
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 8, September-October 2007

Cite this article as follows: Rainer Weinreich, Andreas Wiesauer, Thomas Ziebermayr: “A
Component Model for Integrating - Remote Applications and Services via Web Portals”, in
Journal of Object Technology, vol. 6, no. 8, September-October 2007, pp. 67-94
http://www.jot.fm/issues/issue_2007_09/article1

A Component Model for Integrating
Remote Applications and Services via Web Portals1

Rainer Weinreich, University of Linz, Austria
Andreas Wiesauer, University of Linz, Austria
Thomas Ziebermayr, SCCH Hagenberg, Austria

Abstract
Application integration via web portals is the most widely used and least expensive
means for integrating enterprise applications and services. Component-based portals
enable the composition of web pages from reusable portal components, where each
component represents an independent application or service. This integration is often
limited to components displayed on the same web page, to local deployed components,
and to homogeneous environments. We describe a component model for enhanced
integration of portal components in web portals. Our model supports not only the
aggregation of components within one web page but also the composition of component
navigation into a central navigation area, the communication between local and remote
components, and the integration of heterogeneous environments. The approach is
based on existing standards and uses XML for describing component navigation and
communication capabilities. It is mostly declarative and may also be used for improving
integration capabilities of already existing portal components.

1 INTRODUCTION

Enterprise application integration (EAI) aims at unifying the different information
systems within an enterprise or between different enterprises (B2B integration).
Applications can be integrated on the data level, on the business logic and process level,
and at the presentation level. This categorization, which can be found in most books on
EAI, corresponds to the architectural layers of a typical information system [Chari &
Sheshadri, 2004]: presentation layer, business logic layer, and data layer. The data layer
is responsible for storing and accessing data in different data stores. The business logic or
application logic layer defines business processes and business rules. The presentation
layer implements the user interaction logic and provides the user interface for presenting
information to the user.

1 This article is a significantly extended and revised version of a paper presented at the IEEE International
Conference on Services Computing (SCC 2005), Orlando, Florida, July 11-15, 2005 (Weinreich &
Ziebermayr, 2005).

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

Data level integration views data stores as the primary point of integration
[Linthicum, 2003] and involves moving data between different data stores in order to
share relevant business data among applications [Linthicum, 1999]. Data stores are
typically relational data base systems or mainframe database systems. With data level
integration the application or business logic is completely bypassed and the use of the
data by other applications is out of control of the original data owner [Gorton & Liu,
2004]. Data level integration is often the most flexible way of integration.

Business level integration aims at integrating application or business logic and at
integrating business processes. Integration is achieved by means of middleware, typically
message-oriented integration brokers and workflow engines [Alonso et. al., 2004].
Integration brokers implement routing logic and transformation rules, and provide
adapters for accessing different applications and data sources. Workflow engines allow
the definition of business processes.

Presentation level integration means integrating the user interface of applications.
Please note that the term presentation level integration as used in this article is different
from its use in many books on EAI (e.g., [Linthicum, 1999]; [Ruh et. al., 2001]), where
presentation level integration often refers to integrating legacy applications into the
business logic layer by automatically extracting data from (terminal-like) user interfaces
(screen scraping). We use the term for integrating applications and services by integrating
their user interfaces. A simple and common form of presentation level integration in the
context of web applications is the usage of hyperlinks to the web front end of other
applications. Linthicum [Linthicum, 2003] states that presentation level integration is
currently the primary mechanism for application integration, because it is often the least
invasive and thus the least expensive form of application integration. However,
presentation level integration requires human interaction and leads to suboptimal
solutions in cases where business processes need to be automated. In this case, integration
can be achieved more efficient on the business logic level.

Enterprise application integration originally concentrated on integrating already
existing and potentially monolithic legacy applications. However, to stay competitive,
enterprises need a flexible application infrastructure that also permits changes and the
quick deployment of new functionality with minimal integration effort [Chari &
Sheshadri, 2004]. This means that new applications need already to be constructed for
integration and composition. In order to increase flexibility and reusability, applications
are further decomposed into smaller reusable units or, in cases where legacy applications
need to be integrated, a component-oriented integration layer is introduced. To protect
investments and reduce long-term costs of integration, organizations tend to follow
generally accepted standards for component integration and composition.

The movement towards componentization and standardization is most obvious in the
area of business logic integration. Application logic is decomposed into (web) services,
which can be used on the basis of clearly defined and standardized APIs and protocols.
Standards for describing and accessing web services are WSDL [W3C, 2004] and SOAP
[W3C, 2003]. Integration of (web) services leads to service-oriented architectures. An

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 69

emerging standard for composing services and for describing business processes based on
services is BPEL [BEA et. al., 2003], which is currently standardized by the OASIS
consortium.

However, componentization and standardization is not limited to business level
integration. Component-based web portals enable the integration of the user interfaces of
different applications and services as components on the same web page. Companies are
investigating presentation level integration using web portals for customizable integrated
workplace solutions (enterprise portals) and for providing personalized information
services to their customers (consumer portals).

In this article, we present a component model for enhanced presentation level
application integration in component-based web portals. Presentation level components in
web portals are typically called portlets. We provide enhancements to current standards in
mainly two areas: Firstly, we support data exchange between presentation level
components (portlets). We support not only data exchange between local portlets and
between portlets of the same portal application but also between local and remote portlets
and between portlets of different portal applications. Secondly, we support automatic
integration of the navigational elements of different portlets into central navigation areas.

The approach has been implemented on the basis of the Portlet and WSRP
specifications. This means, it can be used in any JSR-168 compatible portal server and
works with any WSRP producer. In terms of portlet communication, it enables the
exchange of arbitrarily structured XML-data, even if only part of the data is displayed at
the user interface, and allows pre-configuration of data exchange connections (wires)
between different portlets. For integration of navigational elements, each portlet may
export an XML-based menu description, which may be used as building blocks for
central navigation bars.

The remainder of this article is structured as follows: In the following section we
give an overview of the basic concepts and standards of presentation-level integration
with component-based portals. Then we define requirements for interportlet
communication and navigation integration in our application domain and describe the
basic concepts of our approach. A detailed description of the underlying component
model and of the architecture and implementation of our approach is the main part of this
article. In the final sections we reflect on deficiencies of existing standards, outline status
and further work, include a detailed discussion of related approaches, and provide an
outlook on upcoming standards and their implications for our approach. The article
concludes with a summary of the main benefits of our approach.

2 BASIC CONCEPT AND STANDARDS

A well-known design principle for web based information system is the separation of
application or business logic and presentation logic. This separation of concerns has
many advantages like the possibility of reuse of the application logic for different
applications, the possibility of offering different user interfaces for different end user

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

devices (multichanneling), and the possibility of assigning the different application parts
to different, specialized development teams.

Web services are typically a means for application integration at the application or
business logic layer. Application logic is partitioned into application parts or services and
access is provided through clearly defined service interfaces specified in WSDL.
Application integration at this level is most useful for automating and integrating
business processes (e.g., using BPEL) and provides limited support for integrated
workplace solutions and consumer portals. Integrating user-centric applications at the
business-logic-level typically requires the development of a new presentation layer for
the specific integration scenario, even if user interfaces for the individual applications and
services exist.

Figure 1: Presentation-level integration in web portals

Component-based web portals offer an approach for reusing applications and services at
the presentation layer which exceeds the well known approach of linking web
applications by means of hyperlinks. The main idea is to provide reusable components,
called portlets, at the presentation level, each implementing the user interface for a logical
application part or service. Portlets from different applications can be integrated within
the same web page, as shown in Figure 1. For example, one portlet may display a list of
customers; another portlet on the same page may display a detailed view of a specific
customer; and a third portlet may show an application for calculating mortgage rates.

The composition of web pages from portlets is performed by portal administrators,
who configure web portal pages by selecting the portlets to be displayed on the page
using portal-server-specific configuration tools.

Composing applications from reusable presentation level components is important
for personalization of portals and for creating integrated and adaptable workplace
solutions. Presentation level integration may also be used as an alternative for business

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 71

level integration, especially if partitioning an application at the business logic level is
very expensive and user interaction can be tolerated. In this case, the functionality of a
potentially monolithic application can be reused by defining presentation-level
components for certain functional aspects of the application. For example, a CRM
application might offer a reusable customer search component at the presentation level.

Standards for integrating services at the presentation level are the Java Portlet
Specification (JSR 168) [JCP, 2003] and the Web Services for Remote Portlets (WSRP)
Specification [OASIS, 2003].

JSR-168 based web portals provide a component model for Java-based portlets. JSR-
168 is restricted to local portlets. This means that portal pages can only be composed
from portlets that have been deployed at the same portal server. This is a problem if
portlets that are hosted by different organizational units have to be integrated into one
application.

WSRP provides additional features that are not supported by JSR-168. WSRP is a
platform-independent specification that allows the integration of remote, and also non-
Java, portlets into portal servers and other applications acting as WSRP consumers. In
addition, WSRP can be used for integrating Java-portlets in non-Java portal servers. In
this case the Java portal server has to act as WSRP producer.

Currently, standards like JSR-168 and WSRP support no further integration of
portlets from different applications than being displayed on the same page, especially if
some of these portlets are hosted on a remote server. To stick with the previous example,
in order to use the customer data (displayed by one portlet) in the mortgage calculation
(displayed by the portlet of another application), a customer consultant has to copy the
fields manually and complete the missing information by reentering it at the user
interface of the destination portlet. In addition, each portlet has to maintain its own
navigation and menu structure. This may lead to inhomogeneous and decentralized
navigation structures, which is a significant problem for providing a consistent and
intuitive user-interface to a human user.

3 REQUIREMENTS

The approach presented in this article has been motivated by integration requirements of
related financial institutions in Austria, who need to integrate applications and services
hosted by physically and organizationally separate computing centers with different hard-
and software server infrastructure. Main requirements were adherence to standards due to
heterogeneity of IT infrastructures and support for integrating remote applications and
services at the presentation level in component-based web portals.

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

Figure 2: A typical portal page

Figure 2 shows a typical web page with aggregated content areas from different
applications and services. Each area is generated by a portlet acting as presentation layer
for the application or service. The figure shows portlets supporting bank customers in
calculating special savings and mortgage rates. A portlet creates not only the user
interface representation but is also responsible for handling user interaction in its area.
Portlets may be running on one portal server, but may also be hosted and integrated from
remote servers.

Figure 3: Customer search portlet

In order to support specific business processes, data exchange between portlets is
necessary. For example, a Customer Relationship Management (CRM) application may
provide a customer lookup portlet (see Figure 3), which can be used by a customer
consultant in a financial institution for searching for a specific customer.

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 73

Since the customer asks for a credit, the consultant wants to transfer the customer data
directly to the credit calculation application, instead of manually entering the necessary
customer data. Ideally, he just sends the customer data provided by the customer search
portlet to a portlet of the credit calculation application. Note that the portlet in Figure 3
only shows a fraction of the available customer data. The customer name may not suffice
for further processing in other applications like the credit calculator. Thus the customer
search portlet actually has to transfer much more information, which is transparent to the
user (the consultant in this case).

This small example allows us to present the requirements on our approach in more
detail. We start with the basic requirements on data exchange between portlets.

a) Intra- and inter-application communication.
Since portlets of different applications may be part of one portal site and even of
one portal page, we need to support data exchange between portlets within one
application and between portlets of different applications.

b) Communication with remote portlets.
Portlets located on remote hosts may be integrated using WSRP. We need to
support data exchange between local and remote portlets.

c) Support for heterogeneity.
The need for integrating remote portlets using WSRP implies that remote portlets
may be implemented using different implementation technologies. This means
that the data needs to be transmitted in a platform-neutral format.

d) Support for transmitting complex data structures.
As described in our small example, supporting exchange of individual data fields
visible on the user interface is not sufficient. We need to support the exchange of
complex data structures transparently to the user.

e) Support for 1:n communication.
Data from one portlet may be simultaneously sent to a number of destination
portlets. A typical example is a portlet displaying a map of a geographical region.
Upon selecting a particular location, the location data may be sent simultaneously
to several portlets, one describing the location, one displaying weather
information, and one showing current events at this location. This is a typical
scenario in consumer portals.

f) Support for selecting a particular target.
Sometimes data has to be sent to a particular target, even if several portlets are
able to consume the data. For example, the consumer consultant in the financial
example may want to consult a customer on savings and investments instead of
credit offers. Thus he needs to send customer data from the CRM portlet to the
appropriate target portlet according to the specific demands and business case.

g) Wiring particular portlets.
Sometimes business processes for a particular workplace are clearly defined. For
example, a particular consultant may always need to send consumer data to a

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

credit calculation portlet. In this case, the connection between particular portlets
needs to be defined in advance as part of a workplace configuration.

Naturally Requirements a-c also apply to navigation integration. In addition to these basic
(mostly functional) requirements we had to consider requirements regarding mostly non-
functional system properties, aimed at protecting investments and long term viability of
the approach. This includes issues like reusability, portability, and integration with
existing components. For our approach, the following more specific requirements are
important:

h) Portability of the developed services.
The communication and navigation integration services have to be deployed to
Java-based portal servers. But both services need to be as independent from a
particular portal server as possible.

i) Reuse of third-party components.
It should be possible to reuse components from independent third parties.

A well known strategy for ensuring these non-functional requirements is the adherence to
existing standards like the Java Portlet Specification [JCP, 2003] and the Web Services
for Remote Portlets (WSRP) specification [OASIS, 2003]. However, specifications like
WSRP typically contain optional parts, which need not be implemented by compliant
WSRP producers. This means that it is important to rely on core features of a particular
standard, only.

The use of standards allows reuse of standard compliant portlets, potentially from
third parties, and enables the integration of these standard portlets with enhanced portlets
supporting interportlet communication and navigation integration. However, reusing
third-party components is not enough. Ideally, it should be possible to easily enhance
these components with data exchange and navigation integration capabilities. Further,
enhanced portlets may also need to be integrated in standard portal servers without data
exchange and navigation integration services. This leads to the following two final
requirements:

j) Adaptation of existing portlets.
It should be possible to augment existing JSR-168 and WSRP compliant portlets
with data exchange and navigation integration capabilities, ideally without
changes to their implementation.

k) Use of data exchange enabled portlets without the data exchange service.
It should be possible integrate portlets with data exchange and navigation
integration capabilities in standard JSR-168 and WSRP compatible portal servers
without the data exchange and navigation integration services.

As stated by [Chari & Sheshadri 2004], standards are an important means for reducing
the long-term costs of integration. However, the use of standards also has disadvantages,
especially if they are immature and incomplete. We outline shortcomings of existing
standards with respect to our extensions after presenting our approach in the following
sections.

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 75

4 APPROACH

The communication service supports sending of structured XML data from a portlet
acting as data source to compatible portlets acting as data sink. A portlet acting as data
source may associate arbitrary data with information presented at the user interface and
may send this data to compatible data sinks on user request. An example for a portlet
acting as data source is shown in Figure 4.

Figure 4: A portlet acting as data source

The figure shows a portlet displaying a list of customer names. Each customer name has
associated customer data, which is indicated to the user by an arrow icon. An example for
associated customer data is presented in Listing 1.

<person gender="male">
 <firstname>Markus</firstname>
 <lastname>Muster</lastname>
 <id>44564545</id>
 <address>
 <street>Musterstrasse 88</street>
 <city>Musterdorf</city>
 <zip>4135</zip>
 </address>
 <dayofbirth>
 <day>3</day>
 <month>5</month>
 <year>1973</year>
 </dayofbirth >
</person>

Listing 1: Customer data example

Data of a specific customer can be sent to other portlets, by selecting the arrow icon
associated with the name of the customer. After selecting the data to be sent, the data
exchange service determines all portlets, which are able to consume the selected data and
displays a menu for selecting the desired target as shown in Figure 4. The data can be
sent to one or to all compatible data sinks. An administrator is able to predefine
connections between portlets and store them persistently. If a connection is already
predefined, no menu is displayed and the data is directly sent to the target portlet.

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

Figure 5: Navigation integration

The approach for navigation integration is shown in Figure 5. The figure shows two
independent portlets that are displayed at the same portal page. Each portlet exports a
menu structure (in XML) which is combined with the menus exported from other portlets
into a central navigation area on the portal page (shown on the left side of Figure 5).

5 COMPONENT MODEL

Data exchange and navigation integration is supported by modeling portlets as
presentation level components. Each component offers clearly defined input and output
ports for communication and may export a menu for navigation integration. Input ports,
output ports, the data to be transmitted, and the exported menu are described in XML to
support integration of remote portlets and to enable platform independence as described
in the Requirements Section (requirements b and c).

Each communication port has a name and a data type. The port name is used with the
portlet name for creating durable connections between portlets. The data type is used for
assuring compatible connections and for determining data sinks that are able to consume
data offered at a specific output port.

The output ports of a data source and the exported navigation menu are embedded in
the HTML-markup of the actual portlet page (fragment) presented at the user interface.
This means that the output ports of a data source portlet and the portlet menu may change
with each page being displayed. This is not surprising, since the output ports are
associated with the data being displayed at the user interface.

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 77

…
<tr>
 <td>3</td>
 <td>Markus Muster</td>
 <td>

<!-- <port
 name="personData"
 type="Person"
 schema=http://www.raiffeisen.at/schemata/types.xsd
 portlet="CustomerLookupPortlet">
 <person gender="male">

person data (see Listing 1)

 </person>
</port> -->

</td>
</tr>
…

Listing 2: Output port description (data source)

Listing 2 shows a fraction of the HTML page fragment generated by the portlet displayed
in Figure 4 including the embedded port description of an output port. The output port in
Listing 2 is associated with one of the names displayed by the portlet in Figure 4. The
attributes name and portlet are used for identifying a port when defining connections
between portlets. The type and schema attribute defines the data type of the data available
at a specific output port. The data to be submitted is also part of the port description. The
listing shows that the available person data contains much more information than just the
person’s name.

The input ports of a data sink are equally described in XML and stored in an
interface description file, which can be accessed using a URI. Listing 3 shows the
interface description file of a sample data sink.

<datasink>
 <port>
 <name>Customer</name>
 <description>credit user</description>
 <type>person</type>
 <schema>http://www.raiffeisen.at/schemata/types.xsd</schema>
 <action>setCustomer</action>
 </port>
 <port>
 <name>Amount</name>
 <description>credit amount</description>
 <type>decimal</type>
 <schema>"http://www.w3.org/2001/XMLSchema</schema>
 <action>setAmount</action>
 </port>
</datasink>

Listing 3: Input port description (data sink)

In addition to port name and data type the definition of an input port includes an action
identifier, which can be used to specify the action upon receiving data at this port. The
action identifier is dependent on the dispatching mechanism used by the data sink

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

implementation. For example, it could denote a method to be called upon receiving data
on this port.

Similar to output port descriptions an XML description of the navigation menu of a
portlet is embedded in the HTML-markup of the actual portlet page. A sample menu
description is shown in Listing 4.

<menu id="creditCalculator" title="CreditCalculator" xmlns="http://www.raiffeisen.at/portal/menu">
 <menuitem id="calculator_page1" href="….>" info="Calculates the Ratainage">
 <label>Calculate Retainage </label>
 </menuitem>
 <menuitem id="calculator_page2" href="…" info="Calculates Credit Period">
 <label>Calculate Period</label>
 </menuitem>
</menu>

Listing 4: XML-description of portlet menu

As shown in Listing 4, a menu may consist of menu items, each containing a URL link to
the target portlet. The id attribute denotes the action to be performed by the portlet. The
value of the label element is displayed at the user interface. The info attribute provides an
additional help text, which may be useful for a more elaborate description of the menu
element in certain situations.

6 ARCHITECTURE AND IMPLEMENTATION

The developed services are based on the Portlet (JSR-168) and WSRP specifications and
can therefore be used with any JSR-168 and WSRP compliant portal server. We first
describe the architecture of a typical JSR-168 compliant portal server and then illustrate
the necessary extensions for the interportlet communication and navigation integration
services.

Figure 6: Portal server architecture (component perspective)

The Portlet Specification defines a component model for presentation components
(portlets) in Java. A JSR-168 compliant portal server is typically implemented on the
basis of a J2EE compliant web or application server. The architecture of a JSR-168
compliant portal server from a component perspective is shown in Figure 6.

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 79

The portal server (1) uses presentation components (portlets) for generating portal
pages. Each portlet delivers a page fragment. All page fragments are aggregated to form
the final portal page. Portlets are loaded in a portlet container (2). The portlet container is
responsible for life-cycle management of the loaded portlets and defines the portlet
context. Client requests are received by the portal server and are dispatched to a target
portlet, depending on the configuration of the portal page.

Remote portlets are accessed via a proxy portlet (3), which acts as WSRP consumer.
The proxy portlet forwards requests to the remote portlet using WSRP calls. The host of
the remote proxy needs to act as WSRP producer (4) and delegates the requests to the
appropriate remote portlet (5).

Figure 7: Portal server architecture (application perspective)

Figure 7 shows the portal server architecture from a web application perspective. Since a
JSR-168 compliant portal server is typically based on a J2EE compliant web/application
server it allows the deployment of web applications in a servlet container. A web
application defines a run-time scope for the components (servlets) of the application.
Components of an application may share user specific session state and global application
state.

The portal server is usually implemented as special web application (1). It defines a
central portal dispatch servlet (2), which delivers the requested portal pages to a client
browser (3). The structure of a portal page and the portlets included in a page are defined
in the portal configuration (4). The portlets on one page may be part of different (5), and
even remote (6) applications. Portlets of different applications are not able not share any
session or application state. This means that global session or application state cannot be
used for portlet communication and navigation integration.

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

Figure 8 shows the structure of a portal server using the data exchange service. Portlets
supporting data exchange are installed like any other portlet and are managed by the
portlet container. The output ports of a data source portlet are embedded in the HTML
page fragments generated by the portlet (4). As described in the Section “Component
Model” an output port has a name, a data type and contains the data that is available at
this port. A data sink portlet embeds URL references to the portlet itself and to the input
port description file (7) into each generated page fragment.

Portal Server A

Servlet Container

Client Browser

Portal Server (Web) Application

1

Portal Server B

Web Server (Servlet Container)

Portal Server
(Web) Application & WSRP

Producer

Portlet (Web) Application

Portlet

Portlet (Web) Application

Portlet
(Web) Application

Portlet
(Web) Application

Portlet Portlet WSRP ProxyPortletPortlet

Portal Dispatch Servlet

Portlet

Registry Servlet

Registry for Data
Source and Data

Sink Portlets

Data Exchange Service Filter

Portal Page
Descriptions

2

3

4

5

6

4

7
7

7

Figure 8:Data service architecture

The working of the data exchange service is best described by a typical interaction
scenario. The numbers used in the scenario refer to the components shown in Figure 7.

The scenario starts with a browser (1) requesting a web page with information
aggregated from several portlets from the portal server. The request will be processed by
the portal server web application (2), which uses a pre-defined page description (3) for
determining the portlets it needs to build the requested page. Each portlet returns an
HTML-page fragment, which is aggregated with a general page frame and the fragments
returned form the other portlets to form the final web page. The page fragments of data
source portlets contain output port definitions with embedded XML-data structures (see
Section “Component Model”).

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 81

Before the aggregated page is returned to the web client, it is analyzed and
transformed by a filter component (5) which is installed as part of the portal server web
application. The filter extracts the output port description and replaces each output port
with a hyperlink (illustrated by the arrow in Figure 4) and data exchange application
logic. The hyperlink allows the user to send the data available at this output port to
compatible data sink portlets. The inserted application logic determines all data sink
portlets with compatible input ports and creates a menu for selecting the desired target.
After selecting the target, the data is sent to the data sink portlet using an HTTP-POST
request (more specifically the request is sent using an actionURL supplied by the data
sink). Since data is sent like any other HTML-form data, this mechanism works
transparently for remote portlets that are integrated via WSRP.

An important issue for sending data and connecting portlets is determining all data
sink portlets that are compatible to a specific output port. Thus data sinks need to register
at a central registry (see Figure 8). The registry (6) is located in the portal server web
application. The registry also maintains information about data sources, which is used
when defining durable connections between portlets. Each portlet is registered at the
registry the first time it is displayed on the page. Registration is performed by the filter,
which extracts the necessary information from the aggregated portal page.

The late registration of data sink portlets means that data can only be sent to portlets
that have already been displayed to the user. This is no problem if data source and data
sinks are displayed on the same page. It may lead to problem if data should be sent to an
application, whose portlet is on another web page, which has not been opened, yet. The
problem is due to the immaturity of current standards. We will comment on this problem
in the next section. Currently, we can only solve this problem by defining durable
connections between portlets located on different pages.

:Browser :Portal Portlet:Filter :Registry

page request
render

content
HTML page

page request

extract registry information

register portlets, ports and URLs

embed links and processing logic

page response

:Portlet

Figure 9: Registering data sources and data sinks

The process for supporting data exchange between portlets in our approach is
summarized in Figure 9. The page request is sent from the browser to the portal server
application. The portal server application aggregates a web page from the page fragments
generated by the portlets and returns the page to the installed filter component. The filter
extracts information about portlets and their input and output ports, and registers this
information at the central registry. In addition output ports are replaced by hyperlinks and
processing logic for determining compatible data sink portlets and for sending data.

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

The mechanism for automatically aggregating navigation elements is implemented
similar to the data exchange service. Each portlet embeds an XML based menu
description in its HTML page fragment including hyperlinks for each navigational
element. The page fragments are aggregated by the portal server and processed by a filter
component for navigation integration. The navigation integration filter extracts the menu
descriptions of all portlets within a portlet page and creates a central navigation area.
After the page has been aggregated and processed by both data exchange service filter
and navigation integration filter, it is sent to the client.

The described implementation allows a transparent integration of remote portlets,
even if they are not implemented on the basis of J2EE and JSR-168. Remote portlets are
integrated using a proxy portlet acting as WSRP consumer. They can be data sources as
well as data sinks and they may export a menu description. The port description, the
address of a remote portlet, and the menu description are embedded in the HTML-page
fragment generated by the portlet and transmitted via getMarkup using the WSRP
protocol. Sending data to a remote portlet is based on the same mechanism as sending
HTML form data: Data is transmitted sending an HTTP-POST request to the portlet
ActionURL which results in a call of the WSRP method performBlockingInteraction.

7 STATUS AND FUTURE WORK

The presented approach fulfills all requirements defined in the “Requirements” Section.
Intra- and interapplication communication is supported as well as communication with
remote portlets (requirements a-c). Heterogeneity and structured data are supported
through the use of XML for describing interfaces and data (requirements c and d).
Multicasts are as well supported as selecting a particular target by means of a menu and
the definition of persistent connections between portlets (requirements e–g). We support
global as well as user specific connections between portlets. Connections can be defined
using a wiring tool.

Augmenting portlets with input and output ports and aggregating portlet menus
requires no special APIs and no modification of the portlet code itself. This is because
output ports of a data sink and menu descriptions are embedded in the HTML page
fragment generated by the portlet. Typically a portlet generates its presentation from a
view template based on technologies like Velocity or JSP. Embedding output port
definitions and menu descriptions in HTML requires only a change of the view template.
This allows augmenting third party portlets with data export capability (requirement j).
Input ports are defined in a separate interface description file, which has to be supplied
for data sink portlets. Of course, processing the data received by a data sink portlet
requires implementation of the processing logic. Finally, since all data embedded in
HTML is commented, portlets supporting data exchange and navigation integration can
be used in portal servers with no data exchange and navigation integration services
installed (requirement k).

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 83

Installation of the data service in a J2EE/JSR-168 compliant portal server requires no
proprietary adaptations and code changes (requirement h). Only four components need to
be added to the portal server web application: two servlet filters for analyzing and
modifying portal pages, a servlet managing the registry and a servlet for transmitting data
from a data source to one or multiple data sinks. None of these components is dependent
on portal server specific code.

We are currently analyzing approaches for adapting remote portlets to different
portal contexts. The adaptation of a portlets appearance is supported by existing
standards. However, we would need an adaptation of a portlet’s functionality depending
on the actual integration context. This requires transmitting context and user profile
information to remote portlets. We are also investigating the integration of portlets into
rich clients acting as WSRP consumers based on our component model.

8 OPEN ISSUES

The main drawback of the current implementation is that communication between
portlets on different web pages is only supported, if the page containing the target portlet
has already been opened by the user. The problem is less obvious if a persistent
connection between two portlets has been defined. In this case we cache the data sent and
deliver it when the target portlet is activated. This restriction is due to missing elements
in current standards, especially concerning portlet activation and addressing.

Portlets cannot be activated before they are displayed. While this feature is supported
by some portal servers, it is not standardized and thus proprietary. This feature might
allow us to register data sink portlets in advance.

Another problem is that the scheme for addressing portlets directly via a URL is not
standardized. Currently the Portlet Specification only defines how a portlet may include a
URL in its own HTML markup. The form of a portlet URL is left to the portal server. In
addition, portal servers may encode state information in the URL. This means that the
structure of a portlet URL is proprietary and may change each time a portlet is displayed.
This makes it necessary, to update the current URL of a data sink portlet in the registry,
each time the portlet is displayed. Also, a portlet URL is typically not available until the
portlet is displayed. A standardized scheme for portlet URLs (e.g., portlet name relative
to page URL) would enable to define a communication mechanism without the
restrictions described above.

9 RELATED WORK

Table 1 gives an overview of important criteria for interportlet communication along
several dimensions. The scope dimension in Table 1 determines the degree to which
interportlet communication is possible, ranging from support of local homogeneous
portlets of one and the same application to remote heterogeneous portlets of different

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

applications. Connections between portlets can be pre-configured or established on
demand by means of data-type compatibility. In addition, it is interesting whether an
approach supports only global connections or also user-specific connections. Other
distinguishing features are data structure and format. If only simple data types are
supported expressiveness and power are limited and the use of proprietary formats limits
the integration capabilites of an approach. In terms of usage we distinguish between a
declarative approach by means of a component model and a programmatic (API-based)
approach. Interportlet communication based on the latter is harder to implement and
typically reduces platform-independence. Finally we look at openness and support for
heterogeneous environments since these issues are particularily important for application
integration.

Dimension Description
Scope Communication between

− local portlets of one and the same application
− local portlets of different applications
− heterogeneous portlets
− remote portlets

Connections − dynamic target selection
− (pre-)defined portlet connections
− global and user specific connections

Data − elementary or structured data types
− platform dependent or platform independent format

Usage − programmatic (API-based)
− declarative
− component model

Openness &
Portability

− works with third-party components
− can be used in heterogeneous environments
− components can be (re)used in other portal servers
− services can be used in different portal servers

Table 1: Important criteria for interportlet communication

In the following we describe a number of approaches and try to relate them to the criteria
listed in Table 1 and to our approach. We should note that we were not able to determine
every aspect of the following approaches since most vendors are vague concerning the
implementation of their products.

The eXo platform [eXo, 2005] provides an extension to JSR-168 for interportlet
communication. The approach extends the portlet.xml file for defining event connections
between portlets and the portlet API and life cycle for defining and calling Java-based
event listeners. Consequently the approach works only for local eXo portlets.
Communication with remote portlets via WSRP is not supported.

The Oracle Application Server Portal [Oracle, 2005] supports several portlet
technologies. The most important in the context of our discussion are OmniPortlet and

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 85

standard Java portlets [Oracle, 2004]. The OmniPortlet technology is proprietary and
supports portlet communication by means of events that can be mapped to portlet
parameters with configuration tools. It is not clear whether this approach works for
proprietary remote portlets as well. Standard portlets are portlets based on JSR-168 and
WSRP [Oracle, 2004]. For JSR-168 portlets, Oracle offers an AJAX-based interportlet
communication approach. This approach is based on JavaScript functions that can inject
markup in the DOM of portlets. These JavaScript functions can be called from within
portlets and used to transfer data to other portlets. The benefit of this approach is that
portlets can communicate without the need of a page refresh. It seems that this approach
only works with portlets on the same page, although the documentation does not make a
definite statement on this [Oracle, 2006].

The BEA WebLogic Portal [BEA, 2005] supports event-based communication
between portlets. Events are typically predefined, but user defined custom events are
supported as well. Contrary to our approach BEA extends the WSRP protocol to support
communication with remote portlets [Allamaraju, 2005]. This means that remote
communication is only supported for homogeneous, BEA-based WSRP producers and
consumers. In addition, remote communication between JSR-168 compliant portlets
requires a complex producer. This means that the producer needs to implement WSRP
management extensions, which is an optional feature of the WSRP specification.
Interportlet communication is performed using so called backing files and special Java
data types, which are BEA-specific and not JSR-168 compliant. Since the BEA approach
is event- and not component-oriented, automatic detection of possible data consumers
and interactive selection of a particular target like in our approach is not supported.
Instead a portlet has to declare interest in events from other portlets using event handlers.
This can be compared to defining predefined global connections in our approach.
However, a connection in the BEA approach is created by defining an event-handler of a
remote portlet as a listener to a portlet in the consumer portal. This is only possible if a
global namespace for all distributed portlet providers exists, which seems to be provided
by a portal domain in BEA. In our approach a global name space is not needed.
Connections are defined on the basis of local portlet names. The name of the local portlet
proxy is taken to qualify a remote portlet. The definition of connections is completely
within the scope of the local portal server. In addition, user-defined connections are
supported as well. Finally, BEA provides a proprietary approach for submitting custom
data between a proxy portlet (WSRP consumer) and a remote portlet (WSRP producer).
This can be used for transmitting context information.

The Portlet Messaging Library created by [Osmond, 2007] is an approach that
supports interportlet communication of portlets which reside either in the same or in
different portlet applications. Portlets can define a number of inputs and outputs, which
can be of any Java object type. These inputs and outputs are mapped to uniquely
identified message boxes: inputs are read from message boxes, outputs are written to
them. Mapping is defined decleratively in portlet preferences in order to allow portal
users changing interportlet communication behaviour at run-time. Message boxes reside
in a messaging center which is stored in the session of the portlet application. For
enabling cross-context messaging, a common message store is used, which is shared by

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

messaging centers of all involved portlet applications. The message store could be
realized individually, e.g. as a database, an Enterprise Java Bean or a simple file. This
approach supports flexible, user-configured interportlet-communication and is working
with any JSR168-compatible portlet container. However, in contrast to our approach, it
does not support interportlet communication between portlets residing on different portlet
containers (remote portlets via WSRP).

In order to overcome the deficiencies of the portlet specification, JBoss developed a
“Portal API” which allows portlets to interact with certain components of the portal, e.g.
portal session, portal nodes (represents a tree structure of the portal) or the portal runtime
context, which provides access to the current state associated with a user [Heute et al.,
2007]. This API also provides an event mechanism that can be used for interportlet
communication. The API defines several events, e.g., a PageEvent or a WindowsEvent.
PageEvents can occur, for example, if a portal page is rendered or if a user decides to
remove a portlet from a page. WindowEvents occur if something is happening to a
portlet, e.g., if its window state changes or if a user performs an action on it. In order to
react to such events, event listeners need to be defined. Interportlet communication could
be implemented by defining a listener that catches events from a portlet A, queries its
parameters and sets the parameters on a portlet B, i.e., parameters are copied from portlet
A to portlet B. This approach also supports cross-context messaging, but it is proprietary
and only works with the JBoss Portal. Additionally, it is not as flexible as our approach
and the Portlet Messaging Library approach, because the communicating portlets have to
be wired progammatically and communication cannot be changed at run-time.

An approach that is similar to our approach for interportlet communication is
cooperative portlets [Roy-Chowdhury, 2003] in the IBM Websphere Portal. Cooperative
portlets offers both a programmatic (API-based) and a declarative approach for
interportlet communication. A service called property broker supports communication
between portlets, which may be part of different applications. The approach supports
dynamic target selection [Roy-Chowdhury & Wu, 2004], the definition of persistent
connections (wires) and cross-page communication for proprietary portlets, but seems to
be restricted to local portlets [Hiranniah & Konduru, 2003]. The functionality is limited
for standard (JSR 168) portlets [Roy-Chowdhury & Wu, 2004]. For example, JSR-168
portlets can only communicate via persistent connections. Finally, the property broker is
proprietary and can only be used within the IBM Websphere Portal.

To summarize, interportlet communication is an important feature for presentation
level integration of applications and services. Communication between local portlets
within the same application is supported by all portal servers. For JSR-168 compliant
portlets, this form of communication can be realized programmatically using a portlet
session with application scope and the portlet context.

Communication between local portlets of different applications is not supported by
the JSR-168 specification. Some portal servers support inter-application data exchange by
means of proprietary communication services. Often a vendor-specific API is required,

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 87

which limits reuse and openness, and data is submitted in a platform-specific format (e.g.,
Java objects), which limits heterogeneity.

Most portal servers support WSRP, which allows the integration of remote portlets.
Since WSRP is platform-agnostic, heterogeneity is supported as well. However, WSRP
does not support interportlet communication. Even if a portal server offers a
communication service for local portlets and supports WSRP, this does not imply that
communication with portlets integrated via WSRP is possible. A WSRP producer may
not only be a different product but it may also use a different implementation platform
than the WSRP consumer. This rules out the use of vendor-specific communication APIs
and of a platform-specific data format.

To overcome the limitations of JSR-168 and WSRP 1.0, many portal vendors
provide a proprietary mechanism for interportlet communication (albeit mostly for local
communication within a portal server). Where standards like JSR-168 or WSRP are used,
the provided functionality is either limited or the standard has been extended. However,
this means that the additional functionality is still restricted to homogeneous
environments, i.e., environments with portal servers based on one vendor or platform.

This is where our approach distinguishes itself from other approaches for remote
portlet integration. We support interportlet communication and navigation integration
between heterogeneous portal servers, as long as existing standards like JSR-168 and
WSRP are used. To support heterogeneous platform integration, we use XML as
platform-independent data format for remote portlet communication. Since an API can
also not be used in a heterogeneous platform-independent scenario, we use again XML as
the basis for a declarative approach for describing portlets and communication endpoints.
The resulting component model allows connecting components, either dynamically at
runtime or statically prior to component usage.

The approach is not intrusive and requires no changes and extensions of the WSRP
protocol and the JSR-168 API. Extensions to the portlets are added in a descriptive way
on the basis of a component model. This means that portlets with communication
extensions can also be used in standard compliant portal servers without the
communication service installed and that existing third-party portlets can be easily
augmented with communication and navigation facilities.

As shown in the previous section our approach has some deficiencies due to standard
limitations. When we developed our approach, we were confident that these and other
limitations would be solved in future versions of JSR-168 and WSRP. We thought it
likely that a future version of WSRP would specify interportlet communication itself.
However, after a first look at drafts of the future portlet and WSRP specifications we
cannot tell. Since both specifications are important for our approach, we take a look at
them in the next section.

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

10 OUTLOOK - JSR-286 AND WSRP 2.0

Interportlet communication has been a feature requested heavily by portal developers.
The absence of it in the current portlet specification (JSR-168) led to many proprietary
developments by portal providers, as we showed in the last section. Therefore,
interportlet communication is addressed in the second version of the portlet specification,
which is currently in early draft review stage [JCP 2007].

JSR-286

The JSR-286 specification defines two new mechanisms that could be used for
interportlet communication: event handling and shared render parameters.

The Portlet Specification 2.0 uses an event model in order to “allow portlets to react
on actions or state changes not directly related to an interaction of the user with the
portlet” [JCP 2007, section PLT 15.2]. It defines an additional request handling phase in
which portlets can process events (see Figure 10).

Figure 10: Portlet request handling, following [JCP 2007]

Portlets can declare events that they will fire and events that they will receive. Using
these events, you can transmit data between portlets. If you look at the specification, it
seems that interportlet communication via events has to be defined programmatically
(namely in portlet’s processEvent() method). In contrast, the specification states that “the
portlet event model is a loosely coupled, brokered, model that allows creating portlets as
stand-alone portlets that can be wired together with other portlets at runtime” [JCP 2007,
section PLT 15.2]. The specification does not mention how portlets exactly can be wired
together at runtime. It states that “it is not in the scope of this specification to define any
means how portlets are wired together, nor how a set of portlets relate to each other or to

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 89

a portal page” [JCP 2007, section PLT 15]. Provision of run-time wiring portlets is left to
developers of portal frameworks or portlet application programmers.

Shared render parameters allow portlets to share their view states. The portlet
specification defines shared render parameters as a “shared storage of parameters that can
be accessed and modified by different portlets” [JCP 2007, section PLT 11.1.1.4]. As the
specification states, you could consider a weather portlet where you can select a zip code
of a city for weather information. The portlet could encode the zip code as a shared
render parameter making it available for other portlets that also use a zip code as a shared
render parameter (e.g. a map portlet that displays the location of the city). Using this
method, portal users can bookmark the zip code for several cities in their browsers, if the
portal is URL-encoding the shared render parameter [JCP 2007, section PLT 15.1].

WSRP 2.0

The portlet specification only deals with portlets residing in the same portlet container.
For the use of interportlet communication involving remote portlets, the new WSRP
specification, which is currently in draft stage, basically provides a feature called
“consumer mediated coordination”. This feature is intended to enable interactions
between portlets that are aggregated by a consumer [OASIS 2007]. It provides an event
mechanism that allows propagating events between portlets, no matter if they are local or
remote. This event mechanism extends the event mechanism defined in the second
version of the portlet specification in that it is able to forward events from local portlets
to remote portlets and vice versa (see Figure 11) [Thiagarajan 2007].

Figure 11: Event handling specified by WSRP 2.0, following [Thiagarajan 2007]

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

Additionally, it offers a feature called “state distribution”. State distribution is either done
by “navigational parameters” or by “session properties”. Navigational parameters are an
extension of what the portlet specification 2.0 called “shared render parameters”, in order
for being used with remote portlets. Session properties are declared by a producer and can
be altered by consumers and therefore be used for interportlet communication
[Thiagarajan 2007].

To summarize, both new specifications do not exactly define the way interportlet
communication has to be done. They leave many aspects to portal framework developers
and portlet application developers. In particular, they provide no component model but
useful communication support like event mechanisms for enabling interportlet
communication.

We tried to identify what the features of the new specifications mean to our
approach. Will it be obsolete in the future or could it benefit from the new features? At a
glance, there is no similar approach for interportlet communication included in the new
versions of the specifications, so we think that our approach will remain useful. Instead,
our approach could benefit from new features. For example, the input and output ports of
portlets could be replaced by portlet events and listeners. This would reduce the
complexity of the data exchange service filter, as most of its work would be done by the
event model components of the portlet container (except embedding the navigation menu
of a portlet in the HTML-markup of the portal page). An interesting question that will
arise is how the event mechanism will work in conjunction with remote portlets and
WSRP, especially if non-Java producers are involved. Because of the XML
representation of inputs, outputs and data, this is no problem in our approach. When the
specifications are completed and reference implementations are available, we will have a
look if our approach could be better implemented using new features and if refactoring
makes sense.

We also looked at the new specifications to answer the question whether they enable
a solution of the open issues we mentioned in Section 8, namely communication with
portlets on pages that have not been already opened by users, activation of portlets before
displaying them, and a standardized scheme for portlet URLs. However, we could not
find any sign that the new portlet specification will address these issues.

11 CONCLUSION

Presentation level application integration is a useful approach for many integration
problems, especially if human interaction is involved, and may be less invasive and costly
than integration at the business logic level. The approach presented in this article is
intended to be used for enterprise and consumer portals in the banking and insurance
domain. It supports presentation level data exchange and navigation integration for
distributed portlets in heterogeneous environments.

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 91

The integration of remote and heterogeneous portlets is a necessity in large
organizations with widely autonomic suborganizations, and in business to business
collaborations, where components are to be reused across organizations. In such cases,
components are typically hosted and maintained by computing centers at different
locations with heterogeneous hard- and software infrastructure. Thus support for remote
integration and communication as well as platform independence are a necessity in this
context.

Finally, distribution and heterogeneity are core characteristics of the internet itself.
Composition of new web pages at the presentation-level from globally distributed portal
components might be an interesting approach for building future websites. It seems
obvious that apart from remote communication and support for heterogeneity, such an
approach would benefit from a component model and a descriptive approach for
component composition as presented in this paper.

12 ACKNOWLEDGEMENT

The presented approach has been developed as part of the Enterprise Portal Architecture
(ENIPA) project, which is a joint-project of the Software Competence Center Hagenberg
(SCCH) and the GRZ-IT Center Linz. We wish to thank Hermann Lischka, Thomas
Kriechbaum, and Franz Oberndorfer from the GRZ IT-Center Linz and Helmut Maier
from the SCCH Hagenberg for many fruitful discussions and for implementing parts of
the described services.

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

REFERENCES

[Allamaraju, 2005] Allamaraju, S. (2005): Inside WSRP. BEA dev2dev Portal
(http://dev2dev.bea.com), March 7, 2005, Retrieved October 31, 2005, from
http://dev2dev.bea.com/pub/a/2005/03/inside_wsrp.html.

[Alonso et. al.; 2004] Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004): Web
Services – Concepts, Architectures and Applications, Berlin Heidelberg New
York: Springer Verlag.

[BEA et. al., 2003] BEA, IBM, Microsoft, SAP, Siebel (2003): Business Process
Execution Language Version 1.1. Retrieved June 28, 2005, from http://www-
128.ibm.com/developerworks/library/ws-bpel/, currently being standardized
as WSBPEL by the OASIS consortium, http://www.oasis-open.org.

[BEA, 2005] BEA (2005): BEA WebLogic Portal: Using WSRP with WebLogic Portal,
Version 8.1, Service Pack 5, October 2005.

[Chari & Sheshadri, 2004] Chari, K., Sheshadri, S. (2004): Demystifying Integration.
Communications of the ACM, Vol. 47, No.7., 58-63.

[eXo, 2005] Ruh, W.A., Magginnis, F.X., Brown, W.J. (2001): Portlet API extensions.
Retrieved October 31, 2005, from http://www.exoplatform.com.

[Gorton & Liu 2004] Gorton, I., Liu, A. (2004): Architectures and Technologies for
Enterprise Application Integration. Edinburgh: Proceedings of the 26th
International Conference on Software Engineering (ICSE’04).

[Heute et al., 2007] Heute, T., Viet, J., Russo, R., Dawidowicz, B., Laprun, C. (2007):
JBoss Portal 2.6.0-GA Reference Guide. Retrieved June 25, 2007, from
http://cruisecontrol.jboss.com/cc/artifacts/jboss-portal-latest-
doc/referenceGuide/html/index.html.

[Hiranniah & Konduru, 2003]Hiranniah, S., Konduru, S. (2003): Inter-Portlet Messaging
with WebSphere Portal. WebSphere Advisor Magazine, Retrieved June 28,
2005, from http://websphereadvisor.com/doc/11928.

[JCP, 2003] Java Community Process (2003): The Java™ Portlet Specification (JSR
168) V.1.0. Retrieved June 28, 2005 from
http://www.jcp.org/en/jsr/detail?id=168.

[JCP, 2007] Java Community Process (2007): The Java™ Portlet Specification (JSR
286) V.2.0. Retrieved June 25, 2007, from
http://www.jcp.org/en/jsr/detail?id=286.

[Linthicum, 1999] Linthicum, D.S. (1999): Enterprise Application Integration.
Boston: Addison Wesley.

[Linthicum, 2003] Linthicum, D.S. (2003): Next Generation Application Integration:
From Simple Information to Web Services. Boston: Addison Wesley.

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 93

[OASIS, 2003] OASIS (2003): Web Services for Remote Portlets (WSRP)
Specification V.1.0. Retrieved, June 28, 2005, from http://www.oasis-
open.org/committees/download.php/3343/oasis-200304-wsrp-specification-
1.0.pdf.

[OASIS, 2006] OASIS (2006): Web Services for Remote Portlets (WSRP)
Specification V.2.0. Retrieved June 27, 2007, from http://docs.oasis-
open.org/wsrp/v2/wsrp-2.0-spec.html.

[Oracle, 2004] Oracle (2004): Oracle® Application Server Portal Developer’s Guide, 10g
(9.0.4), Part No. B13922-01, May 2004.

[Oracle, 2005] Oracle (2005): Oracle® Application Server Portal User Guide, 10g
(10.1.4), Part No. B13809-04, September 2005.

[Oracle, 2006] Oracle (2006): Oracle Application Server Portal Technical Note: Building
Highly Interactive Portlets With AJAX. Retrieved July 19, 2007, from
http://www.oracle.com/technology/products/ias/portal/pdf/portlets_building_
with_ajax.pdf.

[Osmond, 2007] Osmond, M. (2007): A JSR168-compliant implementation of inter-
portlet communication. Retrieved June 26, 2007, from
http://www.doc.ic.ac.uk/~mo197/portlets/portlet_messaging.

[Roy-Chowdhury, 2003] Roy-Chowdhury, A. (2003): Using Cooperative Portlets in
WebSphere Portal V5. IBM Raleigh Lab. Retrieved June 28, 2005, from
ftp://ftp.software.ibm.com/software/dw/wes/pdf/CooperativePortlets.pdf

[Roy-Chowdhury & Wu, 2004] Roy-Chowdhury, A., Wu, Y.C. (2004): Developing
JSR 168 compliant cooperative Portlets. IBM Websphere Technical Library,
Retrieved June 28, 2005, from http://www-
106.ibm.com/developerworks/views/websphere/libraryview.jsp.

[Ruh et. al., 2001] Ruh, W.A., Magginnis, F.X., Brown, W.J. (2001): Enterprise
Application Integration. New York: John Wiley & Sons.

[Thiagarajan 2007] Thiagarajan, R. (2007): WSRP 2.0 - A Sneak Peek. Retrieved June
25, 2007, from http://blogs.sun.com/trajesh/entry/wsrp_2_0_a_sneak.

[W3C, 2003] W3C (2003): SOAP 1.2 Specification, W3C Recommendation. Retrieved
June 28, 2005, from http://w3.org/2000/xp/Group/.

[W3C, 2004] W3C (2004): Web Service Description Language (WSDL), Version 2.0,
W3C Working Draft. Retrieved June 28, 2005, from
http://w3.org/2002/ws/desc/.

A COMPONENT MODEL FOR INTEGRATING

REMOTE APPLICATIONS AND SERVICES VIA WEB PORTALS

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

[Weinreich & Ziebermayr, 2005] Weinreich, R., Ziebermayr, T. (2005): Enhancing
Presentation Level Integration of Remote Applications and Services in Web
Portals, Florida: Proceedings of the IEEE International Conference on
Services Computing (SCC 2005).

About the authors
Rainer Weinreich is an Assistant Professor at the Department of Business Informatics -
Software Engineering, Johannes Kepler University of Linz, Austria. His current research
interests include component-based, service-oriented, web-based and enterprise software
architectures. He can be reached at rainer.weinreich@jku.at, see also
http://www.se.jku.at/weinreich
Andreas Wiesauer is research and teaching assistant at the Department of Business
Informatics - Software Engineering, Johannes Kepler University of Linz, Austria. His
current research interests include enterprise portal technologies and web services. He can
be reached at andreas.wiesauer@jku.at
Thomas Ziebermayr is software engineer at the Software Competence Center
Hagenberg, Austria. He is currently working in the area of semantic web service
composition. He can be reached at thomas.ziebermayr@scch.at

