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The primary objective of this paper is threefold: First, we present an evaluation of the
state of the art on Java static semantics. Accordingly, we discuss the completeness
and the soundness of the most prominent proposals recently advanced in the literature.
Moreover, we discuss their compliance with respect to the Java language specifica-
tion. Second, we report a brief evaluation of the official Java language specification.
Third, we show how the definition of a realistic static semantics for full Java could be
addressed. We exhibit the technical difficulties and discuss the semantic traits that
could be used to address them.

1 INTRODUCTION

Nowadays, Java is a very popular programming language. It is multi-paradigmatic
since it reconciles imperative, object-oriented, concurrent and distributed program-
ming styles. Since its launching in 1995 by Sun Microsystems, Java is perceived
as a revolution into the programming language community. This is mainly due to
the attractive features that have been incorporated into the language. One of the
most major innovations of Java is the support of mobile code through the concept of
applet. The latter is a small compiled unit of code that can migrate from one site to
another and be executed on any platform that is Java-enabled i.e. any platform en-
dowed with a Java virtual machine. Furthermore, these applets could be embedded
in world wide pages to achieve general-purpose tasks. Java is now widely licensed
and firmly established in the industry.

Lately, a surge of interest has been expressed in the elaboration of semantic
foundations for Java. This interest is not only motivated by popular appeal and
fashion considerations. Indeed, Java has a very sophisticated and subtle semantics
as we will exemplify it in the sequel. Moreover, Java is meant to be widely used
in safety-critical embedded systems. Furthermore, Java support for mobile code
through applets poses severe, and very interesting, challenges to the currently es-
tablished language technologies in terms of security [8, 18]. All these factors justify
the need for robust theoretical foundations for Java.

Several corrections and modifications were made to the Java language specifica-
tion [10, 13]. Also, several errors were found in its implementations. This is under-
standable since the language combines attractive but complex features, which makes
its semantics far from being straightforward and leads to subtleties and complex be-

Cite this document as follows: Mourad Debbabi and Myriam Fourati: ”A Formal Type System
for Java” , in Journal of Object Technology, vol. 6, no. 8, September-October 2007, pp.
117-184 http://www.jot.fm/issues/issue 2007 09/article3

http://www.jot.fm/issues/issue_2007_09/article3


A FORMAL TYPE SYSTEM FOR JAVA

haviors. The only available specification of Java [9, 12] is an informal description
that is subject to different interpretations. Besides, it is rather ambiguous, incom-
plete and sometimes not consistent with the behavior of the Java compilers. This is
not really acceptable especially when it comes to security and safety/security critical
deployement of the Java technology.

We believe that a formal study of Java is very useful to clarify, correct and
complete its semantics. It can only be advantageous to consolidate and establish
Java security, and make it possible to reason about effective compilation. In our
view, a semantics theory for Java is not a luxury, it is a necessity.

The interest in the Java language lead to an emergence of several formalizations
at the language level as well as at the virtual machine level. All of them have
a merit : Each one contributes to better understanding of Java. Nevertheless,
several important features of the language have not been formalized yet, and some
constructions have been simplified. It is well known that these works have proved
the type soundness for different Java subsets, but none of these type safe subsets is,
in fact, Java.

In this paper, we propose a formal static semantics covering almost all the as-
pects of the Java language, except for packages and inner classes, which we will treat
in a later phase of our work. This includes primitive types, classes with inheritance,
interfaces, instance and static methods and fields, methods hiding, overriding and
overloading, shadowing of fields, constructors, the initialization of fields and vari-
ables, local variables as well as their scope and initialization, arrays, this, super,
assignments, object creation, methods call, fields and variables access, modifiers and
the processing of all the exceptions including their declaration, throwing and han-
dling. Our formalization is a contribution in the static semantic field of Java since
no study hitherto. We believe that our work will help to reason about the semantics
of Java and to clarify its informal specification.

The rest of the paper is organized as follows. Section 2 is a brief compilation of
the state of the art work on Java semantics, with a discussion of their completeness,
soundness and compliance. Section 3 is devoted to an evaluation of the published
Java language specification and it exposes subtleties of the Java semantics. Our
approach is presented in Section 4. In Section 5, we introduce the syntax of the
Java language formalized. The static semantics is detailed in Section 6. Finally,
some concluding remarks together with a discussion of ongoing and future research
are ultimately reported in Section 7.

2 RELATED WORK

There exist several works on the formalization of the Java language, in particular
on the proof of soundness of the Java type system. This section presents some of
them and discusses their completeness and compliance with the official specification
of Java.
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At the language level, Sophia Drossopoulou and Susan Eisenbach [5, 6, 7, 19]
have proposed a static semantics, an operational semantics and also a proof of a
type soundness of a subset of Java. The latter includes primitive types, classes and
inheritance, instance variables and instance methods, interface methods, shadow-
ing of instance variables, dynamic method biding, object creation, the null value,
arrays, and some exceptions. The latter have been extended [20] and its formal-
ization improved by the addition of exception throwing and the associated Throws

clauses. Nevertheless, some restrictions and simplifications have been considered in
the formalization of this subset.

Heavily based on the work above-named, Don Syme [21] has mechanically spec-
ified and verified, using a higher-order declarative proof system DECLARE, the
formalization of the subset of Java proposed by Drossopoulou and Eisenbach. Syme
corrected some mistakes and clarified many details on the work of Drossopoulou and
Eisenbach. Furthermore, he brought less simplifications to the Java language. For
example, he did consider the predefined class Object.

As part of the Bali project, and simultaneously with Syme’s works [15, 16, 14],
Tobias Nipkow and David von Oheimb proved the type safety of a subset of Java
very similar to Drossopoulou’s one. In this work, all definitions and proofs have
been done in the theorem prover Isabelle/HOL.

Isabelle Attali, Denis Caromel and Majorie Russo [2, 11] proposed a formal
dynamic semantics of a subset of Java, including inheritance, dynamic linking and
multi-threading. They used the natural semantics within the Centaur system and
the Typol formalism.

All formalizations of Java proposed in the literature contributed to remove some
ambiguities from the language. However, several important features have been left
out, even though these features have contributed to its expansion. In particular,
threads, that are an essential keystone of Java, and modifiers, that strengthen secu-
rity in the language, have been ignored. Among the other subtle features that have
not been considered yet we cite:

• Initialization,

• Constructors,

• Scoping of variables,

• Packages.

Besides, all the formalizations proposed for Java, are based on simplifications.
For instance, they assume that there is exactly one return statement in each method
body, and that it is the last one. In addition, the formalization of some constructs
of the Java language is incomplete. As an example, the exceptions handling ex-
clude their declaration by the throws clauses. The processing of the latter is not
straightforward, and requires several verifications by the type system. We think that
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the development of a formal static semantics covering these features raises several
technical difficulties which will be shown through this work.

Below we describe some errors that we discovered in a few of the works above-
named:

• In [16], the this expression is modeled as a special local variable, but the
super construct has not been formalized. Nonetheless, the authors said that
the latter can be simulated by a this expression that is cast to the superclass
of the current class. This is not possible, since a cast to a superclass type is
not effective in attempting to access an overridden method [9].

• The type system must check that a Java program includes handlers for checked
exceptions that result from the execution of a method or a constructor. How-
ever, in [16], the authors did not envisage any particular processing when the
checked exception classes Throwable and Exception, respectively, are raised.

• In [16], the authors introduced the type NullT as the null type, and they
considered it as a Bali type. This created some errors in their type system.
For example, in Bali, it is possible to create an array with the component
type of NullT, nevertheless the latter is not a type in Java. We think that this
problem is due to the non distinction between semantics and syntactic types.

• In [16] and also in [7], arrays don’t have members, nevertheless arrays inherit
members from the class Object, and declare a field named length as well as
a method named clone.

• Also in [16], starting with the typing rules, it is possible to type an array
creation expression as follows: E ` new int[][i] :: int[][], which does not make
sense and is illegal in Java.

Lately, several research initiatives targeted the study of the static semantics of
small subsets of Java for static analysis [1, 4, 17] and security [3]. However, it
remains that there is no complete work that grasps the underpinning of almost the
whole Java language semantics and exhibits the issues related to the elaboration of
a fully-fledged static semantics of it.

3 EVALUATION OF THE JAVA LANGUAGE AND ITS SPECIFICA-
TION

Java is a powerful programming language that has considerable potential especially
in the field of mobile code. However, the language involves subtleties and exceptions,
which make its semantics far from straightforward. On that account, the Java
Language Specification [9, 12] turned out to be very useful to help reasoning about
the language and to make its formalization easier. We think that without this
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specification, it is impossible to develop a formal semantics for Java. Nevertheless,
the specification is a textual and an informal description that may be erroneous and
ambiguous. Moreover, the Java language has been evolving since the publication of
the first edition of the official Java Specification in 1996 [12], and new features had
to be covered by the Specification. Furthermore, the first edition has been shown to
have many errors and omissions. Recently, a second edition of the Java Language
Specification was published [9], but many problems rest unresolved [10, 13]. Besides
that, this new edition contains yet unknown errors and subtleties. Below, we present
some of them.

• The chapter 5 of [9] describes the cast conversion between types, and it stipu-
lates that casting between two interface types that declare abstract methods
with the same signature and different return types is type-incorrect, since no
class could implement both of them. However, if two interfaces contain meth-
ods with the same signature and incompatible clause throws, they cannot
be implemented by a single class, but in this case the casting between such
interface types is not prohibited.

• The Java Language Specification [9, chapter 14] states that the expression in
the throw statement must denote a variable or a value of a reference type
that is assignable to the Throwable type. However, although the type of the
null literal is assignable to any reference type, and then to the reference type
Throwable, it is incorrect to throw the null reference.

• Also in [9, chapter 14], it is reported that the expression in the synchronized

statement must be of a reference type. Since the type of null is a reference
type, we can deduce that the following program portion is type-correct:

class C {
void f ( ) { synchronized ( null ) { } }

}

This is the case if we use the JDK 1.1.7 version of the Java compiler or one of
its former versions; on the other hand, the compilation of this same example
using JDK 1.2 does not pass without errors. We think that by this restriction,
it is intended to detect the NullPointerException error as soon as possible
during the compile-time step, rather than wait for the execution to report
it. However, what is confusing is that even though synchronized argument
evaluates to the null reference, the following program portion is accepted by
JDK 1.2:

class C {
void f ( ) { synchronized ( (T)null ) { } }

These examples prove that it is difficult to figure out the semantics of the Java
language, since its specification is erroneous and the behaviors of the Java
compilers are sometimes rather incomprehensible.
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• Also in [9, chapter 14], a catch block C is considered to be reachable if and
only if both of the following conditions are valid:

– Some expression or throw statement in the try block is reachable and can
throw an expression that is of a type assignable to the catch parameter
type.

– There is no earlier catch block A in the try statement such that the type
of C’s parameter is the same as or a subclass of A’s one.

However, this is contradictory with the behavior of the Java compiler. Indeed,
when the block try is empty, and then does not throw any exception, the
catch block is reachable. This is the fact for all the JDK versions.

• During the course of our work, we noticed that some errors have slipped into
the examples given in the Java Language Specification. Although most of
them are not serious, they could lead to some confusion. As an example, the
following program excerpts from [9, chapter 8] are incorrect:

interface Fish { int getNumberOfScales( ); }
interface Piano { int getNumberOfScales( ); }
class Tuna implements Fish, Piano {

int getNumberOfScales( ) { return 91 ; }
}

Indeed, the class Tuna implements the methods named getNumberOfScales

inherited from its superinterfaces with a method that provides less access than
them, since the methods of interfaces are implicitly public, while those of
classes are package.

• Several phrases in the Java Specification are ambiguous. To figure out their
meaning, we have done some tests on Java programs. To illustrate this, we
present bellow an example of an ambiguous paragraph [9, chapter 16]:

“V is definitely assigned after a local variable declaration statement
that contains at least one variable initializer if and only if either it
is definitely assigned after the last initializer expression in the local
variable statement or the last initializer expression in the declaration
is in the declarator that declares V”.

In the rest of this section, we give some examples that illustrate the Java seman-
tics subtleties and problems with the JDK compiler:

• When a class or an interface inherits two abstract methods with the same
signature that have different throws clauses, a Java compiler must verify that
these methods could be implemented by a single class. The version 1.2 of
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JDK compiler requires that the declared exception types in different methods
must be related. Thus, the implementing method must declare the narrower
of these class types. We found this restriction rather strict, since inherited
methods could be implemented by a method that throws no exceptions. We
think that this problem must emerge later, when a method, which implements
the inherited methods with the same signature, is defined.

• In Java, the statement while ( false ) Statement is not type-correct, since
Statement is unreachable. However, when we declare a constant variable b

that has the false value, the statement while ( b ) Statement is compiled
without errors.

• The statement int v = 5 ; below is not considered unreachable:

while ( false ) ;
int v = 5 ;

we can deduce that this is due to the fact that the while-statement is empty.
However, it is surprising to note that the statement int v = 5 ; would be considered
unreachable if the while-statement were {;}. Therefore, the specification does not
specify a need for a particular treatment when the while-statement is empty.

4 OUR APPROACH

In this paper and unlike previous works, we propose a static semantics for almost the
whole of the Java language rather than just a subset of it. We have considered all
details even the flow analysis carried out by the Java compiler to treat the variable
initialization and unreachable statements. We believe that all Java features are
important in modeling, since all of them play a part in the Java security. The
only aspects of the language that we have not considered yet are inner classes and
packages. The semantics of packages is very subtle and their specification contains
errors and ambiguities. Therefore, we have decided to integrate them, as well as the
inner classes, in a further stage of our work.

The specification that we adopt is mainly based on the Java Language Specifi-
cation [9, 12] enriched by amendments and clarifications found in [10, 13]. To solve
the ambiguities and incompleteness of the Sun’s specification, we used reasoning
and ran a number of tests on different versions of Sun’s JDK.

During our work, we were faced with many problems. The biggest were the
specification’s ambiguity, colossal size and incorrectness. Besides, we were forced to
deal with non-compositionality and non-uniformity of the Java semantics. A part
of the complexity comes from Java’s subtlety.

Below, we briefly present some problems that we faced during the formalization
of the language, along with the proposed solutions. Significant difficulties are raised
by the semantics of syntactical constructions, which are context-dependent. In other
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words, semantics may depend on the previously evaluated expressions or statements.
This makes a naive semantics treatment affect the compositionality of the semantics.
For instance, when an expression is used as an argument in an explicit construction
invocation statement, it cannot refer to an instance variable or method, or use this

or super. Therefore, when we type an expression, we have to know where it occurs
in the program being typed. Typing of exceptions presents another problem. There
exist, in the Java language, two kind of exceptions: checked exceptions and unchecked
ones. The unchecked exceptions classes are the classes RuntimeException, Error
and their subclasses. All other exceptions classes are checked exceptions classes.
Unchecked exceptions are exempted from type-checking [9, chapter 11]. On the
other hand, all checked exceptions that can result from the execution of a method
or a constructor have to be propagated until they are either handled by a catch

block in their bodies or declared in their throws clauses. Moreover, the treatment of
variable initialization is not straightforward. For example, we have to check that no
variable is used before its initialization. To do so, we considered only the assignment
expressions for that variable prior to its initialization, and we verify that there is at
least one assignment expression for that variable in all possible execution paths. Yet
another difficulty comes from having to distinguish if a construction to be typed is
a class or instance member. It is important, in order to verify that this or super

are not invoked in the body of a static member. Among the other problems are the
formalization of unreachable statements and the need to make sure that no field is
used before its declaration.

In order to solve the above-mentioned problems, we introduced additional infor-
mation in our typing rules. This information is updated as and when required as we
move forward through the program, this will be shown in the sequel. Besides, we
had no choice but to religiously follow the tedious and non-uniform requirements of
the official Java specification.

Along this document, we use a neat formatting conventions: the reserved words
(terminals) of the Java language are written in typewriter font (e.g., “throw” and
“[”), nonterminals are written in italic font with initial capital letters and other
uppercase letters (e.g., “ClassDeclaration”, “Modifiers”), the meta-language is de-
scribed using the sans serif font (e.g., wellFormedEnv) and the meta-variables appear
in italics font (e.g.,rt).

5 SYNTAX

The syntax definition of the Java language considered in this paper is based mainly
on the syntax given in the Java Language Specification [9, 12]. It covers all the
aspects of the Java language, except for packages and inner classes. This includes
primitive types, classes and inheritance, interfaces, instance methods and variables,
class methods and variables, object creation, arrays, exception declaration throwing
and handling, constructors, modifiers, initialization of fields and variables, assign-
ment, this and super, proceeding of the unreachable statements and scoping rules
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for variables. However, in order to lighten the formalization and increase the read-
ability of the typing rules, we did not consider statements that can be coded in terms
of some syntactic constructions of our language. In particular, the syntactic variants
of loops like the loop and for statements, as well as the jumps statements like break
can be replaced by a combination of conditionals and recursion statements. As for
expressions, our syntax excludes the standard unary and binary operators as their
typing is simple. Furthermore, in the Java language, the [], in an array declaration,
may appear as part of the array name or as part of its type. We only considered
the latter. Our syntax includes only uni-dimensional arrays, since an extension to a
multi-dimensional ones is quite simple. As in [16], and to lighten the formalization,
we assume that each method has exactly one parameter. Finally, and to lighten the
semantics, our syntax omits some variations introduced by the new version of the
Java Specification [9], such as declaration of local variables with modifiers, or new
way of method invocation (Name.super .Identifier(Arguments)).

Keywords

The set of keywords consists of reserved words of the Java language formalized in
this paper. It is introduced in the Figure 1.

abstract boolean byte class double else extends
final finally float if implements int interface long
native new private public return short static super
synchronized this throw throws transient try void
volatile while ( ) [ ] { } ; , . =

Figure 1: Java keywords.

Grammar

This section introduces the grammatical rules for the Java language used in this
work. Each rule consists of nonterminal followed by the symbol “::=” and a sequence
of nonterminals, terminals and operators. The symbol “ε” represents the empty
word. More formally, the BNF notation of our language is presented in Figures 2, 3,
4 and 5. We use as far as possible the same nonterminal notations as in [9, 12]. This
will be useful when the reader wants to refer to the Java Language Specification
[9, 12]. For the sake of the formalization, we have changed some grammatical rules.
As an example, we decide to split the rule of a local variable access into to categories:
a simple access to a variable and an access to a variable that appears in a left-hand
side of an assignment operator. This is necessary to verify that a local variable is
initialized before its use. We also distinguish between a non-array local variable, a
non-array field and an array access and assignment, since their treatment differs.

VOL 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 125



A FORMAL TYPE SYSTEM FOR JAVA

Program ::= ClassDeclaration Program
| InterfaceDeclaration Program
| ε

ClassDeclaration ::= Modifiers class Identifier Extends Implements
| {ClassBody}

Modifiers ::= public Modifiers
| private Modifiers
| static Modifiers
| abstract Modifiers
| final Modifiers
| synchronized Modifiers
| native Modifiers
| transient Modifiers
| volatile Modifiers
| ε

Extends ::= extends ClassType
| ε

Implements ::= implements InterfaceTypeList
| ε

InterfaceTypeList ::= InterfaceType
| InterfaceType , InterfaceTypeList

ClassBody ::= FieldDeclaration ClassBody
| MethodDeclaration ClassBody
| AbstractMethodDeclaration ClassBody
| ConstructorDeclaration ClassBody
| ε

FieldDeclaration ::= Modifiers Type Identifier
| Modifiers Type identifier = Expression
| Modifiers SimpleType[] identifier =

ArrayInitializer

ArrayInitializer ::= { }
| { ExpressionInitializer }

ExpressionInitializer ::= Expression
| Expression , ExpressionInitializer

MethodDeclaration ::= Modifiers ResultType Identifier ( Parameter )
Throws Block

Figure 2: Grammar of Java: part 1.

126 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 8



5 SYNTAX

Parameter ::= Type Identifier
| ε

Throws ::= throws ClassTypeList
| ε

ClassTypeList ::= ClassType
| ClassType , ClassTypeList

ConstructorDeclaration ::= Modifiers Identifier ( Parameter ) Throws
ConstructorBody

ConstructorBody ::= { ExplicitConsInvocation
BlockStatementsOrEmpty }

ExplicitConsInvocation ::= this ( Argument ) ;
| super ( Argument ) ;
| ε

Argument ::= Expression
| ε

InterfaceDeclaration ::= Modifiers interface Identifier
ExtendsInterfaces { InterfaceBody }

ExtendsInterfaces ::= extends InterfaceTypeList
| ε

InterfaceBody ::= FieldDeclaration
| AbstractMethodDeclaration

AbstractMethodDeclaration ::= Modifiers ResultType Identifier ( Parameter )
Throws ;

Block ::= { BlockStatementsOrEmpty }

BlockStatementsOrEmpty ::= BlockStatements
| ε

BlockStatements ::= BlockStatement BlockStatements
| BlockStatement

BlockStatement ::= LocalVariableDeclaration
| Statement

LocalVariableDeclaration ::= Type Identifier ;

Figure 3: Grammar of Java: part 2.
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| Type Identifier = Expression
| SimpleType[] Identifier = ArrayInitializer ;

Statement ::= ;
| Block
| ExpressionStatement
| IfStatement
| WhileStatement
| ThrowStatement
| SynchronizedStatement
| TryStatement
| ReturnStatement

ExpressionStatement ::= StatementExpression ;

StatementExpression ::= AssignmentExpression
| MethodInvocation
| ClassInstanceCreation

IfStatement ::= if ( Expression ) Statement else Statement
| if ( Expression ) Statement

WhileStatement ::= while ( Expression ) Statement

ThrowStatement ::= throw Expression ;

SynchronizedStatement ::= synchronized ( Expression ) Block

TryStatement ::= try Block Catches finally Block
| try Block Catches
| try Block finally Block

ReturnStatement ::= return Expression ;
| return ;

Catches ::= Catch
| Catch Catches

Catch ::= catch ( ClassType Identifier ) Block

Primary ::= ArrayCreation
| PrimaryNoNewArray

ArrayCreationExpression ::= new SimpleType [ Expression ]

PrimaryNoNewArray ::= Literal

Figure 4: Grammar of Java: part 3.
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| this
| ( Expression )
| ClassInstanceCreation
| SimpleFieldAccess
| ArrayFieldAccess
| MethodInvoction

ClassInstanceCreation ::= new ClassType ( Argument )

SimpleFieldAccess ::= Primary . Identifier
| super . Identifier
| FieldName

FieldName ::= Identifier
| ClassOrInterfaceType . Identifier
| ExpressionName . Identifier

ExpressionName ::= FieldName
| SimpleLocalVarAccess

SimpleLocalVarAccess ::= Identifier

ArrayFieldAccess ::= PrimaryNoNewArray [ Expression ]

MethodInvocation ::= MethodName ( Argument )
| Primary . Identifier ( Argument )
| super . Identifier ( Argument )

MethodName ::= Identifier
| ClassType . Identifier
| ExpressionName . Identifier

Expression ::= AssignmentExpression
| CastExpression
| Primary
| SimpleLocalVarAccess
| ArrayLocalVarAccess

AssignmentExpression ::= SimpleFieldAccess = Expression
| ArrayFieldAccess = Expression
| Identifier = Expression
| Identifier[ Expression ] = Expression

CastExpression ::= ( Type ) Expression

ArrayLocalVarAccess ::= Identifier [ Expression ]

Figure 5: Grammar of Java: part 4.
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τr ∈ ResultType ::= Type | void
τ ∈ Type ::= PrimitiveType | ReferenceType
ρ ∈ ReferenceType ::= ClassOrInterfaceType | ArrayType
π ∈ PrimitiveType ::= boolean | byte | short | int | long |

char | float | double
µ ∈ ClassOrInterfaceType ::= ClassType | InterfaceType
α ∈ ArrayType ::= SimpleType []
σ∗ ∈ SimpleType ::= PrimitiveType | ClassOrInterfaceType
ς ∈ ClassType ::= Identifier
ι ∈ InterfaceType ::= Identifier

Figure 6: Syntactic types of Java.

τa ∈ ArgumentType ::= ParameterType | Null
τe ∈ ExpressionType ::= ResultType | Null
τp ∈ ParameterType ::= Type | Unit
σ ∈ NullOrSimpleType ::= SimpleType | Null

Figure 7: Semantic types of Java.

6 STATIC SEMANTICS

Below, we propose a static semantics for a very large subset of Java, since there is
no such study so far. We dwelt on all the subtleties that we encountered in the Java
language. Even the details were not neglected. Note that all reported errors [10, 13]
along with the ones that we discovered have been considered in our type system.

Type Algebra

Types in Java are primitives or references. Reference types are class types, interface
types and array types. The domain of syntactic types of Java is defined in Figure 6.
We extend the domain of types to insert Null and Unit types. The former is the type
of the null literal and the latter is the type of nullary methods and constructors.
The extended domain of types is defined in Figure 7.
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Notations

Along this paper, given two sets A and B, we will write A→m B to denote the set
of all mappings from A to B (partial functions from A to B with finite domain).
The mapping (map for short) m ∈ A→m B could be defined by extension as [a1 7→
b1, . . . , an 7→ bn] to denote the association of the elements bi’s to ai’s. We will write
dom(m) to denote the domain of the map m and rang(m) to denote its co-domain.
An empty map will be written as []. Given two maps m1 and m2 from A to B, we
will write m1 †m2 the overriding of the map m2 by the associations of the map m1,
as following: (m1 † m2)(a) = m1(a) if a ∈ dom(m1) and m2(a) otherwise. In the
same way, we will write m1\m2 the restriction of the map m1 with the associations
of the map m2 as following: (m1\m2)(a) = m1(a) if a ∈ dom(m1) and a 6∈ dom(m2).
The expression m1/m2 indicates the map m1 restricted to the associations of the
map m2, as following: (m1/m2)(a) = m1(a) if a ∈ m1 and a ∈ m2. We will write
(Type)-set to denote the set of elements type Type, and (Type)-multiset to denote
the multiset of elements type of Type. Multisets have the same forms as sets, except
that we use delimiters “{|” and “|}” instead of “{” and “}”. Finally, we will use two
projections fst and snd for couples.

Type Environments

In this section, we will define type environments that are needed to deal with some
complex aspects of the Java language. An environment, defined in Figure 8, is a
record that contains maps of class and interface declarations of the current program.
The latter include class and interface modifiers, type definitions of their components
and names of their direct super-class, if any, and of their direct super-interfaces, if
any. For the sake of modularity, we choose to represent the super-class of a class as
a set of class types rather than as single class type. By doing so, we can deal with
the non-existent super-class of the class Object by assigning it the ∅ value. Class
components consist of field, method and constructor declarations, while interface
components consist of field and method declarations. A field declaration is a map
that associates a type and a set of modifiers to the field name. A method declaration
is a map that associates a set of modifiers, a result type and a set of declared
exceptions to the method’s signature, i.e. the name and the type of its parameter.
A constructor declaration is a map that associates a set of modifiers and a set of
declared exceptions to the constructor’s signature. As in [7], method and constructor
bodies are not included in the environment, and they will be introduced later. The
reason for this is simple: When we type check a Java program, we create and update
a map of local variables declarations and a set of exceptions thrown, and we also keep
information about return statements and abrupt termination of statements. Thus,
by not including method and constructor bodies, we can consider the scope of local
variables and their initialization, and type check return, throw and unreachable
statements. We assume that the sets of modifiers in the environment include the
default modifiers of classes, interfaces, fields and methods. As an example, if a
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method m is declared in an interface body, then its modifiers set in the environment
will contain abstract and public even if they are not explicitly declared. Finally,
we suppose all that classes, interfaces, methods and fields are named uniquely.

Type Abbreviations

To increase the readability of our formalization, we define in Figure 9 some type
abbreviations that will be used in both typing rules and semantics functions.

Well Formation of Types

Well formedness of types is expressed as predicates defined in Figure 10. The pred-
icate validIfaces yields true only if all interfaces in a given set are valid.

Type Relations

We distinguish between five kinds of type relations in Java: subclass relation <class

and vclass, subinterface relation <interface and vinterface, implementation relation
<implements, widening conversion relation vwiden, cast conversion relation vcast.

The judgment Γ ` ς1 <class ς2 means that ς1 is a subclass of the class named ς2
in Γ , while judgment Γ ` ς1 vclass ς2 means that under the environment Γ , ς1 is
either a subclass of ς2 or ς2 itself. Subclass relation is given by the inference rules
in Figure 11. Similarly, the subinterface judgment Γ ` ι1 <interface ι2 means that
ι1 is a subinterface of the interface ι2 in Γ , while judgment Γ ` ι1 vinterface ι2
means that under the environment Γ , ι1 is either a subinterface of ι2 or ι2 itself.
Subinterface relation is given by the inference rules in Figure 12. The judgment
Γ ` ς <implements ι means that the class ς provides or inherits an implementation
for the interface ι in Γ . Implementation relation is given by the inference rules in
Figure 13.

Widening conversions specify implicit conversions that do not require any special
run-time action and never result in a run-time exception. We distinguish two types
of widening conversions: widening primitive and widening reference conversions.
The judgment Γ ` π1 vwidenP π2 means that the primitive type π1 can replace the
primitive type π2 in Γ , without any explicit conversion (cast), while the judgment
Γ ` ρ1 vwidenR ρ2 means that the reference type ρ1 can replace the reference type ρ2

in Γ , without any explicit conversion. Widening primitive conversions and widening
reference conversions include identity conversions and are given in Figures 14 and
15 respectively. We also define, in Figure 16, a more general widening conversions,
used as Γ ` τ1 vwiden τ2, that include identity conversions and widening primitive
conversions. Widening conversions will be used especially to type check assignment
expressions and method invocation expressions.
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Environment = 〈 classMap: ClassMap,
interfaceMap: InterfaceMap 〉

ClassMap = ClassType →m ClassDecl

InterfaceMap = InterfaceType →m InterfaceDecl

ClassDecl = 〈 modifiers: (ModifierName)-set,
super: (ClassType)-set,
interfaces: (InterfaceType)-set,
fields: Identifier →m FieldInfo,
methods: Sig →m MethodInfo,
constructors: Sig →m ConstructorInfo 〉

InterfaceDecl = 〈 modifiers: (ModifierName)-set,
interfaces: (InterfaceType)-set,
fields: Identifier →m FieldInfo,
methods: Sig →m MethodInfo 〉

Sig = Identifier × ParameterType

ModifierName = {public,static,abstract,final,private,
synchronized,native,transient,volatile}

FieldInfo = 〈 fieldType: Type,
modifiers: (ModifierName)-set 〉

MethodInfo = 〈 resultType: ResultType,
modifiers: (ModifierName)set,
throws: (ClassType)-set 〉

ConstructorInfo = 〈 modifiers: (ModifierName)-set,
throws: (ClassType)-set 〉

Figure 8: Type checking environments.
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MethodMap = Sig →m MethodInfo +
Sig →m (MethodInfo × ReferenceType)− set

ConstructorMap = Sig →m ConstructorInfo +
Sig →m (ConstructorInfo × ReferenceType)

FieldMap = Identifier →m FieldInfo +
Identifier →m (FieldInfo × ReferenceType)− set

Γ ∈ Environment static environment
cs or tcs ∈ (ClassType)-set classes set
is ∈ (InterfaceType)-set interfaces set
ms ∈ (ModifierName)-set modifiers set
n ∈ ClassOrIfaceType class or interface name
mn ∈ Identifier method name
pn ∈ Identifier parameter name
sig ∈ Sig method signature
fn ∈ Identifier field name
mm ∈ MethodMap map of methods
cm ∈ ConstructorMap map of constructors
fm ∈ FieldMap map of fields
clm ∈ ClassMap map of classes
ifm ∈ InterfaceMap map of interfaces

Figure 9: Type abbreviations.
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validType : Environment × Type → bool

validType(Γ , π) = true

validType(Γ , ς) = validClass(Γ , ς)

validType(Γ , ι) = validIface(Γ , ι)

validType(Γ , σ ∗ []) = validType(Γ , σ∗)

validIface(Γ , τ) = Γ .interfaceMap(τ) 6= ⊥

validClass(Γ , τ) = Γ .classMap(τ) 6= ⊥

validIfaces(Γ , ∅) = true
validIfaces(Γ , {ι} ∪ is) = validIface(Γ , ι) ∧ validIfaces(Γ , is)

Figure 10: Well-formed types.

validType(Γ , ς1) Γ .classMap(ς1).super = ς2
Γ ` ς1 <class ς2

Γ ` ς1 <class ς2 Γ ` ς2 <class ς3
Γ ` ς1 <class ς3

Γ ` ς1 <class ς2
Γ ` ς1 vclass ς2

validType(Γ, ς)
Γ ` ς vclass ς

Figure 11: Subclass relation.
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validType(Γ , ι1) ι2 ∈ Γ .interfaceMap(ι1).interfaces
Γ ` ι1 <interface ι2

Γ ` ι1 <interface ι2 Γ ` ι2 <interface ι3
Γ ` ι1 <interface ι3

Γ ` ι1 <interface ι2
Γ ` ι1 vinterface ι2

validType(Γ, ι)
Γ ` ι vinterface ι

Figure 12: Subinterface relation.

validType(Γ , ς) ι ∈ Γ .classMap(ς).interfaces
Γ ` ς <implements ι

Γ ` ς <implements ι1 Γ ` ι1 <interface ι2
Γ ` ς <implements ι2

Γ ` ς1 <class ς2 Γ ` ς2 <implements ι
Γ ` ς1 <implements ι

Figure 13: Implementation Relation.

validType(Γ , π)
Γ ` π vwidenP π

2
Γ ` byte vwidenP short

2
Γ ` byte vwidenP int

2
Γ ` byte vwidenP long

2
Γ ` byte vwidenP float

2
Γ ` byte vwidenP double

2
Γ ` short vwidenP int

2
Γ ` short vwidenP long

2
Γ ` short vwidenP float

2
Γ ` short vwidenP double

2
Γ ` int vwidenP long

2
Γ ` int vwidenP float

2
Γ ` int vwidenP double

2
Γ ` long vwidenP float

2
Γ ` long vwidenP double

2
Γ ` float vwidenP double

Figure 14: Widen primitive conversion.
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validType(Γ , ρ)
Γ ` ρ vwidenR ρ

Γ ` ς1 <class ς2
Γ ` ς1 vwidenR ς2

Γ ` ς <implements ι
Γ ` ς vwidenR ι

validType(Γ , ρ)
Γ ` Null vwidenR ρ

Γ ` ι1 <interface ι2
Γ ` ι1 vwidenR ι2

validType(Γ , ι) validClass(Γ , Object)
Γ ` ι vwidenR Object

validType(Γ , α) validClass(Γ , Object)
Γ ` α vwidenR Object

validType(Γ , α) validClass(Γ , Cloneable)
Γ ` α vwidenR Cloneable

validType(Γ , µ1) validType(Γ , µ2)
Γ ` µ1[ ] vwidenR µ2[ ]

Figure 15: Widen reference conversion.

Γ ` π1 vwidenP π2
Γ ` π1 vimpl π2

Γ ` ρ1 vwidenR ρ2
Γ ` ρ1 vwiden ρ2

Figure 16: Widen conversion.

VOL 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 137



A FORMAL TYPE SYSTEM FOR JAVA

Finally, we define the cast relation, where the judgment Γ ` τ1 vcast τ2 means
that under the environment Γ , a value of type τ1 can be cast to a value of type
τ2. The cast relation is defined by inference rules in Figure 17. A cast between two
reference types is type-correct if the two types may hold a reference to objects of the
same class at run-time. Thus, a cast between a class and an interface types is legal if
the class or one of its subclasses implements the interface. Since a final class cannot
have any subclasses, a cast between a such class and interface type is type-incorrect,
except for the class that implements the interface. In the same way, the cast between
two abstract reference types (an interface type or an abstract class type) is type-
correct only if all methods with the same signature that they declare have the same
result type and compatible throws clauses. These constraints are expressed formally
as the predicate castOk defined below; the predicate checkedException checks that a
given exception is a checked exception:

castOk : Environment × InterfaceMap × InterfaceMap → bool
notConflictThrows1 : Environment × (ClassType)− set× (ClassType)− set → bool
checkedException : Environment × ClassType → bool

castOk(Γ, [], ifm) = true
castOk(Γ, [a1 7→ b1], [a2 7→ b2] † ifm) =

if a1 = a2 ∧ abstract ∈ b1.modifiers
then b1.resultType = b2.resultType ∧ notConflictThrows1(Γ, b1.throws, b2.throws)
else castOk(Γ , [a1 7→ b1], ifm)
endif

castOk(Γ , [a1 7→ b1] † ifm1, [a2 7→ b2] † ifm2) =
castOk(Γ , [a1 7→ b1], [a2 7→ b2] † ifm2) ∧
castOk(Γ , ifm1, [a2 7→ b2] † ifm2)

notConflictThrows1(Γ , ∅, tcs) = true
notConflictThrows1(Γ , tcs1, tcs2) = ∀ς ∈ tcs2. if checkedException(Γ , ς)

then subClass(Γ , ς, tcs2)
endif

checkedException(Γ , ς) = Γ ` ς vclass Throwable ∧ ¬( Γ ` ς vclass Error ) ∧
¬( Γ ` ς vclass RuntimeException )

For the sake of the formalization, we introduce two predicates: a predicate that
checks that a class is a subclass of at least another class in a given classes set, and
a predicate that checks that each class in a given classes set has a superclass in
another classes set. These predicates are defined formally as following:

subClass : Environment × ClassType × (ClassType)− set → bool
subClasses : Environement × (ClassType)− set× (ClassType)− set → bool

subClass(Γ , ς, ∅) = false
subClass(Γ , ς1, {ς2} ∪ cs) = Γ ` ς1 vclass ς2 ∨ subClass(Γ , ς, cs)
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Γ ` τe vimpl τ
Γ ` τe vcast τ

2
Γ ` byte vcast char

2
Γ ` short vcast byte

2
Γ ` short vcast char

2
Γ ` char vcast byte

2
Γ ` char vcast short

2
Γ ` int vcast byte

2
Γ ` int vcast short

2
Γ ` int vcast char

2
Γ ` long vcast byte

2
Γ ` long vcast short

2
Γ ` long vcast char

2
Γ ` long vcast int

2
Γ ` float vcast byte

2
Γ ` float vcast short

2
Γ ` float vcast char

2
Γ ` float vcast int

2
Γ ` float vcast long

2
Γ ` double vcast byte

2
Γ ` double vcast short

2
Γ ` double vcast char

2
Γ ` double vcast int

2
Γ ` double vcast long

2
Γ ` double vcast float

Γ ` ς1 <class ς2
Γ ` ς2 vcast ς1

validClass(Γ , Object) validType(Γ , α)
Γ ` Object vcast α

validClass(Γ , ς) validIface(Γ , ι)
final /∈ Γ .classMap(ς).modifiers ¬(Γ ` ς <implements ι)

abstract ∈ Γ .classMap(ς) ⇒ castOk(Γ ,Γ .classMap(ς),Γ .interfaceMap(ι))
Γ ` ς vcast ι

validIface(Γ , ι) validClass(Γ , ς)
final /∈ Γ .classMap(ς).modifiers ¬(Γ ` ς <implements ι)

abstract ∈ Γ .classMap(ς) ⇒ castOk(Γ ,Γ .classMap(ς),Γ .interfaceMap(ι))
Γ ` ι vcast ς

validIface(Γ , ι1) validIface(Γ , ι2) ¬(Γ ` ι1 vinterface ι2)
castOk(Γ ,Γ .interfaceMap(ι1),Γ .interfaceMap(ι2))

Γ ` ι1 vcast ι2

Γ ` µ1 vcast µ2
Γ ` µ1[ ] vcast µ2[ ]

Figure 17: Cast conversion.
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subClasses(Γ , ∅, cs) = true
subClasses(Γ , {ς} ∪ cs1, cs2) = subClass(Γ , ς, cs2) ∧ subClasses(Γ , cs1, cs2)

Lookup for Fields, Methods and Constructors Accessible from Classes and
Interfaces

In this section, we will define some functions that extract fields, methods and con-
structors accessible from a given class or interface. Members accessible from a class
are those inherited from its direct superclass, those inherited from any direct super-
interfaces and those declared in the body of the class. Notice that private members
are not inherited just as constructors, since the latter are not regarded as members.
Members of an interface are those inherited from its superinterfaces and those de-
clared in the body of the interface. Moreover, interfaces inherit members from the
class Object. Notice that hidden fields and overridden methods are never inherited.
Finally, members accessible from an array are those of the class Object, except of
the method named clone that is overridden. Furthermore, arrays have a public and
final field named length.

Lookup for Methods

Classes and interfaces might inherit several abstract methods with the same sig-
nature. In order to represent this kind of inheritance, we introduce a new type of
maps Sig →m (MethodInfo × ReferenceType) − set mapping signature values into a
set of values. The type of the set is a pair of method’s information, i.e. a set of
modifiers, a result type and a set of declared exceptions, and a class, an interface or
an array type that contains the method declaration. For brevity of notation, we use
the meta-variable B1 for the co-domain of maps (MethodInfo×ReferenceType)−set.
We define, below, a recursive function that transform maps of method declarations
(introduced in section 6) into previously defined maps.

transformm : ReferenceType × (Sig →m MethodInfo) → (Sig →m B1)

transformm(ρ, []) = []
transformm(ρ, [sig 7→ 〈rt, ms, tcs〉] †m) = [sig 7→ {(〈rt,ms, tcs〉, ρ)}] †

transformm(ρ, m)

The functions methodsi, methodsc and methodsa, defined below, collect methods
accessible from a given interface, a class and an array, respectively, into maps:

methodsi : Environment × InterfaceType → (Sig →m B1)
methodsc : Environment × ClassType → (Sig →m B1)
methodsa : Environment ×ArrayType → (Sig →m B1)

140 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 8



6 STATIC SEMANTICS

methodsIfaceSet : Environment × (InterfaceType)− set → (Sig →m B1)
privateMethods : (Sig →m B1) → (Sig →m B1)
‡m : (Sig →m B1)× (Sig →m B1) → (Sig →m B1)

modifiers : (MethodInfo × ClassOrIfaceType)− set → (ModifierName)− set

methodsi(Γ , ι) = ( transformm(ι,Γ .interfaceMap(ι).methods) †
transformm(Object,Γ .classMap(Object).methods)) †

methodsIfaceSet(Γ ,Γ .interfaceMap(ι).interfaces)

methodsc(Γ , ς1) =
if ς1 = Object
then transformm(ς1,Γ .classMap(ς1).methods)
else let 〈ms, {ς2}, is, fm, mm, cm〉 = Γ .classMap(ς1)

in transformm(ς1,mm) †
( ( methodsc(Γ , ς2) \ privateMethods(

transformm(ς1,Γ .classMap(ς2).methods)) ) ‡m
methodsIfaceSet(Γ , is) )

end let
end if

methodsa(Γ , α) = [(clone,Unit) 7→ {(〈Object, {public}, ∅〉, α)}] †
transformm(Object,Γ .classMap(Object).methods)

methodsIfaceSet(Γ , ∅) = []
methodsIfaceSet(Γ , {ι} ∪ is) = methodsi(Γ , ι) ‡m methodsIfaceSet(Γ , is)

privateMethods([]) = []
privateMethods([sig 7→ {(〈rt, ms, tcs, 〉, ρ)}] †mm) =

( if private ∈ ms
then [sig 7→ {(〈rt,ms, tcs, 〉, ρ)}]
else []
endif ) †

privateMethods(mm)

[] ‡m mm = mm
([sig 7→ b] †mm1) ‡m mm2= if mm2(sig) = ∅

then [sig 7→ b] † (mm1 ‡m mm2)
else if abstract ∈ modifiers(b)

then [sig 7→ b ∪mm2(sig)] † (mm1 ‡m mm2)
else [sig 7→ b] † (mm1 ‡m mm2)
endif

endif

modifiers(∅) = ∅
modifiers({(〈rt,ms, tcs〉, µ)} ∪ s) = ms
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The † operator, used in functions above, overrides the map of inherited methods,
with the map of methods declared in the class or the interface. This turned out to be
necessary to represent methods’ overriding. The function methodsIfaceSet returns
a map containing all methods inherited by an interface from all its superinterfaces.
Since private methods are not inherited, we do not include them in the map of
superclass’s methods. The map of private methods is computed by the recursive
function privateMethods. Since classes and interfaces might inherit more than one
abstract method with the same signature, we introduce a new operator ‡m that
computes the map of inherited methods. If methods having the same signature are
abstract, then the computed map will contain all these methods. Otherwise, if at
least one of them is not abstract, then the computed map will contain only that
one (of all the methods with the same signature). That is, a non-abstract method
overrides all abstract methods with the same signature.

Lookup for Fields

As in the case of methods, we introduce a new type of maps
Identifier →m (FieldInfo × ReferenceType) − set to represent the inheritance
of several fields with the same name. For brevity of notation, we use the meta-
variable B2 for the co-domain of those maps (FieldInfo × ReferenceType) − set.
In order to have the same type of maps, we introduce a new function, which
applied to a value of type Identifier →m FieldInfo will yield a value of type
Identifier →m (FieldInfo × ReferenceType)− set:

transformf : ReferenceType × (Identifier →m FieldInfo) → (Identifier →m B2)

transformf(ρ, []) = []
transformf(ρ, [fn 7→ 〈ft, ms〉] † fm) = [fn 7→ {(〈ft, ms〉, ρ)}] †

transformf(ρ, fm)

Function fieldsi, fieldsc and fieldsa, defined below, collect fields accessible from
a given interface, class and array, respectively, into maps, and are very similar to
those of methods’ lookup:

fieldsi : Environment × InterfaceType → (Identifier →m B2)
fieldsc : Environment × ClassType → (Identifier →m B2)
fieldsa : Environment ×ArrayType → (Identifier →m B2)
fieldsIfaceSet : Environment × (InterfaceType)− set → (Identifier →m B2)
privateFields : (Identifier →m B2) → (Identifier →m B2)
‡f : (Identifier →m B2)× (Identifier →m B2) → (Identifier →m B2)

fieldsi(Γ , ι) = transformf(ι,Γ .interfaceMap(ι).fields) †
fieldsIfaceSet(Γ ,Γ .interfaceMap(ι).interfaces)
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fieldsc(Γ , ς1) =
if ς1 = Object
then transformf(ς1,Γ .classMap(ς1).fields)
else let 〈ms, {ς2}, is, fm, mm, cm〉 = Γ .classMap(ς1) in

transformf(ς1, fm) †
( ( fieldsc(Γ , ς2) \ privateFields(transformf(ς1,Γ .classMap(ς2).fields) ) ‡f

fieldsIfaceSet(Γ , is) )
endlet

endif

fieldsa(Γ , α) = [length 7→ {(〈int, {public, final}〉, α)}]

fieldsIfaceSet(Γ , ∅) = []
methodsIfaceSet(Γ , {ι} ∪ is) = fieldsi(Γ , ι) ‡f fieldsIfaceSet(Γ, is)

privateFields([]) = []
privateFields([fn 7→ {(〈ft, ms〉, ρ)}] † fm) =

( if private ∈ ms then [fn 7→ {(〈ft, ms〉, ρ)}]
else []
endif ) †

privateFields(fm)

[] ‡f fm = fm
([fn 7→ b] † fm1) ‡f fm2 = if fm2(fn) = ∅

then [fn 7→ b] † (fm1 ‡f fm2)
else [fn 7→ b ∪ fm2(fn)] † (fm1 ‡f fm2)
endif

In some cases, when we type-check method and field invocation, we do not know
if the caller is a class, an interface or an array type, and therefore we cannot decide
which lookup function, defined above, must be applied. For instance, in order to
type-check the field access Primary .Identifier , we have to find the map of fields
accessible from the Primary type. To do so, we must call one of the following
functions: fieldsc, fieldsi, fieldsa, according to whether the type of Primary is a class
type, an interface type or an array type, respectively. Thus, we introduce new
functions that invoke the adequate function according to the caller’s type:

methodsVar : Environment × ReferenceType → (Sig →m B1)
fieldsVar : Environment × ReferenceType → (Identifier →m B2)

methodsVar(Γ , ρ) = case ρ of ς ⇒ methodsc(Γ , ς)
ι ⇒ methodsi(Γ , ι)
α⇒ methodsa(Γ , α)

endcase

fieldsVar(Γ , ρ) = case ρ of ς ⇒ fieldsc(Γ , ς1)
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ι ⇒ fieldsi(Γ , ι)
α⇒ fieldsa(Γ , α)

endcase

Lookup for Constructors

If a class declares constructors, then they are the only constructors accessible from
this class, since constructors are not inherited. Otherwise, if the class contains no
constructor declarations, then a default constructor is automatically provided to it.
The default constructor of the class Object is the one that takes no parameters and
has an empty body. For all other classes, the default constructor takes no parameters
and invokes the constructor of the superclass with no arguments. Thus, a map of
constructors accessible from a given class is yielded by the function constructors
defined as follows:

constructors : Environment × ClassType → (Sig →m (ConstructorInfo × ClassType))
defaultConstructorInvocation : Environment × ClassType →

bool× (ClassType)− set× (ClassType)− set
transformc : ClassType × (Sig →m ConstructorInfo) → (Sig →m (ConstructorInfo×

ClassType))

constructors(Γ , ς1) =
let Γ .classMap(ς1) = 〈ms, is, cs, fm, mm, cm〉 in

if cm = []
then if defaultConstructorInvocation(Γ , ς1) = (true, tcs, {ς2})

then [(ς1,Unit) 7→ (〈{public}, tcs〉, ς2)]
else []
endif

else transformc(ς1, cm)
endif

endlet

defaultConstructorInvocation(Γ , ς1) =
if ς1 6= Object
then let {ς2} = Γ .classMap(ς1).super in

if Γ .classMap(ς2).constructors 6= []
then case Γ .classMap(ς2).constructors(ς2,Unit)

of 〈ms, tcs〉 ⇒ (private /∈ ms, tcs, {ς2})
⊥ ⇒ (false, ∅, ∅)

endcase
else defaultConstructorInvocation(Γ , ς2)
endif

endlet
else (true, ∅, ∅)
endif
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transformc(ς, []) = []
transformc(ς, [sig 7→ 〈ms, tcs〉] † cm) = [sig 7→ (〈ms, tcs〉, ς)] †

transformc(ς, cm)

The function defaultConstructorInvocation, used above, finds the default constructor
of a class. It yields a triplet: a boolean variable that takes the true value if the
constructor is found and the false value otherwise, a set of exceptions declared in
the constructor and a class type that declares the constructor. To each constructor
entry (modifiers and declared exceptions) in the constructors’ map, the function
transformc adds the declaring class.

Well-formed Environments

Environments must be well-formed, i.e. their composing declarations must satisfy
some important properties of the Java language. These properties are expressed as
predicates on maps.

Well-formed Class Fields

A field declared in a class is well-formed if its type is valid and its modifiers set is a
subset of {public, private, final, static, volatile, transient}. Moreover, a
public field cannot also be private, and a final field cannot be volatile. These
constraints are expressed formally as the predicate defined bellow:

wellFormedFieldc : Environment × (Identifier→m FieldInfo) → bool

wellFormedFieldc(Γ , []) = true
wellFormedFieldc(Γ , [fn 7→ 〈ft, ms〉] † fm) =

validType(Γ , ft) ∧
ms ⊆ {public, private, final, static, volatile, transient} ∧
{public, private} 6⊆ ms ∧
{volatile, final} 6⊆ ms ∧
wellFormedFieldc(Γ , fm)

Well-formed Class Methods

A method declared in a class is well-formed if and only if the following conditions
are met:

• Its parameter and result types are valid;

• Its modifiers set is a subset of {public, private, final, static, abstract,
native, synchronized};
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• It cannot be declared public and private at the same time;

• If it is abstract, then it cannot be private, final, static, native or
synchronized;

• Its declared exceptions must be subclasses of the class Throwable.

The above-mentioned conditions are expressed more formally by the following re-
cursive predicate:

wellFormedMethodc : Environment × (Sig →m MethodInfo) → bool

wellFormedMethodc(Γ , []) = true
wellFormedMethodc(Γ , [(mn, τp) 7→ 〈rt,ms, tcs〉] †mm) =

validType(Γ , τp) ∧ validType(Γ , rt) ∧
ms ⊆ {public, private, final, static, abstract, native, synchronized} ∧
{public, private} 6⊆ ms ∧
( if abstract ∈ ms

then {private, final, static, native, synchronized} ∩ms = ∅
endif ) ∧

subClasses(Γ , tcs, {Throwable}) ∧
wellFormedMethodc(Γ ,mm)

Well-formed Constructors

A constructor declaration is well-formed if and only if the following constraints hold:

• It has the same name as its declaring class;

• Its modifiers set is a subset of {public,private};

• It cannot be declared public and private at the same time;

• Its declared exceptions must be subclasses of the class Throwable.

These conditions are checked by the predicate defined below:

wellFormedConstructorc : Environment × ClassType × (Sig →m ConstructorInfo) → bool

wellFormedConstructorsc(Γ , ς, []) = true
wellFormedConstructorsc(Γ , ς1, [(ς2, τa) 7→ 〈ms, tcs〉] † cm) =

ς1 = ς2
validType(Γ , τa) ∧
ms ⊆ {public, private} ∧
{public, private} 6⊆ ms ∧
subClasses(Γ , tcs, {Throwable}) ∧
wellFormedConstructorsc(Γ , ς1, cm)
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Well-formed Classes

A class declaration is considered well-formed if and only if the following conditions
are satisfied:

• It is named uniquely, that is there is no interface that has the same name.

• Its modifiers set is a subset of {public, abstract,final}.

• It cannot be declared final and abstract at the same time, since abstract

classes are incomplete and cannot be final.

• Its implemented interfaces, if any, exist.

• If it is not the class Object, then it must have a valid superclass that is not
final.

• If it declares abstract methods, then it must be declared as an abstract

method.

• All declared fields, if any, are well-formed.

• All declared methods, if any, are well-formed.

• If it contains constructor declarations, then they must be well-formed, other-
wise the default constructor must exist, must be well-formed and cannot be
private. Moreover, the default constructor, if any, cannot declare any checked
exception, since its call may throw an exception.

• Each method declared in this class and overriding or hiding a set of meth-
ods declared in the superclasses and superinterfaces, must meet the following
conditions:

– it cannot declare more checked exceptions than the overridden or hidden
methods;

– for each checked exception type declared in the clause throws of this
method, the same exception type or one of its supertypes must appear in
the throws clause of each overridden or hidden method;

– it cannot be private, since it cannot be more private than methods that
it overrides and hides;

– it cannot override or hide final methods;

– if it is a non-static method, than it cannot override a static one, and
if it is static, than it cannot override a non-static one.
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However, since overridden and hidden methods are not inherited, we have to
ensure that these constraints are met in the following cases: When methods of
the current class override or hide methods inherited from its superclass, when
methods of the current class implement abstract methods inherited form
its superinterfaces and when non-abstract methods inherited from superclass
of the current class implement methods of its superinterfaces. To do so, we
introduce a new recursive predicate wellOverriddenHidden and we call it three
times with different arguments for each case. Moreover, when the current class
inherits more than one method with the same signature, we have to check that
all these methods can be implemented by a single method in the subclass of
the class, i.e. that they have the same result type and the checked exceptions
that they declare are compatible. The set of checked exceptions is yielded by
the function named getCheckedExceptions.

wellFormedClass : Environment × ClassType → bool
abstractMethods : (Sig →m B1) → (Sig →m B1)
wellOverriddenHidden : (Sig →m B1)× (Sig →m B1) → bool
wellInherited : (Sig →m B1) → bool
notConflictThrows2 : (ClassType)− set× (ClassType)− set → bool
getCheckedExceptions : Environment × (ClassType)− set → (ClassType)− set

wellFormedClass(Γ , ς1) =
let Γ .classMap(ς1) = 〈ms, cs, is, fm, mm, cm〉 in
¬(validIface(Γ , ς1)) ∧
ms ⊆ {public, abstract, final} ∧
{final, abstract} 6⊆ ms ∧
validIfaces(Γ , is) ∧
(case cs of

∅ ⇒ ς1 = Object
{ς2} ⇒ validClass(Γ , ς2) ∧

final 6∈ Γ .classMap(ς2).modifiers ∧
(if abstractMethods(methodsc(Γ , ς1)) 6= []
then abstract ∈ ms
endif) ∧

wellOverriddenHidden(transformm(mm),methodsc(Γ , ς2)\
privateMethods(methodsc(Γ , ς2)) ∧

wellOverriddenHidden(transformm(mm),methodsIfaceSet(is)) ∧
wellOverriddenHidden(methodsc(Γ , ς2)\

(privateMethods(methodsc(Γ , ς2))),
methodsIfaceSet(Γ , is)) ∧

wellInherited(methodsc(Γ , ς1))
endcase) ∧
wellFormedFieldc(Γ , fm) ∧
wellFormedMethodc(Γ ,mm) ∧
if cm = []
then defaultConstructorInvocation(Γ , ς1) = (true, tcs, {ς3}) ∧

¬checkedException(Γ , tcs)
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else wellFormedConstructorc(Γ , ς1, cm)
endif

endlet

abstractMethods([]) = []
abstractMethods([sig 7→ {(〈rt,ms, tcs, 〉, µ)}] †mm) =

(if abstract ∈ ms
then [sig 7→ {(〈rt, ms, tcs, 〉, µ)}]
else []
endif) †
abstractMethods(mm)

wellOverriddenHidden([],mm) = true
wellOverriddenHidden([sig 7→ {(〈rt1,ms1, tcs1〉, µ1)}] †mm1,mm2) =

(if mm2(sig) 6= {} then ∀〈rt2,ms2, tcs2), µ2〉 ∈ mm2(sig).
rt1 = rt2 ∧ notConflictThrows1(tcs1, tcs2) ∧
private /∈ ms1 ∧ final 6∈ ms2 ∧
static ∈ ms1 ↔ static ∈ ms2

else true
endif) ∧
wellOverriddenHidden(mm1,mm2)

wellInherited([]) = true
wellInherited([sig 7→ b] †mm) = ( ∀(〈rt1,ms1, tcs1〉, µ1) ∈ b ∧

∀(〈rt2,ms2, tcs2〉, µ2) ∈ b.
rt1 = rt2 ∧
notConflictThrows2(tcs1, tcs2) ) ∧

wellInherited(mm)

notConflictThrows2(tcs1, tcs2) =
tcs1 = ∅ ∨ tcs2 = ∅ ∨
(let ce1 = getCheckedExceptions(tcs1) ;

ce2 = getCheckedExceptions(tcs2)
in ∀e ∈ ce1. subClass(e, ce2) ∨

∀e ∈ ce2.subClass(e, ce1)
endlet)

getCheckedExceptions(Γ , ∅) = ∅
getCheckedExceptions(Γ , {ς} ∪ cs) = (if checkedException(Γ , ς)

then {ς}
else ∅
endif) ∪
getCheckedExceptions(Γ , cs)
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Well-formed Interface Fields

A field declared in an interface is well-formed if its type is valid and its modifiers set
is a subset of {public, final, static}. These constraints are expressed formally
as the predicate defined bellow:

wellFormedFieldi : Environment × (Identifer →m FieldInfo) → bool

wellFormedFieldi(Γ , []) = true
wellFormedFieldi(Γ , [fn 7→ 〈ft, ms〉] † fm) =

validType(Γ , ft) ∧
ms ⊆ {public, final, static} ∧
wellFormedFieldi(Γ , fm)

Well-formed Interface Methods

A method declared in an interface is well-formed if and only if the following condi-
tions are met:

• Its parameter and result types are valid;

• Its modifiers set is a subset of {public, abstract};

• It cannot be declared public and private at the same time;

• Its declared exceptions have to be subclasses of the class Throwable.

The above-named conditions are expressed more formally by the following recursive
predicate:

wellFormedMethodi : Environment × (Sig →m MethodInfo) → bool

wellFormedMethodi(Γ , []) = true
wellFormedMethodi(Γ , [(mn, τp) 7→ 〈rt, ms, tcs〉] †mm) =

validType(Γ , τp) ∧ validType(Γ , rt) ∧
ms ⊆ {public, abstract} ∧
subClasses(Γ , tcs, Throwable) ∧
wellFormedMethodi(Γ ,mm)

Well-formed Interfaces

An interface declaration is considered well-formed if and only if the following con-
ditions is satisfied:
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• It is named uniquely, that is there is no class that has the same name.

• Its modifiers set is a subset of {public, abstract}.

• Its superinterfaces, if any, exist.

• All declared fields, if any, are well-formed.

• All declared methods, if any, are well-formed.

• Each method declared in this interface and overriding a set of methods declared
in the superinterfaces must meet the conditions specified by the wellOverrid-
denHidden predicate.

• If it inherits more than one method with same signature, all these methods
must respect some conditions expressed by the wellInherited predicate.

These constraints are expressed formally as the following predicate:

wellFormedIface : Environment × InterfaceType → bool

wellFormedIface(Γ , ι) =
let Γ .interfaceMap(ι) = 〈ms, is, fm, mm〉
in ¬(validClass(Γ , ι)) ∧

validIfaces(Γ , is) ∧
ms ⊆ {public, abstract} ∧
wellOverriddenHidden(transformm(mm),methodsIfaceSet(is)) ∧
wellInherited(methodsi(Γ , ι)) ∧
wellFormedFieldsi(Γ , fm) ∧
wellFormedMethodsi(Γ ,mm)

end let

Well-formed Environments

An environment is well-formed if and only if all classes and interfaces that it declares
are well-formed. We assume that the predefined classes as Object and Throwable

are well-formed and that they have already been added to the environment. Since
the recursive lookup functions, defined in 6, cannot be called when the class or
interface hierarchy is cyclic, before we call them we ensure that no circularities can
occur in the class or interface hierarchy. The predicate that checks if an environment
is well-formed is defined bellow:

wellFormedEnv : Environment → bool
wellFormedMapc : Environment × ClassDecl → bool
wellFormedMapi : Environment × InterfaceDecl → bool
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wellFormedEnv(Γ ) =
let Γ = 〈clm, ifm〉
in wellFormedMapc(Γ , clm)

wellFormedMapi(Γ , ifm)
endlet

wellFormedMapc(Γ , []) = true
wellFormedMapc(Γ , [ς1 7→ 〈ms, cs, is, fm, mm, cm〉] † clm) =

(case cs of ∅ ⇒ true
{ς2}⇒ (if ¬(Γ ` ς2 vclass ς1)

then wellFormedClass(Γ , ς2)
else false
endif)

endcase) ∧
wellFormedMapc(clm)

wellFormedMapi(Γ , []) = true
wellFormedMapi(Γ , [ι1 7→ 〈ms, is, fm, mm〉] † ifm) =

(if ∀ι1 ∈ is. ¬(Γ ` ι2 vinterface ι1)
then wellFormedIface(Γ , ι1)
else false
endif) ∧
wellFormedMapi(ifm)

Semantics Objects

In this section, we introduce some semantics objects that will be used in the typing
rules:

LV ∈ LocalVarMap = Identifier →m (Type, bool)
E ,UE ∈ ExceptSet = (ClassType)-multiset
PN ∈ PosName = {‘f’,‘m’,‘c’,‘a’}
PI ∈ PosInfo = Type + Sig + Unit
P ou (PN ,PI) ∈ Position = PosName × PosInfo
B ∈ BoolCouple = bool× bool
C ∈ bool

Map of local variables LV The map of local variables maps each local vari-
able name (Identifier) to a pair consisting of the local variable type and a boolean
variable. The latter is a flag that have the true value if the variable is initialized
and the false value, otherwise. This boolean variable is necessary to deal with the
flow analysis done by the Java compiler to make sure that each local variable has
a definitely assigned value before it is being used [9, chapter 16]. The map LV is
very useful to determine the scopes of local variables. When a new variable is intro-
duced, we add a new association in the map, and when a variable is no more visible,
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we delete its corresponding association from the map. The two operators ∧ and ∨
make a special compositions of two maps. When the former is applied to two maps
of local variables, it returns a new map that is similar to its left-hand parameter,
except that a variable in this map is considered initialized only if it is initialized in
both maps. In the other hand, when the operator ∨ is applied to two maps of local
variables, it returns a new map that is similar to its left-hand parameter, except
that a variable in this map is considered initialized only if it is initialized in at least
one of these maps.

∧ : LocalVarMap × LocalVarMap → LocalVarMap
∨ : LocalVarMap × LocalVarMap → LocalVarMap

m ∧ [] = m
[] ∧m = []
[v1 7→ (t1, b1)] ∧ ([v2 7→ (t2, b2)] †m2) = if v1 = v2 then [v1 7→ (t1, b1 ∧ b2)]

else [v1 7→ (t1, b1)] ∧m2

endif

([v1 7→(t1, b1)] †m1) ∧ ([v2 7→ (t2, b2)] †m2) =
([v1 7→ (t1, b1)] ∧ ([v2 7→ (t2, b2)] †m2)) † (m1 ∧ ([v2 7→ (t2, b2)] †m2))

m ∨ [] = m
[] ∨m = []

[v1 7→ (t1, b1)] ∨ ([v2 7→ (t2, b2)] †m2) = if v1 = v2 then [v1 7→ (t1, b1 ∨ b2)]
else [v1 7→ (t1, b1)] ∨m2

endif

([v1 7→(t1, b1)] †m1) ∨ ([v2 7→ (t2, b2)] †m2) =
([v1 7→ (t1, b1)] ∨ ([v2 7→ (t2, b2)] †m2)) † (m1 ∨ ([v2 7→ (t2, b2)] †m2))

Flag variable B To deal with unreachable statements and the return statement,
we introduce the flag variable B that consists of a couple of boolean variables. The
first one will have the true value as soon as a statement completes abruptly. In this
case, all following statements will be considered unreachable. The second variable
will have the true value when a return statement is reached. The latter variable is
used later in the typing rules to verify that a non-void method contains a reachable
return statement. In the typing rules, to be sure that the statement to be typed is
reachable, we have to verify that the first condition in B is false. The flag variable
B is given with two predicates ∧ and ∨:

∧ : (bool× bool)× (bool× bool) → (bool× bool)
∨ : (bool× bool)× (bool× bool) → (bool× bool)
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(b1, c1) ∧ (b2, c2) = (b1 ∧ b2, c1 ∧ c2)
(b1, c1) ∨ (b2, c2) = (b1 ∨ b2, c1 ∨ c2)

Multiset of exceptions E The multiset of exceptions consists of all checked
exceptions that can be raised in the current method or constructor body. It will be
useful to ensure that this thrown exceptions will be either handled or declared.

Position P The variable P consists of a character PN and an information PI.
The character has the ‘f’ value when the expression to be typed is an initialization
expression of a field, the ‘m’ value when the expression to be typed appears in a
method body, the ‘c’ value when it appears in a constructor body and the ‘a’ value
when the expression is an argument used in an explicit constructor invocation. The
information PI is the type of the field, the method or constructor signature, or the
Unit type

Flag variable C Since it is not legal in Java to assign a value to a final field,
we introduce the flag variable C that will have the true value when an access to a
final field is done. The value of the flag will be examined in the typing rule for a
field assignment expression.

Typing Rules

Our static semantics is represented by a set of inference rules that express the well-
typedness of declarations, blocks, statements and expressions. We use the function
classOrlfaceDecl in order to find a record that corresponds to the current class or
interface. Super-class part of an interface declaration is presented by an empty map
“[]”. In order to improve typing rules readability, only the parts of the record that
are actually used in the rule are specified; the others are shown as “ ”.

Typing Rules for Declarations

Our static semantics for declarations contains several kind of judgment. Below, we
introduce typing rules for declarations according to the kind of used judgment.

Judgments of the form Γ `Declaration: 3 This kind of judgment is used to
type check global declarations of programs, classes and interfaces, and it means that
under some typing environment Γ , the phrase Declaration of the grammar is well-
formed. Typing rules using this kind of judgments are quite simple and are given
by the Figure 18.
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Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ ` Program : 3

2
Γ ` ε : 3

Γ ` ClassDeclaration : 3 Γ ` Program : 3

Γ ` ClassDeclaration Program : 3

Γ ` InterfaceDeclaration : 3 Γ ` Program : 3

Γ ` InterfaceDeclaration Program : 3

Class-Decl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ ` ClassDeclaration : 3

Γ .classMap(ClassType) = 〈ms, {ς}, is, fm, mm, cm〉
Γ ` Modifiers : ms Γ ,ClassType ` Extends : {ς} Γ ` Implements : is

Γ ,ClassType ` ClassBodyDeclaration : 3

Γ ` Modifiers class ClassType Extends Implements
{ ClassBodyDeclaration } : 3

Iface-Decl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ ` InterfaceDeclaration : 3

Γ .interfaceMap(InterfaceType) = 〈ms, is, fm, mm〉
Γ ` Modifiers : ms Γ ` ExtendsInterfaces : is
Γ , InterfaceType ` InterfaceBodyDeclaration : 3

Γ ` Modifiers interface InterfaceType ExtendsInterfaces
{ InterfaceBodyDeclaration } : 3

Figure 18: Typing rules for declarations: part 1.

VOL 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 155



A FORMAL TYPE SYSTEM FOR JAVA

Extends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ , ς ` Extends : cs

2
Γ , ς ` ε : {Object}

2
Γ , ς ` extends ClassType : {ClassType}

Figure 19: Typing rules for declarations: part 2.

Judgments of the form Γ , ς ` Extends : cs This kind of judgment means that
under some typing environment Γ and the current class ς, Extends is well-formed
and elaborates to a set of classes. The latter contains the superclasse type declared
in the clause extends of the class ς if it exists, otherwise it contains the class Object.
Typing rules for Extends are given in Figure 19.

Judgments of the form Γ ` Modifiers : ms This kind of judgment means that
under some typing environment Γ , Modifiers is well-formed and elaborates to a set
of modifiers. Typing rules for Modifiers are given in Figure 20.

Judgments of the form Γ `Declaration: (µ)− set This kind of judgment means
that under some typing environment Γ , the Declaration of the grammar is well-
formed and elaborates to a set of classes or interfaces. Typing rules that use this
kind of judgment are introduced in Figure 21.

Judgments of the form Γ ` Parameter : pn, τp This kind of judgment is used
to type-check the parameter of a method or a constructor and it means that under
some typing environment Γ , the parameter declaration Parameter is well-formed
and elaborates to the parameter name and type. Typing rules for Parameter are
given in Figure 22. When the method or the constructor do not take parameter, the
evaluation of Parameter must elaborate to the couple (ε, Unit).

Judgments of the form Γ , µ `Declaration: 3 This kind of judgment means that
under some typing environment Γ and the current class or interface µ, i.e. the one
that we are currently typing, the phrase Declaration of the grammar is well-formed.
Typing rules for class and interface bodies including global declarations of their
components, use this kind of judgment and they are defined in Figures 23 and 24.
Most of those rules are straightforward. Below we comment some of them:

• Field-Decl: Since final fields must be initialized when they are declared,
a field declaration that does not include an initialization expression cannot be
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Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ ` Modifiers : ms

2
Γ ` ε : ∅

Γ ` Modifiers : ms
Γ ` public Modifiers : {public} ∪ms

Γ ` Modifiers : ms
Γ ` private Modifiers : {private} ∪ms

Γ ` Modifiers : ms
Γ ` static Modifiers : {static} ∪ms

Γ ` Modifiers : ms
Γ ` abstract Modifiers : {abstract} ∪ms

Γ ` Modifiers : ms
Γ ` final Modifiers : {final} ∪ms

Γ ` Modifiers : ms
Γ ` synchronized Modifiers : {synchronized} ∪ms

Γ ` Modifiers : ms
Γ ` native Modifiers : {native} ∪ms

Γ ` Modifiers : ms
Γ ` volatile Modifiers : {volatile} ∪ms

Γ ` Modifiers : ms
Γ ` transient Modifiers : {transient} ∪ms

Figure 20: Typing rules for declarations: part 3.
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Super-Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . Γ ` InterfaceTypeList : is

2
Γ ` InterfaceType : {InterfaceType}

Γ ` InterfaceTypeList : is
Γ ` IntrefaceType , InterfaceTypeList : {InterfaceType} ∪ is

Implements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ ` Implements : is

2
Γ ` ε : ∅

Γ ` InterfaceTypeList : is
Γ ` implements InterfaceTypeList : is

Extends-Interfaces . . . . . . . . . . . . . . . . . . . . . . Γ ` ExtendsInterfaces : is

2
Γ ` ε : ∅

Γ ` InterfaceTypeList : is
Γ ` extends InterfaceTypeList : is

Throws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ ` Throws : cs

2
Γ ` ε : ∅

Γ ` ClassTypeList : cs
Γ ` throws ClassTypeList : cs

2
Γ ` ClassType : {ClassType}

Γ ` ClassType : {ClassType} ClassTypeList : cs
Γ ` ClassType ClassTypeList : {ClassType} ∪ cs

Figure 21: Typing rules for declarations: part 4.
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Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ ` Parameter : pn, τp

2
Γ ` ε : ε, Unit

2
Γ ` Type Identifier : Identifier ,Type

Figure 22: Typing rules for declarations: part 5.

declared final. Also for this reason, when a field declaration do not include
an initialization expression, the field must be declared in a class ς and not in an
interface, since interface fields are implicitly final. Moreover, the evaluation
of the expression used in the field initialization must yield an ∅ of checked ex-
ceptions. Indeed, according to the Java Language Specification [9, chapter 8],
it is a compile-time error if the evaluation of the variable initializer for a field
of a class or an interface completes abruptly raising a checked exception.

• Method-Decl: If a method has a body, then it cannot be declared
abstract nor native. This constraint is expressed in the typing rule by
{abstract, native} ∩ ms = ∅. A method body is a block. When we type-
check this block, we create a new local variables map that must contain an
entry for the parameter of the method that is considered as a special local
variable. Since the parameter is initialized when the method is called, its
initialization flag in the map must be true. The scope of the local variables
declared in a method body is the method body itself. Thus, once the latter is
evaluated, the map of local variables must be empty. If some checked excep-
tions result from this evaluation, then for each thrown checked exception that
has not been handled in the method body, the throws clause of the method
must contain the class of this exception or one of its superclasses. To do so,
we use the function unCaughtExceptions, defined below, to compute the set of
checked exceptions that may be raised in the method body and that were not
declared in the method’s throws clause. Then, we require the computed set
to be the empty set ∅.

unCaughtExceptions : Environment × ExceptSet × (ClassType)− set →
(ClassType)− set

unCaughtExceptions(Γ , ∅, tcs) = ∅
unCaughtExceptions(Γ , {|ς|} ∪ E , tcs) = (if subClass(Γ , ς, tcs)

then ∅
else {ς}
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endif) ∪
unCaughtExceptions(Γ , E , tcs)

Finally, a method declared to have a return type, i.e. not declared void, must
contain in its body an accessible return statement. This is expressed as the
logical formula ResultType 6= void⇒ b2 = true.

• Abstract-Method-Decl: This rule is similar to the previous one, but
the method to be type-checked has no body, and then it must be declared
abstract or native.

• Constructor-Decl This rule is also similar to Method-Decl. A construc-
tor declaration can be considered as a non-abstract method that is declared
void.

Judgments of the form: Γ , µ,LV1, E1,B1,P `ConstructorBody: LV2, E2,B2 and
of the form Γ , µ,LV1, E1,P `ExplicitConsInvocation: LV2, E2 The first kind of
judgment means that under the static context that consists of the static environment
Γ , the current class or interface µ, the local variables map LV1, the set of checked
exceptions E1, the flag variable B1 and the position P , a declaration is well-formed
and it may change the components LV1, E1 and B1 of the context. The second kind of
judgment is quite similar to the first one, except that the flag variable does not form
part of the context. Typing rules for constructor bodies and explicit constructor
invocations use this kind of judgment and they are defined in Figure 25. Below we
comment some of them.

• Default-Cons-Invocation: When the constructor body does not begin
with an explicit constructor invocation (this is represented by ε in the gram-
mar), the constructor of the direct superclass that takes no arguments is implic-
itly invoked, i.e. the call super (); is automatically done. To type-check this
implicit invocation, we call the function defaultConstructorInvocation, defined
in section 6, that must find the superclass’s constructor with no arguments.
If the latter declares checked exceptions in its clause throws, then for each
checked exception type, the same exception type or one of its supertypes must
appear in the throws clause of the calling constructor, i.e. the one that we are
currently typing. Thus, we can be ensured that all checked exceptions that
may be raised from the implicit constructor call, will be handled later.

• This-Cons-Invocation: When the constructor begins with an explicit con-
structor invocation, we have to find the invoked constructor and then check,
as for previous rule, that all checked exceptions that it declares are specified
in the clause throws of the caller constructor. In addition, we have to ensure
that the constructor does not invoke itself. This is expressed in the typing rule
by the logical formula snd(snd(P)) 6= τa.
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Class-Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ , ς ` ClassBodyDeclaration : 3

2
Γ , ς ` ε : 3

Γ , ς ` FieldDeclaration : 3 Γ , ς ` ClassBodyDeclaration : 3

Γ , ς ` FieldDeclaration ClassBodyDeclaration : 3

Γ , ς ` MethodDeclaration : 3 Γ , ς ` ClassBodyDeclaration : 3

Γ , ς ` MethodDeclaration ClassBodyDeclaration : 3

Γ , ς ` AbstractMethodDeclaration : 3 Γ , ς ` ClassBodyDeclaration : 3

Γ , ς ` AbstractMethodDeclaration ClassBodyDeclaration : 3

Γ , ς ` ConstructorDeclaration : 3 Γ , ς ` ClassBodyDeclaration : 3

Γ , ς ` ConstructorDeclaration ClassBodyDeclaration : 3

Iface-Body . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ , ι ` InterfaceBodyDeclaration : 3

2
Γ , ι ` ε : 3

Γ , ι ` FieldDeclaration : 3 Γ , ι ` InterfaceBodyDeclaration : 3

Γ , ι ` FieldDeclaration InterfaceBodyDeclaration : 3

Γ , ι ` AbstractMethodDeclaration : 3 Γ , ι ` InterfaceBodyDeclaration : 3

Γ , ι ` AbstractMethodDeclaration ClassBodyDeclaration : 3

Field-Decl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ , µ ` FieldDeclaration : 3

Γ .classMap(ς) = 〈 , , , fm, , 〉
fm(Identifier) = 〈Type,ms〉 Γ ` Modifiers : ms final /∈ ms

Γ , ς ` Modifiers Type Identifier ; : 3

classOrIfaceDecl(Γ , µ) = 〈 , , , fm, , 〉
fm(Identifier) = 〈Type,ms〉 Γ ` Modifiers : ms

Γ , µ, [], ∅, (‘f’, Identifier) ` Expression : τe, [], ∅, C Γ ` τe vimpl Type
Γ , µ ` Modifiers Type Identifier = Expression ; : 3

classOrIfaceDecl(Γ , µ) = 〈 , , , fm, , 〉
fm(Identifier) = 〈SimpleType[],ms〉 Γ ` Modifiers : ms

Γ , µ, [], ∅, (‘f’, Identifier) ` ArrayInitializer : σ, [], ∅
Γ ` σ vimpl SimpleType

Γ , µ ` Modifiers SimpleType[] Identifier = ArrayInitializer ; : 3

Figure 23: Typing rules for declarations: part 6.
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Method-Decl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ , ς ` MethodDeclaration : 3

Γ .classMap(ς) = 〈 , , , ,mm, 〉 Γ ` Parameter : pn, τp

mm(Identifier , τp) = 〈ResultType,ms, tcs〉 Γ ` Modifiers : ms
Γ ` Throws : tcs {abstract, native} ∩ms = ∅ B = (false, false)
Γ , ς, [pn 7→ (τp, true)], ∅,B, (‘m’, (Identifier , τp)) ` Block : [], E , (b1, b2)
unCaughtExceptions(Γ , E , tcs) = ∅ ResultType 6= void⇒ b2 = true

Γ , ς ` Modifiers ResultType Identifier ( Parameter ) Throws Block : 3

Abstract-Method-Decl . . . . . . . . . . . . . . . . . . Γ , µ ` AbstractMethodDeclaration : 3

classOrIfaceDecl(Γ , µ) = 〈 , , , ,mm, 〉 Γ ` Parameter : pn, τp

mm(Identifier , τp) = 〈ResultType,ms, tcs〉 Γ ` Modifiers : ms
Γ ` Throws : tcs {abstract, native} ∩ms 6= ∅

Γ , µ ` Modifiers ResultType Identifier ( Parameter )Throws ; : 3

Constructor-Decl . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ , ς ` ConstructorDeclaration : 3

Γ .classMap(ς) = 〈 , , , , , cm〉 Γ ` Parameter : pn, τp

cm(ClassType, τp) = 〈ms, tcs〉 Γ ` Modifiers : ms
Γ ` Throws : tcs B = (false, false)

Γ ,ClassType, [pn 7→ τp], ∅,B, (‘c’, (ClassType, τp)) ` ConstructorBody : [], E ,B
unCaughtExceptions(Γ , E , tcs) = ∅

Γ , ς ` Modifiers ClassType ( Parameter ) Throws ConstructorBody : 3

Figure 24: Typing rules for declarations: part 7.
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• Super-Cons-Invocation: This rule is quite similar to the previous one, but
instead of to check that the constructor does not invoke itself, we must verify
that the invoked constructor is not private.

Judgments of the form: Γ , µ,LV1, E1,P `Declaration: σ,LV2, E2 This kind of
judgment means that under a static context consisting of Γ , µ, LV1, E1, B1 and P ,
the declaration Declaration is well-formed and it may change the components LV1

and E1.Typing rules using this kind of judgment are defined in Figure 26. An array
initializer is a list of expressions separated by a comma and delimited by { and }.
It provides some initial values to an array. All the expressions must have a common
super-type noted by σ3 in the rule named Init-Expr. When the array initializer is
empty ({ }), it can be used to initialize different array types.

Typing Rules for blocks

Our static semantics for Java blocks uses judgments of the form Γ , ς,LV1, E1,B1,P `
Block : LV2, E2,B2, which mean that under the static context Γ , ς,LV1, E1,B1,P , the
block Block is well-formed and its evaluation may modify the components LV1, E1

and B1 of the context. For the sake of readability, we present the static semantics for
the Java blocks in three steps. First, we introduce typing rules for global declarations
of blocks, then typing rules for local variable declarations, and finally those for
statements.

Typing rules for block declarations

Typing rules for block declarations are given in Figure 27. The scope of local
variables declared in a block is the block itself. Thus, all variables declared in a
block must be removed from the map of local variables after the block evaluation.
However, if a variable, which is declared out of the block and is accessible from it,
has been modified in the block, then this modification is visible after the evaluation
of the block. To express this constraint in the typing rules, we compute the map of
local variables after the evaluation of the block by LV2/LV1.

Typing rules for local variable declarations

Figure 28 introduces the typing rules for local variable declarations. When a
new local variable is declared, we create an entry in the map of local variables.
If the variable declaration statement includes an initialization expression, then the
variable is considered initialized, otherwise it is not. In addition, a local variable
is visible from its initialization expression, i.e. the expression that appears in the
right-hand side of the local variable assignment, but it is considered not initialized
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Constructor-Body . . . . . Γ , ς,LV1, E1,B1,P ` ConstructorBody : LV2, E2,B2

Γ , ς,LV1, E1,P ` ExplicitConsInvocation : E2,LV2

Γ , ς,LV1, E2,P,B1 ` BlockStatementsOrEmpty : LV2, E2,B2

Γ , ς,LV1, E1,B1,P ` { ExplicitConsInvocation BlockStatementsOrEmpty } :
LV2, E2,B2

Explicit-Cons-Inv . . . . . . . . Γ , ς,LV1, E1,P ` ExplicitConsInvocation : LV2, E2

Default-Cons-Invocation

defaultConstructorInvocation(Γ , ς1) = (true, tcs1, {ς2})
Γ .classMap(ς1).constructors(snd(P)) = 〈ms, tcs2〉

getCheckedExceptions(Γ , tcs1) = tcs3 subClasses(Γ , tcs3, tcs2)
Γ , ς1,LV1, E1,P ` ε : LV1, E1

This-Cons-Invocation

Γ , ς,LV1, E1, (‘a’,Unit) ` Argument : τa, E2,LV2, C snd(snd(P)) 6= τa

Γ .classMap(ς).constructors(snd(P)) = 〈ms1, tcs1〉
Γ .classMap(ς).constructors(ς, τa) = 〈ms2, tcs2〉

getCheckedExceptions(Γ , tcs2) = tcs3 subClasses(Γ , tcs3, tcs1)
Γ , ς,LV1, E1,P ` this ( Argument ) ; : LV2, E2

Super-Cons-Invocation

Γ , ς,LV1, E1, (‘a’,Unit) ` Argument : τa, E2,LV2, C
Γ .classMap(ς1) = 〈 , {ς2}, , , , cm〉

cm(snd(P)) = 〈ms1, tcs1〉 constructors(Γ , ς2)(ς2, τa) = 〈ms2, tcs2〉
private /∈ ms2 getCheckedExceptions(Γ , tcs2) = tcs3

subClasses(Γ , tcs3, tcs1)
Γ , ς1,LV1, E1,P ` super ( Argument ) ; : LV2, E2

Figure 25: Typing rules for declarations: part 8.
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Init-Tab . . . . . . . . . . . . . . . . Γ , µ,LV1, E1,P ` ArrayInitializer : σ,LV2, E2

2
Γ , µ,LV, E ,P ` { } : σ,LV, E

Γ , µ,LV1, E1,P ` ExpressionInitializer : σ,LV2, E2

Γ , µ,LV1, E1,P ` { ExpressionInitializer } : σ,LV2, E2

Expr-Init . . . . . . . . . . Γ , µ,LV1, E1,P ` ExpressionInitializer : σ,LV2, E2

Γ , µ,LV1, E1,P ` Expression : σ1,LV2, E2, C
Γ , µ,LV2, E2,P ` ExpressionInitializer : σ2,LV3, E3

Γ ` σ1 vimpl σ3 Γ ` σ2 vimpl σ3

Γ , µ,LV1, E1,P ` Expression ExpressionInitializer : σ3,LV3, E3

Figure 26: Typing rules for declarations: part 9.

Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ , ς,LV1, E1,B1,P ` Block : LV2, E2,B2

Γ , ς,LV1, E1, (false, b),P ` BlockStatementsOrEmpty : LV2, E2,B
Γ , ς,LV1, E1, (false, b),P ` { BlockStatementsOrEmpty } : LV2/LV1, E2,B

Empty-Block . Γ , ς,LV1, E1,B1,P ` BlockStatementsOrEmpty : LV2, E2,B2

2
Γ , ς,LV, E , (false, b),P ` ε : LV, E , (false, b)

Block-Stmt . . . . . . . . . . . Γ , ς,LV1, E1,B1,P ` BlockStatements : LV2, E2,B2

Γ , ς,LV1, E2, (false, b),P ` BlockStatement : LV2, E2,B1

Γ , ς,LV2, E2,B1,P ` BlockStatements : LV3, E3,B2

Γ , ς,LV1, E2, (false, b),P ` BlockStatement BlockStatements : LV3, E3,B2

Figure 27: Typing rules for Blocks.
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Local-Var . . . . . . . . . . . . . . . . . . . . Γ , ς,LV1, E1,B1,P ` LocalVariable : LV2, E2,B2

validType(Γ ,Type) LV(Identifier) = ⊥
Γ , ς,LV, E , (false, b),P ` Type Identifier ; :

LV † [Identifier 7→ (Type, false)], E , (false, b)

validType(Γ ,Type) LV(Identifier) = ⊥
Γ , ς,LV1 † [Identifier 7→ (Type, false)], E1,P ` Expression : τe,LV2, E2, C

Γ ` τe vimpl Type
Γ , ς,LV1, E1, (false, b),P ` Type Identifier = Expression ; :

LV2 † [Identifier 7→ (Type, true)], E2, (false, b)

validType(Γ ,SimpleType) LV(Identifier) = ⊥
Γ , ς,LV1 † [Identifier 7→ (SimpleType[], false)], E1,P ` ArrayInitializer :

σ,LV2, E2

Γ ` σ vimpl SimpleType
Γ , ς,LV1, E1, (false, b),P ` SimpleType[] Identifier = ArrayInitializer ; :

LV2 † [Identifier 7→ (SimpleType[], true)], E2, (false, b)

Figure 28: Typing rules for local variable declarations.

as long as its initialization is not completed. Below, we introduce an example to
illustrate this idea:

int m(int p) { return p;}
int v = m(v = 3) ;

The compilation of this example passes without errors. However, the variable v is
considered initialized only after the evaluation of the statement int v = m(v = 3).
Thus, we evaluate the expression Expression under the current map of local vari-
ables overridden by the association [Identifier 7→ (Type, false)] or [Identifier 7→
(SimpleType[], false)] according to whether we type-check a simple local variable
declaration or an array declaration, respectively.

Typing rules for statements

Typing rules for statements are given in Figures 29, 30 and 31. Some explanations
concerning these rules are given below:
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• Expr-Stmt: An expression statement is evaluated by evaluating the corre-
sponding expression. If the expression has a value, then we discard its type.

• If-Then: The execution of the then-statement depends on the value of the
conditional expression Expression. Thus, we do not know, at compile-time, if
this statement will be executed, and then if the static context must be really
modified after the evaluation of the if-then statement. On the other hand,
if the conditional expression is the literal true, we can be sure that the then-
statement will be executed. In this case, we can be sure that if a local variable
has been initialized in the then-statement, then it considered initialized. In
the typing rule, the map of local variables yielded by the evaluation of the
if-then statement is computed by the following function:

getLocalVarMap1 : Expression × LocalVarMap × LocalVarMap →
LocalVarMap

getLocalVarMap1(e, m1, m2) = if e = true

then m2

else m1

endif

On the other hand, according to the Java Language Specification [9], even
if the conditional expression is the literal false, the then-statement is not
considered unreachable. So, the flag variable B1 must remain unchanged after
the evaluation of the if-then statement.

• If-Then-Else: After the evaluation of the if-then-else statement, only the
modifications made in both then and else statements really affect the static
context. So, in the typing rule, the flag variable is computed by B2 ∧ B3. A
local variable is considered initialized after the evaluation of the if-then-else
statement, in the three following cases:

– It is initialized in both then and else statements.

– It is initialized in the then-statement and the conditional expression is
the literal true.

– It is initialized in the else-statement and the conditional expression is
the literal false.

The map of local variables yielded by the evaluation of the if-then-else
statement is computed by the following function:

getLocalVarMap2 : Expression × LocalVarMap × LocalVarMap →
LocalVarMap

getLocalVarMap2(e, m1, m2) = if e = true
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then m1

else if e = false

then m2

else m1 ∧ m2

endif
endif

• While: The while-statement is considered unreachable when the conditional
expression is the literal false. This constraint is expressed in the typing
rules by the logical formulas Expression 6= false. On the other hand, if the
conditional expression is the literal true, then the program cannot complete
normally. In this case, after the evaluation of the while statement, the boolean
variable that indicates the abnormal termination of the program must have
the true value. Otherwise, if we do not know the value of the conditional
expression, then we cannot be sure that the while-statement will be executed,
and then we cannot change the static context after the evaluation of this
statement.

• Synchronized: In this rule, we must simply check that the type of Expression
is a reference type ρ.

• Throw: Each checked exception thrown by a throw statement, has to be
either caught in a try-catch statement or declared in the throws clause of
the current method, i.e. the one containing the throw statement. To be able
to handle exceptions, we add each thrown checked exception to the exception
set E . In the typing rule, the latter is updated by E2∪{|ς|}. Since the execution
of the throw statement cannot complete normally, the boolean variable that
indicates the abrupt termination of the current program must have the true
value.

• Return: A return statement with an Expression must appear only in the
body of a method that declares a return type. Moreover, the type of the
Expression must be assignable to this declared return type. On the other hand,
a return statement with no Expression must appear only in a constructor body
or in a body of a method declared void. The function that finds the result
type of a method or a constructor is defined as follows:

getResultType : Environment × ClassType × Position → ResultType

getResultType(Γ , ς,P) = if fst(P) = ‘m’
then Γ .classMap(ς).methods(snd(P)).resultType
else if fst(P) = ‘c’

then void
endif

endif
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• Try-Catches: When an exception is thrown in a try block having one or
more catch clauses, the first one capable of catching this exception is ex-
ecuted. A catch clause can catch an exception if it has a parameter that
is either of the same type as this exception or one of its supertypes. To
type-check the catch clauses (Catches), we introduce a new kind of judgment
Γ , ς,LV1, E1,UE1,B1 ` Catches : LV2, E2,UE2,B2. The multiset UE1 contains
all checked exceptions raised in the try block, while UE2 contains just the
ones among them that have not been caught by any clause catch. In the
typing rule, the multiset UE1 is computed by E2 − E1. If we use a simple set
for exceptions, we cannot compute correctly the set of exceptions raised in
the block try when some of them have also been raised before the block. For
instance, if the initial exception set E1 contains the checked exception types
classNotFoundException and IllegalAccessException, and the exception
classNotFoundException is also thrown in the block try, then the new ex-
ceptions set E2 yielded by the evaluation of the block will be the same as E1.
So, E2 −E1 will yield an empty set which is incorrect. Hence, we use multiset.
The multiset of exceptions yielded by the evaluation of the try statement must
contain all the exceptions raised before this statement and those thrown in it
and not yet handled. Finally, a local variable is considered to be initialized
after the evaluation of the try statement only when it is initialized in the try

block and in all the blocks of the catch clauses.

• Try-Catches-Finally: This rule is quite similar to the previous one, ex-
cept that here there exists a finally block that is always executed. When
the execution of the finally block completes abruptly, none of the exceptions
thrown in the try statement need to be handled, since these exceptions cannot
propagate out of the statement. Thus, we call the function remainingExcep-
tions, defined below, which returns the multiset of exceptions that must be
handled.

remainingExceptions : bool× ExceptSet → ExceptSet

remainingExceptions(b, E1, E2) = if b = true
then E1 − E2

else E1

end if

The try-finally statement completes abruptly if either the block try com-
pletes abruptly and all the blocks of the catch clauses complete abruptly,
or the block finally completes abruptly. This constraint is expressed as
(B1 ∧ B2) ∨ B3. In the same way, the map of local vairables is updated by
(LV2 ∧ LV3) ∨ LV4.

• Catches: A catch clause must have exactly one parameter, called an ex-
ception parameter, that must be of the class type Throwable or one of its
subclasses. The name of the exception parameter cannnot hide a name
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of a local variable or a parameter of the current method or constructor
LV1(Identifier) = ⊥. The scope of the exception parameter is the block
of the catch clause. When the latter is executed, the exception parameter
is initialized by the exception object handled. For this reason, the boolean
variable indicating the initialization of the exception parmeter in the map of
lacal variables have the true value. The set of the exceptions not handled by
any catch clause is computed by the function unCaughtExceptions.

Typing rules for expressions

This section is devoted to the static semantics for expressions. Typing rules for
expressions are introduced in Figures 32, 33, 34 and 35 and they use judgments of
the form Γ , µ,LV1, E1,P ` Expression : τe,LV2, E2, C. We comment below some of
these rules.

• Literal: The evaluation of a literal never raises an exception. The function
typeOf computes the type of a literal. As this function is simple, we deliberately
omit its definition. Note that the type of the null literal is Null.

• This: The reserved word this can only appear in the body of an instance
method, a constructor or in the initialization expression of a non-static field.
This restriction is verified by the following predicate:

licitInvokeThis : Environment × ClassType × Position → bool

licitInvokeThis(Γ , ς,P) =
validClass(Γ , ς) ∧ fst(P) 6= ‘a’ ∧
if fst(P) = ‘m’
then static /∈ Γ .classMap(ς).methods(snd(P)).modifiers
else if fst(P) = ‘f’

then static /∈ Γ .classMap(ς).fields(snd(P)).modifiers
else true
endif

endif

• New-Object: Since abstract methods are incomplete, we cannot create an
instance of an abstract class. The argument specified in the class instance
creation expression is used to invoke a constructor that is declared in the body
of the class. The function maxSpecConstructor, defined below, returns the
maximally specific [9, section 15.1] constructor for the constructor invocation.

maxSpecConstructors : Environment × ClassType ×ArgumentType →
(ConstructorInfo × ClassType)− set

maxSpecConstructors(Γ , ς, τa) =

170 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 8



6 STATIC SEMANTICS

Empty . . . . . . . . . . . . . . . . . . . . . . . . . Γ , ς,LV, E ,P,B ` Statement : LV, E ,B

2
Γ , ς,LV, E , (false, b),P ` ; : LV, E , (false, b)

Expr-Stmt . . . . Γ , ς,LV1, E1,B1,P ` ExpressionStatement : LV2, E2,B2

Γ , ς,LV1, E1,P ` StatementExpression : τe,LV2, E2, C
Γ , ς,LV1, E1, (false, b),P ` StatementExpression ; : LV2, E2, (false, b)

If . . . . . . . . . . . . . . . . . . . . . . . Γ , ς,LV1, E1,B1,P ` IfStatement : LV2, E2,B2

If-Then

B1 = (false, b) Γ , ς,LV1, E1,P ` Expression : boolean,LV2, E2, C
Γ , ς,LV2, E2,B1,P ` Statement : LV3, E3,B2

LV4 = getLocalVarMap1(Expression,LV2,LV3)
Γ , ς,LV1, E1,B1,P ` if ( Expression ) Statement : LV4, E3,B1

If-Then-Else

B1 = (false, b) Γ , ς,LV1, E1,P ` Expression : boolean,LV2, E2, C
Γ , ς,LV2, E2,B1,P ` Statement1 : LV3, E3,B2

Γ , ς,LV2, E2,B1,P ` Statement2 : LV4, E4,B3

LV5 = getLocalVarMap2(Expression,LV3,LV4)
Γ , ς,LV1, E1,B1,P ` if ( Expression ) Statement1 else Statement2 :

LV5, E4,B2 ∧ B3

While . . . . . . . . . . . . . . Γ , ς,LV1, E1,B1,P ` WhileStatement : LV2,B2, E2

B1 = (false, b) Expression 6= false Expression 6= true
Γ , ς,LV1, E1,P ` Expression : boolean,LV2, E2, C

Γ , ς,LV2, E2,B1,P ` Statement : LV3, E3,B2

LV4 = getLocalVarMap1(Expression,LV2,LV3)
Γ , ς,LV1, E1,B1,P ` while ( Expression ) Statement : LV4, E3,B1

B1 = (false, b) Expression 6= false
Γ , ς,LV1, E1,P ` Expression : boolean,LV2, E2, C

Γ , ς,LV2, E2,B1,P ` Statement : LV3, E3,B2

LV4 = getLocalVarMap1(Expression,LV2,LV3)
Γ , ς,LV1, E1,B1,P ` while ( true ) Statement : LV4, E3, (true, b)

Figure 29: Typing rules for statements: part 1.
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Synchronized . . . . . . . . . . . . . . . . . . . . Γ , ς,LV1, E1,B1,P ` Synchronized : LV2, E2,B2

B1 = (false, b) Γ , ς,LV1, E1,P ` Expression : ρ,LV2, E2, C
Γ , ς,LV2, E2,B1,P ` Block : E3,LV3,B2

Γ , ς,LV1, E1,B1,P ` synchronized ( Expression ) Block : LV3, E3,B2

Throw . . . . . . . . . . . . . . . . . . . . . . . . Γ , ς,LV1, E1,B1,P ` ThrowStatement : LV2, E2,B2

Γ , ς,LV1, E1,P ` Expression : ς,LV2, E2, C Γ ` ς vclass Error
Γ , ς,LV1, E1, (false, b),P ` throw Expression ; : LV2, E2, (true, b)

Γ , ς,LV1, E1,P ` Expression : ς,LV2, E2, C Γ ` ς vclass RuntimeException
Γ , ς,LV1, E1, (false, b),P ` throw Expression ; : LV2, E2, (true, b)

Γ , ς,LV1, E1,P ` Expression : ς,LV2, E2, C
checkedException(Γ , ς)

Γ , ς,LV1, E1, (false, b),P ` throw Expression ; : LV2, E2 ∪ {|ς|}, (true, b)

Return . . . . . . . . . . . . . . . . . . . . . . . Γ , ς,LV1, E1,B1,P ` ReturnStatement : LV2, E2,B2

getResultType(Γ , ς,P) 6= void
Γ , ς,LV1, E1,P1 ` Expression : τ,LV2, E2, C τ vimpl getResultType(Γ , ς,P)

Γ , ς,LV1, E1, (false, b),P ` return Expression ; : LV2, E2, (true, true)

getResultType(Γ , ς,P) = void
Γ , ς,LV1, E1, (false, b),P ` return ; : LV2, E2, (true, true)

Figure 30: Typing rules for statements: part 2.
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Try . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Γ , ς,LV1, E1,B1,P ` TryStatement : LV2, E2,B2

Try-Catches

Γ , ς,LV1, E1, (false, b),P ` Block : LV2, E2,B1

Γ , ς,LV1, E1, E2 − E1, (false, b),P ` Catches : LV3, E3,UE ,B2

Γ , ς,LV1, E1, (false, b),P ` try Block Catches : LV2 ∧ LV3, E3 ∪ UE ,B1 ∧ B2

Try-Catches-Finally

Γ , ς,LV1, E1, (false, b),P ` Block1 : LV2, E2,B1

Γ , ς,LV1, E1, E2 − E1, (false, b),P ` Catches : LV3, E3,UE ,B2

Γ , ς,LV1, E3 ∪ UE , (false, b) ` Block2 : LV4, E4,B3

E5 = remainingExceptions(fst(B3), E4, (E3 ∪ UE)− E1)
Γ , ς,LV1, E1, (false, b),P ` try Block1 Catches finally Block2 :

(LV2 ∧ LV3) ∨ LV4, E5, (B1 ∧ B2) ∨ B3

Try-Finally

Γ , ς,LV1, E1, (false, b),P ` Block1 : LV2, E2,B1

Γ , ς,LV1, E2, (false, b),P,` Block2 : LV3, E3,B2

E4 = remainingExceptions(fst(B2), E3, E2 − E1)
Γ , ς,LV1, E1, (false, b),P ` try Block1 finally Block2 : LV3 ∨ LV4, E2,B1 ∨ B2

Catches

Γ , ς,LV1, E1,UE1,B1,P ` CatchClause : LV2, E2,UE2,B2

Γ , ς,LV1, E2,UE2,B1,P ` Catches : LV3, E3,UE3,B3

Γ , ς,LV1, E1,UE1,B1,P ` CatchClause Catches : LV2 ∧ LV3, E3,UE3,B2 ∧ B3

Γ ` ClassType vclass Throwable
LV1(Identifier) = ⊥

Γ , ς,LV1 † [Identifier 7→ (ClassType, true)], E1,B1,P ` Block :
LV2 † [Idntifier 7→ (ClassType, true)], E2,B2

unCaughtExceptions(Γ ,UE1,ClassType) = UE2

Γ , ς,LV1, E1,UE1,B1,P ` catch ( ClassType Identifier ) Block :
LV2, E2,UE2,B2

Figure 31: Typing rules for statements: part 3.
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{ (〈ms′, tcs′〉, ς ′) | ((〈ms′, tcs′〉, ς ′), τ ′
a) ∈ applConstructors(Γ , ς, τa) ∧

∀ ((〈ms′′, tcs′′〉, ς ′), τ ′′
a ) ∈ applConstructors(Γ , ς, τa).

if Γ ` τ ′′
a vimpl τ ′

a

then (〈ms′, tcs′〉, ς ′) = (〈ms′′, tcs′′〉, ς ′)
endif }

This function must find exactly one constructor. The declaring class of the
latter is named ς. Since, private constructors can only be invoked in their
declaring class, we add the logical formula private ∈ ms ⇒ µ = ς in the
typing rule. when the invloked constructor declares some checked exceptions,
we add them to the multiset of the thrown exceptions. Thus, we can handle
them later. This is done by the following function:

throwsExceptions : Environment × (ClassType)− set → ExceptSet

throwsExceptions(Γ , ∅, E) = E
throwsExceptions(Γ , {ς} ∪ tcs, E) = (if checkedException(Γ , ς)

then {|ς|}
else ∅
endif) ∪
throwsExceptions(Γ , tcs, E)

• Simple-Field-Access: The fucntion fieldsVar must find exactly one acces-
sible field for the filed access. As for the previous rule, if the invoked field
is private, then the class that contains its invocation must be its declaring
class. If the invoked filed is final, then the variable C receives the true value.
When the field access expression is super.Identifier, we have to check, that the
reserved word super is used correctly. This is done by the following function:

licitInvokeSuper : Environment × ClassOrIfaceType × Position → bool

licitInvokeSuper(Γ , µ,P) =
validClass(Γ , µ) ∧ µ 6= Object ∧ fst(P) 6= ‘a’ ∧
if fst(P) = ‘m’
then static /∈ Γ .classMap(µ).methods(snd(P)).modifiers
else if fst(P) = ‘f’

then static /∈ Γ .classMap(µ).fields(snd(P).modifiers
else true
endif

endif

• Simple-Name-Field-Access: These rules are used to type-check a field ac-
cess expression that is a single identifier or several identifiers separated by
a “.” token. These rules are quite similar to previous ones, except for the
first rule. When the expression is a simple identifier, no local variable or
parameter can have the same name as the field, since local variables and pa-
rameters hide fields with same names in their scopes. This is expressed as
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LV(Identifier) = ⊥. Moreover, since we lookup for the invoked field in the
map of fields accessible from the current class or interface µ, we do not need
to check that private fields must only be invoked in their declaring classes.
The predicate licitAppear defined below checks that a non-static field cannot
be invoked in a static method or field:

licitAppear : Environment × ClassOrIfaceType×
(ModifierName)− set× Position → bool

licitAppear(Γ , µ,ms,P) =
if static /∈ ms
then (fst(P) = ‘m’ ∧

static /∈ Γ .classMap(µ).methods(snd(P)).modifiers ) ∨
fst(P) = ‘c’ ∨
(fst(P) = ‘f’ ∧ validClass(Γ , µ) ∧
static /∈ Γ .classMap(µ).fields(snd(P)).modifiers)

else true
endif

If the field access expression that is a simple identifier is used in a field ini-
tialization expression, then we have to ensure that there is no circularity [9,
section 8.3.2] . This is checked by the following predicate:

isDeclared : Environment × ClassOrIfaceType × Identifier×
(ModifierName)− set× Position → bool

isDeclared(Γ , µ, fn,ms,P) =
if fst(P) = ‘f’
then if (static ∈ ms ↔

static ∈ classOrIfaceDecl(Γ , µ).fields(snd(P)).modifiers)
then textuallyBefore(Γ , µ, fn, fst(P))
else true
endif

else true
endif

We assume that the fields are sorted by their declaration order in the map.
Thus, the predicate textuallyBefore can verify that a field declaration occurs
to the left of, i.e. textually before, another field declaration in the same class.

• Simple-Var-Access: The accessed variable is looked-up in the map of the
local variables LV . It must exist and must have an initial value.

• Array-Field-Access: This rule is simple. The type of the field access
expression is the one of the array elements. The index of the array, i.e. the
expression that appears between the brackets, must be of the int type or of
a type that can be widened to this type. Note that an array elements cannot
be final even if the array is.
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• Array-Var-Access: This rule is very similar to the previous one, except
that the type of the array access is looked-up in the map of the local variables.
The array access is type-correct only if the array is found and it was initialized.

• Method-Name: These rules use another kind of judgment, different from
the one used in the typing rules for expressions, since a method name is not
an expression. They elaborate to an identifier (the method name), a class or
an interface type from which we must look for the method declaration and a
character (whichName). This one has the ‘s’ value if the method invocation
expression is a simple identifier, the ‘c’ value if it is a ClassType.Identifier and
‘e’ if it is an ExpressionName.Identifier.

• Method-Invocation: These rules type-check a method call. When the
function maxSpecMethods, determining the set of maximally specific methods
for a method invocation [9, 15.11.2], returns several methods with the same
signaute, we call the function unAmbiguousMaxSpec to check that they have
the same signature. The function applAccessMethods finds methods that are
applicable and accessible to the method invocation. All these functions are
defined as following:

unAmbiguousMaxSpec : Environment × ReferenceType × Sig×
ClassOrIfaceType →
(MethodInfo × RefernceType)− set

maxSpecMethods : Environment × ReferenceType × Sig × ClassOrIfaceType
→ ((MethodInfo × RefernceType)×ArgumentType)− set

applAccessMethods : Environment × ReferenceType × Sig × Sig×
ClassOrIfaceType →
((MethodInfo × RefernceType)×ArgumentType)− set

unAmbiguousMaxSpec(Γ , ρ, sig , µ) =
{(m′, ρ′) | ((m′, ρ′), τ ′

a) ∈ maxSpecMethods(Γ , ρ, sig , µ) ∧
∀{(m′′, ρ′′), τ ′′

a )} ∈ maxSpecMethods(Γ , ρ, sig , µ). τ ′
a = τ ′′

a

maxSpecMethods(Γ , ρ, sig , µ) =
{((m′, ρ′), τ ′

a) | ((m′, ρ′), τ ′
a) ∈ applAccessMethods(Γ , ρ, sig , µ) ∧

∀ ((m′′, ρ′′), τ ′′
a ) ∈ applAccessMethods(Γ , ρ, sig , µ).

if Γ ` ρ′′ vimpl ρ′ ∧ Γ ` τ ′′
a vimpl τ ′

a

then ((m′, ρ′), τ ′
a) = ((m′′, ρ′′), τ ′′

a )
end if

applAccessMethods(Γ , ρ, (mn, τa), µ) =
{((〈ms, rt, tcs〉, ρ′), τ ′

a) | (〈ms, rt, tcs〉, ρ′) ∈ methodsVar(Γ , ρ)(mn, τ ′
a) ∧

Γ ` τa vimpl τ ′
a} ∧
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( if private ∈ ms then ρ′ = µ ) }

When the function unAmbiguousMaxSpec yields more than one method, we
can be sure that the found methods are all abstract and have the same
result type. This is checked by the well-formed predicates. Thus, the function
methodDeclarationInfo, used in the typing rules, looks for the modifiers set
and the return type declared in these methods. As for the set of delcared
exceptions, the function computes the common subtype of all set of exceptions
declared in these methods. This is necessary to handle the exceptions that
can be raised by the method invocation. The function methodDeclarationInfo
is defined bellow:

methodDeclInfo : (MethodInfo × ReferenceType)− set → MethodInfo
narrower : (ClassType)− set× (MethodInfo × ReferenceType)− set →

(ClassType)− set

methodDeclInfo({(〈ms, rt, tcs〉, ρ)}) = 〈ms, rt, tcs〉
methodDeclInfo({(〈ms, rt, tcs〉, ρ)} ∪ s) = 〈ms, rt, narrower(tcs, s)〉

narrower(tcs, ∅) = tcs
narrower(tcs1, {(〈ms, rt, tcs2〉, ρ)} ∪ s) =

let ce1 = getCheckedExceptions(tcs1) ;
ce2 = getCheckedExceptions(tcs2)

in if ∀e ∈ ce1. subClass(e, ce2)
then narrower(ce1,m)
else if ∀e ∈ ce2. subClass(e, ce1)

then narrower(ce2, s)
else ∅
endif

endif
endlet

• Assignment: Typing rules for a field assignment (the two first rules) and
local variable assignment (the two second rules) are quite simple. A simple
field assignment is type-correct when it is a variable, i.e. it is not a final

field. Therefore, in this case the boolean variable C must have the false value.
The evaluation of a local variable assignment expression updates the map of
local variables to indicate that the variable is henceforth initialized.
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Argument . . . . . . . . . . . . . . . . . . . . . . . . . Γ , ς,LV1, E1,P ` Argument : τa,LV2, E2, C

2
Γ , ς,LV, E ,P ` ε : Unit,LV, E , false

New-Array . . . . . . . . . . . . . . . . . . . Γ , µ,LV1, E1,P ` ArrayCreation : α,LV2, E2, C

validType(Γ ,SimpleType) Γ , µ,LV1, E1,P ` Expression : π,LV2, E2, C
π vimplP int

Γ , µ,LV1, E1,P ` new SimpleType [ Expression ] : SimpleType[ ],LV2, E2, false

Prim-Not-Array . . . . . . Γ , µ,LV1, E1,P ` PrimaryNoNewArray : τe,LV2, E2, C

Literal

typeOf(literal) = τe

Γ , µ,LV, E ,P ` literal : τe,LV, E , false

This

licitInvokeThis(Γ , ς,P)
Γ , ς,LV, E ,P ` this : ς,LV, E , false

Parentheses

Γ , µ,LV1, E1,P ` Expression : τe,LV2, E2, C
Γ , µ,LV1, E1,P ` ( Expression ) : τe,LV2, E2, false

New-Object . . . . . . . . . . . Γ , µ,LV1, E1,P ` ClassInstanceCreation : ς,LV2, E2, C

validClass(Γ ,ClassType)
abstract /∈ Γ .classMap(ClassType).modifiers
Γ , µ,LV1, E1,P ` Argument : τa,LV2, E2, C

maxSpecConstructor(Γ ,ClassType, τa) = {(〈ms, tcs〉, ς)}
private ∈ ms ⇒ µ = ς throwsExceptions(Γ , tcs, E2) = E3

Γ , µ,LV1, E1,P ` new ClassType ( Argument ) : ClassType,LV2, E3, false

Figure 32: Typing rules for expressions: part 1.

178 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 8



6 STATIC SEMANTICS

Simple-Field-Access . . . . . . . . . . Γ , µ,LV1, E1,P ` SimpleFieldAcess : τ,LV2, E2, C

Γ , µ,LV, E ,P ` Primary : ρ1,LV2, E2

fieldsVar(Γ , ρ1)(Identifier) = {(〈τ,ms〉, ρ2)}
private ∈ ms ⇒ ρ2 = µ C = final ∈ ms

Γ , µ,LV1, E1,P ` Primary .Identifier : τ, E2,LV2, C

licitInvokeSuper(Γ , ς1,P) Γ .classMap(ς1).super = ς2
fieldsc(Γ , ς2)(Identifier) = {(〈τ,ms〉, ρ)}

private ∈ ms ⇒ ρ = ς1 C = final ∈ ms
Γ , ς1,LV, E ,P ` super.Identifier : τ, E ,LV, C

Simple-Name-Field-Access . . . . . . . . . . . . . Γ , µ,LV, E ,P ` FieldName : τ,LV, E , C

LV(Identifier) = ⊥ fieldsVar(Γ , µ)(Identifier) = {(〈τ,ms〉, ρ)}
C = final ∈ ms licitAppear(Γ , µ,ms,P)

isDeclared(Γ , µ, Identifier ,ms,P)
Γ , µ,LV, E ,P ` Identifier : τ,LV, E , C

validClass(Γ ,ClassOrInterfaceType) ∨ validIface(Γ ,ClassOrInterfaceType)
fieldsVar(Γ ,ClassOrInterfaceType)(Identifier) = {(〈τ,ms〉, ρ)}
static ∈ ms private ∈ ms ⇒ ρ = µ C = final ∈ ms

Γ , µ,LV, E ,P ` ClassOrInterfaceType.Identifier : τ,LV, E , C

Γ , µ,LV, E ,P ` ExpressionName : ρ1,LV, E , C1

fieldsVar(Γ , ρ1)(Identifier) = {(〈τ,ms〉, ρ2)}
private ∈ ms ⇒ ρ2 = µ C2 = final ∈ ms

Γ , µ,LV, E ,P ` ExpressionName.Identifier : τ,LV, E , C2

Simple-Var-Access . . . . . . . . . . . . . . . . . . Γ , µ,LV, E ,P ` LocalVarName : τ,LV, E , C

LV(Identifier) = (τ, true)
Γ , µ,LV, E ,P ` Identifier : τ, E ,LV, false

Array-Field-Access . . . . . . . . . . . . . . Γ , µ,LV1, E1,P ` ArrayAccess : σ∗,LV2, E2, C

Γ , µ,LV1, E1,P ` PrimaryNoNewArray : σ ∗[ ],LV2, E2

Γ , µ,LV2, E2,P ` Expression : π,LV3, E3 Γ ` π vimplP int
Γ , µ,LV1, E1,P ` PrimaryNoNewArray [ Expression ] : σ∗,LV3, E3, false

Figure 33: Typing rules for expressions: part 2.
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Array-Var-Access . . . . . . . . . Γ , µ,LV1, E1,P ` ArrayAccess : σ∗,LV2, E2.C

fst(LV1(Identifier)) = σ ∗[ ] snd(LV1(Identifier)) = true
Γ , µ,LV1, E1,P ` Expression : π,LV2, E2 Γ ` π vimplP int
Γ , µ,LV1, E1,P ` Identifier [ Expression ] : σ∗,LV2, E2, false

Cast . . . . . . . . . . . . . . . . . . . . . . . Γ , µ,LV1, E1,P ` CastExpression : τ,LV2, E2, C

Γ , µ,LV1, E1,P ` Expression : τe,LV2, E2 Γ ` τe vcast Type
Γ , µ,LV1, E1,P ` ( Type ) Expression : Type,LV2, E2, false

Method-Name . . . . . Γ , µ,LV, E ,P ` MethodName : Identifier , ρ,wichName

2
Γ , µ,LV, E ,P ` Identifier : Identifier , µ, ‘s’

validType(Γ ,ClassType)
Γ , µ,LV, E ,P ` ClassType.Identifier : Identifier ,ClassType, ‘c’

Γ , µ,LV, E ,P ` ExpressionName : ρ, E ,LV, C
Γ , µ,LV, E ,P ` ExpressionName.Identifier : Identifier , ρ, ‘e’

Method-Invocation . . . Γ , µ,LV1, E1,P ` MethodInvocation : τe,LV2, E2, C

Γ , µ,LV1,P ` MethodName : Identifier , ρ,wichName
Γ , µ,LV ,E1,P ` Argument : τa,LV1, E2, C

unAmbiguousMaxSpec(Γ , ρ, (Identifier, τa), µ) = mths
methodDeclInfo(mths) = 〈ms, τe, tcs〉

wichName = ‘s’ ⇒ licitAppear(Γ , µ,ms,P)
wichName = ‘c’ ⇒ static ∈ ms throwsExceptions(Γ , tcs, E2) = E3

Γ , µ,LV, E1,P ` MethodName ( Argument ) : τe,LV2, E3, false

Γ , µ,LV1, E1,P ` Primary : ρ,LV2, E2

Γ , µ,LV ′
1, E2,P ` Argument : τa,LV3, E3, C

unAmbiguousMaxSpec(Γ , ρ, (Identifier , τa)) = mths
methodDeclInfo(mths) = 〈ms, τe, tcs〉 throwsExceptions(Γ , tcs, E3) = E4

Γ , µ,LV1, E1,P ` Primary .Identifier ( Argument ) : τe,LV3, E4, false

Figure 34: Typing rules for expressions: part 3.
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Γ , µ,LV1, E1,P ` Argument : τa,LV2, E2, C licitInvokeSuper(Γ , µ,P)
Γ .classMap(µ).super = ς

unAmbiguousMaxSpec(Γ , ς, (Identifier, τa)) = mths
methodDeclInfo(mths) = 〈ms, τe, tcs〉 abstract /∈ ms

throwsExceptions(Γ , tcs, E2) = E3

Γ , µ,LV1, E1,P ` super.Identifier ( Argument ) : τe,LV2, E3, false

Assignment . . . Γ , µ,LV1, E1,P ` AssignmentExpression : τ,LV2, E2, C

Γ , µ,LV1, E1,P ` SimpleFieldAccess : τ,LV2, E2, false
Γ , µ,LV2, E2,P ` Expression : τe,LV3, E3, C τe vimpl τ

Γ , µ,LV1, E1,P ` SimpleFieldAccess = Expression : τ,LV3, E3, false

Γ , µ,LV1, E1,P ` ArrayFieldAccess : σ∗,LV2, E2, C1

Γ , µ,LV2, E2,P ` Expression : τe,LV3, E3, C2 τe vimpl σ∗
Γ , µ,LV1, E1,P ` ArrayFieldAccess = Expression : σ∗,LV3, E3, false

fst(LV1(Identifier)) = τ
Γ , µ,LV1, E1,P ` Expression : τe,LV2, E2, C τe vimpl τ

Γ , µ,LV1, E1,P ` Identifier = Expression :
τ,LV2[Identifier 7→ (τ, true)], E2, false

fst(LV (Identifier)) = ς ∗ [ ]
Γ , µ,LV1, E1,P ` Expression1 : π,LV2, E2, C1 π vimpl int

Γ , µ,LV2, E2,P ` Expression2 : τe,LV3, E3, C2

τe vimpl σ∗
Γ , µ,LV1, E1,P ` Identifier [ Expression1 ] = Expression2 :

σ∗,LV2[Identifier 7→ (σ∗, true)], E3, false

Figure 35: Typing rules for expressions: part 4.
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7 CONCLUSION

We have defined along this paper a formal static semantics for almost all of the
Java language, even the flow analysis that is carried out by every Java compiler
has been considered. Among other important features of the Java language, the
formal system that we have developed covers modifiers, constructors, initialization
and scoping rules. During the course of this work, we have exhaustively studied the
Java specification and tested several versions of the JDK Java compiler of Sun. We
were surprised by the subtlety and the non-uniformity of the language semantics,
especially since its description is rather colossal, ambiguous, and erroneous. We
believe that our work is very useful for the Java language understanding, it sheds
some light on both its specification and semantics. Besides being the first work
encompassing the static semantics of almost the whole of Java, our work gives a
formal description that is rather clear and concise when compared with the official
Java Language Specification. Indeed, our static semantics extends over around 50
pages, which is about sixth the size of the informal description of type-checking in
Java. We do estimate that our work will serve as the solid basis for the development
of a well-established semantics theory. We are currently working on the extension
of our type-system to do a variety of robust static analysis techniques for security
purposes such as self-certified Java code.
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