
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 3, March - April 2007

Cite this column as follows: Dave Thomas, “Agile Artifacts - Documenting, Tracking and
Reporting, Trust The Source Luke!”, in Journal of Object Technology, vol. 6 no. 3 March – April
2006, pp. 31-37 http://www.jot.fm/issues/issue_2007_03/column4

Agile Artifacts - Documenting, Tracking
and Reporting
Trust The Source Luke!

Dave Thomas

1 SIMPLE TOOLS MEET THE NEEDS OF BOTH
DEVELOPMENT AND MANAGEMENT

One of the obstacles to introducing Agile development into large software organizations
is providing a means for the developers to work effectively using light weight practices
and tools while at the same time ensuring that the management and company have the
necessary visibility and documentation to ensure that they can manage and later maintain
the software being developed. Unfortunately, many of the commercial tools are very
draconian and inflict all sort of extra work and overhead on developers while at the same
time not providing the promised benefits. This often results in tension between process
and programmer [1] which can give the impression that the developers don’t care about
documentation or design and that the management cares only about the process artifacts
rather than the code.

In any large scale Agile process, artifacts include not only source code but also
Requirements, often bundled into Features, Use Cases and Stories, and their associated
Unit and Acceptance Tests. Complex Features and Stories are composites of smaller
ones. Additional supporting artifacts include Models/Prototypes, Teams and their
Backlogs. We describe a simple Literate Programming approach for capturing artifacts
and associated automated tooling to support tracking, reporting and traceability.

Traceability makes it possible to identify and understand the relationships between
artifacts. For example, for a given requirement, one can answer questions like: Has the
requirement been implemented? If so, by which developer(s)? Where in the code base
will I find it? It is important to understand that the mappings between requirements,
models, use cases and code are not one-to-one, nor are they always precise. They are a
collection of statements about the software that can be used to model it for the purpose of
understanding. In this article we describe a simple code-centric approach which we have
found useful for many years. It can be implemented quickly using open source tools with

AGILE ARTIFACTS – DOCUMENTING, TRACKING AND REPORTING

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

little imposition on developers. Perhaps surprisingly it provides much better information
for management than many more complex and expensive approaches.

2 LITERATE PROGRAMMING AND WIKIS

The Agile Manifesto emphasizes the importance of code. Literate Programming [2] is a
best practice style for writing programs which are intended to be read and evolved over
time. Some naïve AgileXP purists insist that code needs no comments or other
documentation since the code should be easily understood from its own clarity and
associated unit and acceptance tests. They have a well founded concern about the
tendency for a comment not to be updated or refactored when the code is changed.
However, these concerns don’t in our experience justify the omission of proper structured
comments which improve readability and understandability of the code. In his book
Domain Driven Development, Eric Evans provides guidelines for clearly separating the
naming of domain representations from underlying technology ones.

Unfortunately, the early literate programming tools were not designed for today’s
interactive programming environments hence they are awkward for today’s agile
developers. Recently, however, code folding editors have been introduced into IDEs like
Eclipse and Literate Outliners such as LEO [3] have appeared which encourage literate
programming. Since it is tedious to write effective documentation in a programming IDE,
especially for requirements, we have found Wikis to be a simple and effective mechanism
for capturing such information, with annotations linking to the code and vice versa. A
Wiki is a natural place to capture requirements and project artifacts since it is already in
use for informal collaboration in and between teams as well as for capturing acceptance
tests (FIT and Fitnesse). Wikis and annotations may also reference more extensive
artifacts such as models, standards, and prototypes which elaborate the requirements,
design intentions, etc.

3 ARTIFACT DOCUMENTATION

Comprehensive traceability requires coding standards as well as tool support and ideally
should be integrated with the build and reporting environment. The most effective means
to track and report important project information for large scale development is to
instrument the code base within the configuration management (CM) system. Current
best practice is to annotate the text associated with artifacts with small amounts of
information to identify the artifact itself and its relationships to other artifacts.

The simplest, most effective way to do this is to use structured comments which are
associated with the code. This is one of the reasons that meta-information through
annotations is now a standard feature in languages such as Java and C#. If everyone
associated with the definition and modification of artifacts follows a disciplined
annotation policy for code, then all of this information will be saved in the CM system.

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 33

When direct annotation is not possible, the next best approach is to use a separate
description that references the artifact. With either approach, during each major build
simple tools such as fuzzy parsers can search through the code base to find the
annotations and update a traceability website or database.

4 PROJECT REPORTING

Such an approach enables the Continuous Integration and Test Environment to compile
project reports, traceability data, metrics, and other information about the software being
developed. This in turn provides valuable feedback to the developers and management.
Using such instrumentation it is possible to automatically produce all of the following
reports as part of the build:

Tracking – Burn Down/Up and Velocity
Backlog Status
Team and Developer Progress/Productivity
Variance between Actual and Estimates for Continuous Improvement
Development, Test and Integrate Rhythm

Our recommended approach is to use an IDE (in our case Eclipse) together with a Wiki
(in our case Fitnesse Wiki) for capturing the information. Using IDEs and Wikis
substantially reduces or even eliminates the need for other more tedious manual tools
such as Excel, MS Project1 etc. It is well known that leveraging the tools that are actually
used by developers, and not forcing them to learn new ones, greatly increases the
potential for obtaining and maintaining information about the software.

That said, the generic approach is independent of any specific tools, or any particular
annotation method, but simply requires that all assets be self-identified and versioned in
the CM system or equivalent. It is also important to note that specific projects or
companies may necessitate different annotations or artifacts, which can easily be
accommodated

5 EXAMPLE ANNOTATIONS FOR CODE ARTIFACTS

The approach we currently used in our environment is to annotate the code artifacts
explicitly using structured comment conventions such as JavaDoc for Java (Doxygen is a
popular tool for C/C++).

All new methods, fields and constructors added by Java developers get the tag
@story inserted explicitly by the developer using the following tag convention:

1 Note: it is straight forward to generate the appropriate MS Project or Primivera files if these are needed by
corporate reporting.

AGILE ARTIFACTS – DOCUMENTING, TRACKING AND REPORTING

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

@story {story-name} {time-and-date}

If a field or method is modified more than once, then there is a separate tag added for
each update. Tags are added to both implementation and test code, with naming
conventions used to distinguish between implementation code, Unit Tests and
Acceptance Tests. This allows the build utility to assemble a fine-grained trace of all the
development activity undertaken to implement any particular story. A report can be
generated indicating what user stories are implemented where, by whom, which have
Unit Tests or Acceptance Tests, and so forth. Using this basic traceability information,
one can compute metrics such as velocity, burn down/up charts, etc.

The default naming convention uses AT{artifact name} and UT{artifact name} to
denote acceptance and unit tests, respectively, associated with a particular artifact. For
example, the Unit Tests for a GameConsole Story would be named UTGameConsole.
Since tagging relates Stories to code, and Stories are related to other artifacts like
Features and Use Cases through the metadata stored in the Wikis, there is sufficient
information to create and maintain all the traceability relationships.

The relationships between Acceptance Tests, Unit Tests, and Stories can sometimes
become too complex for the naming conventions to handle. This does not present a
problem however, because Acceptance Tests and Unit Tests have @story tags as well,
which will override the naming conventions in such a case.
NOTE: Alternatives to this approach are to reference the associated classes/methods
from the story artifact, or to use properly versioned non-code artifacts as task markers,
and automatically infer the information from the version history. The latter is in many
ways the preferred approach since it imposes minimal demands on the developer, but
requires more sophisticated tool (semantic diff) or IDE support such as Mylar [6].
Tagging has the virtue of simplicity.

6 EXAMPLE WIKI TEMPLATES FOR NON-CODE ARTIFACTS

The following are some example Wiki templates that may be used to annotate the code
base with important information about non-code artifacts. The same approach can be used
with defect trackers such as JIRA [5], project management such as Trac [4], and/or
requirements tools but Wikis are our personal choice. The essential requirement is a
process to synchronize the development history of the code with the associated assets.
The following templates can be applied with minimal changes to most Agile development
projects. We stress that this is an example from a particular client and that terminology
and artifacts will vary from one organization to the next, although, in our experience, the
contents are roughly similar.

Team

Team pages have the header TeamName with the following elements:
Team: TeamName;

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 35

Member: member name; -- repeated for each team member
Project: ProjectName; -- added to allow easy navigation

Story

Story pages have the header StoryName with the following elements:
Story: StoryName;
Status: (None, Done, In-Progress, Deferred);
Author: name; repeated if more than one
Description: descriptive text;
Fullfills: requirement; -- reference to requirement, use case, defect list
Clarity: (Clear, Needs-Clarity, Un-Clear);
Team: TeamName ; -- team assigned the story, Un-Assigned otherwise
Developer: name; -- repeated for each team member implementing the story;
Sprint: release, sprint; -- the release and sprint in which this story is planned, e.g. 2.1
Ideal-Days: (best, avg, worst); -- estimated effort in ideal days, (0,0,0) means no estimate;
Classes: (best, avg, worst); -- estimated number of classes, (0,0,0) means no estimate
Points: (best, avg, worst); -- estimated effort in story points, (0,0,0) means no estimate
Unit-Prefix: name; -- Unit Test prefix, default is UTStoryName
Accept-Prefix: name; -- Acceptance Test prefix, default is ATStoryName
Composed-Of: other StoryNames; -- blank if task (non-composite) story.
Part-Of: parent StoryNames; -- parent story or blank if none.

Feature

Feature pages have the header FeatureName with the following elements:
UseCase: FeatureName;
Summary: one or two sentence brief overview;
Owner: name; -- who owns the feature; repeated if more than one
Fullfills: requirement; - reference to requirement, defect list;
Description: descriptive text;
Clarity: (Clear, Needs-Clarity, Un-Clear);
Team: TeamName ; -- team assigned the Feature, Un-Assigned otherwise
FeatureUseCase: UseCaseName; repeated for each associated feature use case;
IdealDays: (best, avg, worst); -- estimated effort in ideal days, (0,0,0) means no estimate;
Classes: (best, avg, worst); -- estimated number of classes, (0,0,0) means no estimate
Points: (best, avg, worst); -- estimated effort in story points, (0,0,0) means no estimate
AcceptPrefix: name; -- Acceptance Test prefix, default is ATFeatureName
ComposedOf: other FeatureNames; -- blank if non-composite feature.
PartOf: parent FeatureName; -- parent feature or blank if none.

UseCase

UseCase pages have the header UseCaseName with the following elements:
UseCase: UseCaseName;
Summary: one or two sentence brief overview;
Owner: name; -- who owns the use case, repeated if more than one
Fullfills: requirement; - reference to requirement, defect list;
Actors: List of actors participating in the use case. Possible actors are system components

or applications, the network, and of course the user;
Preconditions: What must be true about the state of the system before the use case can

start;

AGILE ARTIFACTS – DOCUMENTING, TRACKING AND REPORTING

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 3

Postconditions: What must be true about the state of the system after the use case
“expected path” completes. A testable state of the product.;

Description: in point form or descriptive text;
Exceptions: Name of exception - how handled (brief description or reference to a

requirement or supporting use case);
Variations: Different ways to accomplish steps. Variation name - description (could be

alternate list of steps or reference to supporting use case that contains the description);
CompliesWith: Important requirements to be aware of while implementing the use case

(may reference standards, other documents);
Clarity: (Clear, Needs-Clarity, Un-Clear);
Team: TeamName ; -- team assigned the use case, Un-Assigned otherwise
IdealDays: (best, avg, worst); -- estimated effort in ideal days, (0,0,0) means no estimate;
Classes: (best, avg, worst); -- estimated number of classes, (0,0,0) means no estimate
Points: (best, avg, worst); -- estimated effort in story points, (0,0,0) means no estimate
AcceptPrefix: name; -- Acceptance Test prefix, default is ATUseCaseName
Composed-Of: other UseCaseNames; -- blank if non-composite use case.
Part-Of: parent UseCaseName; -- parent use case or blank if none.

Backlogs

The ProductBacklog page has all of the use cases for the current product release. It also has all
of the release backlogs for this product release. The ReleaseName page has all of the use
cases/stories for the current release. The ReleaseTeamName page has the release backlog for
team TeamName. The SprintTeamName page has the sprint backlogs for each sprint for team
TeamName. Each of these pages is a simple list of other Wiki pages.

Models

Model pages have the header ModelName with the following elements:
Model: ModelName;
Description: Descriptive text;
Owner: name; -- model owner, repeated if more than one
Kind: model kind;
Fullfills: UseCaseName or StoryName;
Model-Ref: URL to model;

7 SUMMARY

We have found that by leveraging popular best programming practices of literate
programming, Wikis and configuration management high performance teams are able to
easily capture and share all of the information management needs to manage the life
cycle and evolution of its product assets. Furthermore, through simple automation of the
continuous build all of the project tracking, management and metrics can be generated
each build. This approach, which clearly can be easily tailored for different environments,
provides all of the benefits of CMM, Six Sigma without the pain of draconian tools,
special status meetings, reports, etc. It provides management and developers with a true
visibility into product development from requirements through estimates, backlogs and
on to unit and acceptance testing. Both developers and management get to have their cake
and share it while all artifacts are captured in the common CM system!

VOL. 6, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 37

REFERENCES

1. Dave Thomas: “The Unnecessary Tension between Process and Programmer”, in
Journal of Object Technology, vol. 5, no. 1, January-February 2006, pp. 7-11
http://www.jot.fm/issues/issue_2006_01/column1

2. Christopher Lee, Literate Programming – Propaganda and Tools, Carnegie Mellon
University http://vasc.ri.cmu.edu/old_help/Programming/Literate/literate.html

3. LEO http://personalpages.tds.net/~edream/frontMatter.html#anchor871644

4. Trac http://trac.edgewall.org/

5. JIRA http://www.atlassian.com/software/jira/

6. Mylar http://www.eclipse.org/mylar/

About the author

Dave Thomas is cofounder/chairman of Bedarra Research Labs
(www.bedarra.com), www.Online-Learning.com and the Open
Augment Consortium (www.openaugment.org) and a founding director
of the Agile Alliance (www.agilealliance.com). He is an adjunct
research professor at Carleton University, Canada and the University of
Queensland, Australia. Dave is the founder and past CEO of Object

Technology International (www.oti.com) creator of the Eclipse IDE Platform, IBM
VisualAge for Smalltalk, for Java, and MicroEdition for embedded systems. Contact him
at dave@bedarra.com or www.davethomas.net.

