
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 9, Special Issue: TOOLS EUROPE 2007, October 2007

Cite this article as follows: Carsten Lohmann, Joel Greenyer, Juanjuan Jiang and Tarja Systä:
“Applying Triple Graph Grammars For Pattern-Based Workflow Model Transformations”, in
Journal of Object Technology, Special Issue: TOOLS EUROPE 2007, October 2007, pp. 253-273
http://www.jot.fm/issues/issue_2007_10/paper13/

Applying Triple Graph Grammars For
Pattern-Based Workflow Model
Transformations

Carsten Lohmann, University of Siegen
Joel Greenyer, University of Paderborn
Juanjuan Jiang, Tampere University of Technology
Tarja Systä, Tampere University of Technology

Abstract
Workflow and business process modeling approaches have become essential for
designing service collaborations when developing SOA-based systems. To derive
actual executable business process descriptions from the high-level workflow models,
model transformation techniques can be used. Various service composition and
business process languages are available for describing the executable processes.
They have been developed having slightly different aims and requirements in mind.
They do, however, share common key constructs, called workflow patterns that recur in
descriptions given in these languages.
We propose a model-driven approach for transforming workflow models given as UML
activity diagrams into service composition descriptions. This paper will show how to
realize a transformation from UML to BPEL and XPDL with a technology based on
Triple Graph Grammars (TGGs). TGGs allow structural relationships between the
different model elements to be elegantly expressed in graphical, declarative rules. We
will show, in particular, how the commonly known workflow patterns recurring in the
different business process languages can act as a guideline for designing the
transformation rules. Based on the experiences in this application domain, we
furthermore outline ways to enhance the usability and applicability of TGG for this
purpose.

1 INTRODUCTION

The development of SOA-based systems has become an actively researched application
area for model-driven software development approaches. While Web service
technologies, such as SOAP and WSDL, provide a way to realize SOA, they do not as
such provide means to compose service interactions into more complicated business

APPLYING TRIPLE GRAPH GRAMMARS FOR PATTERN-BASED WORKFLOW MODEL

TRANSFORMATIONS

254 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 9

transactions. For realistic business applications, designing, specifying, and finally running
such business transactions is essential. Acknowledgment of this has recently shifted the
focus in Web services system development to support modeling and specifying service
compositions, i.e. “programming-in-the-large”. The Web service composition models and
descriptions are often simply referred to as workflows.

Workflows are often designed using visual modeling languages like UML[UML05]
or BPMN[BPMN06], which are easy to understand and provide an abstract view to the
business process to be implemented. By adding appropriate details, this kind of high-level
model can be transformed into different executable business processes given in different
business process languages. In this paper we propose such a model transformation
approach, which currently supports transforming workflow models given as UML
activity diagrams to BPEL[BPEL03] and XPDL[XPDL05] descriptions. The approach
can be conveniently extended to support other business process languages as well.

Different aims and requirements have driven the development of various workflow
and business process languages, resulting in different structural representations. For
instance, BPEL is a language focusing on service orchestration, optimized for a notation
in nested XML elements, while UML activity diagrams and XPDL are graph-based
process description or workflow languages. Because of the structural differences,
specifying a transformation may be quite complicated. However, even though the
workflow and business process languages vary a lot, they all also share certain essential
key constructs that recur in concrete workflow languages. Such generally accepted
workflow patterns have been cataloged in [Aalst03b]. These workflow patterns can be
used not only to identify the essential, corresponding parts in the source and target
models, but also as a shared understanding of the semantics of these key structures.

For model transformations in general, relying on commonly known patterns with
well-understood semantics provides significant aid during the whole life-cycle of the
transformations, including their construction, maintenance, and comprehension. In this
paper, we propose an easily extensible strategy and its practical implementation for
workflow model transformations, relying on workflow patterns to correctly translate
these key behaviors. We furthermore show how such transformations can be
implemented using a transformation technology based on Triple Graph Grammars
(TGGs)[Schürr94]. There are significant benefits using TGGs for this application. First,
the TGG rules allow the designer to declaratively specify bidirectional transformations.
Second, since the rules are presented graphically, they are easy to comprehend and edit.
We also show how the correspondences between the workflow languages on the level of
workflow patterns can be conveniently expressed in TGGs, which allows an elegant
transformation rule design.

In this paper, we will
• discuss the structural differences among UML activity diagrams, BPEL, and

XPDL, with respect to workflow modeling;
• propose a strategy, relying on TGGs, for implementing a model transformation

based on workflow patterns;

VOL. 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 255

• discuss the benefits and challenges of the proposed approach and outline some
ideas for its further development; and

• give an application example.
The paper is structured as follows. Section 2 introduces the background techniques and
tools of our approach with an introductory example. In Section 3, the proposed
transformation is discussed in detail, with an extended example shown in Section 4. We
relate our transformation with other existing model-driven approaches and tools in
Section 5. Finally, we conclude in Section 6 and present some future research directions.

2 BACKGROUND

In the following, a rough structural comparison of the workflow models involved in our
application is given. We also give an example of the corresponding workflow patterns
occurring in these models. Furthermore, we introduce the application of Triple Graph
Grammars for model transformations.

Graph and Block Oriented Workflow Languages

To specify transformations between workflow models, their structural and semantic
relationships have to be analyzed. Finding such relationships can be easy if the models
are structurally similar. Workflow languages generally describe in which order tasks or
activities are performed in a process. In particular, activities can be repeated, be
performed optionally, occur in parallel, and be synchronized again at a certain point. To
describe this, all workflow languages most fundamentally make use of activity elements
(sometimes called actions). An expression of their relative order and the above-
mentioned structural composition is called the control flow of the process. Now, when
transforming UML activity diagrams to BPEL descriptions, we find significant
differences, especially in the representation of the control flow. In languages like UML
activity diagrams (or XPDL), the control flow is explicitly represented by connecting
successive actions with ControlFlow elements resulting in a graph structure.
Furthermore, there are nodes specifying choices, parallel splits and joins of the control
flow. Such languages are therefore called graph-oriented[Mendling05]. In the case of
BPEL, the control flow is rather defined by nesting certain block elements called
structured activities, which determine the execution order of the contained process
elements. BPEL is thus called block-oriented[Mendling05]. A comparison of a simple
UML activity diagram and an illustration of the corresponding BPEL structure are shown
in Figure 1.

APPLYING TRIPLE GRAPH GRAMMARS FOR PATTERN-BASED WORKFLOW MODEL

TRANSFORMATIONS

256 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 9

CB

D

AcceptCallAction
A

BPEL
TestActivity <process>

<sequence>

<flow>

B C

D

<receive>
A

UML

Parallel Split
Pattern

Figure 1. UML Activity Diagram and an illustration of the corresponding BPEL structure

As shown in Figure 1, there is a direct one-to-one mapping between the
AcceptCallAction A in UML and the Receive-Activity A in BPEL. The same applies to
all other actions accordingly. However, the UML ControlFlow elements have no directly
corresponding elements in the BPEL model1. To identify relating model elements, we
have to consider larger model patterns. For example, the parallel structure of Actions B
and C in UML corresponds to the Flow-block in the BPEL model. Accordingly, the
overall sequence containing Action A, the aforementioned parallel structure and Action D
corresponds to the Sequence-block in the BPEL model.

Workflow Patterns

Looking at these structures more closely, a number of workflow patterns can be
identified. Such patterns have been identified by Aalst et al. [Aalst03a]. They capture
common behavioral elements of business processes and concentrate on analyzing control
flow aspects. The above example contains the following set of patterns (defined
according to [Aalst03a]):

• Sequence: “One activity in the workflow process being enabled after the
completion of another activity in the same process”.

• Parallel Split: “A point in the process where a single thread of control splits into
multiple threads of control which can be executed in parallel”.

• Synchronization: “A point in the process, where multiple parallel branches
converge into one single thread of control”.

Model Transformation based on TGGs

Now, to introduce the transformation mechanism, we initially consider the simple
case of transforming an Action from the UML Activity to an Activity in a BPEL process.
In this particular case, according to Figure 1, we choose an AcceptCallAction in UML,

1 Here, we are not considering BPEL Link elements

VOL. 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 257

which specifically corresponds to a Receive-Action in BPEL. We want to express this
relation in a transformation rule as abstractly shown in Figure 2.

Figure 2. A simple transformation rule and its application in different transformation directions

In this rule, we state that an AcceptCallAction relates to a Receive-Activity when there
exists a relation between their parent elements, Activity and Process. Relations of this
archetype can be expressed using Triple Graph Grammar (TGG) rules. The TGG rule
corresponding to the abstract relation above is shown in Figure 3a. The model patterns
are represented using a notation similar to object diagrams.

Figure 3. TGG rule example

In this TGG rule, there are three columns. The outer columns contain the related domain
model elements, as shown in Figure 2. They are called the domain sides of the rule.
Additionally, in the middle column, there is the correspondence side where the relation
that exists between these domain model elements is expressed by correspondence nodes.
These correspondence nodes may connect arbitrary nodes in the domain sides. Then, in
all sides of the TGG rule, there are two different types of nodes. First, there are the green
nodes (shown in gray in black and white printouts), additionally labeled with “++”, which
represent the actual relation of model elements that shall be expressed by this rule.
Furthermore, there are the white nodes, which express the context in which the relation
between the green(/gray) nodes is valid. The white nodes are therefore also referred to as
context nodes.

Now, as shown in Figure 3b, such TGG rules can be interpreted in different ways: for
forward or backward transformation, or to check two given models for a valid
correspondence. In the case of a forward transformation (see Figure 3b.i), an existing
source model is given. In a scenario where the example rule in Figure 3a is applied, the
source model would be a UML model and the UML side of the given TGG rule would be
called the source domain side. To start a transformation, an initial start context has to be

AcceptCallAction

BPEL

Activity <process>

<receive>

UML

context

relation/
transformation

a:Activity

ac:AcceptCallAction

p:Process

r:Receive

atp:ActivityToProcess

atc:AccCallActionToReceive

++ ++++

++ ++

++++

++

UML Correspondence BPEL

(i) forward

(ii) correspon-
dence check

(iii) backward

Transformation directions:

a. b.

APPLYING TRIPLE GRAPH GRAMMARS FOR PATTERN-BASED WORKFLOW MODEL

TRANSFORMATIONS

258 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 9

provided, which typically contains the corresponding root model elements, like the
Activity and Process elements in this example. Now, a rule can be applied when the
context nodes of the rule can be matched to an existing context and when the source
domain side of the rule can be matched inside the existing source model (see the white
pattern in Figure 3b.i). Then, the remaining, non-context nodes on the target domain side
and the correspondence side can be created (see the green/gray pattern in Figure 3b.i).
Therefore, the green(/gray), “++”-nodes are also referred to as creatable nodes. In this
way, the related model elements are transformed and a new context is created for the
application of further rules. The application of TGG rules for the backward
transformation direction works accordingly. In the case where two models are given, they
can be checked for a valid correspondence. The correspondence nodes are created when
the given models can be parsed with the domain sides of the rules.

Formally, Triple Graph Grammars are an extension to Pair Grammars [Pratt71]. By
structurally mapping two graph grammars, it is possible to specify how graphs of
different types relate to each other. This formalism may also be extended to Multi Graph
Grammars (MGGs), allowing to relate more than two graph grammars [Königs06]. The
mapping of the different graph grammars is achieved by inserting a further graph
grammar to specify the correspondence of single elements in the other graph grammars.
Because software models can be considered as graphs, this technique can be applied to
specify relations between models. In the notation introduced in Figure 3a, the domain
sides as well as the correspondence part are (single) graph grammar rules. The left hand
side of such a rule consists of the context nodes. The right hand side contains both the
context nodes and the creatable nodes. Therefore, the TGG rules shown here are always
non-deleting rules.

In this paper, we want to draw special attention to the role of the correspondence side
in the transformation rules. Actually, the correspondence model built up during the
transformation can be seen as the integration of all the participating domain models.
Section 3 explains how a systematic meta-model integration strategy aids in the
specification of the transformation rules.

Model transformations play a central role in model driven software development and
thus, the Object Management Group (OMG) addresses model transformations with their
upcoming specification for Query/Views/Transformations (QVT) [QVT05]. The
declarative languages specified by QVT, QVT-Relations and QVT-Core are actually
quite similar to TGGs and it has been shown that these languages can be mapped to
TGGs [Greenyer06].

TGGs are used in the scope of two projects at the University of Paderborn, Fujaba
[Fujaba06] and ComponentTools [Gepting04]. In Fujaba, TGG rules are compiled to Java
code, which performs the transformation. In contrast, ComponentTools use a model
transformer that rather interprets the TGG rules [Kindler04, Kindler06, Rohe06]. This
TGG interpreter has lately been re-engineered and improved for the transformation of
EMF ECore [EMF06] models inside Eclipse [Greenyer06]. This work furthermore shows
that it is possible to provide a TGG-based implementation for the declarative model

VOL. 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 259

transformation languages specified by QVT, QVT-Relation and QVT-Core. We chose to
use this tool for the overall features of TGGs, for its usability and convenience, and
because our application is based on EMF.

3 OUR APPROACH: REALIZATION OF THE WORKFLOW
TRANSFORMATIONS USING TGG

After introducing the involved workflow models and a first example of a TGG rule, this
section will now furthermore elaborate the transformation strategy. Before explaining the
actual TGG rule design, we will show that it is reasonable to consider the systematic
integration of the involved workflow models, especially highlighting the role of
workflow patterns.

Transformation principles

One key aspect in comparing workflow or business process languages is their support for
the aforementioned workflow patterns. Aalst et al. discuss various languages in terms of
their support for the patterns [Aalst03b]. We have used their analysis and classification as
a guideline when designing the TGG transformation rules. This means that our
transformation supports those workflow patterns supported by UML, BPEL, and XPDL.

Concerning the transformation of graph-oriented and block-oriented languages, there
are several strategies available [Mendling05]. Before deciding which one to choose, the
structural properties of the involved models should be analyzed. There can be structured
or unstructured and acyclic or cyclic process graphs. A structured graph (as defined in
[Mendling05]) can be reduced to a single element by using a set of reduction rules
presented in the following.

• Sequence reduction reduces a sequence of nodes to one node.
• Connector pair reduction reduces a block enclosed by a split and a subsequent

join connector. Connector pairs can be of type AND, OR, or XOR. For example, a
connector pair of type AND would be represented by a ForkNode and a
subsequent JoinNode in a UML Activity Diagram.

• Loop reduction reduces a loop structure.
• Start-block and end-block reduction reduces a block of elements that appears at

the beginning or end of the graph and that is connected (i.e. followed or preceded,
respectively) by an XOR connector.

In our approach, we impose the restriction of working only with structured graphs. While
structured workflow models are less expressive than arbitrary workflows, they are less
prone to errors in their structure and are supported by most workflow tools. In
[Eshuis06], Eshuis et al. present a strategy to compose a structured workflow starting
from a set of services with data flow dependencies. It is more challenging, however, to
derive a structured model from an unstructured workflow model. Existing research in this

APPLYING TRIPLE GRAPH GRAMMARS FOR PATTERN-BASED WORKFLOW MODEL

TRANSFORMATIONS

260 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 9

area [Kiepuszewski00] could be used to extend the presented TGG rules to support a
limited set of unstructured models, but this is not further studied in this paper.

In the case of BPEL, working with structured models means that we omit the usage of
the graph-based links element, which allows the creation of unstructured graphs. Instead,
we translate the graph-based control flows in UML or XPDL to the respective BPEL
structured activity elements (sequence, flow, etc.). Thereby, we identify the control
structures instead of just mapping the control flow to BPEL links. The corresponding
transformation strategy, as defined by Mendling et al. [Mendling05], is called Structure-
Identification and has the advantage of creating BPEL documents that are easier to
understand because the structured components are directly revealed.

For the opposite direction, transforming from a block-oriented to a graph-oriented
language, the nested BPEL control flow is translated to a flat process graph without a
hierarchy. The advantage of this is that the behavior of the whole BPEL process is
translated to one process graph, making it easy to be communicated visually.

Metamodels of involved languages

Our approach is implemented in the Eclipse framework, using particularly EMF ECore
models. Figure 4 shows the relationships between the UML and BPEL models. XDPL is
in a corresponding role to BPEL, but is omitted from the figure for clarity.

Figure 4. Involved metamodels

With the metamodels of UML, BPEL and XPDL provided, the necessary steps towards
specifying the transformation consist of (a) defining the correspondence metamodel and
(b) setting up the actual TGG transformation rules.

Defining the correspondence model

The correspondence nodes of the TGG rules provide the mapping between the involved
domain elements. We put special emphasis on the definition of the metamodel of these
correspondence elements, since it serves as a basis for creating the actual transformation
rules. The correspondence metamodel should:

• contain elements representing the main semantic features of the participating
languages (these elements are then associated with their related elements in the
models of UML/BPEL/XPDL);

• provide a representation, where the workflow patterns are easily recognized; and

Ecore

UML2 metamodel
(uml2.ecore)

Correspondence
metamodel

BPEL
metamodel M2

M3

UML2 model
(model.uml)

BPEL model
(model.bpel)

M1

specified by

specified by

ref.
TGG

metamodel

TGG rule

ref.

Corr. model
ref. ref.

VOL. 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 261

• contain elements in order to combine the concepts of block-oriented and graph-
oriented languages.

In order to create the correspondence metamodel, the following steps are taken in respect
to the above requirements:

1. Integration of the participating metamodels. We use an approach that describes
the integration of workflow-related metamodels by applying schema matching
[Hornung06]. This involves the evaluation of the semantic relationships between
the model elements. For example, this means to find semantically equivalent
constructs in the involved models or such constructs where one is semantically
subsumed by another in the opposite model.

2. Adding elements representing the workflow patterns. Thereby, the patterns can
easily be recognized after a transformation and more importantly, these elements
play a major role when defining the transformation rules.

3. Adding elements to accommodate to the transformation strategy concerning graph
and block oriented models. These elements, Sequence, ConnectorPair, Loop,
StartBlock and EndBlock, mark structures reduced by the reduction rules.

Figure 5 shows an illustration of the correspondences inserted between the example
models from Figure 1 and the associations among these elements.

Figure 5. Initial example with correspondence elements

According to the integration steps mentioned above, we see the Activity correspondence
nodes connecting the equivalent UML Actions and BPEL Activities. Furthermore, there
are the ParallelSplit and Synchronization correspondence nodes, which represent
workflow patterns in both models. These nodes also mark split and join connectors in the
process graph and together comprise a block that can be structurally reduced. This block
is represented by a ConnectorPair correspondence node that has the ParallelSplit and
Synchronization nodes as children. According to the sequence reduction rule, the whole

BPEL

CB

D

A

<process>

<sequence>

<flow>

B C

A

UML Correspondence

InitialNode

Activity

ControlFlow

ForkNode

JoinNode

FinalNode

Action

...

...

...

Process
Sequence

start

ControlFlow

Activity

Activity

ControlFlow

ConnectorPair

ParallelSplit

Synchronization

End

...

ControlFlow

D

ControlFlow

APPLYING TRIPLE GRAPH GRAMMARS FOR PATTERN-BASED WORKFLOW MODEL

TRANSFORMATIONS

262 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 9

process graph can be understood as one sequence. Therefore, a Sequence correspondence
element is acting as the container of all correspondence elements representing the
members of the process graph.

Defining the transformation rules

The general idea in defining the transformation rules is to create TGG rules for the
following purposes:
• Translate the Action/Activity elements that make up the atomic elements of behavior

in the workflow processes. These elements should be matched regardless of their
position in the control flow structure.

• Transform the control flow structures, which comprise these atomic elements. Here,
the workflow patterns play a crucial role.

• Translate elements or structures not belonging to the above two groups. This includes,
for example, elements which specify the participating services. Such elements,
however, are not considered further in the scope of this paper.

TGG rules translating atomic Action/Activity elements

With the definition of semantic relationships between model elements, defined in the
correspondence metamodel, we already have the essential parts that have to be composed
in the TGG rules. Now, the most straightforward rules are those that relate the different
Action/Activity element types in UML, BPEL and XPDL, i.e. rules to transform UML
AcceptCallAction, ReplyAction, CallOperationAction, etc. An example of such a rule was
already shown in Section 2 (Figure 2).

These rules are actually the first being applied in a transformation. Transforming the
single UML Actions without considering the control flow results in a loose collection of
BPEL Activities on the other side. However, these BPEL Activities have to be associated
with a common context node. In the rule shown in Figure 2, it is assumed that BPEL
Activities are contained in the Process element. Due to the nested block structure,
however, this is not always the case. The Activities can be contained in any block
element, for example a Sequence or Flow block. So, we cannot decide where to put these
Activities before taking care of the control flow. Our solution to provide a common
context, keeping track of these Activities and making them easily accessible from the root
Process element, is an extension of the BPEL model. We insert an extra model element
called ActivityConnector. It is associated with every BPEL Activity node but, through
adjustments in the EMF model, remains transient when saving the BPEL models. Figure
6 shows a slightly modified version of the rule shown in section 2.

:Activity

:AcceptCallAction

:Process

:Receive

:ActivityToProcess

:AccCallActionToReceive

++ ++++

++

++
++++

++

UML Correspondence BPEL

:ActivityConnector

VOL. 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 263

Figure 6. TGG rule example

TGG rules for the Sequence workflow pattern

The primary focus in the following strategy is to capture the appearing workflow patterns
and the involved model elements in the TGG rules. The first pattern to be shown is the
Sequence pattern. For the transformation of a sequence with n elements, we need two
rules: One rule to match the beginning of a sequence and one rule to match each
following element.

To match the beginning of a sequence means to match an initial Action/Activity node
and the one following it in the process control flow. These two nodes should be marked
in some way to denote their belonging to the new-found Sequence pattern instance.
Looking at the correspondence part of the “sequence_start” rule in Figure 7 already
visualizes this concept.

++

++

++

++

++

++

++

++ ++

++

++

++

++

++

++

++++
:Activity :Process :Process

UML Correspondence BPEL

NULL

incoming

NULL

previousAct

++

++

:ControlFlow

:Activity

:Sequence

:Activity :Activity

:Sequence

:ActivityNode

:ControlFlow

:Activity:ActivityNode

Figure 7. The sequence_start rule

Two correspondence model Activity nodes are connected by a ControlFlow and
associated to a Sequence node. The ControlFlow and Sequence elements are creatable
(green/grey) here, because the rule should match Activity nodes whose common Sequence
and ControlFlow connection have not been translated yet. Connecting these four nodes to
their corresponding nodes on the UML and BPEL sides already results in the most part of
the shown “sequence_start” rule.

Now, reviewing the rule in the scenario of a forward transformation from UML to
BPEL, it works as follows:

• On the UML side, two of the Activity nodes, already translated by the
Action/Activity rules, form the precondition in order to match their connecting
ControlFlow element. One of the two Activities is the first in the overall
Activity because it has no incoming ControlFlow.

• On the BPEL side, this results in a Sequence node being created to contain the
corresponding BPEL Activity nodes.

The next Action in a sequence can be transformed with the “sequence_next” rule, shown
in Figure 8. Here, the first of the two Action/Activity nodes has to be already part of a
matched sequence. Therefore, in the correspondence model, this first Activity node has
an already existing association to the previously created Sequence element and both this

APPLYING TRIPLE GRAPH GRAMMARS FOR PATTERN-BASED WORKFLOW MODEL

TRANSFORMATIONS

264 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 9

association and the Sequence element are part of the precondition of the rule. Likewise,
on the BPEL side the BPEL Sequence element and the respective association are also part
of the precondition. This causes the rule to append the second Activity to the existing
sequence.

++ ++

++

++

++

++ ++

++

++

++

++

:Activity :Process :Process

UML Correspondence BPEL

++ :ControlFlow

:Activity

:Sequence

:Activity :Activity

:Sequence

:ActivityNode

:ControlFlow

:Activity:ActivityNode

Figure 8. The sequence_next rule

TGG rules for the Parallel Split pattern

The next workflow pattern to be shown in its TGG rule representation is the Parallel Split
pattern. The point in the process where the execution splits is mapped to a ForkNode in
UML, a Flow element in BPEL, and a “route” Activity with Split type “AND” in XPDL.
These elements are mapped to a ParallelSplit element in the correspondence metamodel,
which also has the function to denote the pattern instance.

Here, there are again two TGG rules needed: one to match the split-point, i.e. the
ParallelSplit element, and another rule to match each outgoing flow of control. Because
the Parallel Split pattern is usually preceded by a sequence and also the outgoing arrow of
control mostly is a sequence, the presented Parallel Split TGG rules include a
combination with the Sequence pattern.

parallelsplit parallelsplit_sequence

++

++ ++

++

++

++

++

++

++

++

++

++ ++

++

++

++

++

++ ++

++

++

++

:Activity

++

++

++
++

++

++

++++

++

++

++

++:ControlFlow

:Activity

:Sequence

:ParallelSplit

:ControlFlow

:Activity

:Sequence

:ControlFlow

:ForkNode

:ControlFlow

:ActivityNode

:ActivityNode

:Sequence

:Activity

:Flow

:Sequence

:Activity
++

++

++

++

++

++ ++

++

++

++

++

:Activity

++

++
++

++

++

++

:ParallelSplit

:ControlFlow

:Activity

:Sequence

:ControlFlow

:ForkNode

:ActivityNode

:Flow

:Sequence

:Activity

UML Correspondence BPEL UML Correspondence BPEL

Figure 9. The two Parallel Split rules

VOL. 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 265

Looking at the “parallelsplit” rule on the left of Figure 9, the upper half looks similar to a
“sequence_next” rule with the second Activity element replaced by the ParallelSplit
element (and the corresponding UML, BPEL and XPDL side changed accordingly).
Thereby, the incoming sequence, as well as the split point, is matched. In addition to that,
the rule contains the nodes to match one outgoing sequence of the Parallel Split pattern.
The left part of Figure 9 shows the rule to handle the other outgoing branches of control.
It has the ParallelSplit element in its precondition part and matches a not yet created or
matched outgoing sequence.

TGG rules for other workflow patterns

The Synchronization pattern can be seen as the counterpart of the Parallel Split pattern. In
our context of working with structured processes, the Parallel Split Pattern and the
Synchronization Pattern both represent one part of a connector pair. This is reflected in
the two TGG rules for the Synchronization pattern, as they match in the context of a
preceding Parallel Split pattern instance. Thereby, the sequence preceding the
ParallelSplit element is resumed after the synchronization point. All the elements in
between, i.e. the parallel branches, are abstracted to the single ConnectorPair element of
the correspondence model (a subclass of Activity) and thereby reduced in a way according
to the reduction rules. Figure 10 shows this concept by means of the correspondence
elements of the synchronization rules.

++

synchronization

++ ++

++

++

++

++

++

++

:Synchronization

:ControlFlow

:Activity

:Sequence

:ParallelSplit

:Sequence

:ConnectorPair

sync_next_incoming

++ ++

++

++

:Synchronization

:ControlFlow

:Activity

:Sequence

:ParallelSplit

:Sequence

:ConnectorPair

UML Correspondence BPEL

... ...

UML Correspondence BPEL

... ...

Figure 10. The correspondence part of the synchronization rules

There are two rules because the Synchronization pattern involves multiple branches being
brought together. The first rule detects the pattern instance and creates a new
Synchronization element in the correspondence model. The second rule matches the
additional incoming branches of the synchronization point.

From the five basic control patterns, the remaining ones are Exclusive Choice and
Simple Merge. Their implementation is mostly similar to the previous two patterns. The
rest of the workflow patterns can be represented in TGG rules in a similar way.

APPLYING TRIPLE GRAPH GRAMMARS FOR PATTERN-BASED WORKFLOW MODEL

TRANSFORMATIONS

266 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 9

As shown before, we have already considered the integration of all three involved
languages (UML activity diagrams, BPEL and XPDL) when defining the correspondence
metamodel. As TGGs can be implemented for n:m transformations, and the actual
implementation used also supports this, it is most convenient to add all three languages in
the TGG rules.

Our correspondence-model-centric way of defining the TGG rules also makes it easy
to add the corresponding nodes of yet another language. One disadvantage of integrating
all languages in the rules is of course that the rules quickly become rather crowded and
complex. Also, the varying features of the languages might make it advisable to design a
more specific correspondence model, following the principles introduced above.

4 EXAMPLE APPLICATION

To demonstrate the applicability of the proposed approach, we now show how an
example business process, depicted in Figure 11 as a UML Activity Diagram in Rational
Software Architect, is transformed to a BPEL description.

Figure 11. Example business process in UML and the transformed BPEL document

During the transformation, the different kinds of UML Action elements are matched by
the respective single mapping rules. This happens in no particular order. The first
workflow pattern to match is the sequence pattern beginning with the InitialNode
element. It is matched by a variation of the above mentioned sequence_start rule, where
the InitialNode element is specifically matched. The other TGG rules applied are the
following:

<process name="PurchaseOrderProcess">
<sequence>
 <receive name="ReceiveOrder"/>
 <switch>
 <case condition="[accepted]">
 <sequence>
 <receive name="receiveCustomerData"/>
 <flow>
 <sequence>
 <receive name="receiveShippingInfo"/>
 <invoke name="doShipping"/>
 </sequence>
 <sequence>
 <receive name="receiveInvoice"/>
 <invoke name="sendInvoice"/>
 </sequence>
 </flow>
 <reply name="sendPurchaseOrder"/>
 </sequence>
 </case>
 <case condition="[rejected]">
 <sequence>
 <invoke name="notifyShop"/>
 <reply name="sendAnswer"/>
 </sequence>
 </case>
 </switch>
</sequence>
</process>

VOL. 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 267

• the rule to match the DecisionNode as part of the Exclusive Choice pattern, as
well as one rule to match the outgoing branches (these two rules are similar to the
rules for the Parallel Split pattern);

• the above mentioned parallel_split and parallel_split_sequence rules to match the
Parallel Split Pattern instance around the ForkNode;

• the sequence_next rule to match the two Sequence pattern instances after the
ForkNode as well as the Sequence consisting of the nodes named notifyShop and
sendAnswer;

• the two Synchronization Pattern rules to match the JoinNode as well as its
incoming edges;

• sequence_next rule to handle the node named sendPurchaseOrder;
• two rules similar to the Synchronization pattern rules to match the Simple Merge

Pattern instance with its two incoming branches; and finally
• a variation of the sequence_next rule, where the second ActivityNode is an

ActivityFinalNode, to match the end of the process.
The resulting BPEL document is shown on the right in Figure 11.

5 RELATED WORK

In recent years, many document and model transformation technologies have been
developed for different application domains. There are, for example, template-based
approaches, such as XSLT[XSLT99], graph grammar based approaches like
GReAT[Agrawal03], VIATRA[Varro02] and TGGs, and relational approaches like
MTF[MTF05] and QVT[QVT05] that focus on specifying relations between model
structures.

The specific requirements in our application domain, however, quickly reduced the
applicable model transformation approaches to just a few. Although template-based
approaches are widely used, especially XSLT in web technologies, they would have
resulted in an incomprehensible transformation, since the involved workflow languages
are structurally complex and quite diverse. In general, we focused on declarative instead
of operational transformation languages, which rather specify what should be transformed
instead of how it should be done. Languages in that area include VIATRA, GReAT and
MTF, for example. We also preferred transformation languages with graphical rule
definitions to follow a model-driven approach and to help support the overall
understanding of the transformation. The further choice among declarative languages was
driven by the aim to support bidirectional transformations. There are, however, fewer
languages that support both graphical rules and bidirectional transformations.

The above mentioned aspects have also been acknowledged to belong to the key
features and characteristics in model transformation languages, based on which these
languages have been categorized [CH03, Mens06]. These characteristics include e.g.
bidirectionality and support for transformation reuse, both of which are supported in our
model transformation technique, namely, TGGs. It is further exogenous, since it is based

APPLYING TRIPLE GRAPH GRAMMARS FOR PATTERN-BASED WORKFLOW MODEL

TRANSFORMATIONS

268 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 9

on metamodels of the source and target languages. With the graphical and editable
representation of the transformation rules, we also feel it is easy to use.

Concentrating on graph grammar based or relational approaches that use such a
graphical concrete syntax (e.g. GReAT, TGGs), languages with (partial) conformance to
QVT or with compatible notations (as TGGs) came into focus. QVT
(Query/Views/Transformations) is an upcoming standard for model transformations in
MDA, issued by the OMG, which has recently raised a lot of attention. QVT is the result
of selecting and merging previous model transformation approaches and now actually
contains different, both operational and declarative, transformation languages. The
declarative languages form two layers of abstraction and, for the more abstract and user
friendly QVT-Relations, there is also a graphical syntax specified. However,
implementations of the QVT standard are still under development and there is only partial
conformance yet [SmartQVT06, ModelMorf06, Together06]. The primary reason to
choose TGGs over QVT is the possibility to map the relating model patterns with a
specific correspondence model. As introduced in this paper, this allows an elegant design
of the transformation rules. In QVT rules, it is not possible to flexibly specify a mapping
structure between the involved models patterns and thus, to the best of our knowledge,
this extensible transformation strategy presented here cannot be realized in QVT.

Similar to our work, other model-driven approaches have been proposed for
transforming workflow models to business process description [Kalnins06, Baresi06,
ETTK06, Kalnins04]. IBM’s ETTK toolkit [ETTK06] also transforms the workflow
models to code, namely, XML in this context. ETTK generates BPEL and WSDL
documents from workflow models given in UML. Our approach currently supports both
BPEL and XPDL and can conveniently be extended to support other business process
languages as well. In ETTK, the transformation is made automatically and hard-coded
inside the tool. It is thus neither visible to nor modifiable by the users. In the approach
proposed by Skogan et al. [Skogan04], Web service compositions are designed using
UML and then transformed into two variants of Web service composition languages,
namely, BPEL and WorkSCo[Rito-Silva03]. While this approach focuses solely on Web
service compositions, our approach can be used to generate other workflow descriptions
as well. Moreover, the transformation approach UMT [Grønmo05] used in [Skogan04] is
based on XSLT transformations. Finally, unlike IBM’s ETTK and the approach proposed
by Skogan et al., our model transformation is bidirectional.

Similar to our work, Kalnins et al. proposed a transformation approach [Kalnins04]
from UML Activity Diagram to any vendor specific execution language, but via another
graph-based transformation language called MOLA. Compared with TGG, MOLA
additionally combines the traditional structured programming in a graphical form, for
example, arranging the transformation rules in sequence and invoking subprograms with
parameters. With this feature, MOLA is able to scale up for complex transformations.
However, MOLA does not support bidirectional transformations.

VOL. 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 269

6 DISCUSSION

For the development and composition of services, model transformations between
workflow models and process description languages are necessary. Such transformations
are not trivial, because the involved languages are quite complex and often structurally
diverse. However, it is possible to identify semantic relationships on the level of
workflow patterns which recur in practically all these languages. Based on the
observations in this domain, this paper presents a strategy to specify bidirectional model
transformations by exploiting the semantic relationships of such model patterns. The
transformation strategy is based on Triple Graph Grammars, which allow to reflect the
detailed semantic relationships between models in graphical and comprehensible rules.

 As an example, we have introduced a transformation from UML Activity Diagrams
to process descriptions in BPEL and XPDL. Furthermore, we have shown how this
transformation can be extended to also support other workflow languages. We aim to
extend this transformation to also support BPMN[BPMN06] as a workflow modeling
notation.

Because TGG transformations are bidirectional, they allow a reverse transformation
from, for example, BPEL process descriptions back to UML Activity Diagrams. This
would aid in the analysis of deployed business processes and, if combined with workflow
mining tools, it could be especially useful to support understanding of executed business
processes.

In this application domain, TGGs have shown many advantages. Their graphical
notation allows the transformation designer to specify even complex transformation
patterns in a convenient way. Furthermore, the extensibility of the approach also allows
to build support for new workflow languages by reusing existing transformation rules.
However, the usability of TGGs could yet be improved. Potential scalability problems
concerning the graphical rule notation could be addressed by enhancing the rule editor,
e.g. to hide rule parts or to use concrete language syntax when available. In our
application, we observed that sometimes multiple rules are needed to express the same
relation between model elements, because the relation occurs in slightly different
contexts. Mostly, just the nodes' type classes are different. One solution, supported by the
TGG interpreter used, is to refer to a common super-class when this is possible. This was
already done in the workflow-pattern related rules presented in this paper. There, the
abstract UML ActivityNode superclass is used to match each of the special types of
activities being part of the patterns. But, there may be cases where the involved domain
models do not supply a convenient superclass structure. Then, the integration of OCL in
TGGs, which is also planned for the used tool, would make it possible to cover different
contexts by using if-then-else expressions. Sometimes, when the domain models become
more complex, it would be convenient to have some kind of “wildcard” mechanism to
cover multiple cases. However, such mechanisms would need closer investigation. In any

APPLYING TRIPLE GRAPH GRAMMARS FOR PATTERN-BASED WORKFLOW MODEL

TRANSFORMATIONS

270 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 9

case, the general position of the presented TGG implementation, also in its relation to
existing standards and technologies like QVT and EMF, provides a good foundation for
applying model transformations. The introduced strategy for the design of workflow
model transformations has highlighted the benefits of using TGGs for that purpose.

REFERENCES

[Aalst03a] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros, Workflow Patterns.,Distributed and Parallel Databases, 14(3), pp.
5-51, July 2003.

[Aalst03b] W.M.P. van der Aalst, Patterns and XPDL: A Critical Evaluation of the
XML Process Definition Language, QUT Technical report, FIT-TR-2003-
06, Queensland University of Technology, Brisbane, 2003.

[Agrawal03] A. Agrawal, G. Karsai and F. Shi, Graph Transformations on Domain-
Specific Models, Technical report, ISIS-03-403, Vanderbilt University,
2003.

[Baresi06] L. Baresi, K. Ehrig, and R. Heckel, Verification of model transformations:
A case study with BPEL, Proc. of the 2nd Symposium on Trustworthy
Global Computing, TGC'06, 2006.

[Bézivin03] J. Bézivin, G. Dupé, F. Jouault, and J. E. Rougui, First experiments with the
ATL model transformation language: Transforming XSLT into XQuery, In
Proc. of the OOPSLA’03 Workshop on Generative Techniques in the
Context of MDA, 2003.

[BPEL03] BEA Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems,
Business Process Execution Language for Web Services, Version 1.1.
Specification, 2003.

[BPMN06] Object Management Group, Business Process Modeling Notation, version
1.0, http://www.bpmn.org, 2006.

[Czarnecki03] K. Czarnecki and S. Helsen, Classification of Model Transformation
Approaches, In Proc. of the OOPSLA’03 Workshop on Generative
Techniques in the Context of MDA, 2003.

[EMF06] The Eclipse Project, The Eclipse Modeling Framework
http://www.eclipse.org/emf/, 2006.

[Eshuis06] R. Eshuis, P. Grefen and S. Till; Structured service composition; In
Proceedings of the 4th International Conference on Business Process
Management (BPM), Lecture Notes in Computer Science 4102, pp. 97-112,
Springer, 2006

VOL. 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 271

[ETTK06] IBM, The Emerging Technologies Toolkit (ETTK),
http://www.alphaworks.ibm.com/tech/ettk, 2006.

[Fujaba06] University of Paderborn, Fujaba Tool Suite, http://www.fujaba.de, 2006.

[Gepting04] A. Gepting, J. Greenyer, E. Kindler, A. Maas, S. Munkelt, C. Pales, T. Pivl,
O. Rohe, V. Rubin, M. Sander, A. Scholand, C. Wagner, R. Wagner:
Component Tools: A vision for a tool. E. Kindler ed., Algorithmen und
Werkzeuge für Petrinetze (AWPN) - Algorithms and Tools for Petri nets.
Proc. of the AWPN workshop, pp. 37-42, 2004.

[Greenyer06] J. Greenyer, A Study of Model Transformation Technologies: Reconciling
TGGs with QVT, University of Paderborn, MSc thesis, July 2006.

[Grønmo05] R. Grønmo and J. Oldevik, An empirical study of the UML Model
Transformation Tool (UMT), In INTEROP-ESA, 2005.

[Hornung06] T. Hornung, A. Koschmider, and J.Mendling, Integration of heterogeneous
BPM Schemas: The Case of XPDL and BPEL,in CAiSE, 2006.

[Kalnins04] A. Kalnins, J. Barzdins and E. Celms, Model Transformation Language
MOLA, In Proc. of MDAFA, pp. 14-28, 2004.

[Kalnins06] A. Kalnins and V. Vitolins, Use of UML and Model Transformations for
Workflow Process Definitions, Communications of the 7th International
Baltic Conference on Databases and Information Systems (Baltic DB&IS
2006). , Vilnius, Lithuania, July 3-6, pp. 3-14, 2006.

[Kiepuszewski00] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On
structured workflow modelling. In B. Wangler and L. Bergman, editors,
Proc. CAiSE '00, Springer, pp. 431-445, 2000.

[Kindler04] E. Kindler, V. Rubin, and R. Wagner, An Adaptable TGG Interpreter for In
Memory Model Transformations, In Proc. of the FUJABA Days, pp. 35-38,
2004.

[Kindler06] E. Kindler, V. Rubin, and R. Wagner: Component Tools: Integrating Petri
nets with other formal methods. Invited talk at: 27th International
Conference on Theory and Application of Petri Nets 2006, LNCS 4024, pp.
37-56, 2006.

[Königs06] A. Königs, A. Schürr: MDI - a Rule-Based Multi-Document and Tool
Integration Approach Special Section on Model-based Tool Integration in
Journal of Software&System Modeling,Academic Press, 2006.

[MDA06] Object Management Group, Model Driven Architecture,
http://www.omg.org/mda, 2006.

[Mendling05] J. Mendling, K. Lassen, and U. Zdun, Transformation strategies between
block-oriented and graph-oriented process modelling languages, Technical

APPLYING TRIPLE GRAPH GRAMMARS FOR PATTERN-BASED WORKFLOW MODEL

TRANSFORMATIONS

272 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 9

Report JM2005-10-10, WU Vienna, http://wi.wu-
wien.ac.at/home/mendling/publications/TR05-Strategy.pdf, 2005.

[Mens06] T. Mens, P. V. Gorp, D. Varro, G. Karsai, Applying a Model
Transformation Taxonomy to Graph Transformation Technology, In Proc.
Int'l Workshop on Graph and Model Transformation (GraMoT 2005),
Electronic Notes in Computer Science, Vol. 152 (2005), pp. 143-159, 2006.

[ModelMorf06] Tata Consultancy Services (TCS), ModelMorf, http://www.tcs-
trddc.com/ModelMorf/index.htm, 2006.

[MTF05] S. Demathieu, C. Griffin, and S. Sendall, Model Transformation with the
IBM Model Transformation Framework, IBM, http://www-
128.ibm.com/developerworks, 2005.

[Pratt71] T. Pratt, Pair Grammars, Graph Languages and String-to-Graph
Translations, Journal of Computer and System Sciences, volume 5,
Academic Press, pp. 560-595, 1971.

[QVT05] Object Management Group, MOF QVT, Final Adopted Specification,
http://www.omg.org, 2005.

[Rito-Silva03] A. Rito-Silva, S. Fernandes, J. Martins, and D. Domingos, Micro-
workflow component framework supporting service composition, INESC-
ID, Deliverable IST-2001-37724 ACE-GIS D4.2, November 2003.

[Rohe06] O. Rohe, Model Transformation by Interpreting TripleGraph Grammars:
Evaluation and Case Study, University of Paderborn, BSc thesis, January,
2006.

[Schürr94] A. Schürr, Specification of Graph Translators with Triple Graph Grammars,
In Proceedings of the 20 International Workshop on Graph-Theoretic
Concepts in Computer Science, Herrsching, Germany, June 1994. Springer
Verlag, 1994.

[Skogan04] D. Skogan, R.Grønmo, and I. Solheim, Web Service Composition in UML,
In Proc. of EDOC, pp. 47-57, 2004.

[SmartQVT06] France Telecom, SmartQVT, http://smartqvt.elibel.tm.fr/, 2006.

[Together06] Borland, Together Architect 2006, http://www.borland.com/us/products/
together/index.html, 2006.

[UML05] Object Management Group, Unified Modeling Language Specification,
version 2.0, http://www.omg.org/uml/, 2005.

[Varro02] D. Varro, G. Varro and A. Pataricza, Designing the automatic
transformation of visual languages, Science of Computer Programming, vol.
44(2), pp. 205-227, 2002.

VOL. 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 273

[XPDL05] Workflow Management Coalition, Workflow Process Definition Interface –
XML Process Definition Language. Version 2.0, Document Number
WFMC-TC-1025, 2005.

[XSLT99] World Wide Web Consortium, XSL Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/xslt, 1999.

About the authors
Carsten Lohmann is a software engineer and has recently received his
master in computer science from the University of Siegen. He has been
doing research at the Tampere University of Technology in the area of
Service Oriented Architectures and Business Process Modeling and is
currently working at a company in Germany on these topics. He can be
reached at carsten.lohmann@gmx.de.

Joel Greenyer is a PhD student in the International Graduate School
Dynamic Intelligent Systems of the University of Paderborn. His
research areas are metamodelling and formal languages and methods.
His particular focus is on model transformation and the integration of
model driven systems. He can be contacted via jgreen@upb.de.

Juanjuan Jiang is a PhD student at Tampere University of Technology, Institute of
Software Systems. She has received her MSc degree from the University of Science and
Technology of China. Her research interests include UML-based support to design Web
services systems and QoS issues in Web Services. She can be reached at
juanjuan.jiang@tut.fi.

Tarja Systä is a professor at Tampere University of Technology,
Institute of Software Systems. Her research interests include UML-based
software development, reverse engineering and architecture recovery,
and Web services system development. She can be reached at
tarja.systa@tut.fi.

