
Vol. 6, No. 7, Special Issue: Aspect-Oriented Modeling, August 2007

Designing and Weaving Aspect-Oriented Ex-
ecutable UML models

Lidia Fuentes, Dpto. Lenguajes y Ciencias de la Computación, University of
Málaga, Spain
Pablo Sánchez, Dpto. Lenguajes y Ciencias de la Computación, University of
Málaga, Spain

Aspect-Oriented technologies, including Aspect-Oriented Modelling, provide a set of
new constructs (e.g., advices or pointcuts), that help to improve the modularisation
of crosscutting concerns. However, these new constructions can make it more difficult
to understand how a system works as a whole, once all design modules are composed
together, because: (1) designers may not be familiar with the new aspect-oriented
constructions; and/or (2) aspect-orientation may cause new problems, such as the
handling of aspect interactions. A straightforward and simple solution to check how a
system works is to execute it. UML and its Action Semantics provide the foundations
for modelling and executing object-oriented software systems. This paper presents a
UML 2.0 Profile which extends the UML and its Action Semantics for the construc-
tion of aspect-oriented executable models and also a model weaver which makes the
execution of such models possible. Our approach is illustrated using an Online Book
Store system taken from the literature.

1 INTRODUCTION

Aspect-Oriented technologies improve the modularisation of software systems and
artifacts by defining: (1) new constructions (e.g., aspects, advices) for the suitable
encapsulation of crosscutting concerns into single modules; and (2) mechanisms
(e.g., pointcuts, weavers) to compose crosscutting concerns with the design modules
they crosscut. Aspect-Oriented Modelling approaches have mainly concentrated
their efforts on defining the set of constructions that make possible the appropriate
encapsulation and composition of crosscutting concerns. As a result, several UML
Profiles and design languages [27] have appeared.

Nevertheless, an important drawback of most of them, from the authors’ point
of view, is their lack of automatic tool support [14]. To the best of our knowl-
edge, there are no tools, such as AJDT (AspectJ Development Tools) [6], that help
aspect-oriented designers to reason about their aspect-oriented models by providing,
for instance, crosscutting maps (as AJDT does). This implies that when software
designers need to reason about how the modelled system would work as a whole,
i.e., after composing aspects with the design modules they crosscut, software design-
ers must weave them “manually” and/or “mentally”, which is a very cumbersome
and error prone task. Therefore, software designers must check by hand if pointcut

Cite this article as follows: Lidia Fuentes and Pablo Sánchez: Designing and Weav-
ing Aspect-Oriented Executable UML models, in Journal of Object Technology, vol.
6, no. 7, Special Issue: Aspect-Oriented Modeling, August 2007, pages 109–136,
http://www.jot.fm/issues/issues 2007 8/article5

http://www.jot.fm/issues/issue_2007_8/article5

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

models select more or less joinpoints than required, if the data flow through several
aspects is correct, or how an aspect behaves in different situations. Further discus-
sions about the behaviour of a system in the presence of aspects can be found in
Clifton and Leavens [5] and Kiczales and Mezini [16].

A straightforward and simple mechanism for visualising how a system model
works when all the design modules are composed together, is to execute it and ob-
serve its behaviour, i.e., to simulate the model. Model executability is a prerequisite
for model simulation, a widely used technique in most engineering disciplines. Sim-
ulation allows us to obtain early prototypes of our systems which can be used to (1)
analyse and test the behaviour of such systems against a set of requirements; (2) get
feedback from stakeholders before system implementation. Inaccuracies inherent in
an aspect-oriented design can then be detected during the model simulation, before
moving on to implementation. Fixing such inaccuracies at design time is cheaper,
faster and more desirable than carrying out necessary code modifications later on-
the-fly. Further discussion on the benefits of simulation in software development can
be found in Cottenier et al [10], Doldi [11] and in the Saturn experience [19].

In order to make a software system model executable, a prerequisite for model
simulation, this model must contain a complete and precise behaviour description.
UML and its Action Semantics provides the basis for complete and precise be-
haviour modelling of software systems. Several tools conforming to UML and its
Action Semantics and able to execute/simulate UML models, have been released
in recent years (e.g., Rhapsody, TAU G2, iUML, Rational Rose RT or IAR UML
VisualSTATE). UML and its Action Semantics, and therefore these tools, are object-
oriented, and consequently, they do not incorporate aspect-oriented support.

In order to overcome this shortcoming, this paper presents two complementary
contributions: (1) an AO UML 2.0 Profile for complete and precise AO behaviour
modelling, which extends the UML Action Semantics; (2) a weaving mechanism to
automatically compose aspects with the design modules they crosscut. The com-
plete system model can then be executed, which is the basis for simulating it. The
model weaver proposed in this paper is implemented using well-known, widely-used
open standards and it is independent of any specific UML tool. Using these two
contributions software designers can execute aspect-oriented models, visualise their
behaviour, reason more easily about them, analyse different alternative solutions
and/or fix errors before moving on to implementation.

The solution presented in this paper also benefits the executable modelling com-
munity, which can now use aspect-orientation, with the well-known benefits re-
garding ease of development, maintenance and evolution, as well as reusability of
individual design modules.

An Online Book Store System, taken from the existing literature [20], is used to
illustrate the concepts presented in this paper. It has been adequately refactored
with aspects.

In the following, the paper is structured as follows: Section 2 gives a general

110 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

2 OUR APPROACH

Base ModelBase ModelBase ModelBase ModelBase ModelBase Model AspectModelAspectModelAspectModelAspectModelAspectModelAspectModel

WeaverWeaverWeaverWeaver
Woven ModelWoven ModelWoven ModelWoven ModelWoven ModelWoven Model

1 2

Pointcut ModelPointcut Model

{hook=BEFORE_SEND}

: Bank
pay(..)

3

Pointcut ModelPointcut ModelPointcut ModelPointcut Model

{hook=BEFORE_SEND}

: Bank
pay(..)

{hook=BEFORE_SEND}

*:**:* BankBank
pay(..)

3

4

Figure 1: AO Executable Scenario

overview of the approach. Section 3 presents the Online Book Store System, used
as an example throughout this paper. Section 4 explains the principles for exe-
cuting UML models. Section 5 describes the UML 2.0 Profile for Aspect-Oriented
executable modelling. Section 6 contains the description of the model weaver. Sec-
tion 7 focuses on the current tool support for our approach. Section 8 comments
on related work. Section 9 provides some reflections on our approach, and finally,
Section 11 outlines conclusions and future work.

2 OUR APPROACH

This section contains an overview of our approach. Our goal is to obtain aspect-
oriented models that can be executed. It is also our intention to use well-known and
widely used standards whenever possible, in order to obtain vendor-independent
solutions and avoid the need for learning new notations and languages. UML is the
most widely known and used software modelling language and there is already a
wide range of tools available to support it. UML and its Action Semantics provide
the foundations for building object-oriented executable models, thus, the execution
and simulation of UML models are already a reality.

In this paper, we define a process for the construction of aspect-oriented UML
executable models. This process relies on the existence of two elements: (1) a UML
2.0 Profile for the specification of aspect-oriented executable models, which is called
AOEM (Aspect-Oriented Executable Modelling); and (2) a model weaver for aspect-
oriented models which conforms to the AOEM profile. Using both elements, such a
process is defined (see Figure 1) as follows:

1. First, a common UML executable model is constructed to model the non-
crosscutting concerns. The base model is obtained.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 111

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

2. Crosscutting concerns, including their precise and complete behaviour, are
modelled as aspects using the AOEM Profile. This produces the aspect model.

3. How crosscutting concerns must be composed with the concerns they crosscut
is specified by means of a pointcut model. The rules for modelling pointcuts
are also part of the AOEM Profile.

4. The base and aspect models are composed, which produces the woven model.
This model is a common UML executable model.

5. Finally, to execute the complete aspect-oriented model, the woven model is
imported into a UML tool with executing capabilities (e.g., Rhapsody). Thus,
we can run/simulate our model.

To perform the weaving, the base, the aspect and the pointcut model need to
be exported to a standard and interoperable format that can be manipulated. The
woven model must be generated according to this standard format, in order to ensure
it can be imported into a UML tool with execution capabilities. Such a format is
provided by the XMI (XML Metadata Interchange) [22] standard. It allows us to
serialise a UML model in an XML document, which can then be easily manipulated.
The model weaver presented in this paper takes as input the XMI representations of
the base, aspect and pointcut models and produces as output an XMI representation
of a model of the woven system. Obviously, the model weaver can be constructed
using APIs or model transformation languages that help us to deal with the XMI
representation of a model.

The steps of this process are illustrated in the following sections using the Online
Book Store example.

3 THE ONLINE BOOK STORE SYSTEM

An Online Book Store System, taken from the executable modelling literature [20],
is used as an example to illustrate our approach. The Online Book Store has to
provide a way for customers to place orders for books. From the set of use cases
presented in Mellor and Balcer [20], we focus in this paper on the ordering of books,
which is specified as follows:

1. A customer starts a new order by selecting a book and the required quantity.

2. The customer can continue adding more books to the order.

3. Once the customer is satisfied with his/her selections, the order goes to the
check out stage. A message is sent to the credit card company to process the
payment.

112 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

4 EXECUTABLE UML MODELS

OBS System
<< component >> Delivery

<< component >>

CreditCard
<< component >>

Network

GUI
<< component >>

Figure 2: Excerpt of the OnLine Book Store System architecture

4. If the payment is approved, a shipping order is created. A message is sent to
the delivery company to inform them that a new order is ready.

Additionally, some global requirements must be observed: (1) each time an or-
der changes, it must be persisted; (2) all the purchases will be made in Euros;
(3) because of business alliances, the system must interact with a specific credit
card company, which carries out all the operations in US Dollars. Therefore, when
exchanging messages with the credit card company, the system needs to perform
currency conversions. Persistence and Currency Conversion are identified as cross-
cutting concerns of the system.

Figure 2 shows an excerpt of the Online Book Store System architecture, which
is comprised of several components: the OBS System component, responsible for the
OBS core functionality; The Graphical User Interface GUI; and the external Credit

Card and Delivery services. Communication between the OBS System and the external
services is performed through a public network. For privacy reasons, the CreditCard

service imposes as an additional requirement that all the requests received must be
encrypted. Encryption is also identified as a crosscutting concern of the system.

Our intention is to construct an aspect-oriented executable model of the Online
Book Store System, where Persistence, Encryption and Currency Conversion are
well-modularised as aspects, without hampering system development, maintenance,
evolution or decreasing the reusability of the individual design modules.

4 EXECUTABLE UML MODELS

This section briefly describes the construction of a UML executable model for the
Online Book Store, which is the first step in our approach. In order to construct
executable models, two basic elements are required: (1) an action language, which
contains those elements that abstract the atomic actions the models can carry out;
and (2) an operational semantics, which specifies where and how the actions can be
placed in a model and how a model must be interpreted. Both elements in the UML
standard are described below.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 113

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

ShoppingCart

+addItem(book : Book, quantity : int)
+removeItem(book : Book)
+checkOut()
+creditNotification(ok : Boolean)
+deliveryNotification(ok : Boolean)

Customer

-name : String
-creditCard : String
+getCreditCard() : String

Book

-author : String
-title : StringClerk

+packOrder()

System

+register()
+unregister()

1..*

0..*

1..*

SelectedProduct

-quantity : Integer

-books

Figure 3: Class diagram for the OBS System internals

Operational semantics for UML models

The operational semantics of UML is still in the process of standardisation [24]. Nev-
ertheless, several tools implementing non-standard operational semantics for UML
models already exist (e.g., Nucleus Bridge Point, iUML, IAR UML VisualSTATE,
Rational Rose RT, Rhapsody or Tau G2).

Fortunately, the ideas behind them are quite similar, and as the corresponding
tool vendors are leading the creation of the new standard, it is reasonable to suppose
that the final adopted standard will be similar to current versions. The process of
constructing a UML executable model using these tools can be generalised and
summarised as follows: firstly, the global system structure is established as a set of
components. Then, the structure of each component is detailed by means of class
diagrams. The behaviour of each class is specified using a state machine, where each
state represents a stage in the lifecycle of a typical instance of the class. A transition
rule specifies the new state achieved when an object in a given state receives a
particular event. Each event represents an incident during the object lifecycle, as
the reception of a method call, a signal, or the expiration of a timer. Transitions and
states may have associated procedures (sets of actions) that model the behaviour
executed when a class instance enters, stays in or exits a state. Procedures are
specified using an action language.

The Online Book Store system is firstly broken down into several components:
OBS System, Credit Card and Delivery (see Figure 2). We will focus on the OBS System

component. The class diagram of Figure 3 details the internal structure of this
component. Basically, the OBS System contains a System class to register/deregister
users and to start the application. The system must have at least one Book, some
Customer data and Clerks to pack the orders. A ShoppingCart is used to store customer
orders while they navigate the system. We will focus on the ShoppingCart class.

In the next step, the behaviour of each class is specified by means of a state ma-
chine. Figure 4 shows the state machine that models the lifecycle of the ShoppingCart

class. Initially, the shopping cart is empty, until an event for adding a book arrives.

114 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

4 EXECUTABLE UML MODELS

CheckOut

WaitingFor
CreditConfirmation

WaitingForDelivery
Confirmation

Delivery

ItemsAddedEmpty

addItem(book:Book,quantity:int)/
UpdateItems

addItem(book:Book,quantity:int)/
UpdateItems

Payment

creditNotification(ok : Boolean) [ok=false] /
notifyNotCreditApproved

creditNotification(ok : Boolean)
[ok=true]

 / requestCreditConfirmation

deliveryNotification(ok : Boolean) [ok=false] /
notifyNotDeliveryApproved

deliveryNotification(ok : Boolean)
[ok=true]

 / requestDeliveryConfirmation

checkOut()

 / sendOk

Figure 4: State Machine for the ShoppingCart class

In this case, it changes to the ItemsAdded state, where more events for adding a book
can be received. Each time an addItem event is received, the UpdateItem procedure is
executed. When the customer performs a check out, the ItemsAdded state is left, and
the ShoppingCart enters into two states concurrently: Payment and Delivery, where
messages for credit (requestCreditConfirmation procedure) and delivery (requestDeliv-

eryConfirmation procedure) confirmation, respectively, are sent. If credit and delivery
are successfully confirmed, each state finishes appropriately, the system leaves the
concurrent state and a confirmation message is sent to the customer. If the credit
or the delivery are not confirmed, the concurrent states are interrupted and the
customer is informed about the error.

The Action Semantics

As commented before, procedures are specified by means of an action language.
UML defines its own action language [25], which aims to provide modelers with the
basis for a complete specification of UML models, including their full behaviour,
which is specified using a set of platform-independent atomic actions. It allows
for the execution of the UML models, and even to generate 100% of the code if
desired [21].

The UML standard defines an action as “the fundamental unit of behaviour
specification, which takes a set of inputs and converts them into a set of outputs”.
The UML action language defines operations that support the manipulation of ob-
jects and the logical constructs for the specification of algorithms. Examples of these
actions are object creation, calls to methods or writing an attribute value, among
others. Actions are contained in behaviours (procedures), which supply the context
for them. The specific set of actions used in this paper are explained in Table 1.

Intentionally, the UML action language does not enforce any notation for drawing
actions. Thus, each tool defines its own notation. To avoid the use of notations

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 115

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

ReadSelf Returns a reference to the object where it is executed
CreateLinkObject Creates an association class between two object ends
AddStructuralFeature Add a value to an attribute of an object passed
CallBehavior Invokes a procedure (another activity diagram with actions)
CallOperation Invokes an object method
SendSignal Sends a signal to a target object passed as parameter

Table 1: UML actions used to model the case study

<<AddStructuralFeature>>
Quantity

value
<<CreateLinkObject>>

SelectedProduct

newBook
book

cart<<ReadSelf>>
ThisShoppingCart

book : Book quantity : Integer

Figure 5: updateItems procedure for adding an item

that work specifically for proprietary tools, we have developed a UML Profile, for
specifying sets of actions (i.e., procedures) compatible with any UML tool supporting
activity diagrams and abstract actions, which is a common case. This Profile is based
on the ideas presented by Bock [2].

This Profile works as follows: Procedures are represented by means of UML
activity diagrams. Actions are nodes of activity diagrams. For each action, we
use the general action symbol (a round cornered rectangle). Inputs and outputs
are depicted as pins. To distinguish each specific action (object creation, attribute
reading/writing, etc.), this is stereotyped with its name (e.g., �ReadSelf�). Ad-
ditionally, it must have the same number of input/output pins as specified in the
standard, which is ensured by means of OCL constraints.

Figure 5 shows the behaviour of the ShoppingCart object after receiving an addItem

event, modelled according to the UML Action language and using the developed
Profile. This procedure has two parameters, the selected book and the required
quantity. The procedure creates a new association link object of the SelectedProduct

association class (see Figure 3), between the ShoppingCart hosting the behaviour
(returned by the ReadSelf action), and the selected book. The required quantity is
finally written in the corresponding attribute (structural feature) of the created link
object.

Figure 6 illustrates the behaviour requestCreditConfirmation, which is executed
when the ShoppingCart object enters the Payment concurrent state (see Figure 4). In
this case, the object calculates the total price of the order, recovers customer credit
card data, and gets a reference to the CreditCard service. With these parameters,
it requests a creditApproval from the CreditCard service. If the service confirms the
transaction, the check out process continues; if the transaction is not approved, a
message communicating the error is shown to the user.

116 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

5 ASPECT-ORIENTED MODELLING

<<CallBehavior>>
GetCustomerCreditCard

CCNumber

<<SendSignal>>
notCreditApproval

target
<<CallBehavior>>

CalculateTotalPrice
<<CallOperation>>
creditApproval

creditCard
ok

messageTarget

quantity

<<CallBehavior>>
GetReference

ref <<CallBehavior>>
GetReference

<<Literal>>
CreditCard

<<Literal>>
GUI

 [ok=true]
 [ok = false]

Figure 6: requestCreditConfirmation procedure for requesting credit approval

In this latter case, a behaviour defined by us (e.g., a subroutine), called GetRef-

erence, is used to get references to relevant components of the application, such as
the GUI (Graphical User Interface), the CreditCard or Delivery external services.

The procedures modelled in Figures 5 and 6 are not complete as they do not
observe Persistence, Encryption and Currency Conversion, which are added using
aspects in the next section.

5 ASPECT-ORIENTED MODELLING

In order to obtain a complete model of the Online Book Store System, Persistence
and Encryption must be added. This section illustrates how they are modelled in an
aspect-oriented fashion. To support the construction of aspect-oriented executable
models, this paper introduces the AOEM (Aspect-Oriented Executable Modelling)
UML 2.0 Profile, which is integrated with the principles of Executable UML and its
action language.

According to Fuentes and Sánchez [13], the AOEM Profile is specified in three
steps: (1) definition of the joinpoint model; (2) definition of the modelling of aspects
and their associated elements, such as advices; and (3) definition of the rules (e.g.
pointcuts) that indicate how these aspects must be composed with the modules they
crosscut.

Joinpoint model

The AOEM Profile uses a non-invasive joinpoint model (i.e., only the interception of
execution points visible on the module interfaces is allowed), similar to JAsCo [31],
Lasagne [32] or CAM/DAOP [26] models. This joinpoint model is suitable to be
used with black-box software modules, such as third-party components or legacy
systems.

The AOEM joinpoint model only allows designers to intercept observable be-
haviour of the design modules: (1) object creation and destruction; (2) the sending
and receiving of a method; (3) the sending and receiving of a signal; (4) the throwing
of an event; and (5) the raising of an exception. Aspect methods can be executed

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 117

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

ObjectA ObjectB

method()BEFORE SEND BEFORE RECEIVE

AFTER RECEIVEAFTER SEND

AROUND SEND AROUND RECEIVE

Figure 7: Message sending and receiving joinpoint model

GetMessName Returns the name of the intercepted message
GetMessArg(n) Returns the n-argument of the intercepted message
GetArgNamed Returns the argument with the specified name
GetTarget Returns a reference to the target of the intercepted message
GetSource Returns a reference to the source of the intercepted message
Proceed Executes the intercepted behaviour

Table 2: Aspect-oriented actions

before, after or around (in substitution of) these joinpoints. This paper will focus
on the joinpoints related to the sending and receiving of a message, as the other
cases, at the modelling level, can be considered special kinds of message (call or
execution) joinpoints. Specific joinpoints concerning message sending and receiving
are illustrated in Figure 7.

Aspect modelling

An aspect is modelled as a common class with special operations which model ad-
vices. Advices differ from common operations in that they are never invoked explic-
itly and they are executed by the aspect-oriented weaver without the knowledge of
the base class designer. For this reason, advices do not have parameters. Conse-
quently, each aspect-oriented language has to provide mechanisms to allow advices
to retrieve the information related to the joinpoint (e.g., the arguments of a mes-
sage) that they might need. A subset of the aspect-oriented actions provided by the
AOEM Profile to access the joinpoint context is shown in Table 2.

Thus, advices are modelled as activity diagrams (common procedures) without
input objects. They can have zero, one or more output pins, in order to be able to
modify values of the intercepted object flow. For instance, if an advice is executed
before a message is sent, the value could modify the value of message arguments. The
updated values would be placed as output values of the activity diagram representing
the advice. In the particular case of advices executed around a joinpoint, the advice
and the intercepted message should have the same number and kind of output
objects.

118 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

5 ASPECT-ORIENTED MODELLING

<<CallBehavior>>
GetReference

<<GetTarget>>
GetSettedComp

<<CallOperation>>
persist

object

target<<Literal>>
Persister<<component>>

Persister
<<aspect>>

Persistence
<<advice>>+persist() IPersistence

Figure 8: Persistence aspect: (left) structure definition (right) advice behaviour

<<CallOperation>>
encrypt

targetObject argsmessage

target

GetMessageName
<<GetMessName>><<GetTarget>>

GetTarget
<<ReturnValue>>

result
<<CallBehavior>>
GetReference

result

<<GetArgs>>
GetMessArgsEncrypter

<<Literal>>

Figure 9: encrypt() advice

To introduce Persistence, Encryption and Currency Conversion into the Online
Book Store system, three aspects are created. They are associated with the Persister,
Encrypter and CurrencyConverter common components. (Figure 8 (left) illustrates the
case for Persistence). These components have methods to persist objects, handle
encrypted communications and perform conversions between different currencies,
respectively. On the joinpoints, the task of the advices is to collect the required
data to invoke the appropriate Persister, Encrypter and CurrencyConverter services.

Figure 8 (left) shows the design of persistence as an aspect. A class Persistence,
stereotyped as �aspect�, is created. An advice persist is added to this class. The
aspect is associated, as commented above, with a classical Persister component. Fig-
ure 8 (right) shows the persist() advice, which persists objects after they have been
modified as a result of a method execution. The advice recovers a reference to the
object to be persisted (�GetTarget� action) and calls the persist(object) method of
the Persister component with this data.

<<CallOperation>>
euro2Dollar

quantity

target
result

<<UpdatedArg>>
quantity

{name = "quantity" }

<<GetArgNamed>>
quantity

{name = "quantity" }
result

<<Literal>>
CurrencyConverter

<<CallBehavior>>
GetReference

result

Figure 10: euro2Dollar() advice

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 119

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

Figure 9 depicts the advice for encryption. It relies on the Object[] encrypt(target:

Object, method:String, args:Object[]) method of the Encrypter component. The encrypt

method sends an encrypted request to the target object for executing method with args

as arguments. It returns the collection of (decrypted) values resulting from executing
the method. Thus, the task of the encryption advice (Figure 9) is to extract from
the intercepted joinpoint (the sending of a message) the target object (�GetTarget�
action), the message name (�GetMessName� action) and the arguments of the
message (�GetArgs� action), and, with these values, to invoke the encrypt method
of the Encrypter component (�CallOperation� action). The advice returns the values
(decrypted) which result from executing the method.

Figure 10 illustrates the advice for currency conversion. In this case, the advice
is executed when a message is sent to the CreditCard component, and it is required to
convert an amount from Euros to US Dollars. The euro2Dollar advice gets the value
of the argument of the message called quantity (�CallOperation� action), and, with
this argument, it invokes the euro2Dollar method of the CurrencyConverter component.
The resulting quantity of the conversion is placed as an output of the advice, and
it is indicated that the new value must be used as the quantity argument for the
intercepted message.

Pointcut modelling

Finally, to complete our aspect-oriented model, we need to construct the pointcuts
that specify how to compose the crosscutting concerns modelled as aspects, i.e.,
Persistence, Encryption and Currency Conversion, with the design they crosscut,
i.e., the ShoppingCart class in our example.

A pointcut expression is a pattern that matches several join points and asso-
ciates them with one or more aspect advices. In addition, a pointcut may express
some constraints (e.g. the joinpoint has to be in a specific execution flow) that must
be satisfied in order to execute the associated advices. At the modelling level, the
common practice for specifying pointcuts is, basically, to use UML diagrams with
wildcards (e.g., “*” to represent any sequence of characters or “?” to represent any
sequence of arguments) [13, 29]. As our intention is to intercept interactions between
objects (message sending/receiving), sequence diagrams are selected to model point-
cuts because they are the main elements in UML that represent object interactions
and they offer a user-friendly widely known notation.

A pointcut, according to the AOEM Profile, is expressed by means of a sequence
diagram, stereotyped as �pointcut�. This stereotype has a tagged value called
advice: an ordered collection of aspect advices, which will be executed in the specified
order on the joinpoints selected by the pointcut.

The specific message of the sequence diagram that must be intercepted is stereo-
typed as �joinpoint�. This stereotype has two tagged values: (1)point, which indi-
cates whether the interception point is either the sending (SEND) or the reception

120 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

5 ASPECT-ORIENTED MODELLING

add*(..)

<<pointcut>>
sd ShoppingCartUpdate

:ShoppingCart

<<joinpoint>> {point = RECEIVE,
time = AFTER}

{advice = Persistence .persist()}

*(..)

<<pointcut>>
sd CreditCardCalls

:CreditCard

<<joinpoint>>
{point = SEND,
time = AROUND}

{advice = Encryption .encrypt()}

Figure 11: Pointcuts for: (left) Persistence (right) Encryption

<<pointcut>>
sd CreditCardConversion

:CreditCard

<<joinpoint>>
{point = SEND,
time = BEFORE}

{advice = CurrencyConversion .euro2Dollar()}

*(..,quantity :double,..)

:ShoppingCart

Figure 12: Pointcut for Currency Conversion

(RECEIVE) of the message; and (2) time, which specifies when the advice is executed
related to the joinpoint (BEFORE, AFTER, AROUND). Wildcards are available in class
and method names: “*” represents any sequence of characters and “..” any sequence
of arguments.

The pointcut for adding Persistence to the ShoppingCart class is shown in Fig-
ure 11 (left). It specifies that the persist advice must be executed after the reception
(i.e., after the method execution) of any message starting with “add” and with
any number of arguments. This message can come from any source, as this is not
specified.

Figure 11 (right) shows the pointcut for adding Encryption, which specifies that
around sending any message (“*(..)” wildcard combination) from any source (this
is not specified) to the CreditCard service, the encrypt advice must be executed, in
order to fulfill the security requirements imposed by the CreditCard service.

Figure 12 depicts the pointcut for Currency Conversion, which specifies that,
each time any message, which contains an argument called quantity and the type
of the argument is double, is sent from a ShoppingCart object to the CreditCard ser-
vice, before sending such message, the euro2Dollar advice from the CurrencyConversion

aspect must be executed.

More complex pointcuts than those shown in Figures 11 and 12 can be specified
using the AOEM Profile. For instance, messages above the �joinpoint� message
can be used to specify cflow-like constraints. These messages have a tagged-value
cflowActive which is set to true if the joinpoint must be in the message flow, and it

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 121

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

Process
Pointcuts

Poincut Model

Base Model

Joinpoint
Selectors Marked Model

Advice
Injector

Woven ModelAdvice Model

Joinpoint Selection Advice Injection

Transformation
Model

Legend

Figure 13: Model weaving process

is set to false if the joinpoint must not be in their flow. The�pointcut� stereotype
has a tagged value named withinCode which serves to express withincode conditions.
It is a collection of (method, active) tuples, where method indicates the scope of the
withincode condition and active is a boolean value indicating whether the joinpoint
must be within the specified scope1.

6 A WEAVER FOR ASPECT-ORIENTED EXECUTABLE UML MOD-
ELS

In previous sections, the selected use case of the Online Book Store example has
been modelled in an aspect-oriented fashion. However, to be able to execute it,
aspect behaviours must be added to the modules they crosscut according to the
pointcut specifications, i.e., the weaving process has to be executed. As the ultimate
behaviour of common classes and aspects is expressed by means of activity diagrams,
the problem of weaving executable models can be reduced to the problem of weaving
activity diagrams. This section describes a static weaver for aspect-oriented models
that conform to the AOEM Profile.

Before designing the weaver, a common problem related to aspect interaction
needs to be solved: two pointcuts can share a subset of joinpoints which satisfies
both them. In this case, the execution ordering of advices might be important to
ensure the correctness of the application [12]. To solve this issue, our approach
implements a simple mechanism: each advice has an integer assigned that is unique
for all the advices in the model. This integer represents the execution priority of the
advice. If two aspects are applied over the same joinpoint, they are executed from
the higher (smallest integer) to the lower (biggest integer) priority. In the Online
Book Store example, this problem does not appear because, although euro2Dollar

and encrypt can be executed over the sending of a same message (creditApproval),
euro2Dollar is executed before the sending and encrypt around the sending, therefore
euro2Dollar is always executed before encrypt.

The task of the model weaver is to inject the advice behaviours into the places

1Interested readers can find further information of the AOEM Profile in
http://www.lcc.uma.es/∼pablo/AOExecutableUMLModels

122 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

6 A WEAVER FOR ASPECT-ORIENTED EXECUTABLE UML MODELS

indicated by the pointcut specifications. The weaving process is defined as a chain
of model transformations. Figure 13 shows a simplified version of this chain of
model transformations, where all the activities related to the checking of pointcut
constraints, such as cflow constraints, have been removed in order to avoid over-
whelming the reader with too much detail and for the sake of brevity.

We opted for a straightforward solution for implementing the model transforma-
tions, because, when we implemented the model weaver, there was a lack of stable
and mature model transformation languages that were able to deal with UML Pro-
files. Thus, in order to avoid learning non-standard and not 100% stable model
transformation languages, such as VMTS [18] or UMLX [34], which could disappear
in the future because of the appearance of more standard and powerful languages,
such as QVT [23], we opted for a simple solution to implement the model transforma-
tions and to demonstrate our ideas: we manipulate directly the XMI representation
of the models using standards such XSLT [36] and XPath [35], as we had previous
experience using these languages, and they provide a tool-independent, declarative,
robust and standard solution for implementing simple model transformations.

This weaving process is comprised of two main phases, as illustrated in 13: join-
point selection and aspect injection. Each one of these phases is explained in the
following subsections.

Joinpoint Selection

First of all, the pointcut model is processed by the ProcessPointcuts model trans-
formation, which generates a set of model transformations, called JoinpointSelectors,
as output. A JoinpointSelector model transformation serves to search all the join-
points that are selected by a pointcut. These joinpoints are stereotyped as�selected

joinpoint�, and the JoinpointSelector adds two tagged values to this sterotype: the
advice that must be executed on that joinpoint and the advice execution time (i.e.,
BEFORE, AFTER, AROUND). This information will be required by the AdviceIn-

jector model transformation in the next step. After applying the JoinpointSelectors
to the BaseModel, the MarkedModel, how and where advices must be injected, as
specified by the pointcuts, is obtained.

As the model weaver processes the XMI representation (an XML document) of
the models, it allows the use of XPath expressions [35] to search the selected join-
points. An XPath expression specifies a pattern that matches several XML tags
within an XML document. Hence, the pattern specified by a pointcut is auto-
matically transformed by the model weaver (using a model to text transformation)
into a set of XPath expressions embedded in XSLT transformations, which select
all the XML tags corresponding to joinpoints selected by the pointcut, mark these
joinpoints and add the required information (advice name and execution time).

Figure 14 shows the transformation of the pointcut to add encryption (see Fig-
ure 11 (right)) into an XPath expression. Lines 01-03 shows an excerpt of the XMI

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 123

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

<!-- Credit Card class description -->

01 <packagedElement xmi:type="uml:Component" xmi:id="NlOc" name="CreditCard">

02 ...

03 </packagedElement>

<!-- A Call Action to CreditCard service -->

05 <node xmi:type="uml:CallOperationAction" xmi:id="VRn1" operation="QD1i">

06 <target xmi:id="7S3g" name="target" type="NlOc"/>

07 </node>

<!-- XPath expression for selecting any call to the CreditCard service -->

08 "//node[@xmi:type=’uml:CallOperationAction’ and target[@type=’NlOc’]]"

Figure 14: Transformation into an XPath expression of the pointcut for encryption

CallOperation

arg 1 arg 2
target

result

O2 O3

O4

O1
arg 1
arg 2
result

Action 1

Source Object Target Object

Action N

...

O5

O6

1

2

3
4

5

6

1
SEND RECEIVE

BEFORE
AFTER

AROUND
2
3 6

4
5

Figure 15: Advice injection

representation of the CreditCard component. Lines 04-07 contain an excerpt of the
XMI representation of a call action to the CreditCard component (’QD1i’ is the XMI
identifier of the creditApproval operation). Line 06 states that the target of this call
is of the CreditCard type. Line 09 illustrates the XPath expression for selecting all
calls with the CreditCard class as target.

Using the XPath expression of Figure 14, the joinpoint selector: (1) looks for all
the joinpoints selected by the pointcut for encryption; (2) marks these joinpoints as
�selected joinpoint�; and (3) adds advice=Encryption.encrypt() and time=AROUND as
tagged values of the stereotype, using XSLT transformations.

Advice Injection

In the second step, the advice injection, the corresponding aspect advices must be
injected into the selected joinpoints (call actions and activities representing pro-
cedures in our particular case, as shown in Figure 15). The AdviceInjector model
transformation (see Figure 13) takes as inputs the MarkedModel and the AspectModel

and produces as output the woven model.

Depending on the kind of joinpoint the advice crosscuts (i.e., the sending (SEND)
or the reception (RECEIVE) of a message), and the execution time of the advice (i.e.,
BEFORE, AFTER or AROUND), an advice can be injected at six different places,

124 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

6 A WEAVER FOR ASPECT-ORIENTED EXECUTABLE UML MODELS

<<structured>>
advicePersist

<<ReadSelf>>
ThisShoppingCart

<<CallOperation>>
persist

object
target

<<CallBehavior>>
GetReference

result
Persister
<<Literal>><<AddStructuralFeature>>

WriteQuantity

value
<<ReadSelf>>

ThisShoppingCart SelectedProduct
<<CreateLinkObject>> newBook

book
cart

quantity : intbook : Book

CF2CF1

Figure 16: persist woven into ShoppingCart::updateItems

as illustrated in Figure 15. Each place corresponds to a specific value of the pair
(joinpoint kind, execution time), as shown in Figure 15. For instance, if an advice
has to be executed BEFORE SEND a method, it is added between the call action and
the actions that precede it (Figure 15, label 1). If it has to be executed AROUND

SEND or AROUND RECEIVE, the corresponding call action (Figure 15, label 3) or
activity (Figure 15, label 6), respectively, are substituted by the advice.

Aspect advices are injected as structured activities (see Figures 16 and 17, gray
background) inside the procedures they crosscut. These structured activities contain
the same behaviour as the advices, but the aspect-oriented actions introduced by
the AOEM Profile are appropriately transformed into common UML actions. The
advice injection plus the aspect-oriented actions transformation require updating the
object and control flows of the original procedures in order to ensure the correctness
of the composition. These concepts are illustrated using the injection of the persist,
encrypt and euro2Dollar advices (Figures 8, 9 and 10) into the base model of the
Online Book Store System (Figures 5 and 6), as an example.

Figure 16 shows the injection of the persist advice into the updateItems procedure
(Figure 5). It is injected just before the final node of the addItem procedure (an
AFTER RECEIVE case (Figure 15, label 5)). The original control flow that went from
the WriteQuantity action to the final node is removed; and the new control flows CF1

and CF2 are created. The GetTarget action of the original advice (Figure 8 (right)) is
replaced by a ReadSelf action, because the advice is injected into the target object.

Figure 17 illustrates the result of injecting the euro2Dollar and encrypt advices
before and around the creditApproval call to the CreditCard component, inside the
requestCreditConfirmation procedure (Figure 6).

As the encrypt advice has to be injected according to an AROUND SEND case (Fig-
ure 15, label 3), the original call action is substituted by a structured activity (en-

cryptAdvice) representing the encrypt advice, whereas the euro2Dollar advice, a BEFORE

SEND case (Figure 15, label 1), is inserted as a structured activity (euro2DollarAdvice)
between the original call (which, in this case, has been substituted by the encryptAd-

vice), and the actions that precede it.

In the advice2DollarAdvice structured activity, the aspect-oriented action GetArgNa-

med, used to retrieve the argument of the message named quantity, is transformed
into an input parameter (also called quantity), which provides the argument for the

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 125

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

<<structured>>
adviceEuro2Dollar

<<Literal>>
CurrencyConverter

<<CallOperation>>
euro2Dollar

quantity

target
result

<<CallBehavior>>
GetReference

quantity

resultOF2

<<structured>>
adviceEncrypt

<<CallOperation>>
encrypt

args
targetmessage

targetComp result

<<Literal>>
creditApproval

<<CallBehavior>>
GetReference

<<Literal>>
Encryption

target

ok

arg1

arg0

OF6

OF7

OF8

OF9

<<CallBehavior>>
GetCustomerCreditCard

CCNumber

<<SendSignal>>
notCreditApproval

target

<<CallBehavior>>
CalculateTotalPrice

quantity

<<CallBehavior>>
GetReference

<<CallBehavior>>
GetReference ref<<Literal>>

CreditCard

GUI
<<Literal>>

OF4

OF1

OF10

OF3

OF5

 [ok = false]
 [ok=true]

Figure 17: euro2Dollar and encrypt woven into ShoppingCart::requestCreditConfirmation

euro2Dollar call (OF2), of the structured activity. The object flow which provided
this parameter in the original method call is removed and redirected to this new
input parameter (i.e., the object flow OF1 is created). The output of the advice (the
result object) is connected (object flow OF3) to the quantity argument of the original
call (in this case substituted by the encryptAdvice), as indicated in the advice by the
UpdateArg stereotype (Figure 10).

In the encryptAdvice structured activity, an input parameter is created by each
argument of the substituted call action (arg0 and arg1). An additional input param-
eter (target) is also introduced to collect the target object of the call action. An
output parameter (result) holds the return value of the substituted call action. In
order to appropriately link the structured activity with the preceding and succeeding
actions, the object flows OF3, OF4, OF5 and OF10 are generated. OF3, OF4 and OF5

supply the input parameters and the target object to the structured activity input
objects. OF10 passes the advice return value to the following actions. The aspect-
oriented actions of the original encrypt advice (Figure 9) are transformed as follows:
(1) GetArgs originates the object flows OF8 and OF9; (2) GetMessName produces the
literal creditApproval which feeds the message value pin (OF6); and (3) the GetTarget

action gives rise to the object flow OF9.

We would like to point out that the transformation of aspect-oriented actions, the
advice injection and the updating of object/control flows involve many special cases
with many low-level details which are not mentioned here for the sake of brevity
and simplicity2.

2Interested readers can find further information of the AOEM model weaver in
http://www.lcc.uma.es/∼pablo/AOExecutableUMLModels

126 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

7 CURRENT TOOL SUPPORT AND VALIDATION

7 CURRENT TOOL SUPPORT AND VALIDATION

This section describes the experiments carried out to validate our approach and the
tools required to reproduce our experiments.

When selecting tools, the best choice would be to select one that supports UML
executable modelling and full capabilities for importing/exporting to a standard
interchange format such as XMI. Unfortunately, at the present time there is no tool
in existence which satisfies both requirements at the same time. The tools that
have full XMI import/export facilities, such as MagicDraw3, do not simulate UML
models; and the UML tools that are able to simulate models, such as Rhapsody4 or
iUML5, do not export the models to XMI, or any other standard format, fully. The
part regarding actions is often lost, making it impossible to perform the weaving.
Thus, to validate our results, we had to use a chain of tools, each one meeting our
requirements partially.

UML modelling was done using the UML2 plugin for Eclipse6, which is the most
complete implementation of the UML 2.0 metamodel, including the whole UML Ac-
tion language. It also offers full XMI export/import capabilities. Unfortunately, this
plugin does not offer graphical support for constructing/visualizing UML diagrams,
as it aims to be a “UML without pictures” [3] complete implementation of the UML
2.0 metamodel. MagicDraw was used to elaborate the graphical representation of
the UML diagrams presented throughout this paper.

In a second phase, we need to perform the weaving. It can be implemented using
any kind of model transformation language able to deal with UML Profiles and that
can accept several models as input. As mentioned before, at the time of implement-
ing the model weaver, there was a lack of mature model transformation languages
with such features, and we opted for manipulating the XMI representation of the
models directly. The static weaver takes the XMI representation of the base, aspect
and pointcut models as input and it produces the woven model. The implementa-
tion of the static weaver is tedious but simple, since we only have to manipulate
XMI files (XML trees) following the rules of section 6. This can be implemented in
any language with XML facilities, such as Java plus DOM and XSLT.

Finally, the woven model is executed. There is no simulation tool that supports
full XMI importing capabilities. Therefore, the solution adopted was to import the
model “manually” in a simulation tool, in our case Rhapsody, and to execute the
model.

It is evident that there is a clear lack of effective and seamless tool support for
our approach. Consequently, we are now developing a UML execution engine, called
Pópulo UML Virtual Machine, which is provided as an Eclipse plugin. Figure 18

3http://www.magicdraw.com/
4http://www.ilogix.com/homepage.aspx
5http://www.kc.com/products/iuml.php
6http://www.eclipse.org/uml2/

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 127

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

3

1 2

4

Figure 18: The Pópulo UML Virtual Machine

shows a screenshot of this tool. It allows designers to visualise the behaviour of
executable UML models by interpreting the UML actions. It works as a model
debugger and provides four views for observing: (1) the execution trace of the
model (Figure 18, label 1); (2) the current status of the objects created by the
application (Figure 18, label 2); (3) the values of the attributes of such objects
(Figure 18, label 3); and (4) the current status of the stack of method calls, the
status of the queue of actions and activities ready for execution and the status of
the bag of actions and activities that are blocked waiting for receiving some object
or control flows (Figure 18, label 4). The Pópulo UML Virtual Machine supports
breakpoints and step by step execution. The Pópulo UML Virtual Machine is still
under development. It will be released under an open-source license soon7.

Meanwhile, the work presented in this paper can be reproduced following the
steps and the tools described above. We also hope this lack of tool support will be
solved when the tool vendors start to fully adopt the UML and XMI 2.0 standards.

7Interested readers can find information about the Pópulo tool in
http://www.lcc.uma.es/∼pablo/Populo

128 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

8 RELATED WORK

8 RELATED WORK

There is some preliminary work on aspect-orientation and executable models in the
literature. It is described in this section and drawbacks are identified.

Sunyé et al. [30] presented a framework for modelling aspect-oriented applica-
tions. It serves to construct aspect-oriented executable models, but the weaving is
postponed until the implementation phase and thus, the execution of the complete
model, including aspects, is not possible at modelling time. The weaving process
is implemented as a model transformation from design to implementation, which
generates code from the UML actions.

C-SAW [14] is a framework for generating model weavers for aspect-oriented do-
main models. C-SAW is integrated with the GME 8 modelling environment. It fo-
cuses mainly on consistently adding constraints and properties to very large models,
rather than encapsulating crosscutting behaviours in aspects. In C-SAW, pointcuts
and advices are modelled using the ECL language, defined by the authors, which is a
subset of OCL. This kind of declarative and OCL-based textual languages might be
cumbersome for specifying pointcuts, as demonstrated by Stein et al [28]. Advices
are also modelled using the ECL language, therefore, aspect and base models are ex-
pressed in different notations, which could generate some understanding problems.
A more optimal solution, in our opinion, is to use the same notation for the aspect
and the base model, so the learning curve could decrease for those designers that are
already familiar with the notation of the base model. Additionally, the behaviour
of the advices is not modelled in a strict sense, instead, it is specified in a syntax
similar to C++.

Theme/UML [4] is an extension of UML for aspect-oriented modelling. It sup-
ports all the UML 2.0 diagrams. Therefore, using Theme/UML we should be able
to weave UML executable models, which specify procedures using the Action Se-
mantics. However, although Theme/UML specifies the weaving semantics of the
approach, until now, the weaving must be done manually, since no tool support is
available. We tried to implement a Theme/UML weaver, but without fruitful results
since it is quite complex and it is not precisely defined beyond sequence and class
diagrams.

Cottenier et al [7, 8, 10] present an idea very similar to this paper, called Mo-
torola WEAVR [10]. Currently, Motorola WEAVR can be considered the most
mature model weaver, since it has been adopted in production by Motorola. This
model weaver is integrated with the TAU G2 tool, and enables the use of power-
ful code generators provided by these tools. Additionally, it provides a interesting
joinpoint model based on states, which allows the specification of semantic point-
cuts in reactive systems [9]. However, Motorola WEAVR is based on the Telelogic
TAU G2 implementation of the Executable UML principles. Cottenier et al de-
fines an aspect-oriented Profile that extends the Telelogic SDL metamodel for the

8http://www.isis.vanderbilt.edu/projects/gme/

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 129

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

Action Semantics. This notation is not compatible with the current UML Action
language and introduces some proprietary features that reduce its interoperability
and tool-independence. The aspect-oriented model weaver is implemented as a Tele-
logic add-in [8], therefore it is not portable and tool-independent. Additionally, the
weaving process is not clearly described in their work.

Groher and Völter [15] present a model weaver, called XWeave, which allows the
weaving of models and metamodels based on the Eclipse Modelling Framework 9.
However, this model weaver is mainly focused on the structural definition of models
and metamodels instead of their behaviour. Additionally, it does not contain any
mechanism to model the precise behaviour of aspects. Ubayashi et al [33] propose
MMAP (metamodel access protocol), which can be viewed as reflection mechanisms
for manipulating a model as an instance of its metamodel. MMAP provides inter-
esting benefits for the construction of model weavers for aspect oriented models.
However, MMAP is limited to structural models (e.g. class diagrams), so the han-
dling of crosscutting behaviours is not possible.

9 DISCUSSION

Using aspect-orientation at the modelling level, software designers can avoid the
well-known problems derived from scattered and tangled representations of cross-
cutting concerns. Several aspect-oriented design notations have appeared in recent
years [27], but aspect-oriented designers do not have any support for modelling the
precise behaviour of their aspects and verifying their models. The executability of
aspect-oriented models is a prerequisite for simulating them and running test cases
that help to verify these models. This paper has described how to construct and
execute aspect-oriented models. However, a systematic process for designing the
test cases that allow designers to verify their models, such as those described by Xu
and Xu [37], is beyond the scope of this paper and has been left for future work.
This paper only describes the infrastructure required for executing test cases at the
model level.

Currently, using our approach, an aspect-oriented model can be debugged by
means of its execution. We provide two different scenarios using the Online Book
Store System where our approach is useful for detecting potential errors due to the
use of aspect-orientation.

Figures 11 (right) and 12 depict the pointcuts for adding encryption and currency
conversion to the communications with the CreditCard service. The first pointcut does
not specify any source, so it intercepts all the messages with the CreditCard service
as target. The second pointcut specifies that the source of the message must be the
ShoppingCart object. Therefore, the first pointcut might intercept communications
coming from sources that do not require encryption, because they are performed
over secure networks or we are using, for instance, a third-party component that

9http://www.eclipse.org/modeling/emf/

130 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

9 DISCUSSION

has encryption support built-in. On the other hand, the second pointcut might
be missing some joinpoints, if there are other classes that communicate with the
CreditCard service and that send quantities expressed in Euros. Hence, our approach
can be used to analyse that a pointcut selects all the joinpoints an aspect should
crosscut and these places only.

Figure 17 showed the result of injecting currency conversion and encryption into
the requestCreditConfirmation procedure. In this case, the amount of the credit to be
approved by the CreditCard service is converted to US Dollars and then encrypted
with the other arguments of the request. Then, the encrypted message is sent to
the CreditCard service. If we had defined a different ordering for the execution of
these aspects, e.g., applying encryption before currency conversion, the composed
behaviour would probably be incorrect. Therefore, our approach is also useful for
analysing problems related to aspect interaction.

Additionally, using this approach, different alternative solutions can be analysed
without the necessity of implementing them, simply by means of observing the
behaviour of their models. We would like to point out that, in order to analyse some
critical parts, or different alternatives, of an aspect-oriented model, designers do not
need to specify the model completely. They only need to specify the behaviour
of those parts that they want to analyse, and the irrelevant behaviours, such as
CalculateTotalPrice in Figure 6, can be simply filled with a dummy specification,
which will be refined at the implementation level. A deeper discussion on when it is
faster, cheaper and more desirable to model instead of directly coding is not the goal
of this paper, but the interested reader can refer to Cottenier et al [10, 8] and the
Saturn experience [19], and Mellor and Balcer [20]. Counter positions can be found
in Bell [1] and Kleppe et al [17]. A critical discussion of these issues is available in
Hailpern and Tarr [20].

Another contribution of this approach is that, as the woven model is a common
UML executable model, 100% of the code can be automatically generated if desired
(this feature is currently supported by several tools, such as Rhapsody, TAU G2 or
Rational Rose RT). As the generated code is non aspect-oriented, it allows develop-
ment teams to use aspect-orientated models on any target language supported by
their code generators.

We state in this paper that the AOEM model weaver is tool-independent because
it works on the XMI representation of the models instead of using specific APIs from
proprietary tools, as in the case of Motorola WEAVR. Nevertheless, this is not true
at all, since different XMI standard interpretations have produced non-interoperable
tools. Therefore, at the moment, our model weaver is constrained to the XMI
produced by the UML2 plugin of Eclipse. However, this XMI flavour is becoming
adopted as de-facto standard in the model-driven community, and commercial UML
tools (e.g. Rational Rose, MagicDraw) are able to export models to this format. We
hope these XMI interoperability problems disappear in the next few years.

Finally, at the current time, aspect-oriented models have to be executed from

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 131

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

their woven form. Therefore, designers must know how advices are transformed dur-
ing the woven process, which might result in usability problems. The development
of traceability mechanisms during the woven process has been left for future work
. These mechanisms would enable the execution of aspect-oriented models in their
unwoven form to be visualised.

10 CONCLUSIONS AND FUTURE WORK

In order to support aspect-oriented executable modelling, this paper has presented a
UML 2.0 Profile, called AOEM, for precise behaviour modelling of aspects. A model
weaver for such a Profile, with a feasible implementation using well-known standards
was described. The model weaver produces a common UML executable model as
output that can run in any UML modelling tool with execution capabilities.

As future work, it is our intention to incorporate more aspect-oriented features to
the AOEM Profile. In this sense, we will substitute the current pointcut specification
by Joinpoint Designation Diagrams (JPDDs) [29] in order to provide more expressive
pointcuts. It was not done in this paper as it is not a trivial task. First, as JPDDs
are not UML compliant currently, a UML Profile should be derived first. Secondly,
to generate joinpoint selectors is not as simple as for our current pointcuts. Thus,
we opted for using a simpler, but quite powerful, pointcut model following the
JPDD philosophy for the first version of the AOEM Profile and the associated
model weaver.

Experienced readers may miss inter-type declarations in the AOEM Profile. They
were explicitly left out since the authors position is that they are not strictly required
for aspect-orientation [13]. Nevertheless, they will be added to the AOEM Profile
in future versions. More flexible ways for accessing the joinpoint context will also
be investigated.

Additionally, the current implementation of the model weaver using XPath,
XSLT, Java and DOM presents some scalability and maintenance problems. Af-
ter experimenting with different model transformation languages, we have opted for
implementing the model weaver using ATL10. We will also continue working on the
implementation of the UML Virtual Machine and a user interface which provides
support for a user-friendly model simulation.

11 ACKNOWLEDGEMENTS

This work has been supported by Spanish Ministerio de Ciencia y Tecnologa (MCYT)
Project TIN2005-09405-C02-01 and European Commission Grant IST-2-004349-
NOE AOSD-Europe and the European Commission STREP Project AMPLE IST-
033710.

10http://www.eclipse.org/m2m/atl/

132 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

11 ACKNOWLEDGEMENTS

Authors would also like to thank Jorge Manrique his valuable contribution to the
implementation of the Pópulo UML Virtual Machine as well as all the anonymous
reviewers their useful comments and suggestions.

REFERENCES

[1] A. E. Bell. Death by uml fever. ACM Queue, 2(1):72–80, March 2004.

[2] C. Bock. UML 2 Activity and Action Models. Journal of Object Technology,
2(4):43–53, July-August 2003.

[3] C. Bock. UML without Pictures. IEEE Software, 20(5):33–35, September-
October 2003.

[4] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design : The Theme
Approach. Addison-Wesley Professional, March 2005.

[5] C. Clifton and G. T. Leavens. A design discipline and language features for
modular reasoning in aspect-oriented programs. Technical Report TR #05-23,
Department of Computer Science, Iowa State University, December 2005.

[6] A. Colyer, A. Clement, G. Harley, and M. Webster. Eclipse AspectJ: Aspect-
Oriented Programming with AspectJ and the Eclipse AspectJ Development
Tools. Addison-Wesley Professional, December 2004.

[7] T. Cottenier, A. V. de Berg, and T. Elrad. Modelling Aspect Oriented Composi-
tions. In J.-M. Bruel, editor, Satellite Events at the MoDELS 2005 Conference,
volume 3844 of LNCS, pages 100–109, Montego Bay (Jamaica), October 2005.

[8] T. Cottenier, A. van den Berg, and T. Elrad. Model Weaving: Bridging the Di-
vide between Elaborationists and Translationists. In Proc. of 9th Int. Workshop
on Aspect-Oriented Modelling (AOM), 9th Int. Conference on Model Driven En-
gineering, Languages and Systems (MODELS), Genova (Italy), October 2006.

[9] T. Cottenier, A. van den Berg, and T. Elrad. Joinpoint inference from behav-
ioral specification to implementation. In Proc. of the 21st European Conference
on Object-Oriented Programming (ECOOP), Berlin (Germany), July-August
2007.

[10] T. Cottenier, A. van den Berg, and T. Elrad. Motorola WEAVR: Model Weav-
ing in a Large Industrial Context. In Proc. of the 6th Int. Conference on Aspect-
Oriented Software Development, Industry Track (AOSD), Vancouver (British
Columbia, Canada), March 2007.

[11] L. Doldi. Validation of Telecom Systems with SDL: The Art of SDL Simulation
and Reachability Analysis. Wiley, April 2003.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 133

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

[12] R. Douence, P. Fradet, and M. Südholt. A Framework for the Detection and
Resolution of Aspect Interactions. In D. S. Batory, C. Consel, and W. Taha,
editors, Proc. of 1st Int. Conference on Generative Pogamming and Compo-
nent Engineering (GPCE), volume 2487 of LNCS, pages 173–188, Pittsburgh
(Pennsylvania, USA), October 2002.

[13] L. Fuentes and P. Sánchez. Elaborating UML 2.0 Profiles for AO Design. In
Proc. of the 8th Workshop on Aspect-Oriented Modelling (AOM), 5th Int. Conf.
on Aspect-Oriented Software Development (AOSD), Bonn (Germany), March
2006.

[14] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. Gokhale, and B. Natarajan.
An approach for supporting aspect-oriented domain modelling. In F. Pfenning
and Y. Smaragdakis, editors, Proc. of the 2nd Int. Conference on Generative
Programming and Component Engineering (GPCE), volume 2830 of Lecture
Notes in Computer Science, pages 151–168, Erfurt (Germany), September 2003.

[15] I. Groher and M. Völter. XWeave: models and aspects in concert. In Proc. of
10th Int. Workshop on Aspect-Oriented Modelling (AOM), 6th Int. Conference
on Aspect-Oriented Software Development (AOSD), pages 35–40, Vancouver
(British Columbia, Canada), March 2007.

[16] G. Kiczales and M. Mezini. Aspect-oriented programming and modular rea-
soning. In Proc. of the 27th International Conference on Software Engineering
(ICSE), pages 49–58, St. Louis (Missouri, USA), May 2005.

[17] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven
Architecture–Practice and Promise. Addison-Wesley Professional, April 2003.

[18] T. Levendovszky, L. Lengyel, and H. Charaf. Extending the DPO Approach for
Topological Validation of Metamodel-Level Graph Rewriting Rules. WSEAS
Transactions on Information Science and Applications, 2(2):226–231, February
2005.

[19] E. Long, A. Misra, and J. Sztipanovits. Increasing Productivity at Saturn.
Computer, 31(8):35–43, August 1998.

[20] S. Mellor and M. Balcer. Executable UML: A Foundation for Model Driven
Architecture. Addison-Wesley Professional, March 2002.

[21] Object Management Group (OMG). Action Semantics for the UML Request
For Proposal (ad/98-11-01), November 1999.

[22] Object Management Group (OMG). MOF 2.0/XMI Mapping Specification,
v2.1 (formal/05-09-01), September 2005.

[23] Object Management Group (OMG). MOF QVT Final Adopted Specification
(ptc/05-11-01), November 2005.

134 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

11 ACKNOWLEDGEMENTS

[24] Object Management Group (OMG). Semantics of a Foundational Subset for
Executable UML Models Request For Proposal (ad/2005-04-02), April 2005.

[25] Object Management Group (OMG). Unified Modelling Language: Superstruc-
ture v2.0 (formal/05-07-04). Chapter 5: Actions, July 2005.

[26] M. Pinto, L. Fuentes, and J. M. Troya. A Dynamic Component and Aspect-
Oriented Platform. The Computer Journal, 48(4):401–420, March 2005.

[27] R. Chitchyan et al. Report synthesizing state-of-the-art in aspect-oriented re-
quirements engineering, architectures and design. Technical Report AOSD-
Europe Deliverable D11, AOSD-Europe-ULANC-9, Lancaster University, May
2005.

[28] D. Stein, S. Hanenberg, and R. Unland. A Graphical Notation to Specify Model
Queries for MDA Transformations on UML Models. In U. Aßmann, M. Akşit,
and A. Rensink, editors, European Workshops on Model Driven Architecture:
Foundations and Applications. Revised Selected Papers, volume 3599 of Lecture
Notes in Computer Science, pages 77–92, 2005.

[29] D. Stein, S. Hanenberg, and R. Unland. Expressing different conceptual models
of join point selections in aspect-oriented design. In Proc. of the 5th Int. Con-
ference on Aspect-Oriented Software Development (AOSD), Bonn (Germany),
March 2006.

[30] G. Sunyé, F. Pennaneac’h, W.-M. Ho, A. L. Guennec, and J.-M. Jézéquel. Us-
ing UML Action Semantics for Executable Modelling and Beyond. In K. R.
Dittricha, A. Geppert, and M. C. Norrie, editors, Proc. of the 13th Int. Con-
ference on Advanced Information Systems Engineering (CAiSE), volume 2068
of LNCS, pages 433–447, Interlaken (Switzerland), June 2001.

[31] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: an Aspect-Oriented
approach tailored for Component Based Software Development. In Proc of
3rd Int. Conference on Aspect-Oriented Software Development (AOSD), pages
21–29, Boston (Massachusetts, USA), March 2003.

[32] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. N. Jørgensen. Dy-
namic and selective combination of extensions in component-based applications.
In Proc. of the 23rd International Conference on Software Engineering (ICSE),
pages 233–242, Toronto (Ontario, Canada), May 2001.

[33] N. Ubayashi, S. Sano, and G. Otsubo. A reflective aspect-oriented model editor
based on metamodel extension. In Proc. of the 1st International Workshop on
Modelling in Software Engineering (MISE), 29th Int. Conference on Software
Engineering (ICSE), page 12, Minneapolis (Minnesota, USA), May 2007.

[34] E. D. Willink. UMLX - A Graphical Transformation Language for MDA.
In 2nd Workshop on Generative Techniques in the context of Model Driven

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 135

DESIGNING AND WEAVING ASPECT-ORIENTED EXECUTABLE UML MODELS

Architecture, 18th Int. Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), Anaheim (California, USA), October
2003.

[35] World Wide Web Consortium (W3C). XML Path Language (XPath) Version
1.0. http://www.w3.org/TR/xpath, November 1999.

[36] World Wide Web Consortium (W3C). XSL Transformations (XSLT) Version
1.0. http://www.w3.org/TR/xslt, November 1999.

[37] D. Xu and W. Xu. State-based incremental testing of aspect-oriented programs.
In Proc. of the 5th Int. Conference on Aspect-Oriented Software Development
(AOSD), pages 180–189, Bonn (Germany), March 2006.

ABOUT THE AUTHORS

Lidia Fuentes received her PhD in 1998 from the University of
Málaga, where has been an Associate Professor since 1993. Her re-
search interests deal with Aspect-Oriented Software Development,
Component-Based Software Development, MDD/MDA, SPLs and
Software Agents. Her most significant publications can be found in
IEEE Transactions of Software Engineering, IEEE Internet Com-
puting or ACM Computing Surveys. She is actively participating in
several European research projects on AOSD, MDD and SPLs, such
as AOSD-Europe and AMPLE.

Pablo Sánchez is a PhD student at the University of Málaga since
2004. His main research areas are AOSD, MDD and SPL. He has
published on aspect-oriented executable modelling and metamodels
and model transformations for aspect-oriented models. Currently,
he is participating actively in the European Commission funded
projects AOSD-Europe and AMPLE; and he can be reached at
pablo@lcc.uma.es. See also http://www.lcc.uma.es/∼pablo.

136 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

mailto:pablo@lcc.uma.es
http://www.lcc.uma.es/$\sim $pablo

