
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007 

 
Vol. 6, No. 4, Mai - June 2007 

 
 
 
 

Cite this column as follows: Farid Mokhati, Noura Boudiaf, Mourad Badri and Linda Badri: “Translating 
AUML Diagrams into Maude Specifications: A Formal Verification of Agents Interaction Protocols”, in Journal 
of Object Technology, vol. 6, no. 4, May - June 2007, pp 77 - 102 
http://www.jot.fm/issues/issue_2007_05/article2  

Translating AUML Diagrams into Maude 
Specifications: A Formal Verification of 
Agents Interaction Protocols 

Farid Mokhati, Département d’Informatique, Université Larbi Ben M’hidi, Algérie. 
Noura Boudiaf, CNAM, Laboratoire Cederic, Paris, France. 
Mourad Badri and Linda Badri, Département de Mathématiques et d'Informatique, 
Université du Québec à Trois-Rivières, Canada. 

Abstract 
Agents Interaction Protocols (AIPs) play a crucial role in multi-agents systems 
development. They allow specifying sequences of messages between agents. Major 
proposed protocols suffer from many weaknesses. We present, in this paper, a formal 
approach supporting the verification of agents’ interaction protocols described by using 
AUML formalism. The considered AUML diagrams are formally translated into Maude 
specifications. Based on rewriting logic, the formal and object-oriented language Maude 
offers an interesting way for concurrent systems formal specification and programming. 
The Maude environment integrates a model-checker based on Linear Temporal Logic 
(LTL) supporting formal verification of distributed systems. The proposed approach 
essentially allows: (1) translating the description of agents’ interactions, specified using 
AUML formalism, in a Maude specification and, (2) applying the model-checking 
techniques supported by Maude to verify some properties of the described system. A 
case study is presented to illustrate our approach. 

1 INTRODUCTION 

In Multi-Agents Systems (MAS), agents interact to exchange information, to cooperate 
and to coordinate their tasks. The usual approaches consist of describing their interactions 
as protocols [Hug02, Hug04]. Several Agents’ Interaction Protocols (AIPs) have been 
proposed in the literature [Gue03, Toi04]. They are used to manage and to control 
interactions in MAS [Olu05]. Despite the fact that interaction protocols are an important 
part of multi-agents infrastructures, many of the published protocols are semi-formal, 
vague or contain errors [Pau03a, Mor05]. Knowing that AIPs play a crucial role in MAS 
development [Woo00a], their formal specification, as well as their verification, constitute 
an essential task [Maz02, Gio04]. In the field of agents’ behaviour specification, three 
major approaches emerge in the literature: state-charts based approaches [Tra99, Pau03a], 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

Petri Nets (PN) based approaches [Cos99, Bak00] and, finally, approaches representing 
an adaptation of object-oriented specification methods [Ode00, Ode01]. 

Among representations of interaction protocols proposed in the literature, we can 
quote the AUML formalism (Agent UML) [Ode00, Ode01, Hug04]. It represents, in fact, 
the first result emerged from the cooperation established between the FIPA (Foundation 
of Intelligent Physical Agents) and the OMG group (Object Management Group) for 
facilitating the penetration of the agent technology in the industry. AUML represents an 
extension of the UML language [Mul00], especially supporting the specification of 
interactions between agents [Hug04, Pau04]. AUML diagrams adopt, in the description 
of interactions between agents, an approach in several layers. However, these diagrams 
only offer a semi-formal specification of interactions. This weakness may generate 
several problems. Indeed, the lack of formal semantics in AUML [Ast98, Reg99, Mor05], 
such as in UML, can lead to several incoherences in the description of a MAS’s 
behaviour. It is difficult, especially in the case of complex MAS, to detect this kind of 
defects. In this context, the use of appropriate formal notations offers several advantages. 
It essentially allows producing rigorous and precise descriptions supporting efficiently 
the verification and validation process. Formal verification of software systems 
constitutes an important and difficult task [Fer04, Cla02]. In the literature, three major 
classes of formal verification approaches emerge [Sch99]: the proof based techniques 
[Kri93], the model-checking based techniques [Thi05] and the testing techniques 
[Sch99]. 

We focus, in this paper, on formal verification of interaction protocols described by 
using AUML. The adopted approach is based on model-checking techniques supported 
by Maude. Model checking offers several advantages relatively to traditional approaches 
based on simulation, testing techniques, or deductive reasoning. Its main advantage is 
that, at least for finished-states systems, it can be executed in a completely automatic and 
efficient way [Cla02]. Based on a sound and complete logic, called the rewriting logic 
[Mes92a, Mes92b], the Maude language [Mes92b, Man99, McC03], seems to us in this 
context an interesting candidate. It offers, in fact, through its various constructions, an 
interesting way for specifying and programming concurrent systems. It offers all the basic 
elements allowing formally specifying and verifying multi-agent interactions. The 
rewriting logic and the Maude language, in particular, unify several concurrency models 
[Mes92b]. Petri nets, state-transitions systems, Lotos, modal logic, temporal logic and 
other formalisms are integrated in the rewriting logic [Gab04, Ver03]. Our choice of this 
language was not only based on its expressive power, but also on its possibility to support 
simulations, therefore allowing formal verification. Verification of a system in Maude is 
based on the concepts of Model-Checking. Model checking techniques [Cla02, Thi05] 
take more and more importance in the domain of concurrent systems verification. The 
Maude model-checker [Eke02] was conceived by combining Maude and the linear 
temporal logic (LTL), taking advantage of the two formalisms. Moreover, Maude offers a 
remarkable descriptive power and the LTL offers recent and advanced techniques of 
model checking. Compared to other model-checkers, like SPIN [Hol97], Maude seems 
more expressive. It allows easily specifying different kinds of concurrent systems 
[Eke03]. 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 79 

We explored, in a previous work [Mok04], the feasibility as well as the interest to 
generate Maude specifications from AUML diagrams. The generated Maude descriptions 
have been validated by simulation thanks to the tool supporting this language. The 
present paper focuses on the formal verification of interactions protocols described by 
AUML diagrams using Maude’s model checker. We illustrate the possibility, through the 
use of the Maude environment, of modelling and evaluating MAS's properties. Some 
properties depend on the agents' internal behaviour, such as decision-making, and others 
are relative to the agents' collective behaviour such as the verification of system 
coherency and termination. 

The remainder of the paper is organized as follows. In Section 2, we give a general 
outline on related work. We summarily present, in Section 3, the AUML formalism. In 
Section 4, we give a brief preview on the rewriting logic as well as the Maude language. 
Verification of interactions protocols described by AUML formalism using Maude is 
presented in Section 6. Finally, in Section 7, we give some conclusions and future work 
directions. 

2 RELATED WORK 

Wooldridge et al. have proposed an approach supporting the verification of MAS with 
MABLE [Woo02], an automatic design and verification language for multi-agents 
systems. In a MABLE system, agents have a mental state (beliefs, desires and intentions). 
The verification process is based on the SPIN model-checker [Hol97], a model-checking 
system for finished-states systems. To chech claims about a MABLE system and to 
simulate its execution, SPIN uses two descriptions: a description of the MABLE system 
in PROMELA [Hol97], and a description of the claims to be checked expressed in 
quantified linear temporal BDI logic called MORA (a cut-down version of LORA 
[Woo00b]). Bordini and al. [Bor03] proposed AgentSpeak(F), a variation of the 
AgentSpeak(L) language [Rao96] that is a logical programming language for BDI agents. 
The goal of this work is to facilitate the verification of the AgentSpeak(L) systems by 
using model checking techniques. The key first step in this approach consisted to restrict 
AgentSpeak(L) to finished-states systems. The result is AgentSpeak(F), a version to 
finished-states of AgentSpeak(L). The verification of AgentSpeak(F) programs SPIN 
requires on one hand, the translation of these programs in PROMELA, the model 
specification language for the SPIN model-checker and, on the other hand, the mapping 
of the properties expressed in the BDI logic in the temporal linear logic (LTL). These 
works don't deal with the problem of verification and proof of protocols properties 
[Gio04]. 

Our approach is comparable, in terms of objectives, to the previously quoted 
approaches. Our objective consists, essentially, to support formally the specification and 
verification of the agents’ interaction protocols in a MAS described by using AUML 
formalism. In the field of the description of agents’ interaction protocols, AUML is 
certainly the best-known language [Hug02]. However, its graphic aspect as well as its 
lack of formal semantics can generate several incoherences in the description of MAS' 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

behaviour. The major motivations of this work are: (1) translating the description of 
agents’ interactions, specified using AUML formalism, in a Maude specification and, (2) 
applying the model-checking techniques supported by Maude to verify some properties of 
the described systems. Compared to SPIN, Maude seems more expressive. One can easily 
specify different kinds of concurrent systems using Maude and reason about those 
specifications using other formal methods and tools [Eke03]. Another advantage of 
Maude is that the integration of model checking with theorem techniques becomes quite 
seamless [Eke03]. 

3 AUML 

UML [Mul00, OMG01] is widely used in object-oriented systems (OOS) analysis and 
design. However, it is not adapted to the modelling of MAS. This is essentially due to the 
fundamental differences between OOS and MAS. Compared to objects, agents are 
relatively active and autonomous. Furthermore, objects are reactive while agents are 
proactive and social [Ode00, Kav03]. To fill these weaknesses, the FIPA and the OMG 
extended UML by proposing a new structural elements and diagrams allowing increasing 
the expression power of the basis language, for tacking into account agent-oriented 
concepts. The result of this cooperation was the definition of the language Agent UML 
(AUML) [Ode00, Ode01, Hug04]. To represent multi-agent interaction protocols, AUML 
adopts in fact an approach in three layers. It uses, in the first level, package and template 
to represent the whole protocol. Sequence diagrams, collaboration diagrams, activity 
diagrams, and state diagrams are used to represent interactions between agents. 
Furthermore, activity diagrams and state diagrams are also used to capture the agent's 
internal behaviour (for more details see [Ode00]). 

This paper focuses on the following concepts: package and template to represent 
interaction protocols, sequence diagrams for the description of interactions between 
agents and state diagrams for specifying agent’s internal behaviour. The representation of 
nested protocol using packages as well as the use of AUML activity diagrams and 
collaboration diagrams will be considered in a future work. 

Level 1: Representing Agents Interaction Protocols 

Figure 1 illustrates an example of an agents’ interaction protocol. It describes, using an 
AUML sequence diagram, the FIPA Contract Net protocol [FIP02]. When invoked, the 
Initiator agent sends a call-for-proposal to a Participant agent. Before a given deadline, 
the The Participant agent can submit to the Initiator agent a proposal (propose), refuse to 
submit a proposal (refuse), or indicates that it didn't understand (not-understood). The 
proposal formulated by the Participant agent can either be accepted or rejected by the 
Initiator agent. When it receives a proposal acceptance (accept-proposal), the Participant 
agent informs the Initiator agent about the proposal's execution. However, the Initiator 
agent can cancel the execution of the proposal at any time. Figure 1 also illustrates two 
relative fundamental concepts to this level: 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 81 

• Package : a conceptual aggregation of interaction sequences. It allows treating the 
protocol like a reusable entity. The tabbed folder notation at the upper left 
indicates that the protocol is a package. 

• Template : represented by a dashed box at the upper right corner. The template 
concept allows a protocol described by a package to be personalized for the 
analogous problem domains. 

 
 

 

FIPA Contrat Net Protocol 

Initiator, Participant 
Deadline 

call-for-proposal, refuse*,  
not-understood*, propose, 
reject-proposal*, accept-

proposal*, cancel*, inform* 

Initiator Participant 

call-for-proposal 

refuse 

not-understood 

propose 

x

accept-proposal 

reject-proposal 

x

cancel 

inform 

 

 

 

 

 

deadline 

 
Figure 1: An interaction protocol expressed as a template package 

 

 

CA‐2

CA‐1

Agent-1/Role :Class Agent-2/Role :Class

 

 
Figure 2: Basic format for agents communication 

 

(a) 

CA-1

CA-2

… 
CA-n 

(b)

CA-1

CA-2

… 
CA-n 

(c)

CA-1

CA-2

… 
CA-n 

x

 
Figure 3: Recommended extensions that support concurrent threads of interaction 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

Level 2: Representing interactions between agents 

We use, in this paper, sequence diagrams to describe interactions between agents. Figure 
2 illustrates the basic format of communication between agents. Instead of the message 
style defined in UML, AUML uses communication acts (CA). To support the description 
of threads of interaction, AUML introduced three ways allowing expressing the multiple 
threads (see figure 3). Figure 3(a) indicates that all CA-i (CA-1, ...CA-n) are sent 
concurrently. Figure 3(b) includes a decision box indicating which CAs (zero or more) 
are going to be sent. Figure 3(c) indicates that only one CA is going to be sent. An agent 
sender can send concurrent acts to an agent playing different roles. They can, however, be 
sent to different agents. 

Level 3: Representing agent’s internal behavior 

AUML offers two alternatives to represent an agent's internal behaviour. The first 
consists in using state diagrams, while the second consists in using activities diagrams. 
As mentioned previously, we use in this paper state diagrams for modelling the agent’s 
internal behaviour. Figures 4.a and 4.b represent the agent's internal behaviour 
respectively for Initiator and Participant agents of figure 1. 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Internal behaviour of the agents Initiator and Participant. 

4 REWRITING LOGIC AND MAUDE LANGUAGE 

Rewriting Logic 

The rewriting logic, having a sound and complete semantic, was introduced by Meseguer 
[Mes92b, Mes00, Mes03]. It allows describing concurrent systems. This logic unifies all 
the formal models that express concurrence [Mes90]. In rewriting logic, the logic 
formulas are called rewriting rules. They have the following form: R:[t]  [t’] if C. Rule 

NotClear/ 
NotUnderst 

ExpiredTimeOut/ReadAllMsg 

TrueCond/ 
SendAccProp 
SendRejProp 

HasProp/DecProcess 

NoExpTimeOut/ 
Wait 

TrueCond/ 
SendCFP 

Start Wait 

OfEval 

Failure 

Success 

ComDec 

NoProp/NoAction 

IsRefused/ 
SendReject 

ReceiveRejProp/ 
NoAction ReceiveCFP/ 

DecProcess 

IsAccepted/ 
SendProp 

NoMail/ 
Wait 

Start Wait 

OfEval Failure 

Success 

ReceiveAccProp/ 
Inform 

 

(a) (b) 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 83 

R indicates that term t becomes (is transformed into) t’ if a certain condition C if verified. 
Term t represents a partial state of a global state S of the described system. The 
modification of the global state S of the system to another state S’ is realized by the 
parallel rewriting of one or more terms that express the partial states. The distributed state 
of a concurrent system is represented as a term whose sub-terms represent the different 
components of the concurrent state. The concurrent state’s structure can have a variety of 
equivalent representations because it satisfies certain structural laws (equivalence class). 
Therefore, we can see the constructed configurations by a binary operator applied to 
binary sets: 

 

 

 

Figure 5: Example of a portion of the Maude program 
 

The program slice illustrated in figure 5 gives a definition of three types: Configuration, 
Object and Msg. In lines 4 and 5, Object and Msg are sub types of Configuration. Objects 
and messages are in fact multi-set configuration singletons. More complex configurations 
are generated from the application of the union on these multi-set singletons (objects and 
messages). Where there is neither floating messages nor live objects, we have in this case 
an empty configuration (line 6). The construction of a new configuration in terms of other 
configurations is done with line 7’s operation. We can note that this operation has no 
name and that the two sub lines indicate the positions of two parameters of configuration 
type. This operation, which is the multi-set union, satisfies the structural laws of 
association and of commutation. It also possesses a neutral element null. For example, if 
we have a message M1 that represents a configuration, and an object <O : C|atts > 
(please note that O is an object’s identifier, C the class to which it belongs and atts is the 
list of its attributes) that represents in itself another configuration, then we can construct 
another configuration in terms of those two configurations: M1 < O : C | atts >. This one 
is equivalent to the configuration < O : C | atts > M1 because the __ __ operation is 
commutative. 

Maude 

Maude is a specification and programming language based on rewriting logic [Mes92b, 
Man99, McC03]. In Maude language, two levels of specification are defined [McC03]. 
The first level is related to the specification of the system whereas the second carries on 
the specification of the properties. 

1. sort Configuration . 
2. sort Object . 
3. sort Msg . 
4. subsort Object < Configuration . 
5. subsort Msg < Configuration . 
6. op null : -> Configuration . 
7. op_ _ : Configuration Configuration -> Configuration [assoc comm id : null] . 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

System Specification 

This level is based on rewriting theory. System modules mainly describe it. For a good 
modular description, three types of modules are defined in Maude. The functional 
modules allow defining data types and their functions through equations theory. 
Figure 6.a describes the functional module Nat specifying the natural numbers. This 
module is imported in the module FACT (figure 6.b) to calculate the factorial of natural 
numbers. 
 

 

 

 

                                                (a)                                                                                           (b) 
 

Figure 6: Functional Modules Nat et FACT 

The system modules define the dynamic behaviour of a system. This type of module 
extends the functional modules by the introduction of rewriting rules. This type of 
module offers a maximal degree of concurrency. Finally, the object-oriented modules, 
which can be reduced to system modules. Object-oriented modules explicitly offer the 
advantages of the object paradigm. In relation to the system modules, the object-oriented 
modules offer a more appropriate syntax to describe the basic entities of the object 
paradigm, like, among others, objects, messages and configurations. Only one rewriting 
rule allows expressing, at a same time: the consumption of certain floating messages, the 
sending of new messages, the destruction of objects, the creation of new objects, state 
change of certain objects, etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             (a)       (b)  

Figure 7: The same BANK-ACCOUNT module in system module and OO module forms. 

fmod NAT is 
sorts Zero NzNat Nat . 
subsort Zero NzNat < Nat . 
***Constructors 
op 0 : -> Zero . 
op s_ : Nat -> NzNat . ***Successor 
…. 
endfm 

fmod FACT is 
Including NAT . 
op _! : Nat -> NzNat . 
var N : Nat . 
eq 0 ! = 1 . 
eq (s N) ! = (s N) * N !. 
endfm 

 
mod BANK-ACCOUNT is 
protecting INT . 
including CONFIGURATION . 
op Account : -> Cid. 
op bal :_ : Int -> Attribute . 
ops credit debit : Oid Nat -> Msg .               ***[1] 
var A  : Oid . 
vars M N : Int . 
 
rl [credit] :                      ***[2] 
   < A : Account | bal : N >  credit(A, M) 
   => < A : Account | bal : N + M  > . 
 
crl [debit] : 
   < A : Account | bal : N >  debit(A, M) 

=> < A : Account | bal : N - M  >  
If N >= M . 

endm 

 
(omod BANK-ACCOUNT is 
protecting INT . 
class Account | ba : Int . 
op bal :_ : Int -> Attribute . 
msgs credit debit : Oid Int -> Msg . 
 
var A : Oid . 
vars M N : Int . 
 
rl [credit] : 
   < A : Account | bal : N >  credit(A, M) 
   => < A : Account | bal : (N + M)  > . 
 
crl [debit] : 
   < A : Account | bal : N >  debit(A, M) 

=> < A : Account | bal : (N – M)  >  
If N >= M . 

endom) 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 85 

 

Figure 7.a illustrates the use of a system module BANK-ACCOUNT to define a bank 
account object A and the two operations that can affect its content credit and debit (line 
1) by executing the rewriting rule defined in this module. Whereas figure 7.b describes 
the same module BANK-ACCOUNT with a more appropriate object-oriented syntax. We 
note for example, after executing the rule [credit] (line 2), the message credit(A, M) is 
consumed and the account’s content is changed.  

Properties Specification  

This specification level defines the system’s properties to be checked. The system is of 
course described using system module. By evaluating the set of states that are reachable 
from an initial state, Model Checking allows checking a given property in a state or a set 
of states. Property is expressed in a temporal logic LTL (Linear Temporal Logic) or in 
BTL (Branching Temporal Logic). Model Checking supported by the Maude’s platform 
uses LTL logic essentially for its simplicity and the well-defined procedures of decision it 
offers (for more details, see [McC03]). 
 

 

 
 
 
 
 
 
 
 

Figure 8: A module in Maude implementing the operators of LTL logic. 
 

In a predefined module LTL, we find the definition of operators for the construction of a 
formula (property) in linear temporal logic. In figure 8, and by hiding certain 
implementation details, we find part of LTL operators in Maude syntax. LTL operators 
are represented in Maude by using a syntactic form similar to their original form. For 
example, the operation [] is defined in Maude to implement the operator (always). This 
operator is applied to a formula to give a new formula. 
 

 

 
 

Figure 9: A module in Maude implementing the satisfaction operator of a formula in a state. 
 

fmod LTL is 
… 
*** defined LTL operators 
 op _->_ : Formula Formula -> Formula . *** implication 
 op _<->_ : Formula Formula -> Formula . *** equivalence 
 op <>_ : Formula -> Formula .      *** eventually 
 op []_ : Formula -> Formula .      *** always 
 op _W_ : Formula Formula -> Formula .  *** unless 
 op _|->_ : Formula Formula -> Formula . *** leads-to 
 op _=>_ : Formula Formula -> Formula . *** strong implication 
 op _<=>_ : Formula Formula -> Formula . *** strong equivalence 
… 
endfm 

fmod SATISFACTION is 
 protecting LTL . 
 sort State . 
 op _|=_ : State Formula ~> Bool . 
endfm 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

Furthermore, we need an operator indicating if a given formula is true or false in a certain 
state. We find such an operator (|=) in the predefined module SATISFACTION (figure 9). 

The state State is generic. After specifying the system’s behavior in a Maude system 
module, the user can specify several predicates expressing certain properties related to the 
system. These predicates are described in a new module, which imports two others: the 
one describing the system’s dynamic aspect and the module SATISFACTION. Assume for 
example that M-PREDS (figure 10) represents the name of the module describing the 
predicates on the system’s states. M is the name of the module describing the system’s 
behavior. The user must specify that the selected state (configuration chosen in this 
example) for its own system is sub-type of the sort State. At the end, we find the module 
MODEL-CHECKER (figure 11) that offers the Model-Check function. The user can call 
this function by specifying a given initial state and a formula. Maude Model Checker 
checks if this formula is valid (according to the nature of the formula and the procedure 
of Model Checker adopted by the Maude system) in this state or the set of all accessible 
states since the initial state. If the formula is not valid, a counterexample is displayed. 
The counterexample concerns a state in which the formula is not valid. 

 
 

 

 
Figure 10: A module in Maude containing the predicates defined by the user about a system described by a 

module M. 

 

 

 
 

 
Figure 11: A module containing the services offered to the user by Maude Model Checking 

5 TRANSLATING AUML DIAGRAMS IN MAUDE 

We use, in what follows, several examples to illustrate the defined process to support the 
translation of the AUML specifications in Maude. The hierarchical vision in three layers 
for describing a system in AUML can be captured by Maude. Using the Maude language, 
we can define a module whose behavior can be extended by another module. 

Translation of the template concept 

We define a TEMPLATE module in Maude for modelling the template concept of 
AUML. The different constructions Act, Role and DeadlineType allow us to represent 
respectively types of acts, of roles as well as the concept of deadline defined in AUML. 
For example, we translate the AUML template given by the figure 1 in the Maude 

mod M-PREDS is 
  protecting M .   including SATISFACTION . 
  subsort Configuration < State . 
  … 
endm 

fmod MODEL-CHECKER is  
including SATISFACTION . 
… 
op counterexample : TransitionList TransitionList -> ModelCheckResult [ctor] . 
op modelCheck : State Formula ~> ModelCheckResult . 
… 
endfm 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 87 

functional module described by figure 12. This last defines the Initiator and Participant 
roles that are, in fact, constants of type Role. We define, furthermore, call-for-proposal 
like a constant of the proposed type Act. 
 
 
 
 
 

 

Figure 12: Modeling Template in Maude 
 

This module is generic and remains open to extension. We extend its behaviour by adding 
a description of the behaviour of its operations in another module that will implement the 
concept of Package of AUML. Before detailing the translation of the package, we give 
the translation of class and role. 

• Basic object-oriented concepts: The basic concepts of the object paradigm (class, 
object, inheritance, and message) correspond naturally to the defined equivalent 
concepts in Maude. 

• Role: A role in AUML reflects, in fact, an agent's particular behaviour. This 
behaviour exhibited by the agent controls the type of sent or received messages by 
an agent. An agent's role is described by a set of rewriting rules. Each time that an 
agent plays a role, we orient this agent to only execute the rewriting rules of this 
role. In addition of rewriting rules, we use an attribute to describe a role explicitly. 
The definition in AUML agent-name/role: class will be described in Maude as 
follows: <agent-name: class | Play-role: Role,…>, where agent-name is an agent's 
identifier. We define Role like an enumerated type containing roles values for this 
agent and Play-role like an attribute that contains the role played by the agent, at a 
given moment. 

Translation of the package concept 

A Package in AUML can be described like a module in Maude. This module can 
encapsulate, as in AUML, a description of aggregation of interaction sequences. Every 
interaction in AUML, can be described by a rewriting rule. We give in figure 13, a part of 
an object-oriented module in Maude to describe the template package. In this module, we 
find the definition of the class Agent (line [1]). This class is characterized by the presence 
of the three attributes: Play-role of Role type denoting an agent's role, MBox of MailBox 
type serving to contain proposals to come, AcqList of AcquaintanceList type containing 
the list of the agent's acquaintances and the State attribute of AgentState type that is a 
enumerated type containing the set of own state values for an agent. We define the form 
of the message allowing the exchange of information between Initiator and Participant. 

fmod TEMPLATE-FIPA-CONTRACT-NET-PROTOCOL is 
 
  sorts Act Role DeadlineType . 
  ops Initiator Participant  : -> Role . 
  op Deadline : -> DeadlineType . 
  ops call-for-proposal refuse  not-understand propose reject-proposal  
        accept-  proposal cancel inform  :  -> Act . 
endfm 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

ComingMsg (line [2]) has three parameters expressing in the order the agent sender of the 
message, the agent receiver and the communication act. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 : Example of modeling of Package in Maude 
 

The rule in this figure (line [4]) describes the sending of message call-for-proposal on 
behalf of the agent I in the Initiator role to all its acquaintances (agents playing the 
Participant role). Note that the variable I and P are Aoid type (line [3]) representing the 
identification space of the class Agent and the Sender and Receiver types are sub-types of 
Aoid. The execution of this rule requires the presence of the Initiator agent (left part of 
the rule) and gives as a result the agent itself and the creation of the ComingMsg(P, I, 
Propose) (right part of the rule). During each iteration, a ComingMsg(P, I, Propose) 
message is sent to one of participant agents . The execution of the rule stops when each 
participant appears in the list of acquaintances receives such a message. 

 
(omod PACKAGE-FIPA-CONTRACT-NET-PROTOCOL is 
   
 extending TEMPLATE-FIPA-CONTRACT-NET-PROTOCOL . 
  …  
 class Agent | Play-Role : Role, MBox : MB, AcqList : AcquaintanceList, State : AgentState .   *** [1] 
  
 msg ComingMsg : Sender Receiver Act -> Msg .                                                                          *** [2] 
 vars I  P : Aoid .                                                                                                                          *** [3] 
 … 
crl [IsendmsgP]:   < I : Agent | PlayRole : Initiator, MBox : MB, AcqList : ACL, State : StartI >                   ***[4] 
                      => 
                           ComingMsg(I, HeadA(ACL), call-for-proposal)   
                          < I : Agent | PlayRole : Initiator, MBox : MB, AcqList : TailA(ACL), State : StartI >  
                         if ACL =/= EmptyacquaintanceList . 
 
rl [PreceiningmsgI]:  ComingMsg(I, P, call-for-proposal)                                                 ***[5] 
                      < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : StartP > 
                   => Execute(P, DecisionProcess) 
                      < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : OfferEvaluationP > . 
 
crl [Pdecision1]:  Execute(P, DecisionProcess) Event(P, Cond)          ***[6]  
                 < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : OfferEvaluationP > 
               => ComingMsg(P, I, propose) 
                 < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : WaitP > 
                 if Cond = IsAccepted . 
 
crl [Pdecision2]:  Execute(P, DecisionProcess) Event(P, Cond)           ***[7] 
                 < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : OfferEvaluationP > 
              => ComingMsg(P, I, notunderstood) 
                 < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : WaitP > 
                 if Cond = NotClear . 
 
crl [Pdecision3]:  Execute(P, DecisionProcess) Event(P, Cond)          ***[8]  
                 < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : OfferEvaluationP > 
              => ComingMsg(P, I, refuse) 
                 < P : Agent | PlayRole : Participant, MBox : MB, AcqList : I, State : FailureP > 
                 if Cond = IsRefused . 
… 
endom) 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 89 

Description of the agents’ interaction modes in Maude  

The three interaction modes defined in AUML (figure 2) are all supported by Maude. We 
use only one rewriting rule (see figure 14) to describe the interaction form that is in the 
diagram (3.a).  
 

 

Figure 14: Modelling of the concurrent threads of interaction in Maude. 
 

This clearly indicates the spontaneous sending of the Mi messages containing as 
parameters the communication acts CA-i. In the case of ' inclusive or ' and of 'exclusive 
or', a "standard" evaluation strategy doesn't exist allowing to choose an alternative 
among several. This makes it difficult (and impossible in some cases) to propose a 
precise translation of these two interaction modes in Maude. Their translation remains an 
open issue. However, thanks to the flexibility of the Maude language, we can recommend 
some solution directions. To describe the form of interaction concerning the 'inclusive 
or', we propose one of the following solutions to capture this concept in Maude, the use 
of m rewriting rules (m ≤ n) of the form (figure 15). 

 

 
Figure 15: Modelling of the interaction mode concerning 'inclusive or' in Maude using the conditions. 

 

In fact, i =1,..., m and CA-i1 CA-i2… CA-ik are communication acts among CA-1 CA-2… 
CA-n. They present acts that must appear spontaneously. The condition Ci validates the 
Li rule. Therefore, it controls its execution. Instead of using conditions, another 
considered alternative (figure 16) consists of using a common message to all Li rules, in 
the following manner:  

 

 
Figure 16: Modelling of interaction mode concerning 'inclusive or' in Maude using the messages. 

 

In the context of this solution, only one instance of the M message generated in advance 
allows to launch the execution of only one rewriting rule among the Lis. Values Vi of 
parameters of M allow selecting the Li rule among the other rules. Let's note that values 
of parameters of M are unique for every rule.  

The 'exclusive or' is described in Maude in a similar way to the one of the previous 
case. In this case, we adopt the solution based on conditions and we get n-rules. The form 
of these rules is described in figure 17. 

rl [L] :     < A1 :  C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> 
         => < A1 :  C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …>  
             M1(CA-1, …)    M2(CA-2,…)  … Mn(CA-n,….) 

crl [Li] : < A1 :  C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> 
 => < A1 :  C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> M1(CA-i1, …) M2(CA-i2, …)  
                                                                                                       …  Mk(CA-ik, …)  if Ci  . 

 
rl [Li] : < A1 :  C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> M(Vi) 
=> < A1 :  C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> M1(CA-i1 , …)  M2(CA-i2, …)  
                                                                                                                …  Mk(CA-ik, …)  . 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

 
 
 

Figure 17 : Modeling of interaction mode concerning 'exclusive or' in Maude using the conditions. 
 

i =1, ..., n. If CA-i is the chosen message to be sent, it is therefore necessary that the 
condition Ci be verified for rewrite the appropriate rule Li, while all other conditions Cj (j 
=1,.. ,n, j≠i) are false. The solution based on messages in the interaction mode 'inclusive 
or', can be adapted also to implement the 'exclusive or'. In this case, the execution of 
every Li rule consists in creating only one act CA-i (see figure 18). 
 
 
 

Figure 18: Modelling of interaction mode concerning 'exclusive or’ in Maude using the messages. 
 

In the example of figure 13, after receiving the message ComingMsg(I, P, call-for-
proposal) (line [5]) the participant launches its decision process by generating an 
Execute(P, DecisionProcess) message. This message is common to three rewriting rules 
(lines 6, 7 and 8). One of these rules, solely, will be executed. The message 
ComingMsg(I, P, call-for-proposal) will be consumed after the rewriting of this rule, 
blocking so the rewriting of the two another ones. 

Agent's internal behaviour 

This behaviour is described by a state-transitions system. This system presents, in fact, a 
particular case in Maude [Mes03]. 

6 VERIFYING INTERACTION PROTOCOL USING MAUDE 

After generating an AUML-Maude model, by translating AUML concepts in Maude, we 
can now move on to the application of model-checking. We start by the predicates 
specification (see Figure 19) related, on one hand, to the agents’ internal behaviour and, 
on other hand, to their collective behaviour. 

Individual behavior’s properties 

The verification of collective behaviour of several agents passes, to our opinion, first by 
the verification of the individual behaviour of agents implied in the realization of the task 
to accomplish. We adopted an incremental approach. We define in a first time the 
properties to be verified for different agents. We propose, in what follows, two properties 
(properties 1 and 2) related to the internal behaviour of the agent Initiator and two 
properties (properties 3 and 4) related to the Participant’s behaviour. We first specify that 
all Configurations are State. 

rl [Li] : < A1 :  C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> 
 => < A1 :  C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> MI(CA-i)   if Ci  . 

rl [Li] : < A1 :  C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> M(Vi) 
=> < A1 :  C1 | PlayRole : R1, …> < A2 : C2 | PlayRole : R2, …> Mi(CA-i , …)  . 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 91 

• Property 1:  
[]~(NotEvaluation-At-AnyCase(Initial-State)) : This property expresses the fact 
that we never have NotEvaluation-At-AnyCase from the initial state (initial 
configuration) initial-state. From an initial state, the agent Initiator can launch its 
evaluation process in all cases (for example, if no proposition is received, if the 
deadline is not expired again, etc.).  

• Property 2:  
[]~(NotWill-be-Chosen-Participant-Proposing-MinimalPrice(Initial-State)) : this 
property expresses the fact that we never have NotWill-be-Chosen-Participant-
Proposing-MinimalPrice from the initial state Initial-Sate. In other words, the 
agent Initiator always choose the Participant proposing the minimal price 
corresponding to the proposal being at the head of proposals list in the Initiator’s 
mail box (Initiator adopts an increasing sorting of the proposals according to the 
price). 

• Property 3:  
<> (Participant-Refuse-To-Propose(P)): this property expresses the fact that the 
participant P can eventually refuse to propose. 

• Property 4:  
[](Participant-Refuse-To-Propose(P) -> O (Participant-In-Final-State(P))): this 
property expresses the fact that if the participant P refuses to propose, it always 
passes directly to a final state (see figure 4.b). 

Collective behaviour properties  

Once the properties related to the internal behaviour for each agent are verified, we 
consider the verification of collective behaviour’s properties. The invalidity of agent's 
internal behaviour can have a repercussion on the collective behaviour. Two collective 
behaviour properties have been developed : the system's state coherency and the correct 
termination of the system (the system's final state must normally be reached). 

• Property 5 : (Coherency)  
[]~( InCoherent-System-State(Initial-State)) : Starting from an initial state Initial-
State, this property expresses the fact that the system never falls in an incoherent 
state. All reachable states from such an initial configuration are always coherent. 

• Proprerty 6 : (Termination )  
[]~( Anamalous-End-Of-System(Initia-State)) : this property expresses the fact 
that from the initial state Initial-State, the system always finishes in a normal 
state. 

Figure 19, represents the PACKAGE-FIPA-CONTRACT-NET-PROTOCOL-PREDICATS 
module containing the definition of different properties for agents’ behaviour (internal 
and relational) (lines (1-9) and the equations implementing these properties (lines (10-
17)). The three properties related to internal behaviour of agents Initiator and Participant 
are described in this module by the operations of the lines (1-3). For the first property 
(NoEvaluate-At-AnyCase) (line 1), we define a configuration (State) composed of a 
message and a state of the agent Initiator (line 10). Such a property is valid in the case 
where the deadline (here DecemberEnd) is not even expired or that no proposition has 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

been received by the Initiator (empty Mailbox). It allows verifying that the evaluation 
process triggering of the proposals only makes itself in the case where there are 
proposals, after the expiration of the deadline. The second property (NotChoose-
Participant-Proposing-MinimalPrice) (line 2) expresses the fact that at the end of the 
evaluation process, the agent Initiator chooses the first Participant proposing without 
taking in account the price (line11). Such a property is valid in the case where the price of 
the first proposal is not the minimal price. The third property of the line 3 (Participant-
Refuse-To-Propose) expresses the fact that from its making decision state 
(OfferEvaluationP), the Participant launches its decision process from which results a 
refusal to propose (line 12). The fourth property doesn't appear in the figure 19. It is, in 
fact, composed of two other properties (lines 3 and 9).  

The properties related to the relational behaviour between agents are defined in 
figure 19, by the operations of the lines 4 and 5. The predicate InCoherent-System-State 
(line 4) is valid if in any configuration, the Initiator’s current state doesn’t correspond to 
the Participant’s current state (line 13). In order to respect the interaction protocol used 
by agents, we must recognize their synchronization points. For this, we use the function 
CorrespondingState which have as parameters a communication state (sending message 
state) of an agent i and a waiting state of an agent j. Such a function returns the value true 
if the states correspond to one another, false otherwise. The Anamalous-End-Of-System 
predicate (line 5) is valid if the Initiator finishes in state success whereas there is a 
number of Participants different of one that also finish in state success (line 14) (we 
suppose that in the case where there are some proposals, the Initiator only chooses one 
participant and sending to it accept-proposal). Note that the second property doesn't 
constitute a particular case of the first, since a final state is not a communication state, nor 
a waiting state. The four properties of the figure 19 (lines (6-9)) are defined to be used 
jointly in order to verify the agents' relational state. The two properties Initiator-In-
OffEval-State, and Initiator-In-CommDec-State indicate if the Initiator is in the 
OfferEvaluation and CommitmentDecision states respectively. Participant-In-Waiting-
State is valid in the case where the Participant is in waiting state. The other property 
Participate-In-Final-State indicates if the agent Participant is in its final state. 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 93 

 
Figure 19: A module in Maude defining properties on the AUML-Maude model  



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

Application of Maude model-checker  

We used the Maude function modelcheck for verifying some properties related to the 
agent’s internal behaviour and to the relational behaviour between agents. Figure 20 
illustrates a part of the code we developed. We visualize precisely the module 
PACKAGE-FIPA-CONTRACT-NET-PROTOCOL-CHECK containing the definition of 
six initial configurations and the application of the function modelcheck on these 
configurations. We propose the initial states (Initial1, Initial2 and Initial3) to show how 
the Maude model-checker behaves during verification of an agent’s individual behaviour 
and (Initial4, Initial5 and Initial6) for the one of their collective behaviour (see figure 
20). 

Verification of individual behaviour’s properties 

In this section, we consider the verification of some properties related to individual 
behaviour of the agents Initiator and Participant.  

To verify that the agent Initiator doesn’t launch its evaluation process that after the 
expiration of the deadline and that if it received proposals of the participants before, we 
propose the following property: 

 

[]~( NotEvaluation-At-AnyCase (initial1)). 
 

This property expresses the fact that from an initial state initial1 (see figure 20), 
representing the arrival of an event of expiration of the deadline when the Initiator is in 
waiting with an empty mailbox, this last never launches its evaluation process. The 
launching of the property verification is illustrated by the figure 20. The result obtained 
of this verification is a counter-example (figure 21). Indeed, in this case the Initial1 
configuration itself represents a counter-example knowing that the mailbox is empty. 
This means that the second part of the rule condition of the line 10 (figure 19) is verified. 

To verify that the agent Initiator always chooses the agent Participant proposing the 
minimal price, we propose the verification of the following property: 

 
[]~( NotWill-be-Chosen-Participant-Proposing-MinimalPrice(initial2)) 

 

This property is interpreted in the following way: leaving from the Initial2 state (figure 
20), the NotWill-be-Chosen-Participant-Proposing-MinimalPrice property is always 
false. Such a state represents agent Initiator in its evaluation state with a mailbox 
containing proposals in an increasing order according to the price. In other words, agent 
Initiator always chooses the Participant proposing the minimal price corresponding to 
the proposal being at the head of the proposals list in the Initiator’s mail box (the Initiator 
adopts an increasing sorting of the propositions according to the price). The launching of 
the verification of this property is illustrated by the figure 20. The result of this 
verification is true (figure 21). The validity of this property indicates that the price 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 95 

proposed by the participant, being at the head of the mail box (while using the 
GetPrice(FrontQ((MB)) function (line 11 of the figure 19)), is always the lowest price 
being in the mail box MB (By using the MinimalPrice(MB) function (line 11 of the figure 
19)).  

To verify that the agent Participant can eventually refuse to send a proposal to the 
Initiator, we propose the following property: 
 

<> (Participant-Refuse-To-Propose(P)) 
 

This property expresses the fact that from the initial state Initial3 (figure 20), the 
participant refuses eventually to propose. Such a state describes the launching of the 
decision process by the agent Participant being in its taking decision state. The launching 
of the verification of this property is illustrated by the figure 20. The result of this 
verification is true (figure 21). 

As mentioned in the figure 4.b, each Participant that refuses to propose passes to its 
final state Failure. To verify this behaviour, we propose to verify the following property: 
 

[](Participant-Refuse-To-Propose(P) -> O(Participant-In-Final-State(P)) 
 

Starting from the initial state Initial3, if it refuses to propose, the participant passes to a 
final state. The result of this verification is true. 

The strategy we adopt for verifying agents interaction protocols allows limiting the 
space of localization of anomalies. It consists of, in fact, an incremental verification 
process. We start with the verification of different properties related to the internal 
behaviour of every agent, and then we pass to the system’s global behaviour. 

 
Figure 20: A part of code (example of initial states and launching of properties verification) of AUML-

Maude model.  



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

Verification of collective behavior’s properties 

After verifying the properties related to individual behaviour of different agents, we move 
on to the verification of the system’s collective behaviour. 

To verify the system coherency, we propose the following property: 
 

[]~( InCoherent-System-State(initial4)) 
 

This property expresses the fact that from the initial state Initial4 (figure 20), we never 
end into a system’s incoherent state. Such a state represents the agents Initiator and 
Participant in their initial states with empty mailboxes. Starting from Initial4, all 
reachable states from such an initial configuration always are coherent. The obtained 
result is the value true (figure 21). This expresses the fact that there is always a 
correspondence between interacting agents states (using the function CorrespondingState 
(line 13 of figure 19)). 

In the same way, to verify that the system finishes in a normal state, we propose the 
following property: 

 

[] ~( Anamalous-End-Of-System(initia5)) 
 

This means that from the initial state Initial5 (figure 20), we never have Anamalous-End-
Of-System. It means that always the system end is normal. The result of the verification of 
this property from the state Initial5 is a counter-example (figure 21). This counter-
example asserts that Initial5 itself is abnormal. The Initiator is in Success state and there 
are two Participants being on their turn in Success state. 

We want in this case to illustrate a particular case of the system's state coherency that 
seems important to us. Furthermore, if the Initiator is in one the following states: the 
proposals evaluation or engagement decision making, the Participant must be in waiting 
state and vice-versa. For it we propose the following property: 

 

[]((Initiator-In-OffeEval--State(I) \/ Initiator-In-CommDec-State(I)) <-> Participant-In-
Waiting-state(P)). 

 

The launching of the verification of this property is illustrated by figure 20. The result of 
the verification of this property from the state Initial6 is the value true (figure 21). Such a 
state describes the agents Initiator and Participant in their initial states with the event 
initializing the interaction protocol. The validity of this property indicates that the 
correspondence between the states (OfferEvaluation and CommitmentDecision) of the 
agent Initiator and the waiting state (Wait) of the agent Participant is always respected. 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 97 

 
Figure 21: Properties verification results  

7 Conclusions and future work 

Specification and verification of interacting agents’ behaviour represent ones of the main 
issues in the domain of multi-agents systems. These last years, several works carrying on 
the specification and the verification of MAS have been achieved. We mention, among 
others, the work of Wooldridge et al. in [Woo02]. They presented an imperative multi-
agent programming language called MABLE, and a formal semantics for this language in 
terms of a BDI logic called LORA. They also described an implementation of this 
language, and described how claims about MABLE systems, expressed in a quantified 
linear temporal BDI logic called MORA, can be automatically checked by translating 
them into the form used by the SPIN model checking system. Furthermore, Bordini et al. 
[Bor03] proposed AgentSpeak(F), a variation of the BDI logic programming language 
AgentSpeak(L) intended to permit the model-theoretic verification of multi-agent 
systems. These two approaches nearly adopt the same way. They implement MAS using 
MABLE and AgentSpeak languages respectively, and then translate this implementation 
in PROMELA. The result of such a translation will be used by the model-checker SPIN 
to check claims about these systems. Although AIP represents an interesting part of MAS' 
infrastructures, these works don't deal with the problem of verification and proof of AIP’s 
properties [Gio04]. 

We presented in this paper an approach to formally specifying and verifying agents 
interaction protocols (AIPs) described by using AUML formalism. Although AUML is 
the best-known language [Hug02], it only offers a semi-formal specification of 
interactions. This weakness can lead to several incoherencies in the description of a 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

MAS’ behaviour. Our approach is based on the formal and object-oriented language 
Maude. It integrates at the same time the description power (specification and 
programming), the possibility of simulation for validation and in particular the formal 
verification based on the model-checking techniques. Compared to other model-checkers, 
like SPIN, Maude is effectively more expressive. Using Maude, one can easily specify 
different kinds of concurrent systems in it and can also reason about those specifications 
using other formal methods and tools [Eke03]. Furthermore, Another advantage of 
Maude is that integration of model checking with theorem proving techniques becomes 
quite seamless [Eke02]. 

This paper focused on the formal verification of interactions protocols described by 
AUML diagrams using Maude’s model checker. Some properties have been verified, 
such as decision-making concerning the agent internal behaviour, and the verification of 
system coherency and termination related to the agents' collective behaviour. In a future 
work, we plan to exploit the power as well as Maude's flexibility to specify and to verify 
open multi-agents systems. 

REFERENCES 

[Ast98] E. Astesiano. UML as “Heterogeneous Multiview Notation. Strategie for a 
Formal Foundation”. In L. Andrade, A. Moreira, A. deshpande, and S. Kent, 
editors, Proc. of the Conference on Object Oriented programming, Systems, 
Languages and Applications (OOPSLA’98) – Workshop on Formalizing 
UML. Why ? How ?, Canada 1998. 

[Bak00] I. Bakam, F. Kordon, C. Le Page, F. Bousquet. “Formalization of a 
Spatialized Multiagent Model Using Coloured Petri Nets for the Study of a 
Hunting Management System”. First International Workshop, FAABS 2000, 
Greenbelt, MD, USA, April 2000. FAABS 2000. 

[Bau01] B. Bauer, J. P. Muller, J. Odell. ‘‘Agent UML: A Formalism for Specifying 
Multiagent Interaction’’, Agent-Oriented Software Engineering, Paolo 
Ciancarini and Michael Wooldridge eds., Springer, Berlin, pp. 91-103, 2001. 

[Bor03]  R. Bordini, M. Fisher, C. Pardavila and M. Wooldridge. “Model Checking 
AgentSpeak”. AAMAS 2003, pp. 409-416, 2003. 

[Cla02] E. M. Clarke, O. Grumberg, and D. A. Peled. ‘’Model Checking’’. MIT 
Press, 2002. 

[Cos99] R. Cost and al. “Modeling Agent Conversations with colored Petri Nets”, 
Working Notes of the Workshop on Specifing and Implementing 
Conversation Policies, Autonomous Agents’99, seattle, Washington, May 
1999. 

[Eke02] S. Eker, J. Meseguer, A. Shridharanarayannan. ‘’The Maude LTL model 
checker’’. In: proc. WRLA’02. Volume 71 of ENTCS., Elsevier (2002). 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 99 

[Eke03] S. Eker, J. Meseguer, A. Shridharanarayannan. ‘’The Maude LTL model 
checker and its Implementation’’, T. Ball and SK Rajamani (Eds.): SPIN 
2003, LNCS 2648, pp. 230–234, 2003. 

[Fer04] S.N. Freund and S. Qadeer. ’’Checking Convise Specifications For 
Multithreaded Software’’. in Journal of Object Technology, vol 3, no 6, June 
2004, Special issue: ECOOP2003 Workshop of FTfJP, pages 81-101. 

[FIP02] Foundation for Intelligent Physical Agents. ‘’FIPA Contract Net Interaction 
Protocol Specification’’. December 2002. 

[Gab04] C.Gabriel, Dorel Lucanu: ‘’Specification and Verification of Synchronizing 
Concurrent Objects’’. IFM 2004: 307-327. 

[Gio04] L. Giordano, A. Martelli, C. Schwind. “Verifying Communicating Agents by 
Model Checking in a Temporal Action Logic”. José Julio Alferes, Joao 
Alexandre Leite (Eds.): Logics in Artificial Intelligence, 9th European 
Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, 
Proceedings. LNCS 3229 Springer 2004, ISBN 3-540-23242-7. 

[Gue03] Z. Guessoum. “Modèles et Architéctures d’Agents et de Systèmes Multi-
Agents Adaptatifs”. Dossier d’habilitation à diriger des recherches de 
l’Université Pierre et Marie Curie. Décembre 2003. 

[Hol97] G. Holzmann. “The Spin model checker”, IEEE Trans. on Software 
Engineering, 23(5):279–295, May 1997. 

[Hug02] M.P. Huget. ‘’Model Checking Agent UML Protocol Diagrams’’. In ECAI 
Workshop on Model Checking Artificial Intelligence (MoChArt), Lyon, 
France, July 2002. 

[Hug04] M.P. Huget and J. Odell, ‘’Representing Agent Interaction Protocols with 
Agent UML’’. In AAMAS’04, pp.1244-1245, New York, NY, USA, 2004. 

[Kav03] K. kavi and al. ‘‘Extending UML for Modeling and Design of Multi-Agent 
Systems’’. Proc. of ICSE'03 Workshop on Software Engineering for Large 
Multi-Agent Systems (SELMAS'03), Portland, Oregon, May 3--4, 2003.  

[Kri93] J.L. Krivine. “Lambda-calcul, types et modèles", Masson, Paris (1990). 
English translation : Lambda-calculus, types and models. Ellis Horwood 
(1993). 

[Man99] M. Clavel and al. “Maude : Specification and Programming in Rewriting 
Logic”. Internal report, SRI International, 1999. 

[Maz02] H. Mazouzi, A. F. Seghrouchni, and S. Haddad. ‘‘Open protocol design for 
complex interaction in multi-agent systems’’. In proceeding of the first 
international joint conference on Autonomous agent and multi-agents 
systems, pages 517-526. ACM Press, 2002.  

[McC03] T. McCombs. “Maude 2.0 Primer, Version 1.0”. Internal report, SRI 
International, 2003. 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

[Mes90] J. Meseguer, “Rewriting as a unified model of concurrency”. In Proceedings 
of the Concur’90 Conference, Amsterdam, P. 384-400, LNCS Vol. 458, 
1990. 

[Mes92a] J. Meseguer, “Conditional Rewriting Logic as a unified model of 
concurrency”. Theoretical Computer Science, 1992. 

[Mes92b] J. Meseguer, “A Logical Theory of Concurrent Objects and its Realization in 
the Maude Language”. In G. Agha, P. Wegner, and A. Yonezawa, Editors, 
Research Directions in Object-Based Concurrency. MIT Press, 1992. 

[Mes00] J. Meseguer, “Rewriting Logic and Maude : a Wide-Spectrum Semantic 
Framework for Object-Based Distributed Systems” In S. Smith and C. L. 
Talcott, editors, Formal Methods for Open Object-Based Distributed 
Systems, FMOODS2000, 2000. 

[Mes03] J. Meseguer, “Software Specification and Verification in Rewriting Logic”. 
In M. Broy and M. Pizka, editors, Models, algebras and logic of engineering 
software, pages 133-193. IOS Press, 2003. ISBN 1-58603-342-5.  

[Mok04] F. Mokhati, N. Boudiaf, L. Badri et M. Badri. ‘’Generating Maude 
Specification from AUML Diagrams: Toward A Systematic Approach’’. In 
Proc. of CSITe-A04, Caire, Egypte, Decembre 2004. 

[Mor05] M. MORGE. "Système dialectique multi-agents pour l’aide à la 
concertation". Thèse de doctorat. Ecole Nationale Supérieure des Mines. 
SAINT-ETIENNE. 20 juin 2005. 

[Mul00] P.A. Muller et Nathalie Gaertner. “Modélisation objet avec UML”, Deuxième 
Edition 2000 Paris.  

[Ode00] J. Odell, H. V. D. Parunak, B.Bauer, “Representing agent Interaction protocol 
In UML”, AAAI Agents 2000, Barcelone, 3-7 juin 2000. 

[Ode01] J. Odell, H. V. D. Parunak, B.Bauer, “Representing agent Interaction protocol 
In UML”, Agent Oriented Software Enginering, Paolo Ciancarini and 
Michael Wooldridge (eds.), Springer-Verlag, Berlin, 2001, pp. 121-140.  

[Olu05] A. Oluyomi and L. Sterling. ‘’A Dedicated Approach for Developing Agent 
Interaction Protocols’’. M.W.Barley and N.Kasabov (Eds.): PRIMA 2004, 
LNAI 3371, pp. 162-177, 2005. 

[OMG01] The Object Management Group. ‘’OMG Unified Modeling Language 
Specification’’, version 1.3, March, 2001 

[Pau03a] S. Paurobally, J. Cunningham, “Achieving Common Interaction Protocols in 
Open Agent Environments”, 2nd international workshop on Challenges in 
Open Agent Environments, AAMAS 2003, Melbourne, Australia 14-18th 
July 2003. 

[Pau03b] S. Paurobally, J. Cunningham, and N. R. Jennings, “Developing Agent 
Interaction Protocols Using Graphical and Logical Methodologies”, in Proc. 



 
 
 
 
 
 

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 101 

of AAMAS03 PROMAS Workshop on Programming Multi-Agent Systems , 
2003. 

[Pau04] S. Paurobally, Cunningham J., and Jennings, N. R., “Verifying the contract 
net protocol: a case study in interaction protocol and agent communication 
semantics”. In Proceedings of the 2nd International Workshop on Logic and 
Communication in Multi-Agent Systems , pages pp. 98-117, Nancy, France 
2004. 

[Reg99] G. Reggio and R. Wieringa. “Thirty one Problems in the Semantics of UML 
1.3 Dynamics”. In Conference on Object Oriented programming, Systems, 
Languages and Applications (OOPSLA’99) – Workshop “Rigorous Modeling 
an Analysis of the UML Challenges and Limitations’’, 1999. 

[Rao96] A. S. Rao. ‘’AgentSpeak(L): BDI agents speak out in a logical computable 
language’’. In W. Van de Velde and J. Perram (eds), Proc. Seventh Workshop 
on Modelling AutonomousAgents in a Multi-Agent World (MAAMAW’96), 
Eindhoven, The Netherlands, number 1038 in LNAI, pages 42–55. Springer-
Verlag, 1996. 

[Sch99] P. Schnoebelen, B. Bérard, M. Bidoit, F. Laroussinie, and A. Petit, 
“Vérification de logiciels : Techniques et outils du model-checking”, Vuibert, 
1999.  

[Thi05] Y. Thierry-Mieg."Techniques pour le model-checking de spécifications de 
Haut-niveau". Séminaire Méthodes de Conception, Vérification et 
Réalisation. Application à la Répartition et au Temps Réel, 21 Janvier 2005. 

[Toi04] S. Toivonen. et al. «Using Interaction Protocols in Distributed Construction 
Processes». In Seruca, I., Filipe, J., Hammoudi, S., and Cordeiro, J. (Eds.): 
Proceedings of the 6th International Conference on Enterprise Information 
Systems (ICEIS'04), Porto, Portugal, April 2004, pp. 344—349 

[Tra99] E. Tranvouez, B. Espinasse, “Protocoles de coopération pour le 
réordonnancement d’atelier”. in actes des journées francophones 
d’Intelligence Artificielle Distribuée et Systèmes Multi-Agents 
(JFIADSMA’99) à Saint-Gilles, île de la Réunion, novembre 1999, Gleizes 
J.-P., Marcenac P., Ed. Hermès, 1999. 

[Ver03] A. Verdejo, I. Pita, and N. Marti-Oliet. ‘’Specification and verification of the 
tree identify protocol of IEEE 1394 in rewriting logic’’. Formal Aspects of 
Computing, 14(3): 228-246, 2003. 26 

[Woo00a] M. Wooldridge et al, “The gaia methodology for agent-oriented analysis and 
design”. Autonomous Agent and Multi-aget Systems, 3(3):285-312, 2000.  

[Woo00b] M. Wooldridge. ‘’Reasoning about Rational Agents’’. The MIT Press: 
Cambridge, MA, 2000. 



 
TRANSLATING AUML DIAGRAMS INTO MAUDE SPECIFICATIONS: A FORMAL 

VERIFICATION OF AGENTS INTERACTION PROTOCOLS 
 
 
 

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4 

[Woo02] M. Wooldridge, M. Fisher, M.P. Huget and S. Parsons. “Model Checking 
Multi-Agent Systems with MABLE”. In AAMAS'02, pp. 952-959, Bologna, 
Italy, 2002. 

About the author 
Farid Mokhati (Mokhati@yahoo.fr) is an assistant professor of 
computer science at the Department of Computer Science of the 
University of Oum El-Bouaghi in Algeria. He holds a Ph.D. in 
computer science (Distributed Artificial Intelligence) from the 
University of Annaba in Algeria. His main areas of interest include 
object and agent-oriented software engineering, and formal methods. 

 
Noura Boudiaf (Boudiafn@yahoo.com) is an assistant professor of 
computer science at the Department of Computer Science of the 
University of Oum El-Bouaghi in Algeria. She holds a Ph.D. in 
computer science from the University of Constantine in Algeria. Her 
main areas of interest include object-oriented software engineering, 
Petri net analysis methods, and formal methods. 

 
Linda Badri (Linda.Badri@uqtr.ca) is professor of computer science at 
the Department of Mathematics and Computer Science of the University 
of Quebec at Trois-Rivières. She holds a PhD in computer science 
(software engineering) from the National Institute of Applied Sciences 
in Lyon, France. Her main areas of interest include object and aspect-
oriented software engineering, software quality attributes, maintenance, 

and web engineering. 
 

Mourad Badri (Mourad.Badri@uqtr.ca) is professor of computer 
science at the Department of Mathematics and Computer Science of the 
University of Quebec at Trois-Rivières. He holds a PhD in computer 
science (software engineering) from the National Institute of Applied 
Sciences in Lyon, France. His main areas of interest include object and 
aspect-oriented software engineering, software quality attributes, and 

formal methods. 


