
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 6, July-August 2007

Cite this article as follows: F. A. Henskens and M. G. Ashton: “Graph-based Optimistic
Transaction Management”, in Journal of Object Technology, vol. 6, no. 6, July-August 2007, pp.
131-148 http://www.jot.fm/issues/issue_2007_07/article4

Graph-based Optimistic Transaction
Management

Frans A. Henskens, University of Newcastle, N.S.W., Australia
Maurice G. Ashton, Avondale College, Cooranbong, N.S.W., Australia

Abstract
In this paper, we introduce and describe directed dependency graph-based transaction
and concurrency control (DCC) for persistent (stable, single-level) object-based bulk
data management systems. The new technique is optimistic and applicable across a
wide range of store sizes, transaction sizes and multi-programming levels. It is also has
potential for use in management of transactions in other contexts, for example web
services.

1 INTRODUCTION

The use of directed graphs as a data structure for control of transaction-based
concurrency control in object stores was motivated by the authors’ observation of the
similarity between the objectives of stability [3, 16, 32] in persistent object stores [2, 7,
29, 33] and of transaction management [6, 14, 15] in conventional database management
systems. Previous work [16, 19] describing the use of directed graphs to maintain
information about the inter-entity dependencies created during program activity in an
object store appeared to provide the basis for the satisfaction of a similar need for
transaction-based systems. This paper presents a directed-dependency-graph-based
transaction mechanism for persistent object-based bulk data management systems.

2 PERSISTENT SYSTEMS

The descriptor, persistent systems, is applied to a wide range of systems offering a variety
of features. Such systems are described and classified in [4, 27]. The work described in
this paper is based on persistent systems that offer the following features:

1. Data structures and relationships are, by default, retained in their original form
beyond the lifetime of the program or programs that created them.

2. Address spaces and processes are orthogonal. Processes execute in a logically
single level object store. This addressing environment is typically shared by a

GRAPH-BASED OPTIMISTIC TRANSACTION MANAGEMENT

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

number of processes and consequently the normal protection mechanisms offered
by conventional virtual memory management techniques are not applicable.
Rather, protection is provided through the use of mechanisms such as capabilities
[13].

Systems that provide such an environment include Monads [20-22, 30] and Grasshopper
[11, 12, 25].

In a system where multiple concurrent processes execute in a (logically single-level)
object store, and in the absence of any protection or concurrency control mechanism, any
process may interact with the objects by either querying (reading) or mutating (writing)
them. As previously described (e.g. in [19, 31]), objects in the store become dependent on
each other through the activities of the processes.

3 STABILITY

Computational and file system memory use different mechanisms for naming objects,
constructing/describing data structures and controlling access to the data stored in it. In
particular, an object in computational memory is identified using its virtual memory
address, and that address is in turn used as the reference or link to incorporate the object
into a complex data structure such as a tree or list. This virtual address is meaningless
when the object is copied into the file store and needs to be replaced by a symbolic link in
a process known as flattening the structure. Persistent systems automate the movement of
data structures between computational memory and the file system, performing link
translation as required. For example systems such as Napier88 [28] identify and replace
references as objects move between stores, while others such as Monads [23] use a
single-level store in which the location of an object remains static over its lifetime.

When a system shuts down, the only information available on restart is the
information that is available from durable storage. In a planned shutdown, data is
transferred to the disk in an orderly manner and a consistent start-up state is thus
maintained. In the event of a failure, such an orderly shutdown may not be possible and
special techniques are necessary to ensure there is sufficient data stored on permanent
storage to allow the system to start up in a self-consistent state. Conventional systems
provide utilities such as fsck to rebuild system data structures that have been corrupted by
failure and uncontrolled shutdown.

Failures present a special challenge for persistent systems because inconsistencies
such as unreachable objects and dangling pointers can easily render the system useless.
Persistent systems that can always find a consistent state from which to restart are said to
be stable. In a single-level, shared persistent store, stability is of vital importance since
the storage space is also computational space, not isolated from it as occurs with
conventional systems. Additionally, user activity (and therefore failure-induced
corruption of the store’s representation of that activity) is not isolated from other store
users so lack of consistence potentially affects all users.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 133

Stability is implemented by ensuring that a consistent state can always be
constructed using data stored in a durable medium (e.g. disk). This is achieved using
techniques borrow heavily from those used in the database world, for instance to provide
atomicity of durable store update (e.g. [9]) and parallel support for virtual memory
discard and shadowing (e.g. [7]). Terminology has also been borrowed, with the term
checkpoint being used to describe the act of stepping the durable store image between
consistent states, and rollback being used to describe the act of reverting the durable and
computational store to some previously-stored consistent state.

Stability Techniques

Stability in persistent systems is typically achieved using the checkpoint and rollback
recovery technique [1]. The mechanisms developed for persistent systems use, for
example, logging [8, 15, 17] and shadow paging [26] and may be classified as

1. Stop the world [7],
2. Incremental using associations [35], or
3. Incremental using directed dependency [18].

The easiest technique to implement is the stop the world approach, whereby all user
activity on the store is suspended and the entire store is checkpointed at once (practically,
only data that has been mutated since the previous checkpoint must be written to disk
since a disk image will already exist for non-mutated data). Stop the world impacts badly
on users, particularly if large amounts of mutated data are checkpointed at once.

An alternative is incremental checkpointing by which parts of the store are
checkpointed in parallel with user access to other parts of the store. To ensure
consistency, information about previous process activity, in particular the dependencies
that activity has created, must be used to determine the extent of checkpoint operations.
Ideally, dependencies would be detected and recorded at the object level, but this is
usually not efficiently possible in practice so the virtual page granularity is typically used.

The association approach to maintenance of dependencies [36] maintains page sets
(called associations) on a per-process basis. Each time a process accesses a modified page
of the virtual space (either as mutator or reader), that page’s identity is added to the
process’ page set. If a process accesses a page that already belongs to another process’
page set, the sets are merged. Consistency is maintained by ensuring that associations are
atomically checkpointed or rolled back. The use of associations can result in creation of
false dependencies, resulting in larger-than-necessary checkpoint or roll back operations.
In the case of checkpoint the extra size impacts on performance, and of roll back results
in unnecessary undoing of achieved work through the domino effect [34].

The occurrence of false dependencies is alleviated through the description of
dependencies using directed dependency graphs (DDGs) [16] as described in the next
section.

GRAPH-BASED OPTIMISTIC TRANSACTION MANAGEMENT

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Use of Directed Graphs

The critical observation of the DDG work was that schemes such as associations
incorrectly assumed a bi-directional relationship between processes and objects. In other
words, that a connection between a process and an object had the same meaning for
checkpoint as for rollback. For example, consider processes P1 and P2 whose activities
are linked through a common object O. If P1 mutates O, after which O is read by P2, then
according to the association scheme all three entities would checkpoint or roll back as a
unit (and all other objects associated with each process would also be affected). In fact P1
and O could checkpoint independently of P2, and P2 could roll back independently of P1
and O. Only a checkpoint of P2 must propagate to P1 and O.

This may be recorded using graph rather than set notation using the directed edges
→ and ↔. When a process P modifies an object O, the edge P ↔ O is added (if it does
not already exist) to the DDG(s) including P and O. When a process P reads a modified
object O, the edge P → O is added (if it does not already exist or if an ↔ edge does not
exist) to the DDG(s) including P and O. As implied, when a process belonging to a DDG
reads a modified object or modifies an object that belongs to another DDG, the two
DDGs are merged using one of the described edges to create a single larger graph. An →
edge represents both S

→ (i.e. in terms of checkpoint dependency) and R
← (i.e. in terms of

roll back dependency). Thus E1 → E2 implies that checkpoint of E1 propagates to E2 (but
checkpoint of E2 does not propagate to E1) and that rollback of E2 propagates to E1 (but
rollback of E1 does not propagate to E2). The ↔ edge represents a union of ← and →
edges. A consequence of this is that if E1 ↔ E2, checkpoint and rollback of either entity
propagates to the other.

A DDG shrinks when a set of dependent entities is checkpointed or reverts to its last
stable state (rolls back). Once a checkpoint or rollback operation is initiated for an entity
E, the operation propagates to each entity that is reachable from E in the DDG to which E
belongs. Then, because each involved entity is now stable, all edges attached to them are
removed.

At any instant each entity belongs to one and only one dependency graph. To find
the set of entities dependent on any entity, it is sufficient to find the location of the entity
in its graph and then, subject to the kind of operation, traverse the directed graph starting
from the entity. Thus the set of dependent entities may differ for entities in the same
DDG.

As described in [16], relevant process activity can be recorded by lazily adding new
entries to the DDG as part of the system activity that achieves a process switch at the end
of each process time slice.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 135

4 TRANSACTIONS

Database management systems (DBMSs) use transaction mechanisms [10] to support the
consistency of their managed data. A transaction is a logical unit of work that groups
multiple physical operations into a single operation. From the user’s point of view, a
transaction is the unit of communication with a database. The user describes the
operations to be included in the transaction and passes that transaction as a request to the
DBMS. The transaction may be seen as a pair of “brackets” enclosing the required
operations, indicating that they are to be performed as a collective unit. It is the
responsibility of the user or application programmer to position these brackets so that
they accurately represent or express the intended change to the universe of discourse
modelled by the database. On the other hand the DBMS is responsible for the correct
execution of a transaction, carrying out the intent of the user as represented by the user’s
program code [24]. In summary, transactions provide for database operations the ACID
(atomicity, consistency, isolation, durability) properties required for correct, concurrent
access and are used as the basis for both recovery and concurrency control.

Concurrency control mechanisms are classified as either pessimistic or optimistic.
The pessimistic approach is predicated on the assumption that action must be taken for
each and every data access to prevent breaches of transaction isolation. On the other hand
the optimistic approach allows data access to occur in the absence of preventative action,
and later performs checks for violation of transaction isolation (often immediately prior
to transaction commit).

Stability and Transactions

DDG-based stability mechanisms for persistent systems appeared to offer some of the
features required for database management in single-level persistent stores, namely:

1. A mechanism for recovering a consistent state in the event of failure. This
mechanism appeared to satisfy the recovery aspects of database operation.

2. A mechanism for recording dependencies between processes that had the potential
to be used for determining the isolation of transactions.

It may appear that the facility provided by DDG-based stability is all that is needed to
provide transaction support in persistent systems. This is not so: while stability systems
use terms such as checkpoint and rollback in common with conventional DBMS
transaction systems, their meaning is different. Stability schemes provide durability and a
level of atomicity and consistency, but they do not attempt to provide isolation.
Additionally, stability is typically system-initiated, whereas transactions are defined in
user-level software. Indeed it has been claimed that the very existence of transactions is
incompatible with the principles of stability [5].

GRAPH-BASED OPTIMISTIC TRANSACTION MANAGEMENT

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

5 STABILITY-BASED TRANSACTIONS

The graph-based stability mechanism developed by Jalili [18] uses directed graphs to
record dirty-read (read access to unstable mutated data) and write dependencies formed
between processes and objects. This information is recorded in directed dependency
graphs (DDGs) and used by the stability mechanism to determine the extent of
checkpoint and rollback operations. There are similarities in the information recorded in
stability DDGs and the information required for transaction management and
concurrency control. However, there are also differences between stability and
concurrency control requirements, namely: the DDG stability technique maintains
dependency information on a per-process basis rather than a per-transaction basis; the
DDG stability technique records information about dirty-read and write accesses, whereas
transaction isolation also requires knowledge of clean-read accesses; stability checkpoints
and transaction commits have different semantics. The effects of these differences are
described in the following subsections.

Transactions and Processes

A transaction is an abstract concept that includes the user-defined boundaries
(BEGIN_TRX and COMMIT), the required data resources and accesses (that may
include mutation) to that data. Processes are entities that execute the activities specified
by transactions. A transaction may use a single process, a group of processes, or share a
process (or processes) with other transactions to execute its activities. A process
executing on behalf of many transactions executes instructions for only one transaction in
any given timeslice [14].

Because of this relationship between transactions and processes, dependencies
created by transaction activity are appropriately viewed as existing between transactions
and other entities. Thus at the end of every process timeslice it is necessary to record the
process-object dependency, including the identification of the transaction that used the
process.

Read Accesses

For a transaction to be considered isolated it must be guaranteed that the transaction has
not seen an inconsistent state of the data. By way of illustration, consider two concurrent
transactions Ta and Tb. Transaction Tb modifies a set of entities E. Transaction Ta reads
some of these entities before Tb has modified them and some of them after. This
represents an inconsistent view of the data for Ta, compromising its isolation. In
summary, if, during the time that transaction Ta is in progress, some other transaction Tb
modifies a set E of one or more entities, then Ta is not compromised by Tb provided that
when Ta reads from E, these read operations occur either before Tb’s writes, or after Tb’s
writes, but not both. Thus for DDGs to be used for determining transaction isolation it is
necessary to extend the recorded information to include transactions’ clean-read accesses.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 137

Stability Checkpoint vs Commit

Stability mechanisms provide the abstractions: a durable computational store; a logically-
consistent store restart state at all times; concurrency control at process level. Full
transaction support requires these properties to be augmented as follows:

1. Support for transaction-based events associated with the programming language
key words (e.g. BEGIN-TRX and COMMIT-TRX) used to define the extent of
each transaction.

2. The transaction extent defines an atomic unit of work that is isolated from any
other concurrent activity.

3. The means for managing concurrency should be flexible enough to cope with run-
time determination of the temporal extent and physical granularity of interaction.

A consequence of these requirements is that the transaction management system must
have control over the timing of checkpoints that correspond to transaction commits.

6 GRAPH-BASED CONCURRENCY CONTROL

This section describes how the graph-based notation used to maintain dependency
information required for stability is extended to provide support for transaction
management and hence for transaction-based concurrency control.

Graph-based Representation

The DDG-based transaction manager creates edges between graph nodes representing
transactions and accessed entities as follows:

1. A clean-read edge is recorded as “—”. T — E indicates that transaction T has read
an unmodified entity E.

2. A dirty-read edge is recorded as “→”. T → E records that process T has read an
entity E that had been previously modified since its most recent checkpoint.

3. A write edge is recorded as “↔”. T ↔ E indicates that process T has modified
entity E since it was last check-pointed.

Transaction concurrency control is incorporated into the existing stability system as
follows:

• At the commencement of a transaction the initiating process must exist in a
single-node DDG. To achieve this it may be necessary for the process to initiate a
checkpoint operation, with isolation being the consequence. The process is then
part of a DDG associated by the system with the fledgling transaction and is under
transactional control.

• As the process (and any parallel processes incorporated in the transaction)
interacts with entities in the store, →, ↔ and — edges are used to incorporate the
entities into the transaction DDG. Construction of the graph is achieved lazily on
process switch using access data collected during each process timeslice.

GRAPH-BASED OPTIMISTIC TRANSACTION MANAGEMENT

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

• Edges have a precedence order —, →, ↔ with the rule that insertion of an edge to
the right in this order will replace an edge to the left. An edge to the right will not
be replaced by an edge to the left; indeed, an edge to the left will not be inserted if
it occurs after an edge to the right.

• If there are no existing edges between any transaction node and the accessed
entity node, the appropriate edge is added and the entity belongs to (and becomes
a node in) the same DDG as the transaction.

• If all prior edge(s) between other transaction nodes and the node representing the
accessed entity are to nodes in the same DDG as the process, the appropriate edge
is inserted subject to the precedence rule.

• If one or more edges exist between other transaction nodes and the node
representing the accessed entity, and these are to nodes belonging to a different
DDG to the current process, the system inserts the appropriate edge.

• During each transaction DDG update, the system analyses any graph merge
operations and determines if the merge causes a violation of transaction isolation.
Transactions that have violated the isolation rules are immediately aborted.

• A transaction that completes, i.e. whose DDG could be constructed without a need
for transaction rollback, commits by checkpointing its transaction DDG.

• A transaction that aborts has its transaction DDG rolled back.

Determining Isolation Using DDGs

In [14] Gray and Reuter define transaction isolation as follows:
“… transaction T is isolated from other transactions if:

0. T does not overwrite dirty data of other transactions.
1. T’s writes are neither read nor written by other transactions until COMMIT

WORK.
2. T does not read dirty data from other transactions.
3. Other transactions do not write (dirty) any data read by T before T commits.”

Following on from this definition, a transaction is not isolated if it can be shown that it
executes both before and after some other transaction. A transaction with such an
execution history is known as a wormhole transaction.

In conventional lock-based (pessimistic) concurrency control the appropriate use of
locks precludes those events that lead to loss of isolation. In the DDG-based approach
prevention of isolation violations is not possible because the graphs are created after the
transaction’s actions have occurred. Concurrency control in these circumstances must
rely on detecting isolation violations, aborting the affected transaction or transactions,
and rolling back their actions.

In the following discussion, it is shown that all violations of the isolation rules may
be detected by an inspection of a transaction’s DDG. Furthermore, a transaction’s
violation of the isolation rules may be detected before a transaction has completed its
intended activities, allowing the transaction to be aborted early, avoiding the execution of
unproductive work. Because process activity is retrospectively analysed to determine

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 139

possible breaches of isolation, this technique is optimistic (though it differs from
conventional optimistic techniques because transactions can be aborted prior to executing
all of their component operations).

Edge Insertion Rules

In the following description of DDG edge insertion, a transaction Ta accesses an entity X,
creating a new edge. Transaction Tb is another transaction that has already accessed X.
Decisions on the transaction’s isolation resulting from Ta's edge-producing access are
made by considering the edge to be inserted with respect to each individual existing edge
between the nodes representing X and each other concurrent transaction Tb. This
discussion assumes that the system has already determined that there is no existing edge
of higher or equal priority than the new edge between the nodes representing X and Ta.

1. If there is no edge between the nodes representing any Tb and X the new edge is
inserted. It is either a clean read or a write edge, as illustrated in Figure 1. An
insertion of either a read or write edge in this situation has no effect on the
transaction’s isolation.

Figure 1: Addition of a new read or write edge.

2. If there is an existing — edge between the nodes representing Tb and X and the
access by Ta is a read, a new — edge is inserted between the nodes representing
Ta and X, as illustrated in Figure 2. This edge insertion does not affect the
isolation of either transaction.

Figure 2: Adding a read edge when there is an existing read edge.

3. If there is an existing — edge between the nodes representing Tb and X and the
access by Ta is a write, a new ↔ edge is inserted between the nodes representing
Ta and X, as illustrated in Figure 3. The addition of this edge in itself does not
preclude either transaction from being isolated. However the action leading to the
insertion of this edge creates the potential for a wormhole. This is discussed in
Section 6.5.

Ta X Tb Ta X Tb

(before) (after)

Ta X Ta X

Ta X

(before)

(after)

GRAPH-BASED OPTIMISTIC TRANSACTION MANAGEMENT

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Figure 3: Adding a write edge where there is an existing read edge.

4. If there is an existing ↔ edge between the nodes representing Tb and X and the
access by Ta is a read, a new → edge is inserted between the nodes representing
Ta and X, as illustrated in Figure 4. As with the insertion described in (3) the
insertion of this edge does not preclude either transaction from being isolated but
creates the potential for a wormhole. This is also discussed in Section 6.5.

Figure 4: Adding a read edge where there is an existing write edge.

5. If there is an existing ↔ edge between the nodes representing Tb and X and the
access by Ta is a write, an ↔ edge is added between the nodes representing Ta and
X as illustrated in Figure 5. This action potentially corrupts the working copy of X
and both transactions must be aborted.

Figure 5: Adding a write edge where there is an existing write edge.

Isolation at Commit

As described in the previous section the DDG is analysed as each edge is added to
determine the isolation of the affected transactions. At the validation stage a transaction’s
DDG is finally analysed to determine its isolation

1. Transaction Ta’s DDG has no edges connecting to the DDG of any other
transaction Tb as illustrated in Figure 6. Transactions Ta and Tb have accessed (and
modified) mutually exclusive sets of entities. Such transactions are isolated by
definition.

Figure 6: Two isolated transactions

2. Transactions Ta and Tb have read edges to the same entity X as illustrated in
Figure 7. Since neither transaction has modified entity X both transactions are
isolated and both may commit.

Ta

X

Tb

Y

Ta X Tb Ta X Tb

(before) (after)

Ta X Tb Ta X Tb

(before) (after)

Ta X Tb Ta X Tb

(before) (after)

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 141

Figure 7: Two transactions read the same entity

3. As shown in Figure 8, transaction Ta has modified an object X that has been clean
read by transaction Tb. Transaction Ta is isolated and may commit. However
transaction Tb has the potential to access (read or write) X and any other entity
modified by Ta after Ta has committed. This represents a wormhole situation.
Since prevention is not an option in the persistent system described here,
mechanisms must be used to ensure these accesses are detected.

Figure 8: A transaction modifies an entity read by another transaction

4. These inconsistent accesses are detected by adding a blocked edge (denoted)
between Tb and X where X has been modified by Ta, as shown in Figure 9. A
blocked edge is not a dependency edge in the same sense as a dirty-read or a write
edge, and does not need to be considered in interactions with other transactions.
These blocked edges remain in effect until Tb is committed or rolled back.

Figure 9: Detecting inconsistent reads after transaction committal.

5. As depicted in Figure 10, a write edge connects the nodes representing Ta and X
and a dirty read edge connects the nodes representing Tb and X.

Figure 10: A transaction reads an entity after it has been modified by another transaction

If Ta attempts to commit it may do so. Tb’s dirty read becomes a clean read because entity
X is now stable (the modified version has been committed).

On the other hand Tb cannot commit because it depends on uncommitted
modifications by Ta. There are two possible policies that may be used:

a. Wait until Ta has committed. This policy leaves the Tb open to compromise of its
isolation by the actions of other transactions and the possibility that it may later
need to be rolled back.

b. Immediately roll back the transaction. This policy is pessimistic in the sense that
it precludes the possibility that the writing transaction eventually commits,
rendering the waiting transaction isolated and therefore able to commit.

Ta X Tb

Ta X Tb

Ta X Tb

Ta X Tb

(before) (after)

X Tb

GRAPH-BASED OPTIMISTIC TRANSACTION MANAGEMENT

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

The appropriate policy can be dynamically chosen, using runtime monitoring to measure
throughput and suggest the policy based on the prevailing situation.

1. Transactions Ta and Tb both have write edges to X. This situation, shown in
Figure 11, should not exist at the validation stage because the situation is always
detected during edge insertion and the transactions aborted.

Figure 11: A transaction modifies an entity modified by another transaction

The analysis so far has concentrated on those cases where isolation may be compromised
by the single actions of two transactions on a single entity. Isolation may also be
compromised where transactions access entities more than once or where two (or more)
transactions access a set of entities in common. Such interactions have the potential to
form wormholes and thus compromise the isolation of transactions. The following section
describes how wormholes may be detected using DDGs.

Wormhole Detection

A wormhole is defined as a transaction that appears to run both before and after another
transaction (see Section 6.2). Wormholes appear in DDGs as cycles. For example, a
simple cycle may occur when a transaction Ta reads an entity X before and after it is
modified by another transaction Tb as illustrated in Figure 12. Transaction Ta is aborted in
this situation.

Figure 12: A simple wormhole

Cycles may involve more than two transactions. Consider the sequence of operations:

T
a
 reads X

T
b
 reads Y

T
c
 reads Z

T
a
 writes Y

T
b
 writes Z

T
c
 writes X

This is illustrated in Figure 13.

Ta X Tb

Ta X Tb

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 143

Figure 13: A wormhole represented as a cycle in a DDG

This cycle may be resolved by rolling back one of the transactions in the cycle allowing
the other transactions to continue, subject to resolving their other dependencies.

A more costly cycle occurs where transactions become deadlocked as illustrated in
Figure 14

Figure 14: A deadlock cycle

Two or more transactions waiting for one another to commit in a cycle form a deadlock
situation. The DDG management system detects the formation of such cycles and aborts
sufficient transactions to break the deadlock. There is the potential to form very large
cycles of deadlocked transactions, resulting in a consequent loss of work and
performance when they are rolled back. However, during the simulation experiments
carried out by the authors to evaluate the DDG-based transaction technique the largest
observed cycle involved two transactions. This observation supports the view that such
cycles are rarely large [14].

Transaction Rollback

When a transaction aborts, its rollback removes the DDG edges between the rolled-back
transaction and the entities it has modified. Other in-progress transactions may have
formed dependencies on a rolled back transaction by optimistically depending on an
uncommitted state of the transaction. Such transactions must also be rolled back.
Specifically, transactions with dirty-read edges to entities modified by the rolled back
transaction are also rolled back because they are dependent on the uncommitted state of
the entity.

Ta

X

Tb

Tc

Y

Z

Ta

X

Tb

Tc

Y

Z

GRAPH-BASED OPTIMISTIC TRANSACTION MANAGEMENT

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

Figure 15: Transaction Rollback.

For example, in Figure 15, if Tb rolls back, the action must cascade to Ta because Ta is
dependent on the uncommitted state of X. On the other hand, if Ta is rolled back, it does
not cause either X or Tb to roll back.

7 CONCLUSION

The techniques described in this paper describe extensions to the directed-graph-based
stability scheme for single-level stable object stores. These extensions provide graph-
based support for transaction-based concurrency control in persistent object stores.

The presented technique is optimistic and, while space restrictions prevented it being
fully described here, supports separate management for concurrent transaction-managed
and stability-managed activities that co-exist in the object store. This support ensures that
transactions are aborted if they are compromised either by transaction-managed or
stability-managed activity. Importantly, assessment of each transaction’s potential for
success is made at the completion of each involved process time slice, so that if the ACID
properties of the transaction have been compromised this is discovered earlier than with
other optimistic schemes.

The graph-based transaction management scheme has been extensively evaluated
and measured by simulation experiments. A detailed report of those experiments exceeds
the scope of this paper, and will be reported separately. The results may be summarised
as showing that the graph-based transaction management scheme has performance
consistent with that of conventional pessimistic and optimistic bulk data management
systems. Significantly, the simulation results show that the newly-presented technique
provides excellent general-purpose performance across a wide range of transaction sizes,
levels of concurrency and object store sizes.

Tb Ta

Y

X

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 145

REFERENCES

[1] Ahamad, M. and Lin, L., Using Checkpoints to Localize the Effects of Faults
in Distributed Systems, in Proc., The Eighth Symposium on Reliable
Distributed Systems, (1989), IEEE Computer Society Press, 2-11.

[2] Atkinson, M. and Morrison, R., Persistent System Architectures, in Proc.,
Third International Workshop of Persistent Object Systems, (Newcastle,
Australia, 1988), Springer Verlag, 73-97.

[3] Bem, E.A., Global Stability and Resilience in a Persistent Operating System,
PhD Thesis, Basser Department of Computer Science, University of Sydney,
1999.

[4] Bem, E.A., Issues in Persistent Systems, in Proc., The 6th IDEA Workshop,
(Rutherglen, Victoria, Australia, 1999).

[5] Blackburn, S.M., Zigman, J.N.,. Concurrency — The fly in the ointment?, in
Proc., The Third International Workshop on Persistence and Java, (Tiburon,
CA, USA, 1999), Morgan Kaufmann, 250 - 258.

[6] Brössler, P. and Rosenberg, J., Transactions in a Segmented Single Level
Store Architecture, in Proc., International Workshop on Computer
Architectures to Support Security and Persistence of Information, (Bremen,
Germany, 1990), Springer-Verlag, 319-338.

[7] Brown, A.L., Persistent Object Stores, PhD Thesis, Faculty of Mathematics
and Computational Science, Universities Of St Andrews and Glasgow, St
Andrews, 1989.

[8] Brown, A.L., A Prototype Log Structured Object Store, in Proc., The Fourth
IDEA International Workshop, (Magnetic Island, Queensland, Australia,
1997).

[9] Challis, M.F., Database Consistency and Integrity in a Multi-user
Environment. Databases: Improving Useability and Responsiveness. 245-
270.

[10] Date, C.J., An Introduction to Database Systems. Addison-Wesley Publishing
Co, Reading, MA, USA, 1999.

[11] Dearle, A., di Bona, R., Lindstrom, A., Rosenberg, J. and Vaughan, F., User-
level Management of Peristent Data in the Grasshopper Operating System,
Universities of Adelaide and Sydney, 1994.

[12] Dearle, A., Di Bona, R., Farow, J., Henskens, F., Lindström, A., Rosenberg,
J., Vaughan, F., Grasshopper: An Orthogonally Persistent Operating System.
Computing Systems, 7 (3). 289-312.

GRAPH-BASED OPTIMISTIC TRANSACTION MANAGEMENT

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

[13] Fabry, R.S., Capability Based Addressing. Communications of the ACM,
17(7). 403-412.

[14] Gray, J., and Reuter, A. Transaction Processing: Concepts and Techniques.
Morgan Kauffmann Publishers, San Mateo, CA, 1993.

[15] Härder, T., Reuter, A., Principles of Transaction-oriented Database Recovery.
ACM Computing Surveys, 15 (4). 287 - 317.

[16] Henskens, F.A., Koch, D.M., Jalili, R., Rosenberg, J., Hardware Support for
Stability in a Persistent Architecture, in Proc., The Sixth International
Worskshop on Persistent Operating Systems, (Tarascon, France, 1994),
Springer-Verlag and British Computing Society, 387-399.

[17] Hulse, D., Dearle, A. A Log-Structured Persistent Store, University of
Sydney, 1997.

[18] Jalili, R., A Failure Transparent Distributed Persistent Store, PhD Thesis,
Basser Department of Computer Science, University of Sydney, Sydney,
1995.

[19] Jalili, R., Henskens, F.A., Entity Dependency in Stable Persistent Stores, in
Proc., The 28th Hawaii International Conference on System Sciences,
(Hawaii, U.S.A, 1995), IEEE, 665 - 674.

[20] Keedy, J.L., The MONADS-PC: A Programmer's Overview, University of
Bremmen, Germany, 1989.

[21] Keedy, J.L., Projects Associated with the Department of Computer
Structures: The Monads Project, University of Ulm, 1997.

[22] Keedy, J.L. and Brossler, P., Implementing Databases in the Monads Virtual
Memory, in Proc., The 5th International Workshop on Persistent Object
Systems, (San Miniato, 1992), Springer-Verlag, 318-338.

[23] Keedy, J.L. and Rosenberg, J., Support for Objects in the MONADS
Architecture", in Proc., International Workshop on Persistent Object Systems,
(Newcastle, Australia, 1989), Springer-Verlag.

[24] Kumar, V.J., Performance of Concurrency Control Mechanisms in
Centralized Database Systems. Prentice-Hall Inc, Edgewood Cliffs, New
Jersey, USA, 1996.

[25] Lindström, A.G., User-level Memory Management and Kernel Persistence in
the Grasshopper Operating System, PhD Thesis, Basser Department of
Computer Science, University of Sydney, Sydney, 1996.

[26] Lorie, R.A., Physical Integrity in a Large Segmented Database. ACM
Transactions on Database Systems, 2(1). 91-104.

[27] Morrison, R. and Atkinson, M.P., Persistent Languages and Architectures, in
Proc., The International Workshop on Computer Architectures to Support

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 147

Security and Persistence of Information, (1990), Springer-Verlag and the
British Computer Society, 9-28.

[28] Morrison, R., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C., Munro, D.S.,
Atkinson, M.P., The Napier88 Persistent Programming Language and
Environment, School of Mathematical and Computational Sciences,
University of St Andrews, St Andrews, 1999.

[29] Moss, J.E.B., Munro, D.S. and Hudson, R.L., PMOS: A Complete and
Course-Grained Incremental Garbage Collector for Persistent Object Stores,
in Proc., 7th International Workshop on Persistent Object Systems (POS7),
(1996), 140 - 150.

[30] Rosenberg, J., The MONADS Architecture A Layered View, in Proc., The
Fourth International Workshop on Persistent Object Systems, (Martha's
Vineyard, Mass, USA, 1990), Morgan Kaufmann Publishers Inc, 215-225.

[31] Rosenberg, J., Dearle, A., Hulse, D., Lindstrom, A. and Norris, S., Operating
System Support for Persistent and Recoverable Computations.
Communications of the ACM, 39 (9). 62-69.

[32] Rosenberg, J. and Henskens, F., Stability in a Persistent Store Based on a
Large Virtual Memory, in Proc., International Workshop on Computer
Architectures to Support Security and Persistence of Information, (Bremen,
Germany, 1990), Springer-Verlag, 229-245.

[33] Sjoberg, D.I.K., Cutts, Q., Welland, R. and Atkinson, M.P., Analysing
Persistent Language Applications, in The 6th International Workshop on
Persistent Object Systems, (1994), 227-247.

[34] Strom, R.E., Yemini, S.A., Optimistic Recovery in Distributed Systems. ACM
Transactions on Computer Systems, 3 (3). 204-226.

[35] Vaughan, F., Basso, T.L., Dearle, A., Marlin, C. Barter, C., Casper: a Cached
Architecture Supporting Persistence. Computing Systems, 5 (3). 337 - 359.

[36] Vaughan, F., Schunke, T., Koch, B., Dearle, A., Marlin, C., Barter, C., A
Persistent Distributed Architecture Supported by the Mach Operating System,
in Proc., The First USENIX Conference on the Mach Operating System,
(1990), 123 - 140.

GRAPH-BASED OPTIMISTIC TRANSACTION MANAGEMENT

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6

About the authors
Frans A. Henskens is Assistant Dean of the Faculty of Engineering &
Built Environment at the University of Newcastle, Australia. His
research interests centre on: distributed and grid computing; engineering
of flexible software systems; programming language design; resilience
and availability in object-based data stores. His email address is
frans.henskens@newcastle.edu.au
Maurice G. Ashton is a Lecturer at Avondale College in the Fculty of
Business and Information Technology. His research interests include
transaction systems, object stores, and enterprise information
management. His email address is maurice.ashton@avondale.edu.au

