meaning for all roles. Since role classes provide a different instance for each
caller which plays the role, they can represent the state of the interaction between
the caller object playing a role and the callee which offers the role. Hence, there
can be more than one session for each caller object playing different roles. This is
again different from the RBAC model where sessions are associated with users and
not with role instances.

Many works on the introduction of roles in programming languages [2, 16, 21, 37]
consider roles as a specialization of classes, e.g., a customer is seen as a (dynamic)
specialization of the class person. In our example, user and superuser would have
been subclasses of person. This methodology, as Steimann [40] notices, does not
capture the intuition that a role like customer can be played both by a person and
by an organization. If customer were a subclass of person, it could not be at the
same time a subclass of organization, since person and organization are disjoint
classes. Symmetrically, person and organization cannot be subclass of customer,
since a person can be a person without ever becoming a customer.

Multiple inheritance does not help, since it becomes impossible to have context
dependent access, as Dahchour et al. [16] notice. Fibonacci [2], e.g., is a language
which introduces a hierarchy of role types to specialize an object class. This lan-
guage also supports a radical view of separation of concerns by imposing that the
interaction with an object always passes through a role.

Roles as specializations prevent realizing that roles are always associated not
only with a player, but to an institution, which defines them, too. This intuition
sometimes implicitly emerges also in these frameworks: in [37] the authors say “a
role is visible only within the scope of the specific application that created it”, but
such contexts are not first class citizens like institutions are in our model.

Kristensen and Osterbye [26] recognize the fact that a role depends on its player
but they fail to recognize the dependency of a role from the institution. Moreover,
they consider roles as a form of specialization, albeit one distinguishing the role as an
instance related to, but separated from, its player. As a consequence, the properties
of the role include the properties inherited from its player. This idea conflicts with
our position we adopt from Steimann [40]: roles are partial descriptions of behavior,
thus they shadow the other properties of their players.

Wong et al. [44] recognize that roles are adjunct instances. They introduce a
parallel role class hierarchy connected by a player relationship to the object class
hierarchy. Moreover, in their model a role player qualification specifies which classes
can play the role. This corresponds to our idea of associating requirements to a role,
which we model as interfaces. However, like many of the previous approaches, Wong
et al. [44] fail to capture the intuition that a role depends on the context defining it.
Another major difference with their approach is that we reject the method lookup
as delegation. This methodology has a troublesome implication: when a method is
invoked on some object in one of its roles, the meaning of the method can change
depending on all the other roles played by the object. We do not consider this as a

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 21

INTERACTION BETWEEN OBJECTS IN POWERJAVA

desirable feature in the context of a language like Java.

Our approach shares the idea of gathering roles inside wider entities with Ob-
ject Teams [23] and Caesar [30]. These languages emerge as refinements of aspect
oriented languages aiming at resolving practical limitations of aspect programming.
In contrast, our language starts from different practical problems and introduce an
ontologically founded definition of roles. Differently from [23, 30] in our work the
method calls make explicit in which role the caller is invoking the method. More-
over, it is not only the meaning of methods which changes, but also the possible
methods that can be invoked. If one would like to integrate the aspect paradigm
within our view of object oriented programming, the natural place would be use
aspects to model the environment where the interaction between objects happens.
Consider the within construct in Object Teams/Java [23] which specifies aspects as
the context in which a block of statements has to be executed. Since, when defining
the interaction possibilities of an object it is not possible to foresee all possible con-
texts in which the interaction happens, the effect on the environment can be better
modelled as a crosscutting concern. Thus, aspect programming is a complementary
approach with respect to ours.

Other works which recognize the dependence of roles from a context are [42]
and [27]. In Tamai [42], the concepts of context (roughly corresponding to our
institution) and role are related in the language EpsilonJ. However, the approach
that we propose better adheres to the Java programming style because it relies onto
features that are already in this language (roles are implemented using inner classes
and institutions are classes), basically adding just the concept of role interface and
role casting. In contrast, in EpsilonJ roles and contexts are introduced as new
constructs, and their relation with classes and objects is not explicit. Moreover,
their proposal is not implemented in Java but in Ruby, limiting the applicability of
their approach and not taking into account typing issues.

Lee and Bae [27] introduce the notion of role system and model it by means of a
special class with the function of maintaining the coherence among roles and among
roles and their players. However, they propose a pattern and not a language.

Baumer et al. [11] propose the role object pattern to solve the problem of
providing context-specific views of the key abstractions of a system, since different
context-specific views cannot be integrated in the same class. They propose to
model context-specific views as role objects which are dynamically attached to a
core object, thus forming what they call a subject. This adjunct instance should
share the same interface as the core object, so the role cannot have methods different
from those of their players.

Mossè [32] presents several patterns related to roles, but none of them considers
the problem of roles belonging to institutions for offering access to them.

Molina et al. [31] revise the OOram methodology for modelling roles, translating
it to UML. Even if also in this case roles do not belong to institutions, there are
some similarities in that role diagrams specify the interaction among a set of roles.

22 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

5 RELATED WORK

Even if the notion of role is not mentioned explicitly, in Aksit et al. [1] the
notion of abstract communication types has some similarities with our approach, in
that communication can be specifies separately from the core behavior of an object.
However, they use a reflection based mechanism which makes the approach very
flexible but difficult to control. Methods are associated with a set of conditionals
acting as guards which prevent inappropriate methods to be called in certain states
of the object. Our approach instead sticks to the philosophy of Java trying to
overcome the underlying vision of object orientation.

Our notion of role, as a double-face interface, bears some similarities with
Traits [39] and Mixins. However, Mixins are distinguished because they are used to
extend classes and not instances, with a few exceptions like, e.g., [12]. In contrast,
roles extend instances.

Similarities and differences can be found also in our ontological definition of roles
with respect to other approaches. Our main aim is to stick to a widely acceptable
definition in knowledge representation, so that we left out controversial issues like
roles playing roles, which we discuss in [15]. For example, Masolo et al. [29] accept
the notion of foundation, of definitional dependence, albeit a weaker one, where
the definition of a role must use the concept of the institution. Loebe [28] also
considers roles as dependent on contexts, but he does not stress the fact that roles
can be seen as different ways of interacting with an object; Viganò and Colombetti
[43] also consider powers as an essential feature of roles. Moreover, we are inspired
from Guarino and Welty [22] in considering roles as antirigid and dynamic. Also
Steimann [40] is an important source of inspiration, when he highlights that a role
can be played by different kinds of actors. However, differently from Steimann in
our model roles cannot be reduced only to interfaces and have an identity, in the
sense that they can become the value of a variable, even if role instances are not
independent as they are founded.

The six problems we discussed in the introduction have been already identified,
even if separately, but they have been addressed only in partial or indirect ways.

Programming languages like Fickle [18] address the second and third problem by
means of dynamic reclassification: an object can change class dynamically, and its
operations change accordingly. However, Fickle does not represent the dependence
of attributes and operations from the interaction, and all the subclasses share the
same interface. StateJ [17] offers different implementations of methods according to
a feature called the state of the object. However, an object has only one state and
the state does not depend on the caller of a method and different callers or caller
types cannot correspond to different states. Aspect programming focuses too on
enhancing the modularity by means of crosscutting concerns, but it is less clear how
it addresses all the six concerns.

Some patterns partially address the above mentioned issues; for example, the
strategy design pattern [19] allows objects to dynamically change the implementa-
tion of a method. However, it is complex to implement and it does not address the

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 23

INTERACTION BETWEEN OBJECTS IN POWERJAVA

problem of having different methods offered to different types of callers and of main-
taining the state of the interaction between caller and callee. So more patterns must
be combined with additional problems such as the lack of modularity and increased
complexity.

Sessions are dealt with by distributed programming constructs, like the JSP,
Servlets or Enterprise Java Beans, but these solutions do not consider the other
problems of having different methods and states offered to different types of callers,
beside the fact that sessions are not integrated in the method invocation syntax.
Rather, interaction happens often only via a web service.

Sessions are also considered in the agent oriented paradigm, which bases commu-
nication on protocols [25]. In agent orientation a protocol is the specification of the
possible sequences of messages exchanged between two agents, and not simply an
interface. Since not all sequences of messages are legal, the state of the interaction
between two agents must be maintained in a session. Moreover, not every agents
can interact with other ones using whatever protocol. Rather, the interaction is
allowed only between agents playing certain roles. Thus, an agent displays different
possibilities of interaction to different types of interactants by playing different roles
in the interaction with them, and it can even play different roles at the same time
in the interaction with the same agent. However, the notion of role in multi-agent
systems is rarely related with the notion of session of interaction ([36]).

6 SUMMARY

In this paper we identify some problems in the current view of object orientation,
namely, the facts that callers of methods are not made explicit, attributes and
operations associated with callee objects do not depend on the caller’s identity or
class, and that there is no session keeping track of the interaction between a callee
and a caller object. To overcome these limitations, we introduce the view on roles
adopted at higher level in access control in web services and we transfer it at lower
level in object oriented programming languages. We base on an ontological analysis
of the notion of role to understand which are its properties.

We introduce this model of roles in an extension of Java, called powerJava.
First, roles are implemented by classes which can be instantiated only in presence
of an instance of the player of the role (caller) and of an instance (callee) of the
class representing the institution (foundation). The role instance represents the
session of the interaction between caller and callee. Second, the implementation of
a role is included in the class definition of the institution the role belongs to using
inner classes (definitional dependence). Thirdly, the players of roles have powers
since methods of roles can access private fields and methods of the institution they
belong to and of the other roles of the same institution (institutional empowerment).
Finally, to express the fact that an object can be seen in one of the roles it plays we
introduce the notion of role casting.

24 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

6 SUMMARY

As discussed in Section 4, powerJava is more than just the transfer of a pattern
in a language. Additional benefits come from the introduction of roles directly in
the language, like the management of role instance invariants, the introduction of
suitable exceptions, or the fact that roles can be type checked, partly by delegating
this task to the Java translation.

Details about the implementation can be found in [4] and the pre-compiler is
available at http://www.powerjava.org.

Roles allow the programmer to adopt different interaction possibilities between
callers and a callee, which do not exclude the traditional direct interaction with
the object when roles are not necessary. Other possibilities like sessions shared by
different objects are not considered for space reasons.

First of all, an object can interact with another one by means of the role offered
by it. This is, for instance, the case of chris being a User of laser in Section 3.

Second, a caller object (e.g., sergio in our example) can interact in two different
roles with a callee object. This situation is used when a callee object implements
two different interfaces for interacting with it, which have methods (like print) with
the same signature but with different meaning. In our model the methods of the
interfaces are implemented in the roles offered by the objects to interact with them.
The role represents also the different sessions of the interaction with the same object.

Third, two caller objects can interact with each other by means of the (possi-
bly different) roles of an institution. This is the original case powerJava has been
developed for [9]: achieving separation of concerns, taking apart the core behavior
of a class from the dynamically acquired behavior in an unforeseen context; in that
paper, we used as a running example the well-known five philosophers scenario. The
institution is the table, at which philosophers are sitting and coordinate to take the
chopsticks and eat since they can access the state of each other. s

Fourth, two objects can interact with each other, each playing a role offered by
the other. This is often the case of interaction protocols: e.g., an object can play the
role of initiator in the Contract Net Protocol if and only if the other object plays
the role of participant.

Our view of roles inspires a new vision of the object oriented paradigm, whose
object metaphor has been accepted too acritically and it has not been subject to a
deep analysis. In particular, it adopts a naive view of the notion of object and it
does not consider the analysis of the way humans conceptualize objects performed
in philosophy and above all in cognitive science [20]. In particular, cognitive science
has highlighted that properties of objects are not objective properties of the world,
but they depend on the properties of the agent conceptualizing the object: objects
are conceptualized on the basis of what they “afford” to the actions of the entities
interacting with them. Thus, different entities conceptualize the same object in
different ways. We translate this intuition in the fact that an object offers different
methods according to which type of object it is calling it: the methods offered (the
powers of a role) depend on the requirements offered by the caller. This perspective

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 25

INTERACTION BETWEEN OBJECTS IN POWERJAVA

is analysed in [6, 7].

powerJava has also been used as a coordination language dealing with concur-
rency [9]. We discuss how to use powerJava to implement protocols in multi-agent
systems in [5].

Future work concerns, first of all, the relational nature of roles which often
come into pairs, like client/customer in a business exchange, manager/bidder in a
negotiation protocol, etc. In [10] we use roles to model how objects can participate
to relationships and, thus, acquire new properties and behaviors. We add roles to
the existing relationship as attribute and relationship object patterns proposed by
Noble and Grundy [33]. Second, some issues concerning the translation of powerJava
in Java must be deepened. In particular, type checking should be clarified, and
introduced also during the pre-compilation phase instead of relying only on the
Java compiler, so that more explicit errors can be signalled to the user. Finally, the
lifecycle of roles should be studied (see, e.g., Odell et al. [34]), and a corresponding
systems of exceptions developed to signal which are the possible errors related to
roles at runtime.

ACKNOWLEDGEMENTS

Matteo Baldoni has partially been funded by the 6th Framework Programme project
REWERSE number 506779, and by MIUR PRIN 2005 “Specification and verifica-
tion of agent interaction protocols” national project. Guido Boella has partially been
founded by the MIUR PRIN 2006 project “Documentalità. Ontologie e tecnologie
per la cittadinanza e la democrazia”.

The authors thank the anonymous reviewers for their useful suggestions.

REFERENCES

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting
object interactions using composition filters. In Procs. of ECOOP ’93 Workshop
on Object-Based Distributed Programming, volume 791 of LNCS, pages 152–184,
Berlin, 1994. Springer Verlag.

[2] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with
roles. In Procs. of Very Large DataBases (VLDB’93), pages 39–51, 1993.

[3] F. Arbab. Abstract behavior types: A foundation model for components and
their composition. In Formal Methods for Components and Objects, volume
2852 of LNCS, pages 33–70. Springer, Berlin, 2003.

[4] M. Baldoni, G. Boella, and L. van der Torre. Social roles, from agents back to
objects. In Procs. of From Objects to Agents Workshop (WOA’05), Bologna,
2005. Pitagora.

26 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

6 SUMMARY

[5] M. Baldoni, G. Boella, and L. van der Torre. Bridging agent theory and object
orientation: Interaction among objects. In Procs. of PROMAS’06 workshop at
AAMAS’06, 2006.

[6] M. Baldoni, G. Boella, and L. van der Torre. Interaction among objects via
roles: sessions and affordances in powerJava. In Procs. of Principles and Prac-
tice of Programming in Java (PPPJ’06), pages 188–193, New York (NY), 2006.
ACM.

[7] M. Baldoni, G. Boella, and L. van der Torre. Modelling the interaction between
objects: Roles as affordances. In Procs. of Knowledge Science, Engineering and
Management, KSEM’06, volume 4092 of LNCS, pages 42–54. Springer, 2006.

[8] M. Baldoni, G. Boella, and L. van der Torre. powerJava: ontologically founded
roles in object oriented programming language. In Procs. of ACM Symposium
on Applied Computing (SAC’06), Track Object Oriented Programming Lan-
guages and Systems (OOPS’06), pages 1414–1418. ACM, 2006.

[9] M. Baldoni, G. Boella, and L. van der Torre. Roles as a coordination con-
struct: Introducing powerJava. Electronic Notes in Theoretical Computer Sci-
ence, 150(1):9–29, 2006.

[10] M. Baldoni, G. Boella, and L. van der Torre. Relationships meet their roles in
object oriented programming. In Procs. of FSEN’07, 2007.

[11] D. Baumer, D. Riehle, W. Siberski, and M. Wulf. The role object pattern. In
Procs. of PLOP’02, 2002.

[12] L. Bettini, V. Bono, and S. Likavec. A core calculus of mixin-based incom-
plete objects. In Procs. of Foundations and Developments of Object Oriented
Languages Workshop (FOOL’04), pages 29–41, 2004.

[13] G. Boella and L. van der Torre. An agent oriented ontology of social reality. In
Procs. of Formal Ontologies in Information Systems (FOIS’04), pages 199–209,
Amsterdam, 2004. IOS Press.

[14] G. Boella and L. van der Torre. A foundational ontology of organizations and
roles. In Procs. of DALT’06 workshop at AAMAS’06, 2006.

[15] G. Boella and L. van der Torre. The ontological properties of social roles in
multi-agent systems: Definitional dependence, powers and roles playing roles.
Artificial Intelligence and Law, 2007.

[16] M. Dahchour, A. Pirotte, and E. Zimanyi. A generic role model for dynamic
objects. In Procs. of Conference on Advanced Information Systems Engineering
(CAiSE’02), volume 2348 of LNCS, pages 643–658. Springer, 2002.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 27

INTERACTION BETWEEN OBJECTS IN POWERJAVA

[17] F. Damiani, E. Giachino, P. Giannini, and E. Cazzola. On state classes and
their dynamic semantics. In Procs. of International Conference on Software
and Data Technologies (ICSOFT’06), pages 5–12. INSTICC, 2006.

[18] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More
dynamic object re-classification: FickleII . ACM Transactions On Programming
Languages and Systems, 24(2):153–191, 2002.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Software. Addison-Wesley, 1995.

[20] J. Gibson. The Ecological Approach to Visual Perception. Lawrence Erlabum
Associates, New Jersey, 1979.

[21] G. Gottlob, M. Schrefl, and B. Rock. Extending object-oriented systems with
roles. ACM Transactions on Information Systems, 14(3):268 – 296, 1996.

[22] N. Guarino and C. Welty. Evaluating ontological decisions with Ontoclean.
Communications of ACM, 45(2):61–65, 2002.

[23] S. Herrmann. Object teams: Improving modularity for crosscutting collabora-
tions. In Procs. of Net.ObjectDays, 2002.

[24] A. Igarashi and H. Nagira. Union types for object-oriented programming. In
Procs. of ACM symposium on Applied Computing (SAC ’06), pages 1435–1441,
New York, NY, USA, 2006. ACM.

[25] T. Juan, A.R. Pearce, and L. Sterling. ROADMAP: extending the GAIA
methodology for complex open system. In Procs. of Autonomous Agents and
Multiagent Systems Conference (AAMAS’04), pages 3–10, 2002.

[26] B.B Kristensen and K. Osterbye. Roles: conceptual abstraction theory and
practical language issues. Theory and Practice of Object Systems, 2(3):143–
160, 1996.

[27] Joon-Sang Lee and Doo-Hwan Bae. An enhanced role model for alleviating the
role-binding anomaly. Software: Practice and Experience, 32(14):1317 – 1344,
2002.

[28] F. Loebe. Abstract vs. social roles - a refined top-level ontological analysis. In
Procs. of AAAI Fall Symposium Roles’05, pages 93–100. AAAI Press, 2005.

[29] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and
N. Guarino. Social roles and their descriptions. In Procs. of Conference on the
Principles of Knowledge Representation and Reasoning (KR’04), pages 267–
277. AAAI Press, 2004.

[30] M. Mezini and K. Ostermann. Conquering aspects with Caesar. In Procs. of
International Conference on Aspect-Oriented Software Development (AOSD),
pages 90–100. ACM Press, 2004.

28 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

6 SUMMARY

[31] J.G. Molina, M.J. Ortin, B. Moros, and J. Nicolas. Transforming the OOram
three-model architecture into a UML-based process. Journal of Object Tech-
nology, 1(4):119–136, 2002.

[32] F.G. Mosse. Modeling roles: A practical series of analysis patterns. Journal of
Object Technology, 1(4):27–37, 2002.

[33] J. Noble and J. Grundy. Explicit relationships in object-oriented development.
In Procs. of Technology of Object-Oriented Languages and Systems (TOOLS),
1995.

[34] J. Odell, H. Van Dyke Parunak, S. Brueckner, and J. Sauter. Changing roles:
Dynamic role assignment. Journal of Object Technology, 2(5):77–86, 2003.

[35] M. Odersky. The Scala Experiment – can we provide better language sup-
port for component systems? In Procs. of ACM Symposium on Principles of
Programming Languages, pages 166–167, 2006.

[36] A. Omicini, A. Ricci, and M. Viroli. An algebraic approach for modelling
organisation, roles and contexts in MAS. Applicable Algebra in Engineering,
Communication and Computing, 16(2-3):151–178, 2005.

[37] M.P. Papazoglou and B.J. Kramer. A database model for object dynamics. The
Very Large DataBases Journal, 6(2):73–96, 1997.

[38] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control
models. IEEE Computer, 2:38–47, 1996.

[39] N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units
of behavior. In Procs. of European Conference on Object Oriented Programming
(ECOOP’03), volume 2743 of LNCS, pages 248–274, Berlin, 2003. Springer.

[40] F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data and Knowledge Engineering, 35:83–848, 2000.

[41] F. Steimann and P. Mayer. Patterns of interface-based programming. Journal
of Object Technology, 4(5):75–94, 2005.

[42] T. Tamai. Evolvable programming based on collaboration-field and role model.
In Procs. of International Workshop on Principles of Software Evolution (IW-
PSE’02), pages 1–5. ACM, 2002.

[43] F. Viganò and M. Colombetti. Specification and verification of institutions
through status functions. In COIN@AAMAS’06 Workshop, 2006.

[44] R.K. Wong, H.L. Chau, and F.H. Lochovsky. A data model and semantics of
objects with dynamic roles. In Procs. of IEEE Data Engineering Conference,
pages 402–411, 1997.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 29

INTERACTION BETWEEN OBJECTS IN POWERJAVA

ABOUT THE AUTHORS

Matteo Baldoni received his Ph.D. in Computer Science in May
1998 from the University of Torino. He is currently associate pro-
fessor at the Department of Computer Science of the University of
Torino, Italy. He has a background in computational logic, modal
and nonmonotonic extensions of logic programming, multimodal
logics, reasoning by actions and change. His current research in-
terests include issues in communication protocol design and imple-
mentation, conformance and interoperabilty for agents and web ser-
vices, agent programming languages, personalization by reasoning
in the semantic web. He organized the last three editions of the
Declarative Agent Languages and Technologies International Work-
shop. He can be reached at baldoni [at] di.unito.it. See also
http://www.di.unito.it/˜baldoni.

Guido Boella received the PhD degree at the University of Torino
in 2000. He is currently professor at the Department of Computer
Science of the University of Torino. His research interests include
multi-agent systems, in particular, normative systems, institutions
and roles using qualitative decision theory. He organized the first
two workshops on normative multi-agent systems, on coordination
and organization, and the first AAAI Fall Symposium on roles.
guido [at] di.unito.it. See also http://www.di.unito.it/˜guido.

Leendert W. N. van der Torre received the PhD degree from
Erasmus University Rotterdam in 1997. He is currently full profes-
sor at the University of Luxembourg. He has developed the so-called
input/output logics and the BOID agent architecture. He has writ-
ten over one hundred scientific papers, and he has organized the first
two workshops on normative multi-agent systems and the firsts two
workshop on coordination and organization. His current research
interests include deontic logic, qualitative game theory and coor-
dination in normative multi-agent systems. leon.vandertorre [at]
uni.lu. See also http://agamemnon.uni.lu/ILIAS/vandertorre.

30 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

mailto:baldon@di.unito.it
http://www.di.unito.it/~baldoni
mailto:guido@di.unito.it
http://www.di.unito.it/~guido
mailto:leon.vandertorre@uni.lu
mailto:leon.vandertorre [at] uni.lu
http://agamemnon.uni.lu/ILIAS/vandertorre

