
Vol. 6, No. 7, Special Issue: Aspect-Oriented Modeling, August 2007

Modeling Traceability of Concerns for Syn-
chronizing Architectural Views

Bedir Tekinerdoğan, University of Twente, The Netherlands
Christian Hofmann, University of Twente, The Netherlands
Mehmet Akşit, University of Twente, The Netherlands

Software architecture modeling includes the description of different views that rep-
resent the architectural concerns from different stakeholder perspectives. In case of
evolution of the software system the related architectural views need to be adapted
accordingly. To synchronize the architectural views it is necessary that the dependency
links among the architectural concerns in the architectural views can be easily traced.
Unfortunately, despite the ongoing efforts for modeling concerns in architectural views,
the traceability of concerns remains a challenging issue in architecture design. We pro-
pose the concern traceability metamodel (CTM) that enables traceability of concerns
within and across architectural views. The metamodel can be used for modeling the
concerns, the architectural elements and the traceability links among the elements
in architectural views. We have implemented CTM in the tool M-Trace, that uses
XML-based representations of the models and XQuery queries to represent tracing
information. CTM and M-Trace are illustrated for analyzing the impact of concerns
of a Climate Control System case and synchronizing the architectural views.

1 INTRODUCTION

Software architecture design aims to identify the key concerns at an early stage of
the software development lifecycle and modularize the concerns in an architectural
model. A software architecture for a program or computing system consists of
the structure or structures of that system, which comprise elements, the externally
visible properties of those elements, and the relationships among them [9]. This
definition implies that software architecture does not consist of a single structure
but is represented using more than one architectural views. An architectural view
is a representation of a set of system elements and relations associated with them
[3]. Different views may include different type of elements, relations and constraints.
Several approaches for organizing architecture around views have been proposed in
the literature. These include, for example, the traditional Kruchten’s 4+1 view
approach, the views in the Rational’s Unified Process, the Siemens Four Views
model, and others as described in [9].

Concerns in the system are rarely stable and need to evolve in accordance with
the changing requirements. To cope with the evolution at the architecture design
level it is necessary that the dependency links between the architectural concerns in

Cite this article as follows: : Modeling Traceability of Concerns for Synchronizing Architec-
tural Views, in Journal of Object Technology, vol. 6, no. 7, Special Issue: Aspect-Oriented
Modeling, August 2007, pages 7–25,
http://www.jot.fm/issues/issues 2007 08/article1

http://www.jot.fm/issues/issues_2007_08/article1

MODELING TRACEABILITY OF CONCERNS FOR SYNCHRONIZING ARCHITECTURAL VIEWS

the architectural views can be easily traced. This is because changes to concerns as
such can have consequences for other architectural elements, which are directly or
indirectly related to it.

Unfortunately, despite the ongoing efforts for identification and modeling of con-
cerns in architectural views, the traceability of concerns remains a challenging issue
in architecture design. In the aspect-oriented software development community the
interest is in particular on crosscutting concerns which cannot be easily localized and
are scattered over multiple implementation units. Several approaches have already
been proposed to model crosscutting concerns at the architecture design level [8, 5],
and focused on mapping aspect-oriented models through the life cycle. However,
traceability of concerns in AOSD, whether crosscutting or not, has not yet been
tackled broadly.

The topic of traceability is not new and has been discussed in various domains.
The IEEE provides the following definition of traceability [2]: “Traceability is the
degree to which a relationship can be established between two or more products
of the development process, especially products having a predecessor-successor or
master-subordinate relationship one another; for example, the degree to which the
requirements and design of a given software component match.” In requirements
engineering lots of work has been done on tracing requirements from the stakehold-
ers and in the design process [10, 12, 13]. In the model-driven engineering approach
[6, 7] traceability is considered important for tracing model elements. The problem
of traceability has recently also been addressed by the AOSD community [4], encom-
passing the adoption of aspects throughout the lifecycle. In each of these domains
different definitions for traceability are given [2].

In this paper we build on existing work on traceability to trace aspects in archi-
tectural views. For this, we propose the Concern Traceability Metamodel (CTM)
that can be used for modeling the concerns, modeling the architectural elements and
the traceability links among the elements within and across the architectural views.
We have implemented CTM in the tool M-Trace, that uses XML-based representa-
tions of the models and XQuery queries to represent tracing information. CTM and
M-Trace are illustrated for a Climate Control System.

The remainder of the paper is organized as follows. In section 2 we present the
example on Climate Control System (CCS) and illustrate the need for tracing cross-
cutting concerns within and across views. In section 3 we define the requirements
for architectural concern traceability. In section 4 we provide the CTM which aims
to meet these requirements. Section 5 will discuss the application of CTM to trace
aspects within and across architectural views in the example case. Section 6 will
finalize the paper with the conclusions.

8 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

2 EXAMPLE: CLIMATE CONTROL SYSTEM (CCS)

2 EXAMPLE: CLIMATE CONTROL SYSTEM (CCS)

In the following we will define the case study that we will apply throughout the
paper. The case study involves the architecture design of a climate control sys-
tem (CCS) in cars. A CCS includes functions for heating, ventilating and air-
conditioning. For the representation of architectural views we adopt the approach
as defined by Clements et al [] and present the so-called module view, C&C view
and deployment view. We define a set of concerns that can be identified within each
view and across views.

Module View of CCS

The module view represents the structuring of implementation units, or modules.
The module view of CCS is illustrated in Figure 1. Controller is the module that
defines the main control loop. It uses ReferenceModel that defines the preferences
of the user. TemperatureSensor senses the temperature of the car and provides on
request sensor data to Controller. Controller sends current state of the car to Display
and determines the action climate control action based on the difference between
ReferenceModel and sensor data. The actions are defined by Cooler, Heater or Fan.

HeaterCooler

calls calls

checks

-speed

Fan

+start()
+stop()

Controller

-setRequiredTemperature

ReferenceModel

-senseData

TemperatureSensor

+on()
+off()

Actuator

+display()

Display

updates

Figure 1: Module View of CCS

Component and Connector View of CCS

The Component and Connector (C&C) view represents the structuring of elements
which have run-time behavior, which are usually components and connectors. shows
the C&C view consisting of four components: Controller, Sensor, Actuator and GUI.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 9

MODELING TRACEABILITY OF CONCERNS FOR SYNCHRONIZING ARCHITECTURAL VIEWS

The GUI component controls user inputs and transfer the information to the Con-
troller component. The GUI component will also present information from the
Controller component to the user. The Sensor component senses the car informa-
tion, while Actuator consists of the invoking the implementations of the actuator
classes.

Sensor GUIActuator

Controller

sense actuate display

Figure 2: C&C View of CCS

Deployment View of CCS

The deployment view represents the allocation of software elements to hardware
nodes. shows the deployment view of the CCS in which components are mapped
to physical nodes in the system. We have identified three nodes: Microcontroller,
Physical Sensors and Physical Actuator. The MicroController includes the compo-
nents Controller and GUI. Physical Sensor executes the Sensor. Physical Actuator
includes the Actuator component.

Physical Sensors

Microcontroller

Sensor

GUITemperature
Controller

bus

Physical Actuators

Actuator

1..*1..*

Figure 3: Deployment View of CCS

10 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

2 EXAMPLE: CLIMATE CONTROL SYSTEM (CCS)

Change Scenarios and Problems

To illustrate the problem of traceability within and across architectural views we
define a set of change scenarios. Each of these change scenarios refers to a particular
concern. The scenarios are the following:

• Adapt data format

The common data format that is used in the CCS for representing the sensor
data needs to be adapted.

• Adapt UI

The CCS will be deployed in cars that require different UI platforms. As such
the display must be adaptable and be changed to the corresponding context.

• Add humidity concern

The current design includes only the control of temperature in the car. The
system needs to be enhanced to control the humidity in the car.

• Add diagnostics

To cope with failures in the system it is required that the climate control
elements provide mechanisms for failure detection and failure correction.

The above scenarios are selected examples that could be required in a CCS and we
could easily identify several other scenarios that implement different concerns. In
general we encounter the following two problems in realizing such kind of concern
changes:

Impact analysis of concern changes Each change of a concern requires the
identification of the architectural elements which implement the concern. For ex-
ample, for realizing the scenario Adapt data format we need to identify all the
architectural elements that are related to the data formatting concern. For the sce-
nario Add humidity we need to identify the architectural elements that implement
the concern humidity. In some cases we could derive from the names of the archi-
tectural elements which concerns are implemented, however, like in this case this is
usually not that straightforward. Moreover, each concern might also map to more
than one architectural element.

Synchronizing architectural views In case of a change of a concern the required
adaptations will not be limited to a single view but need to be adapted in all the
affected architectural views to preserve the consistency among the views. That
is, the architectural views need to be synchronized. Without the maintenance and
synchronization of the architectural views the architectural model becomes outdated
and fails to provide its goal of communication, guidance and organization.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 11

MODELING TRACEABILITY OF CONCERNS FOR SYNCHRONIZING ARCHITECTURAL VIEWS

Unfortunately, the architectural views do not model concerns explicitly and do
not provide explicit tracing links from concerns to architectural elements that im-
plement these concerns. The tracing from concerns to architectural elements and
vice versa, can then only be done implicitly and manually by iterating over each
element in different architectural views and interpreting whether the element relates
to a given concern or not. To support the impact analysis of concerns and synchro-
nization of architectural views, traceability appears to be an important challenge.

3 REQUIREMENTS FOR CONCERN TRACEABILITY IN ARCHITEC-
TURAL VIEWS

Based on the work in the literature on traceability and the concern modeling in
AOSD we provide a set of requirements for traceability of concerns in architectural
views.

Explicit Modeling of Concerns

In order to explicitly reason about traceability of the concerns in architectural views
it is necessary that the corresponding concerns are explicitly modeled as first class
abstractions. The detail of concern model could range from just a description of its
name to a full semantic model including attributes such as stakeholder, the domain
of the concern, the date it was raised, the impact that it has, etc. Harrison et. al
[14] define the following requirements for concern modeling: (a) providing model-
ing concepts for concerns and their organization (b) neutrality and open-endedness
with respect to the kind of artifacts, (c) and specification that captures the design
intentions rather than simply reflecting existing structure. If we decide to explicitly
model concerns then the question arises whether to provide a uniform model for both
the concerns and artifacts, or explicitly separate these using dedicated language con-
structs. In general these two different approaches are identified as symmetric and
asymmetric approaches [11].

Explicit Modeling of Dependency Relations

In principle, every architectural element implements one ore more concerns. To sup-
port traceability, the architectural elements and the relations with the corresponding
concerns need to be modeled explicitly. This can be achieved when dependency re-
lations are recorded as traceability links. For this, like concerns, traceability links
should also be specified as first class abstractions in the adopted traceability model.
The choice for a symmetric or asymmetric approach seems also to have an impact on
the traceability links. In the asymmetric model the traceability links will need to be

12 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

3 REQUIREMENTS FOR CONCERN TRACEABILITY IN ARCHITECTURAL VIEWS

established for both architectural elements and concerns. On the other hand, in the
symmetric approach the traceability links need to refer to one type of concern. This
simplifies the specification of trace-links but could reduce understandability because
the user has to explicitly distinguish between concerns and architectural elements.

Intra-View Traceability of Concerns

To understand the relations among the concerns and architectural elements within
the same view it is necessary to model traceability for the given view. Figure 4
shows the abstract model for tracing within a given view. We define here two types
of traceability: (1) intra concern to element traceability and (2) intra element to
concern traceability. Note that Architectural Element can be either an architec-
tural relation or architectural entity. In this way concerns can be both linked to
architectural relations and architectural entities. Further, since architectural enti-
ties may be composed of other sub-entities a single concern can then be attached to
a composition of architectural entities.

intra
concern to

element
traceability

intra
element to

concern
traceability

Concern

Artifact

Architectural View x

Figure 4: Traceability Relationship within a View

Inter-View Traceability of Concerns

Besides tracing concerns within an architectural view it is important to trace con-
cerns that cut across views. Figure 5 presents the abstract model for traceability
relationships across architectural views.

To distinguish from the previous intra-view traceability we use the term inter
referring to traceability relations across different views. In principle, there are two
kinds of relations. First, architectural elements in different views might be related,
this is called, inter element to element traceability. Second, a common concern
might be related to architectural elements in different views, which is termed as
inter concern to element traceability.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 13

MODELING TRACEABILITY OF CONCERNS FOR SYNCHRONIZING ARCHITECTURAL VIEWS

Architectural
Element

Architectural View x

Architectural
Element

Architectural View y

Concern

inter
element to element

traceability

inter
concern to element

traceability

Figure 5: Traceability Relationship Accross Architectural Views

Support for Automated Tracing

Explicit models for concerns and the traceability will help to define the links between
the different concerns and the architectural elements. By providing the traceability
links, concerns can be more easily traced by just following the traceability links. This
may work for simple, small scale systems. However, following the traceability links
of a complex system manually might not be trivial. Even though the traceability
links are made explic, it it may be hard to expose the required traceability links. To
support tracing, the system should provide automated support for defining generic
and user-defined queries to identify and trace the concerns. This is in particular
important for the architectural models that consist of a broad set of concerns and
architectural views.

4 CTM: ARCHITECTURAL CONCERN TRACEABILITY METAMODEL

In the following we present the concern traceability metamodel (CTM) for tracing
concerns in architectural views as depicted in Figure 6. The metamodel represents
three key issues: concern modeling, architecture modeling and tracing modeling.
The metamodel should be preferably read from the left to the right. On the left,
ConcernModel consists of ConcernGroup and UnitModel. ConcernGroup groups a
set of Concerns. Concerns can be either crosscutting or not, the metamodel does
not make an explicit distinction. Concern is defined for one or more Stakeholder.
UnitModel represents the Units to which the concerns apply. A unit refers to an
artifact in the software life cycle. Here we focus on the architecture design phase.
ArchitectureModel is a subclass of Unit and consists of one or more Architecture-
View which consists of one or more ArchitecturalElement. ArchitecturalElement in
the metamodel represents in fact a representation of the actual architectural ele-
ments. To refer to the actual elements ArchitecturalElement includes the attributes
reference and name. Element can be Relation, Entity and Aspect. Relation repre-
sents an architectural relation such as uses, depends on and calls. Entity represents

14 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

4 CTM: ARCHITECTURAL CONCERN TRACEABILITY METAMODEL

an architectural entity such as a Module, Component or Node. The specific elements
will be different for different views, and if necessary, the metamodel can be extended
for this purpose. Entities may have sub-elements that are represented by children
relationship. ArchitecturalAspect represents a specification of an architectural as-
pect, which is associated to one or more entities. The relationship advices represents
the dependency of an aspect with the architectural elements.

Traceability of architectural elements and concerns is represented by Trace-
ableElement and Trace. A traceable element is either a Unit or a Concern. The trace
relation is modeled explicitly by Trace, which relates one or more source elements to
one or more target elements with the respective source and target relations. Source
and target can be architectural elements or concerns that can be chosen from any
view. The metamodel can therefore express all the traceability relations that we
defined in Section 3.

Traces can be enumerated or specified succinctly using abstract queries. In the
first case ExtensionalTrace is used and all source-target mappings between traceable
elements are defined explicitly. In the latter case IntensionalTrace is used, whereby
queries are applied that select source and target elements from the architectural
views. It is possible to combine these trace specifications to define traces. For
example, by listing the source elements explicitly and defining a query to select
the target elements. Traces are part of a TraceModel, which can be specialized to
represent different kinds of tracing specifications. For instance, PointcutModel is
a specialization of TraceModel that is used to represent pointcut specifications as
relations between a piece of advice and (several) elements of architectural views.

Figure 6: Architectural Concern Traceability Metamodel (CTM)

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 15

MODELING TRACEABILITY OF CONCERNS FOR SYNCHRONIZING ARCHITECTURAL VIEWS

5 APPLICATION OF CTM

The CTM is a metamodel that can be instantiated in different ways. We follow the
steps as described in the activity diagram in 7 to instantiate and use the metamodel
for supporting traceability of concerns in architectural views.

Define
Architectural Views

Identify and Model
Concerns

Reuse Predefined
Trace Queries

Write Customized
Trace Queries

Define Trace Links within
Architectural Views

Define Trace Links across
Architectural Views

Impact Analysis

Modeling Architecture , Concerns and Trace Links Tracing Concerns using trace queries

Implement
Metamodel

Extend
Metamodel

need
enhancements

metamodel
can be reused

Implement metamodel

Figure 7: Process for utilizing the Metamodel and Tracing of Concerns

The process for utilizing the metamodel can be summarized in three steps:

• Implementing CTM

This step is shown in the left part of 7. To support traceability CTM needs
to be implemented. In our case we have implemented CTM by defining XML
Document Type Definitions (DTD) for the metamodel elements including con-
cern model, unit model and trace model. CTM is quite general but like any
metamodel it can be first extended, if necessary, and then implemented.

• Modeling architecture, concerns and trace-links

This step is shown in the middle part of 7. After implementation of CTM we
need to provide instantiations to support tracing for the corresponding archi-
tectural views. In our implementation the DTDs representing the metamodel
elements, are instantiated to define the architecture views, the concerns and
the trace-links of the corresponding case.

• Tracing of concerns

This is shown in the right part of 7. Once the models and the mappings are
defined we can trace any concerns in the architectural views. For this purpose
we can use either predefined reusable queries for tracing concerns or if needed
write customized queries. In this paper the result of the tracing is used for
impact analysis of evolving concerns.

In the following we will provide examples of the application of CTM.

16 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

5 APPLICATION OF CTM

Implementing CTM

Figure 8 provides an implementation of CTM using DTDs in XML. left column pro-
vides the DTD for architectural modeling. Here we can see that each architectural
model consists of one or more views. Each view includes the attribute id, phase,
reference, name and type. A view can consist of subviews, entity, relation or arch-
aspect. The right part presents the DTDs for concern modeling and traceability
modeling. The concernmodel follows the metamodel but in addition provides an
explicit definition for crosscutting concerns. The tracemodel also is defined in ac-
cordance with the metamodel and consists of an extensional trace or an intensional
trace. An extensional trace includes a source and target. An intensional trace can
include also source-query or target-query. Note the DTD also implements a point-
cutmodel, which is a specific trace model that can also include an extensional or
intensional trace.

CONCERN MODELING

1. <?xml version="1.0" encoding="ISO-8859-1" ?>

2. <!ELEMENT concernmodel
3. (description?, concerngroup+, unitmodel+)>
4. <!ELEMENT description (#PCDATA)>

5. <!ELEMENT concerngroup
 ((concern | crosscutting-concern)+)>

6. <!ATTLIST concerngroup name CDATA #IMPLIED>

7. <!ELEMENT concern (description, stakeholder+)>
8. <!ATTLIST concern
9. id CDATA #REQUIRED
10. phase CDATA #REQUIRED
11. name CDATA #REQUIRED>

12. !ELEMENT crosscutting-concern (description, stakeholder+)>
13. <!ATTLIST crosscutting-concern
14. id CDATA #REQUIRED
15. phase CDATA #REQUIRED
16. name CDATA #REQUIRED>
17. <!ELEMENT stakeholder (#PCDATA)>

ARCHITECTURE MODELING

1. <?xml version="1.0" encoding="ISO-8859-1" ?>

2. <!ENTITY % architecturalview SYSTEM
"ArchitecturalView.dtd">

3. %architecturalview;

4. <!ELEMENT arch-model (view)+>
5. <!ATTLIST arch-model
6. id CDATA #REQUIRED
7. phase CDATA #IMPLIED
8. reference CDATA #IMPLIED
9. name CDATA #REQUIRED
10. type CDATA "architectural model">

11. <!ELEMENT view
 ((view)* ,(entity | relation | arch-aspect)*)>

12. <!ATTLIST view
13. id CDATA #REQUIRED
14. phase CDATA #IMPLIED
15. reference CDATA #IMPLIED
16. name CDATA #REQUIRED
17. type CDATA #REQUIRED>

18. <!ELEMENT entity (entity | relation)*>
19. <!ATTLIST entity
20. id CDATA #REQUIRED
21. phase CDATA #IMPLIED
22. reference CDATA #IMPLIED
23. name CDATA #REQUIRED
24. type CDATA #REQUIRED>

25. <!ELEMENT relation ((from)+, (to)+)>
26. <!ATTLIST relation
27. id CDATA #REQUIRED
28. phase CDATA #IMPLIED
29. reference CDATA #IMPLIED
30. name CDATA #REQUIRED
31. type CDATA #REQUIRED>

32. <!ELEMENT from (entity)+>
33. <!ELEMENT to (entity)+>

34. <!ELEMENT arch-aspect (arch-advice)>
35. <!ATTLIST arch-aspect
36. id CDATA #REQUIRED
37. phase CDATA #IMPLIED
38. reference CDATA #IMPLIED
39. name CDATA #REQUIRED
40. type CDATA #REQUIRED>

41. <!ELEMENT arch-advice(entity |relation)+>

TRACING MODELING

1. <?xml version="1.0" encoding="ISO-8859-1" ?>

2. <!ELEMENT tracelink-definition
 (tracemodel | pointcutmodel)+>

3. <!ELEMENT tracemodel
(extensional-trace | intensional-trace)+>

4. <!ELEMENT extensional-trace (source, target)>
5. <!ELEMENT intensional-trace

 ((source | source-query),(target | target-query))>

6. <!ELEMENT source (traceable-element)+>
7. <!ELEMENT target (traceable-element)+>

8. <!ELEMENT traceable-element (description?)>
9. <!ATTLIST traceable-element
10. id CDATA #REQUIRED
11. type CDATA #REQUIRED>
12. <!ELEMENT description (#PCDATA)>

13. <!ELEMENT source-query (#PCDATA)>
14. <!ELEMENT target-query (#PCDATA)>

15. <!ELEMENT pointcutmodel
 (extensional-trace | intensional-trace)+>

Figure 8: DTDs used to implement CTM

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 17

MODELING TRACEABILITY OF CONCERNS FOR SYNCHRONIZING ARCHITECTURAL VIEWS

Modeling Concerns and Architecture

Once the CTM has been implemented as a set of DTDs we can provide instantiations,
XML models, based on these DTDs. For example, Figure 9 shows the concern model
for the CCS example. It consists of ConcernGroup and UnitModel elements that
are used to organize units and concerns, as we have defined in the metamodel. The
example shows six concerns controlling, sensing, status display, actuate, observe and
compare. The unitmodel defines one architectural model with identifier AM1. We
use a separate file to specify the architectural views of the architectural model.

<concernmodel><?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE concernmodel PUBLIC "-//ConcernModel.dtd" "ConcernModel.dtd">

<concernmodel>
 <concerngroup>
 <concern id="c1" name="controlling"></concern>
 <concern id="c2" name="sensing"></concern>
 <concern id="c3" name="status display"></concern>
 <concern id="c4" name="actuate"></concern>
 <concern id="c5" name="observe"></concern>
 <concern id="c6" name="compare"></concern>
 </concerngroup>

<unitmodel>
 <unit id="am1" reference="ccs-am.xml" name="CCS"

type="architectural model"></unit>
 </unitmodel>
</concernmodel>

Figure 9: Concern Model for CCS

The XML document shown in Figure 10 represents the architectural model of
CCS consisting of three views. The components and connectors view, for example,
is shown in the fifth line. This view with the identifier cc1 is defined in the XML
document “ccs-cc.xml”, which can be found under the link given by the parameter
reference. The module view and deployment views with the identifiers mv1 and dv1
are defined similarly.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE arch-model PUBLIC "-//ArchitecturalModel.dtd" "ArchitecturalModel.dtd">

<arch-model id="am1" reference="ccs-am.xml" name="CCS">
 <view id="cc1" reference="ccs-cc.xml" name="CCS CC" type="cc view"></view>
 <view id="mv1" reference="ccs-mv.xml" name="CCS MV" type="module view"></view>
 <view id="dv1" reference="ccs-dv.xml" name="CCS DV" type="deployment view"></view>
 <view id="dv2" reference="ccs-dv.xml" name="CCS DV" type="deployment view"></view>
</arch-model>

Figure 10: Architectural Model for CCS

Figure 11 shows the XML representation of the components and connectors view
of the CCS. The elements relation and entity refer to the corresponding elements in
the metamodel. The type of the element is defined in the type attribute of relation
and entity. Since the XML document shown Figure 11 represents the C&C view,
values for the type attribute of relation and entity are connector and component,

18 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

5 APPLICATION OF CTM

respectively. Relations include the from and to attributes to denote the architectural
entities that are connected by the relation. The module view and the deployment
view are represented similarly.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE view PUBLIC "-//ArchitecturalView.dtd" "ArchitecturalView.dtd">

<view id="cc1" reference="-//ccs-cc.xml" name="CCS CC" type="cc view">

 <relation id="cc1.r1" name="sense" type="connector">
 <from><entity id="cc1.e1" name="Controller" type="component"></entity></from>
 <to><entity id="cc1.e2" name="Sensor" type="component"></entity></to>
 </relation>

 <relation id="cc1.r2" name="actuate" type="connector">
 <from><entity id="cc1.e1" name="Controller" type="component"></entity></from>
 <to><entity id="cc1.e3" name="Actuator" type="component"></entity></to>
 </relation>

 <relation id="cc1.r3" name="display" type="connector">
 <from><entity id="cc1.e1" name="Controller" type="component"></entity></from>
 <to><entity id="cc1.e4" name="GUI" type="component"></entity></to>
 </relation>
</view>

Figure 11: C&C View of CCS

Defining Trace-Links

After explicit modeling of the concerns we will now define the trace-links among
the concerns and the architecture elements within a view. This is again done by
instantiating from a DTD that represents tracing model. In the trace model traces
define the dependency between a source and a target. Dependencies are defined by
either an enumeration of the separate dependencies (extensional) or specified more
abstractly using queries (intensional). Queries are written using XQuery, which is a
technology developed by the W3C that is designed to query collections of XML-data.
Trace-links can be defined within or across architectural views. In the following we
will explain these separately.

Defining Trace-links within Views

Figure 12 shows an example of a query for defining trace-links within the C&C view.
Hereby the source is defined explicitly (enumeration) denoting c3 (concern Status
Display). The target is defined using a an XQuery expression (intensional) that uses
the predefined function getElementsContaining(). This function takes as parameter
a string that identifies the view (its id), the name of the element type it searches, and
a string it should match (case insensitive) with the name attribute of the element.
Here the first argument is “mv” denoting that elements in the module view will
be addressed. The second argument includes a wildcard (.*) that denotes that any
type of element (i.e. module or relation) in the module view can be matched. The

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 19

MODELING TRACEABILITY OF CONCERNS FOR SYNCHRONIZING ARCHITECTURAL VIEWS

third argument includes the name that should appear in the matched elements. As
as result of query in Figure 12 concern Status Display (id=c3) is related to all
architectural elements from the module view that have “display” in its name.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE tracelink-definition PUBLIC "-//TraceModel.dtd" "TraceModel.dtd">
</tracemodel>
 <intensional-trace>
 <source> <traceable-element id="c3"> </traceable-element> </source>
 <target-query>
 f:getElementsContaining("mv",”.*”,"display")
 </target-query>
 </intensional-trace>
 ...
</tracemodel>
 …
</tracelink-definition>

Figure 12: Example for Defining Trace-Links Within the C&C View

The function getElementFromView() is one example of a predefined query that
can be used to support tracing. Figure 13 lists some other functions that we have
predefined and that can be used these to define the mappings between the concerns
and the architectural elements. In general these queries seem to be generic enough
for tracing concerns. However, in case more complex relationships are needed that
cannot be expressed by these queries, it is quite easy to implement new queries or
enhance existing ones.

f:getElementsStartingWith($view, $elements, $name) Matches elements whose names start
with a given sub-string

f:getElementsEndingWith($view, $elements, $name) Match elements whose name ends with
a given substring

f:getElementsWithName($view, $elements, $name) Match case insensitive names exactly
matching a given string

f:getElementsContaining($view, $elements, $name) Matches elements whose names start
with a given sub-string

Figure 13: Functions for Calculating Traceability Links through Element Matching

Defining Trace links Across Views

Similar to defining trace-links within views we can easily define trace-links across
views. The only difference here is that we have to refer to more than one view
in the queries for the source or target elements. Figure 14, for example, specifies
a query across multiple views that calculates the traceability link. The concern
“controlling” with id “c1” is related by the trace-link to all units named “controller”
in all architectural views (1st parameter in line 3) regardless of their type (2nd
parameter). Note that we have used here the wildcard “.*” that matches any view.

20 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

5 APPLICATION OF CTM

<intensional-trace>
 <sourc>
 <traceable-element id="c1" type="concern"> </traceable-element></source>
 <target-query> f:getElementFromViewWithName(“.*”,”.*”,"controller")</target-query>
</intensional-trace>

Figure 14: Intensional Definition of a Traceability Link Across Views

Besides using the “.*” wildcard, we can also list the views explicitly; using a
comma operator to select specific views. For example, the query

f:getElementsWithName(("cc1", "dv1"),".*","Sensor")

matches the component and or connector elements called Sensor in the component
and connector view (cc1) or the deployment view (dv1). The result is provided again
as an XML file as it is depicted in Figure 15.

<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist" hitCount="2">
 <traceable-element id="cc1.e2" name="Sensor" type="component"/>
 <traceable-element id="dv1.e7" name="Sensor" type="process"/>
</exist:result>" type="processor"/>

Figure 15: Query Result for the Element “Sensor”

Tracing Concerns for Impact Analysis and View Synchronization

So far we have defined the concern model, the architectural model including the
views, and the mappings between the concerns and the architectural elements. In
principle we can now trace any concern to the architectural elements in the views.
In this paper we will focus on tracing concerns to support the impact analysis of
evolution of concerns.

We have implemented a set of queries that can trace concerns to elements and
vice versa. There are two types of queries: forward tracing queries and backward
tracing queries. Forward tracing queries can be used to trace the architectural
elements starting from a given set of concerns. Backward tracing queries determine
the concerns for a given set of architectural elements. To assess the impact of a given
concern, we can thus use forward tracing queries. Backward queries can be used,
for example, to inspect the set of concerns that an architectural element is related
to. We use the XML database “eXist” [1] to execute queries, calculate traceability
links and store the models.

traceForward($view, $concernId) Matches elements for given concerns
traceBackward($view, $elementId) Match concerns for given elements

Figure 16: Tracing Functions

Again, we predefined functions that can be utilized to perform these tracing
activities. Figure 16 shows to of them.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 21

MODELING TRACEABILITY OF CONCERNS FOR SYNCHRONIZING ARCHITECTURAL VIEWS

We can use traceForward(), for example, to identify the elements that are im-
pacted if the concern sensing (c2) is changed. The corresponding query statement
is:

f:traceForward(".*", "c2")

The result of the query is an XML file, as shown in Figure 17, that lists all the
elements related to the concern sensing. The relationship between the concern and
the returned elements that we calculated is an inter concern-to-element traceability
relationship.

<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist" hitCount="6">
 <relation id="cc1.r1" name="sense" type="connector">
 <from> <entity id="cc1.e1" name="Controller" type="component"/> </from>
 <to> <entity id="cc1.e2" name="Sensor" type="component"/> </to>
 </relation>
 <entity id="cc1.e2" name="Sensor" type="component"/>
 <entity id="mv1.e1.1" name="setRequiredTemperature" type="interface"/>
 <entity id="mv1.e3" name="TemperatureSensor" type="module">
 <entity id="mv1.e1.1" name="senseData" type="interface"/>
 </entity>
 <entity id="dv1.e7" name="Sensor" type="process"/>
 <entity id="dv1.e2" name="Physical Sensors" type="processor"/>
</exist:result>

Figure 17: Query Result of Following the Forward Trace-Links Defined for the
Concern Sensing

Similarly, we can trace the concerns given an architectural element. The query

f:traceBackward("cc1", "Sensor")

calculates all the concerns that are related to the element Sensor from the component
and connector view. In principle, once all the tracing links have been defined we
can query both the elements to the concerns and concerns to the elements. Tracing
can be done both within a view as well as across multiple views. The result of the
tracing queries is currently provided as an XML file. In our future work we are
planning to visualize the results of the XML file.

6 CONCLUSION

In this paper we have built on the general literature on traceability, concern modeling
and the recent work on traceability of aspects. We have used a Climate Control Sys-
tem as case to illustrate the impact of a set of change scenarios on the concerns and
the architectural views. Based on our observations and the literature on traceability
we have defined a set of requirements for tracing concerns in architectural views. We
have proposed the concern traceability metamodel (CTM) that enables traceability
of concerns in architectural views. CTM has been implemented in our tool M-Trace,
that uses XML-based representations of the models and XQuery queries to calculate
relationships, like traceability links, between the elements of these models.

The metamodel has been applied to trace concerns and for the impact analysis of

22 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

7 ACKNOWLEDGEMENTS

changes to these concerns. It was not difficult to explicitly model the concerns and
the architectural elements of the case, and define the mapping of concerns to the
elements of the architectural views. By defining expressive queries we could easily
realize forward and backward traceability of concerns.

Our future work will include a systematic application of domain knowledge to
provide more expressive queries. Another issue is the visualization of the traceability
relationships. Also the results of the impact analysis are represented XML. We are
therefore working on enhancing the M-Trace tool with a more intuitive representa-
tion of the results to the user.

7 ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for the valuable feedback on ear-
lier versions of this paper. This work is supported by the European Network of
Excellence on AOSD project, and the Aspect-Oriented Software Architecture De-
sign project funded by the Dutch Scientific Organisation in the Jacquard Software
Engineering Program.

REFERENCES

[1] http://www.exist-db.org.

[2] Glossary of software engineering terminology. IEEE Standard 610.12-1990,
IEEE, 1990.

[3] IEEE recommended practice for architectural description of software-intensive
systems. IEEE Standard 1471-2000, IEEE, 2000.

[4] Workshop on Early Aspects: Traceability of Aspects in the Early Life Cycle
(held with AOSD ’06), Bonn, Germany, 2006.

[5] Elisa Baniassad, P.C. Clements, J. Araujo, A. Moreira, A. Rashid, and B. Tekin-
erdogan. Discovering early aspects. Software, IEEE, 23(1):61–70, 2006.

[6] Joel Champeau and Emmanuel Rochefort. Model engineering and traceability.
In Workshop SIVOES-MDA, UML’03, October 2003.

[7] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. Pinto, J. Bakker, B. Tekin-
erdogan, S. Clarke, and A. Jackson. Survey of analysis and design approaches.
AOSD-Europe Deliverable D11, Network of Excellence AOSD-Europe, 2005.

[8] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford. Documenting Software Architectures:
Views and Beyond. The SEI Series in Software Engineering. Addison Wesley
Professional, 2002.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 23

http://www.exist-db.org

MODELING TRACEABILITY OF CONCERNS FOR SYNCHRONIZING ARCHITECTURAL VIEWS

[9] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architec-
tures: Methods and Case Studies. Addison-Wesley, 2001.

[10] Orlena Gotel and Anthony Finkelstein. An analysis of the requirements trace-
ability problem. In First International Conference on Requirements Engineering
(ICRE’94), pages 94–101, April 1994.

[11] William H. Harrison, Harold L. Ossher, and Peri L. Tarr. Asymmetrically vs.
symmetrically organized paradigms for software composition. Technical Report
RC22685, IBM Research, 2002.

[12] Francisco A. C. Pinheiro and Joseph A. Goguen. An object-oriented tool for
tracing requirements. IEEE Softw., 13(2):52–64, 1996.

[13] Balasubramaniam Ramesh, Curtis Stubbs, Timothy Powers, and Michael Ed-
wards. Requirements traceability: Theory and practice, 1997.

[14] Stanley M. Sutton Jr. and Isabelle Rouvellou. Modeling of software concerns
in Cosmos. In AOSD ’02: Proceedings of the 1st international conference on
Aspect-oriented software development, pages 127–133, New York, NY, USA,
2002. ACM Press.

Bedir Tekinerdoğan is an assistant Professor at the University
of Twente in The Netherlands. Contact him at Univ. of Twente,
Dept. of Computer Science, Software Eng., PO Box 217 7500 AE,
Enschede, NL; bedir@cs.utwente.nl.

Christian Hofmann is a PhD student at the the Univer-
sity of Twente in The Netherlands. He can be reached at
c.hofmann@utwente.nl

24 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

mailto:bedir@cs.utwente.nl
mailto:c.hofmann@utwente.nl

7 ACKNOWLEDGEMENTS

Mehmet Akşit is a full Professor at the University of Twente in
The Netherlands. He is the head of the Software Engineering chair
and the leader of the Twente Research and Education on Software
Engineering (TRESE) Group. Contact him at Univ. of Twente,
Dept. of Computer Science, Software Eng., PO Box 217 7500 AE,
Enschede, NL; aksit@ewi.utwente.nl.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 25

mailto:aksit@ewi.utwente.nl

