
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 3, March - April 2007

Cite this column as follows: Miguel Katrib Mora and Yamil Hernández Saá: “Aspect Oriented
Programming in .NET. Based on Attributes”, in Journal of Object Technology, vol. 6, no. 3,
March-April 2007, pp. 53-70 http://www.jot.fm/issues/issue_2007_03/article1

ASPECT ORIENTED PROGRAMMING
IN .NET. BASED ON ATTRIBUTES

Miguel Katrib Mora and Yamil Hernández Saá
Computer Science Department.University of Havana

Abstract
Aspect Oriented Programming proposes an approach to increase code functionality with
aspects that are not part of the main code functionality. The current work shows how
can be done AOP in .NET thanks to one of the most interesting .NET innovations: its
capacity to put custom metadata inside a software component by means of .NET
attributes. This paper defines different kinds of such attributes to represent aspects and
shows how the functionality embedded in the attributes can be integrated with the
functionality of the code decorated by them.
Such aspect-attributes are inserted into an existing .NET component without forcing
reprogramming the client code of the component. Then the code of the aspect
functionality is woven into the code of the component.

1 INTRODUCTION

The dream of software developers is a world in which components could be easy
assembled using high level languages and tools. But this would be a very simplistic point
of view to assume a world in which each problem domain could be factored into discrete
components only interacting by method invocation. Such a premise ignores the fact that
some aspects of an application program tend to permeate all its parts.

The application code tends to become contaminated with code snippets trying to deal
with those "aspects" that are not the central part of the problem domain. A classical
example of such aspect is security (most applications are worried about security despite
security is not the central bussinees of them). These aspects usually obstruct the original
code crossing the problem domain and affecting the goal to obtain reusable solutions. To
provide reuse mechanisms for these problems is the focus of the so called Aspect
Oriented Programming (AOP) [1].

Based on the separation of concerns principle, AOP tries to provide mechanisms for
factoring out the parts of an application that are not pertinent to the central problem
domain. Then, the AOP approach could offer two main benefits: Application code will be

ASPECT ORIENTED PROGRAMMING IN .NET. BASED ON ATTRIBUTES

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

no longer tangled with code that is no related to the problem at hand and factoring such
aspects beyond the problem domain helps to reuse them in other applications.

.NET has two great features that supports the AOP basis. One is the reflection and
code emission mechanism. Reflection allows dynamically introspect a .NET assembly,
code emission allows generate code at runtime. The other feature is a novelty, the
capacity to embed meta-information into an assembly through attributes (see [2]).
However, .NET lacks a direct and integrated mechanism to relate the semantics that could
be expressed by such attributes with the main functionality of the application code
“decorated” with them.

Covering reflection and code emission goes beyond the scope of this paper, thus we
will mention them only when it will be needed for implementation details (for more about
reflection refer to MSDN and see [3] and [4]). The following section 2 proposes how to
use the attributes to express different types of aspects. Section 3 explains an
implementation pattern for “weaving” the aspects functionality with the code
functionality.

2 .NET ATTRIBUTES AND ASPECTS

An attribute is meta-information that can be attached to different parts of a .NET code.
Attributes do not apply any functionality by themselves, so there must be other code, or
the same code in which an attribute is embedded, the code that must interpret the attribute
to offer some behaviour.

Different .NET source languages will express attributes with their own syntax. After
compiling a source code with attributes, each attribute will remain embedded in the .NET
assembly as a special serialization of an "object instantiation" of a class derived of the
.NET type System.Attribute. So, the real instantiation must be done by a tool or
application using reflection.

The C# code snippet in Listing 1 shows a custom Currency attribute definition and
also shows how it is used to indicate the currency type of an employee salary.

Listing 1
enum CurrencyType = {USD, Yen, Euro};

[AttributeUsage(AttributeTarget.Property | AttributeTarget.Field,

 AllowMultiple = false)]
class Currency: System.Attribute
{

 public Currency(CurrencyType currency){
 this.currency = currency;
 }
 public readonly currency;

 ...
}
...
class Employee
{

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 55

 [Currency(CurrencyTypes.Euro)]
 public float Salary
 { ...
 }
 ...

}

For information about the predefined attributes included in the .NET library see [2].
Among these attributes is interesting to remark the “meta” attribute AttributeUsage, an
attribute to attach to an attribute definition. For example, the statement
[AttributeUsage(AttributeTarget.Property | AttributeTarget.Field,

 AllowMultiple = false)]

in Listing 1 indicates that the attribute Currency can only be attached to properties and
fields. The parameter AllowMultiple = false indicates only one attribute can be attached.

Using attributes to define aspects

Using attributes to represent an aspect should be associated to some semantics about the
aspect, i.e. it is necessary to define some aspect's functionality and to specify "how" and
"when" those functionality is integrated to the essential functionality of the application
(this is known as weaving in the AOP terminology).

Normally .NET attributes are written in source code (for example C#) mixed with
the source code they decorate. In parallel with this work we are developing a tool to put
attributes into an existing assembly (independently of the source code producing the
assembly).This capability to put aspects without mixing then with the main source code
will favours maintainability and modularity.

The type to define aspect-attributes will be the base class AspectAttribute (Listing
2). AttributeUsage indicates aspect-attributes may be attached to a class, interface,
method or property. An aspect-attribute decorating a class (interface) will be interpreted
as if it would be associated to all the methods and properties of the class (interface) and
their derived types.

Listing 2
public abstract class AspectAttribute: Attribute

{

 public abstract void Advice(object target,

 object result,

 MethodBase method,

 object[] parameters

);

}

[AttributeUsage(AttributeTargets.Method |

 AttributeTargets.Property |

ASPECT ORIENTED PROGRAMMING IN .NET. BASED ON ATTRIBUTES

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

 AttributeTargets.Class |

 AttributeTargets.Interface,

 Inherited = true)

public abstract class BeforeAttribute: AspectAttribute

{

}

[AttributeUsage(AttributeTargets.Method |

 AttributeTargets.Property,

 Inherited = true,

 AllowMultiple = false)

public abstract class InsteadAttribute: AspectAttribute

{

}

[AttributeUsage(AttributeTargets.Method |

 AttributeTargets.Property |

 AttributeTargets.Class |

 AttributeTargets.Interface,

 Inherited = true)

public abstract class AfterAttribute: AspectAttribute

{

 }

The abstract method Advice represents the functionality of the aspect that should be
defined by each actual subclass of the aspect-attribute class. Such Advice will be applied
related to the execution of the method to which the aspect is attached (to all methods of a
type if the attribute is attached to a class or interface). The code of the Advice will be
interwoven with the code decorated with the aspect. According to the patterns applied by
the interwoven mechanism there are different types of aspects attributes.

Semantics of the aspect-attribute

The execution of the Advice is related to the execution of the method decorated by the
aspect-attribute when the method is called from a qualified call. In this context the Advice
signature (Listing 2) means the following:

The target parameter receives the target object of the call. For example, if a method
F has the aspect A, then when the Advice of A will be executed associated to a call
x.F(...), the value passed to the parameter target will be x.

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 57

The parameter, result, is used when an AfterAttribute is attached to a property or
to a non void method. In such case the result parameter will receive the value returned
by the method or property, so this value could be used by the Advice method.

The parameter method receives the MethodBase reflection object describing the called
method. Example, for the call x.F(...) the value passed to this parameter is the
MethodBase object corresponding to F.

The value passed to parameters, is an object[] array with the parameters used in the
call to the method x.F(...).If there are parameters of value type they will be received
transparently as object type (without mediation of the client code) thanks to the boxing
mechanism. A null value will be passed when the target method doesn't have parameters.

Aspects types according to the interwoven pattern

Different types of aspects attributes are defined. The interwoven mechanism of the
Advice depends on the type of the aspect and the call to the method that has been
decorated with this aspect. As shown in Listing 2 the following aspects inherit from
AspectAttribute

BeforeAspect: The Advice is executed before executing the called method or
property (get or set method).

AfterAspect: The Advice is executed after executing the called method or property
(get or set method).

InsteadAspect: The Advice is executed instead of the called method or property (get
or set method). Note the attribute usage of Instead has AllowMultiple = false because
only one instead aspect has sense.

Example of BeforeAspect
Lets a class
class A{

 ...

 public void F1(){...}

 public void F2(){...}

}

It is possible to count the calls to the method F1 decorating the method F1 with the aspect
CountingCalls (Listing 3)
class A{

 ...

 [CountingCalls]

 public void F1(){...}

 public void F2(){...}

}

To count the calls to all the methods of a type B we can decorate the class definition.
[CountingCalls]

class B{

ASPECT ORIENTED PROGRAMMING IN .NET. BASED ON ATTRIBUTES

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

 ...

 public void H1(){...}

 public void H2(){...}

}

To count the calls to different methods, it is necessary to have a call counter for each
method (Listing 3). The proposed aspect mechanism has a global dictionary
AspectContext. In this case the Advice method will use this dictionary to put an entry for
each method having the CountingCall attribute.

Listing 3
class CountingCalls: BeforeAttribute

{

 public override void Advice(

 object target,

 object result

 MethodBase method,

 object[] parameters
)

 {

 string methodName = method.Name;

 if (!AspectAttribute.AspectContext.ContainsKey(methodName))

 AspectAttribute.AspectContext.Add(methodName, 1);

 else

 AspectAttribute.AspectContext[methodName]=

 ((int)AspectContext[methodName])+1;

 }

}

A BeforeAspect could be used too as a precondition to a method execution. The Advice of
the aspect is executed as a precondition to execute the method called. So, if the Advice
execution is not successful, then an exception will be thrown and the called method,
decorated by the aspect, is not executed.

In the code excerpt below a method Push is decorated with the aspect NotFull
(Listing 5) to guarantee that before making an insertion the stack must be not full.

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 59

class Stack

{

 ...

 [NotFull]
 public void Push(T x){...}

 public void Pop(){...}

 public object Top {...}

 public bool Full {...}

 public bool Empty {...}

 ...

}

Listing 5
class NotFull: BeforeAspect

{

 public override void Advice(

 object target,

 object result

 MethodBase method,

 object[] parameters {

 Stack stack= (Stack) target;

 if (stack.Full)

 throw new Exception("Stack cannot be full.");

 }

}

The sentence Stack stack = (Stack) target; supposes the parameter target receives an
object of Stack type. This is the case in the code excerpt above where the aspect NotFull
decorates the method Push.

Example of InsteadAspect
This example defines an aspect-attribute to indicate a method is fault tolerant adding the
necessary functionality to retry the method execution when an exception occurs.

Using this aspect-attribute the following code defines the method F1 will be executed
up to 3 times if the execution fails, and the method F2 will try to execute up to 5 times
class A{

 ...

 [FaultTolerant(3)]

 public void F1(){...}

 [FaultTolerant(5)]

ASPECT ORIENTED PROGRAMMING IN .NET. BASED ON ATTRIBUTES

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

 public void F2(){...}

}

FaulTolerant is a subclass of the InsteadAspect type (Listing 4). For an InsteadAspect
the weaver mechanism will guarantee that when a call a.F1(...) is done, the method F1
will not be executed but rather will be executed the Advice method of the FaultTolerant
aspect. Note how the Advice code wraps the call to F1 in a try catch loop. The call to F1
is then done by reflection through the sentence method.Invoke(target, parameters).

Isolating this fault tolerant pattern inside the aspect avoids the replication of a similar
code for each method you want will be fault tolerant.

Listing 4
class FaultTolerant: InsteadAspect

{

 int times;

 public FaulTolerant(int times){this.times=times;}

 public override void Advice(

 object target,

 object result

 MethodBase method,

 object[] parameters)

 {

 while(true)

 try{

 return method.Invoke(target,parameters);

 }

 catch (Exception e)

 {

 if (times == 0) throw e.InnerException;

 else times --;

 }

 }

}

Example of AfterAspect
An AfterAspect applies when a method finishes and just before returning to the caller. So
an AfterAspect could be used for example to transform the value returned by a method
(or property). The ConvertUSDToEuros aspect of Listing 6 changes US dollars to euros.
The following code excerpt applies this aspect to the methods of the Account class.

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 61

class Account

{

 ...

 [ConvertUSDToEuros]
 public int Balance{...}

 public void Add(int amount) {...}

 public void Withdraw(int amount) {...}

 ...

}

To convert to different currency type it is necessary to have the current conversion value.

Listing 5
class ConvertUSDToEuros: AfterAspect
{
 public override void Advice(
 object target,
 object result
 MethodBase method,
 object[] parameters {
 //modifying the value returned from the decorated method
 result = result * tax_exchange
 }
}

An AfterAspect could be used as a post condition, i.e an assertion to be fullfilled after a
method execution. So, if the Advice execution it is not successful, then an exception will
be thrown.

In the code excerpt below the method Push of the class Stack is decorated with the
aspect LIFO to guarantee that after the Push method execution the parameter x is on the
stack top.

class Stack

{

 ...

 [LIFO]

 [NotFull]
 public void Push(T x){...}

 public void Pop(){...}

 public object Top {...}

 public bool Full {...}

 public bool Empty {...}

 ...

}

ASPECT ORIENTED PROGRAMMING IN .NET. BASED ON ATTRIBUTES

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

Listing 6
class LIFO : AfterAspect
{

 public override void Advice(

 object target,

 object result

 MethodBase method,

 object[] parameters {

 Stack stack = (Stack) target;

 object pushed = parameters[0];

 if (stack.Top != pushed)

 throw new Exception("The Stack must apply a LIFO policy.");

 }

}

As in the precondition sample, the sentence Stack stack = (Stack) target; supposes
the parameter target receives an object of Stack type. This is the case for the aspect LIFO
decorating the Push method. The sentence object pushed = parameters[0]; supposes the
array parameters has the parameters passed to the method Push (i.e. the object to be
pushed. Unfortunately, we have no way to guarantee this LIFO attribute would not be
attached to a method different from Push.

Reader could note this use of before and after attributes resambles the Design by
Contract Metaphor. A more declarative proposal will be referred in the section 4.

3 IMPLEMENTING THE ASPECT’S FUNCTIONALITY
INTERWOVEN

The aspects functionality must be interwoven with the code they decorate. The aspects
proposed in this paper decorate methods and properties. So, the method (property)
execution will be the interwoven point (the join point using the AOP terminology).

Aspect attributes either must be placed by the programmer in the original source
code or inserted directly in the assembly using some tool1. Finally, considering an
assembly with aspects attributes embedded on it, the task of an interwoven mechanism to
apply aspect functionality could be implemented under two approaches.

One approach is to generate a proxy who intercepts method calls and applies the
functionality of the aspect. This approach requires the original assembly plus an extra
assembly that includes code for the proxy and aspects.

1 .NET security rules prevent to modify an assembly. Our ILLego tool produces the effect to include
attributes in an existing assembly generating a new equivalent assembly but with the attributes embedded.

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 63

The second approach is to produce a target assembly with the same functionality as
the original plus the aspect functionality included but without dependencies to the
original.

To implement the later approach it is necessary to extract code from the original
assembly to replicate it in the target. But such "copy and paste" capabilities are not
offered by the .NET namespace System.Reflection. To solve it we used the library
Reflection.Editor [5, 6]. This library emulates the capabilities of the .NET
System.Reflection but also supports IL code extraction and manipulation.

The first step to generate the final assembly using Reflection.Editor is to create an
"edition assembly". This edition assembly clones the original, ensuring the same
functionality, but allows its modification.

Assembly sourceAssembly = Assembly.LoadFrom("...originalAssembly.dll");
EditionAssembly targetAssembly = new EditionAssembly(sourceAssembly);

The next step is to change the name of each method M decorated with aspects by the
name Hidden_M. This is done by the following functionality of the Reflection.Editor.

 OriginalMethod.SetName("Hidden_" + OriginalMethod.Name);

Then a new public method, with the same signature as the original, is generated.

EditionMethod newMethod = eType.DefineMethod(originalMethod.Name,
 originalMethod.Attributes, originalMethod.ReturnType, paramTypes);

This new method includes the code to manage the aspects and to call the renamed method
(the original functionality) according to the aspect pattern (before, after, etc). The process
is illustrated in Figure 1.

Figure 1

To produce the code of this method is used a feature of the Reflection.Editor named
ILSnippet. An ILSnippet supports IL code emission and IL code "edition".

class A{
 ...
 [CountingCalls]
 public void F1(){...}
 public void F2(){...}
}

Original Assembly

class A{
 ...
 [CountingCalls]
 public void F1(){...}
[CountingCalls]
 private void Hidden_F1(){...}
 public void F2(){...}
}

Edition Assembly

The code of this aspect
manager method is emitted
using the ILSnippet of
Reflection.Editor

The original method is
renamed and “hidden”

ASPECT ORIENTED PROGRAMMING IN .NET. BASED ON ATTRIBUTES

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

In short an ILSnippet is a "sequence" of IL instructions, plus local variable
definitions and exception handlers. Reflection.Editor allows to extract the body of a
method as an ILSnippet, Then by copying, inserting and changing this snippet it is
possible to obtain the weaving of the main code with the aspect code.

IL code can be emitted adding IL instructions to an ILSnippet using the ILSnippet
method AppendInstruction(OpCode opCode , object operand).

An IL instruction can be accessed by its index. The myILSnippet[k] returns the IL
instruction at position k in the ILSnippet

Resume the example of the method F1 decorated with the CountingCalls aspect
class A{

 ...

 [CountingCalls]

 public void F1(){...}

 public void F2(){...}

}

The generated code for the aspect manager will look like the code excerpt of Listing 7.

 Listing 7
 private AspectAttribute[][] typeAspects;
 private AspectAttribute[][] Aspect_Of_Method_F1();
 public class A
 {
 public A();
 public void F1(){...};
 private void Hidden_F1(){...};
 }

Here typeAspects[0] is an array of BeforeAttribute attributes and typeAspects [1] is an
array of AfterAttribute attributes attached to a type definition and then applied to all
methods of the type
Aspect_Of_Method_F1 is an array containing three arrays as shown in Listing 8

Listing 8
this.Aspect_Of_Method_F1=new AspectAttribute[][3];

this.Aspect_Of_Method_F1[0]=((BeforeAttribute[])MethodBase.

 GetCurrentMethod().GetCustomAttributes(typeof(BeforeAttribute),true));

this.Aspect_Of_Method F1[1]=((InsteadAttribute[])MethodBase.

 GetCurrentMethod().GetCustomAttributes(typeof(InsteadAttribute),true));

this.Aspect_Of_Method_F1[2]=((AfterAttribute[])MethodBase.

 GetCurrentMethod().GetCustomAttributes(typeof(AfterAttribute),true));

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 65

this.Aspect_Of_Method_F1[0] contains the BeforeAttribute that decorates method F1
this.Aspect_Of_Method_F1[1] contains the InsteadAttribute that decorates method F1

this.Aspect_Of_Method_F1[2] contains the AfterAttribute that decorates method F1
Then the method F1 will manage its aspects and will call the original F1 that was

renamed to Hidden_F1.
The code excerpt of Listing 9 shows the F1 emitted code to retrieve the BeforeAspect

attributes.

Listing 9
...

myILS.AppendInstruction(OpCodes.Ldarg_0);

myILS.AppendInstruction(OpCodes.Ldfld, fbMethodAspects);

myILS.AppendInstruction(OpCodes.Ldc_I4_0);

myILS.AppendInstruction(OpCodes.Call,
 typeof(MethodBase).GetMethod("GetCurrentMethod"));

myILS.AppendInstruction(OpCodes.Ldtoken, typeof(BeforeAttribute));

myILS.AppendInstruction(OpCodes.Call,
 typeof(Type).GetMethod("GetTypeFromHandle",
 new Type[] { typeof(RuntimeTypeHandle)}));

myILS.AppendInstruction(OpCodes.Ldc_I4_1);

myILS.AppendInstruction(OpCodes.Callvirt,
 typeof(MemberInfo).GetMethod("GetCustomAttributes",
 new Type[] { typeof(Type), typeof(bool) }));

myILS.AppendInstruction(OpCodes.Castclass, typeof(BeforeAttribute[]));

//The BeforeAspects are stored in fbMethodAspects[0]
myILS.AppendInstruction(OpCodes.Stelem_Ref);

...

Listing 10 generates the code to invoke the Advice method of each Before aspect

Listing 10
...

myILS.AppendInstruction(OpCodes.Ldarg_0);
myILS.AppendInstruction(OpCodes.Ldfld, fbMethodAspects);

//Load the BeforeAspects stored in fbMethodAspects[0]
myILS.AppendInstruction(OpCodes.Ldc_I4_0);
myILS.AppendInstruction(OpCodes.Ldelem_Ref);

//Load the BeforeAspect stored in fbMethodAspects[0][count]
myILS.AppendInstruction(OpCodes.Ldloc_S, count);

ASPECT ORIENTED PROGRAMMING IN .NET. BASED ON ATTRIBUTES

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

myILS.AppendInstruction(OpCodes.Ldelem_Ref);

//Load the Advice args (target,result,method,parameters)
myILS.AppendInstruction(OpCodes.Ldarg_0);
myILS.AppendInstruction(OpCodes.Call,
 typeof(MethodBase).GetMethod("GetCurrentMethod"));
myILS.AppendInstruction(OpCodes.Ldloca_S, returnValue);

myILS.AppendInstruction(OpCodes.Ldc_I4_S, paramTypes.Length);
myILS.AppendInstruction(OpCodes.Newarr, typeof(Object));
myILS.AppendInstruction(OpCodes.Stloc_S, parameters);
myILS.AppendInstruction(OpCodes.Ldloc_S, parameters);

for (int i=0; i<paramTypes.Length; i++)
{
 myILS.AppendInstruction(OpCodes.Ldc_I4_S,i);
 myILS.AppendInstruction(OpCodes.Ldarg_S,i+1);
 myILS.AppendInstruction(OpCodes.Stelem_Ref);
 myILS.AppendInstruction(OpCodes.Ldloc_S, parameters);
}

//Invoke the Advice
myILS.AppendInstruction(OpCodes.Callvirt,
 typeof(AspectAttribute).GetMethod("Advice"));

...

If there is an Instead attribute then Listing 11 generate the code to invoke its Advice
method

Listing 11
...

myILS.AppendInstruction(OpCodes.Ldarg_0);
myILS.AppendInstruction(OpCodes.Ldfld, fbMethodAspects);

//Load the InsteadAspect stored in fbMethodAspects[1][0]
myILS.AppendInstruction(OpCodes.Ldc_I4_1);
myILS.AppendInstruction(OpCodes.Ldelem_Ref);
myILS.AppendInstruction(OpCodes.Ldc_I4_0);
myILS.AppendInstruction(OpCodes.Ldelem_Ref);

//Load the Advice args (target,result,method,parameters)
myILS.AppendInstruction(OpCodes.Ldarg_0);
myILS.AppendInstruction(OpCodes.Call,
 typeof(MethodBase).GetMethod("GetCurrentMethod"));
myILS.AppendInstruction(OpCodes.Ldloca_S, returnValue);

myILS.AppendInstruction(OpCodes.Ldc_I4_S, paramTypes.Length);
myILS.AppendInstruction(OpCodes.Newarr, typeof(Object));
myILS.AppendInstruction(OpCodes.Stloc_S, parameters);
myILS.AppendInstruction(OpCodes.Ldloc_S, parameters);

for (int i=0; i<paramTypes.Length; i++)
{
 myILS.AppendInstruction(OpCodes.Ldc_I4_S,i);

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 67

myILS.AppendInstruction(OpCodes.Ldarg_S,i+1);
 myILS.AppendInstruction(OpCodes.Stelem_Ref);
 myILS.AppendInstruction(OpCodes.Ldloc_S, parameters);
}

//Invoke the Advice
myILS.AppendInstruction(OpCodes.Callvirt,
 typeof(AspectAttribute).GetMethod("Advice"));

...

Otherwise, Listing 12 generates the code to invoke the original method (renamed as
Hidden_F1). Note method Hidden_F1 was generated using the Reflection.Editor
copy, paste and rename capabilities.

Listing 12
...

myILS.AppendInstruction(OpCodes.Ldarg_0);

//Load the method args
for (int i=0; i<paramTypes.Length; i++)
 myILS.AppendInstruction(OpCodes.Ldarg_S, i+1);

// Invoke the original method renamed as "Hidden_ " + method name
myILS.AppendInstruction(OpCodes.Call, hidden_mb);

//Store the method return in returnValue
if (hidden_mb.ReturnType != typeof(void))
{
if (hidden_mb.ReturnType.IsValueType)
 myILS.AppendInstruction(OpCodes.Box, hidden_mb.ReturnType);

 myILS.AppendInstruction(OpCodes.Stloc_S, returnValue);

}

...

The code to invoke the Advice method of each AfterAspect is generated like those for
each BeforeAspect.
Presented approach, using Reflection.Editor capabilities, generates a new assembly that
keeps the original functionality (without reference dependencies to the original assembly)
but including also the code executing the aspects. Therefore, this new assembly can
substitute the original in any project that wants to apply aspects functionality.

Using Reflection.Editor library it is also possible to implement the reverse process,
i.e., remove aspects evaluation from the code to obtain an assembly equivalent to the
original.

ASPECT ORIENTED PROGRAMMING IN .NET. BASED ON ATTRIBUTES

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

4 RELATED WORKS

An alternative to incorporate aspects in .NET is based on the use of contexts and
messages exchange [7]. Nevertheless, this approach forces the client code to handle the
infrastructure of messages exchanges. Another drawback of this approach is that each
attribute defined for aspect purposes must repeat the same pattern in its implementation,
so lacking reusability. In [8] we proposed an approach of aspects “interwoven” based on
intercepting the calls to methods decorated by the aspect. This is done using the .NET
context infrastructure and the concepts of real and transparent proxies. But such
infrastructure overloads performance. Furthermore, this solution forces to do
modifications in the client code.

AOP offers an interesting alternative for specification of nonfunctional component
properties (such as fault-tolerance properties or timing behavior), an aspect-specific tool
that adds fault tolerance to .NET components using aspect oriented techniques is
described in [9].

There are approaches based on the use of pre-processors [10], however, such
approaches request the acceptation of new source languages or language modifications.
Our current work has focused in the use of .NET attributes to express non-functional
component properties without disturbing the existing language syntax and semantics.

There are a variety of language extensions with AspectJ [11] as most prominent
example. The CAMEO project [12] extends the C# compiler to add AOP extensions
similar to those in AspectJ. It uses XML aspect definition files and outputs standard C#
code which is compiled by the standard compiler. CAMEO is a static weaver.

CLAW is a .NET dynamic weaver implemented in C++ using the Common Object
Model (COM) to extend the CLR. by linking in to the profiling mechanism, the CLAW
architecture is defined in [13]. With this mechanism, it is possible to add a new method
and to inject IL code at runtime into an existing method body, relocate methods from one
type to another, and recompile existing methods. But this is a low level and tightly
coupled approach depending on the profiler feature.

CONCLUSIONS

To do AOP based on modifications of existing languages, changing compilers and
building a lot of acompanning tools is not a pragmatic solution. The approach proposed in
the current paper tries to follow the mainstream of .NET not requesting changes in the
source languages, but offering libraries, a single tool and proposing an AOP
programming methodology. As was explained, this can be achieved under .NET thanks
the .NET support to attributes and the enhanced reflection capabilities. The .NET
reflection constrains to manipulate the IL code of assembly and to weave it with code of
other assembly was overcome with the new Reflection.Editor library. A detailed

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 69

description of this library goes beyond the scope of this paper and could be explained in a
future paper.

Other patterns of aspects could be considered in further works:
• aspects to express functionality to execute when the called method throws an

exception
• aspects to indicate a timeout for the execution of a method (useful in remote

applications)
• aspects to express undo-redo capability of a method execution

REFERENCES

[1] Gregor Kiczales and others, Aspect Oriented Programming, Springer Verlag,
Proceedings of ECOOP 1997

[2] Barnaby Tom, Bock Jason, Applied .NET Attributes, APress 2003

[3] Box Don, Sells Chris Essential .NET: The Common Language Runtime, Addison-
Wesley 2003

[4] del Valle Mario, Katrib Miguel, El poder de la reflexión en .NET, dotNetManía No 3,
Abril 2004

[5] Bacallao Erick, Katrib Miguel, Parodi Yoelvis, Reflection.Editor una biblioteca para
programar la edición de ensamblados .NET DotNetmanía No 15, Mayo 2005

[6] Bacallao Erick, Katrib Miguel, Parodi Yoelvis, Entretejido de Código IL en
Ensamblados .NET usando Reflection.Editor, DotNetmanía No 23, Febrero
2006

[7] Shukla Drama, Fell Simon, Sells Chriss Aspect-Oriented Programming Enables
Better Code Encapsulation and Reuse¸MSDN Mag, March 2003.

[8] Hernández Yamil, Katrib Miguel, Aspectos e Intercepción de Métodos en .NET,
dotNetManía No 10, Diciembre 2004

[9] Schult W., Polze A., Aspect-Oriented Programming with C# and .Net. In Proc. of
International Symposium on Object-oriented Real-time distributed
Computing (ISORC) 2002, pp. 241-248, Crystal City, VA, USA, Mayo 2000.

[10] Safonov Vladimir, Aspect.NET: Concepts and Architecture, .NET Developer's
Journal, October 2004.

[11] Kiczales G, Hilsdale E, Huguin J, Kersten M, Palm J, Griswold V, An Overview of
AspectJ, Springer-Verlag proceedings of the ECOOP 2001.

[12] M. Devi Prasad and B.D. Chaudhary. AOP support in C# , AOSD 2003

[13] Lam J., Cross Language Aspect Weaving. Demonstration, AOSD 2002, Enschede,
2002.

ASPECT ORIENTED PROGRAMMING IN .NET. BASED ON ATTRIBUTES

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

About the authors

Miguel Katrib (mkm@matcom.uh.cu) is a PhD professor at the
Computer Science Department of the University of Havana where he
leads the WEBOO group dedicated to web and object oriented
programming. Miguel authored several papers in programming
languages and object technologies. He is an enthusiast of .NET
technology working as redactor for the spanish journal dotNetManía.

He is also a .NET programming advisor of the software company CARE Technologies,
Denia, Spain.

Yamil Hernández (yhsaa@matcom.uh.cu) is an instructor at the
Computer Science Department of the University of Havana. He is
developer of WEBOO group dedicated to web and object oriented
programming. Yamil is an enthusiast of .NET technology. His main
interested areas are Aspect and Object Oriented Programming,
Reflection and Compiling Techniques.

