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Reflection has proved to be a powerful feature to support the design of development
environments and to extend languages. However, the granularity of structural reflection
stops at the method level. This is a problem since without sub-method reflection
developers have to duplicate efforts, for example to introduce transparently pluggable
type-checkers or fine-grained profilers. In this paper we present PERSEPHONE, an
efficient implementation of a sub-method meta-object protocol (MOP) based on AST
annotations and dual methods (a compiled method and its meta-object) that reconcile
AST expressiveness with bytecode execution. We validate the MOP by presenting
TREENURSE, a method instrumentation framework and TYPEPLUG, an optional,
pluggable type system which is based on PERSEPHONE.

1 INTRODUCTION

Reflection [37] has proved to be an important property of long-lived and highly-
dynamic systems. The literature is full of examples of uses for reflection. For
instance, message passing control has been used for a wide range of application
analysis approaches, such as tracing [21,9], automatic construction of interaction di-
agrams, class affinity graphs, test coverage, as well as new debugging approaches [26].
Message passing control has also been used to introduce new language features in
several languages, for instance multiple inheritance [6], distribution [2,31], instance-
based programming [1], active objects [10], concurrent objects [42], futures [33] and
atomic messages [17,29], as well as backtracking facilities [25]. Nowadays, AOP is
often using reflection to support its implementation [39, 38|.

Current object-oriented languages provide access to program structure reifica-
tions. In most cases (e.g., Java or C#) only introspection is supported (i.e., these
descriptions can be queried). In other languages, intercession is also supported (i.e.,
the program itself can be changed) [5]. Dynamic languages usually support both in-
trospection and intercession (CLOS [23], Ruby, Python, Smalltalk [17,15]). In such
languages, the representation of the program is causally connected to the system
itself [27]. When the representation is changed, the running application changes,
too and conversely.

The literature also distinguishes structural and behavioral reflection [23]: struc-
tural reflection deals with program structure while behavioral reflection deals with
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the execution. However, structural reflection often stops at the method level. For
example in Smalltalk (the same holds in Java) the only entities supporting limited
sub-method structural reflection are collection of bytes (from the compiled method)
or characters (from the textual representation of method bodies).

The lack of a higher abstraction of method source code hampers the implemen-
tation of tools that require to reflect about it. Examples of such tools are code
transformers (e.g., a refactoring tool), pluggable type-checkers, or fine-grained code
coverage analysis tools. Since programming languages do not provide support for
sub-method reflection each tool has to resort to implement its own infrastructure to
represent and reason about source code.

However, this is difficult because (1) text is definitively not structured enough,
(2) bytecode is low-level and (3) abstract syntax trees and text are not causally
connected to the low-level representation of methods (i.e., changes are not reflected
in the bytecode representation of methods).

Another problem is that it is hard to reuse existing infrastructure of one tool in
another tool because solutions tend to be very specific. A common infrastructure
would not only allow for code reuse but also facilitate data and cache sharing and
provide a layer for communication between the tools.

In this paper we propose reflective methods which provide a high-level, extensible
representation of method bodies accessible through a meta-object protocol (MOP).
The high-level representation used by tools is causally connected to its low-level
bytecode representation used by the virtual machine (VM). That is, changes to the
high-level representation are automatically reflected at the bytecode level. While
our implementation is done in Squeak [22]|, we believe that the concepts can be
applied to other languages without severe changes.

The contribution of this paper is: a motivation for sub-method reflection, an
analysis of the problems to support it, a MOP for sub-method reflection based on
annotated abstract syntax trees and an efficient implementation named PERSE-
PHONE. We validate our approach on two non-trivial tools which are implemented
based on PERSEPHONE.

This paper is organized as follows. In Section 2 we analyze the difficulties for
supporting sub-method reflection. Section 3 presents our solution. After showing
case studies (Section 4 and 5) we discuss benchmarks (Section 6) to validate the
implementation. After a short overview of related work (Section 7) we conclude in
Section 8.

2 CHALLENGES FOR SUPPORTING SUB-METHOD REFLECTION

To support the need of different tools such as a code browser, a code coverage tool
or a refactoring engine, we need a representation that is extensible, it should allow
tools to annotate the structural elements with metadata and the use of metadata for
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communication between tools. The representation should be persistent: it should
not be needed to re-generate it for every tool. We need a high-level model of the
method that supports powerful code transformation. Finally, the representation
should be causally connected: changing the representation should change the system
with no need of explicitly calling a compiler.

Most of the time, modern OO languages provide two representations for the
method level: the text that the programmer typed, and bytecode, the language that
the virtual machine interprets. Internally, tools that need sub-method structure do
not use the text nor the bytecode directly, but generate a custom representation, in
many cases an Abstract Syntax Tree (AST). We now evaluate the three representa-
tions as a foundation to support a sub-method MOP.

Text as Sub-Method Representation

In all current major programming languages, the programmer types text [14, 16].
This text is then used by the compiler to generate executable code. Text itself has
no real structure — it is just a collection of characters. Thus text as a sub-method
representation has the following problems:

Low-level. Text does not provide any high-level interface: it lacks the possibility
to scope information and manipulate the underlying program elements.

Not causally connected. Changing the method body text has no effect. We need
to call the compiler to generate a method.

Therefore text is almost never used directly for analysis and manipulation. Instead,
tools parse the text into an intermediate format such as an AST.

AST as Sub-Method Representation

A commonly used and generated intermediate representation is the AST. For exam-
ple, ASTs are used by the compiling chain and refactoring engine. Using the AST
as sub-method representation has the following properties:

Not persistent. Representations such as ASTs are not persistent: they are gener-
ated and then used, but not stored. While trees can be created from source
code, the meta-information, which we would like to associate to specific nodes
has to be stored in separate structures.

Not causally connected. Changing an AST does not have an immediate effect
on the underlying run-time behavior. Depending on the compiler API, the
AST or the method body text is passed to the compiler, which will compile
and install the method in its class.
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Bytecode as Sub-Method Representation

In contrast to the other representations, bytecode is causally connected: changing
bytecode directly changes the behavior of the system. Bytecode has been used, in
both Java and Smalltalk, for a form of structural reflection (Javassist [11] and Byte-
Surgeon [13])!. Both provide a high-level interface to the user, e.g., by abstracting
away bytecode details such as the different encodings for message sending or provid-
ing a way to specify code to be inlined as a string in the host language. Nevertheless,
in the end programmers are forced to deal with bytecode level abstractions which
may be different than the programming language the methods are written in [8].
Bytecode as a model for sub-method structure has a number of problems:

Different representation needs. There is a dilemma: on the one hand the exe-
cution engine (bytecode VM) requires bytecode for execution, and on the other
hand programming environments or programmers require text or an abstract
and high-level representation of the source code.

Low level abstraction. The programmer has to deal with the idiosyncrasies of the
bytecode representation. For example, control structures may be optimized as
it is the case in Smalltalk bytecode. In addition, there is a mismatch between
the program level abstractions and its runtime |[8].

All three discussed representations have the problem of missing extensibility and
lack a way to describe metadata:

Missing extensibility. Tools cannot easily extend the representation for their
needs. Thus, they often use a custom representation which leads to a situ-
ation where tools cannot easily share meta-information, e.g., when one tool
gathers information for others to use [41,32].

Mixed base-level and meta-level code. Code transformation (e.g., bytecode in-
strumentation [11]) is often used to reflect on method execution: small snippets
of code, so called hooks, are inserted into the original code. This leads to the
problem of distinguishing code of the original method from the code added by
the instrumentation framework.

Requirements

We want the best of both worlds: AST and bytecode representations. In sum-
mary, the representation should be (i) causally connected and well integrated in the

'In the case of Javassist for Java it should be noted that it can only provide load-time structural
reflection: newly loaded code can be transformed, but once it is loaded, no further change is pos-
sible. In contrast to that, ByteSurgeon provides full runtime transformation capabilities: methods
can be transformed even in a running system.
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system, (ii) persistent, (iii) extensible and (iv) reasonably compact with minimal
performance impact. Furthermore, it should support the separation of base and
annotated code and offer a high-level abstraction to the developers.

Such a model for reflective methods would make it easier to develop and deploy
a new generation of tools that work on sub-method elements.

We have seen that bytecode is too low level for our purpose, the AST could
be useful. But we need to take practical consideration into account: can such a
high-level representation be reasonably compact and efficient? In the next section
we present a solution that satisfies these constraints.

3 REFLECTIVE METHODS: ANNOTATED AND CACHED ASTS

Our solution is based on a dual representation of methods which combines an AST-
based representation offering high-level manipulations with a compact bytecode-
oriented representation supporting fast execution. The abstract syntax trees can be
annotated, the semantics of annotation is defined by specializing dedicated compiler
plugins. The causal connection and efficient execution is ensured by dual methods
that recompile bytecode automatically from their associated and annotated AST.
In such a context, we define three meta-objects: (1) the ASTs and their associated
transformation API, (2) the annotations and their semantic definition specified by
(3) the plugins. This set of objects enables what we call a reflective method.

:ReflectiveMethod :CompiledMethod
— -»IFa‘anot‘atBrT \ compiledMethod
] . #(1213 45 38 98 128
/D\ ranoiaion | | [eflectiveMethod 8472 4277 22 28 59
C o 32749 51 87 64)

A A

Tools VM

Figure 1: A reflective method is the meta-object of a compiled method.

Dual Methods

We implemented the presented approach in Squeak, an open-source Smalltalk. In
Smalltalk, code is compiled to bytecode which resides in compiled method objects
(an instance of the class CompiledMethod [19]). Besides bytecode, a compiled method
keeps a pointer to its source and a dictionary for additional state that is associated
with a method (e.g., its name). We enhanced the compiler to generate a reflective
method instead of a compiled method. A reflective method provides access to its
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AST meta-object. Before its first execution, a compiled method is generated from
the reflective method. Such a compiled method is cached to minimize performance
loss. When the code of a method is changed the cache is flushed and the reflective
method is reinstalled in the method dictionary as shown by Figure 1 and described
in [28].

The system was named after Persephone,the greek goddess who spends half of
her time in the underworld and the other half in the upper world. Like Persephone,
methods are seen sometime as part the underworld (the virtual machine), other time
as part of the upper world of high-level abstraction.

Before going into the details of our sub-method protocol we present an example of
annotations that are visible in the source code. We show later that some annotations
may be invisible in method source code.

A Simple Example: Compile-Time Evaluated Expressions

The following piece of code is the definition in Smalltalk of the method calcu-
lateNinePower which evaluates and returns the result of 9 to the power 10000. With-
out the annotation (<:evaluateAtCompiletime :>) the execution of such a method will
at runtime send the message raisedTo: to the object 9 and then return 9%, Using
annotations we can mark any abstract syntax tree element, i.e., any expression.
Here we specify that the expression should be executed at compile-time.

calculateNinePower
(9 raisedTo: 10000) <:evaluateAtCompiletime:>

Semantics Definition. At compile-time, the resulting value replaces the annotated
expression. The semantics of the annotation is defined by creating a compiler plugin
called CompiletimeEvaluator. The complete implementation is based on two classes
which specialize the meta-objects and define an annotation and a compiler plugin
(see Figure 2).

Persephone Core NoValueAnnotation CompilerPlugin
AN N
. . EvaluateAtCompiletime Compiletime
Compile-Time Evaluator Annotation Evaluator

Figure 2: Extension for compile-time evaluation.

EvaluateAtCompiletimeAnnotation is a subclass of NoValueAnnotation since this annota-
tion does not expect arguments. The class implements one method: key that returns the
annotation name (here the symbol evaluteAtCompiletime).
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The compiler plugin class, named CompiletimeEvaluator, is a subclass of Compiler-
Plugin. Besides that, it only has two small methods visitNode: and evaluateNow:.

visitNode: aNode
" (aNode hasAnnotation: EvaluateAtCompiletimeAnnotation key)
ifTrue: [ self evaluateNow: aNode |
ifFalse: [ super visitNode: aNode |

evaluateNow: aNode
| value literalNode |
value := aNode evaluate.
literalNode := LiteralNode value: value.
aNode replaceWith: literalNode.
~self visitNode: literalNode

We check every node for the evaluteAtCompiletime annotation. If the annotation is
present, we pass the node to evaluateNow: which does the evaluation. If the annotations
is not set, we just continue the visiting process. The method evaluateNow: evaluates an
expression by sending the evaluate message, a literal node is created to hold the result. It
replaces the original node and the visiting process continues.

AST and Tree Transformation API

The AST used in PERSEPHONE is an extended version of the Smalltalk refactoring engine
AST [35]. We extended it to provide annotations for all node objects. Reflective methods
provide a comprehensive abstract syntax tree API. Trees are easily edited and transformed
(added /removed /replaced, see Table 1). On top of these simple transformations, the Parse-
TreeRewriter is a rewrite engine which allows transformations to be specified at a high-level
of abstraction.

Node ‘ Operation ‘ Description

any node replaceWith: replace this node
replaceNode:withNode: | replace a direct child node

sequence node | addNode: append a node at the end
addNodeFirst: insert in front
addNode:after: insert after a given node
addNode:before: insert before a given node
removeNode: remove a node
replaceNode:withNodes: | replace one node with a collection

Table 1: The transformation API for nodes.

It should be noted that this API provides a way to destructively transform a tree: after
the transformation, the tree is changed in the same way as if we would have edited text
and recompiled the method. This is useful e.g., for refactorings. However, destructively
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changing a tree is not always what we need. As we will present in Section 4, annotations
provide a way to define non destructive transformations i.e., we can always identify the
original method.

AST Annotations

As discussed in Section 2, reflective methods should serve as the main method represen-
tation for many different usages. A consequence is that users need to be able to add
information about objects (nodes) directly to those objects themselves. Adding behavior
to the node classes is possible using the class extension mechanism of Smalltalk which
allows a package to define methods on classes defined in another package [3]. For object
state extensions, our MOP provides annotation objects that are attached to any node as
shown in Figure 3.

Node 1 * Annotation
key: Symbol
[ NoValueAnnotation || SingleValuedAnnotation | [ MultiValuedAnnotation
value: Collection values: Collection

Figure 3: The annotation hierarchy:.

Each annotation is uniquely identified by a key and each node has a dictionary that
maps keys to annotations. Annotations are instances of one of the three subclasses of
Annotation. They can have zero, one or multiple values. To define a custom annotation we
subclass from the appropriate subclass depending on their number of values (see Figure 3).
The difference between multi-valued and single valued annotations is that the former can
be defined multiple times on the same expression with different values whereas the latter
cannot.

The expression anExpression <:aSelector: anArgument:> attaches an annotation with
one argument to the expression anExpression. Annotations are supported on all expressions
and additionally on method arguments, block arguments and each variable name in a
temporary variable definition.

The argument of an annotation can be any Smalltalk expression. In the simplest case,
when the argument is just a literal object, the value of the annotation is set to this literal
object. When the argument is an expression, the value of the annotation is the AST of
this expression. We can specify when this AST is evaluated, either at compile time or
later at run-time. In addition we provide a reflective interface for annotations which can
be queried and set at runtime.

Annotations may or may not appear in the source code. For example, an invisible
annotation is the number of times a particular tree element has been executed; an example
for a visible annotation is a type declaration. Non-textual annotations can be added
reflectively to any node at runtime. These annotations are kept as long as the AST is not
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regenerated. For example, when a method is recompiled from source, the nodes of this
method will have no annotations, but clients can be notified of any code change and add
annotations again if needed.

Annotation Semantics

Without specific interpretation, annotations are pure metadata: they have no predefined
semantics. To specify annotation semantics, PERSEPHONE defines a meta-object protocol
for the compiler and bytecode generator.

The MOP is based on a plugin architecture. Before generating any code, the compiler
framework copies the AST and then calls all defined compiler plugins by priority order.
A compiler plugin is just a subclass of CompilerPlugin. Plugins affect compilation by
transforming the AST. As we provide fully reflective access to the annotations, the compiler
plugin may take annotations into account. We present a full example in Section 4 with the
instrumentation framework TREENURSE.

Characteristics of the Solution

Now we analyze our approach according to the requirements presented in Section 2.

Causal connection. The implementation ensures that the executed bytecode is always
in sync with the reflective method. The whole mechanism is completely transparent
to the user. Thus, we provide a causally connected and integrated model.

Persistency. Reflective methods (the AST including the annotations) are installed in the
method dictionary of a class. As reflective methods are normal Smalltalk objects,
they are written to the disk when the system is stopped. Thus the model is persistent.

Abstraction level. We reuse the same representation and API as the Smalltalk refactor-
ing engine which has proven to be a usable abstraction for various analyses such as
refactoring and general meta-programming.

Separation of base and meta-level code. The annotation framework provides a way
to structure code into data (AST) and metadata (annotations). For example, in-
strumentations as the results of the meta-programs are still completely identifiable
since they are represented in the AST as annotations.

Extensibility. Annotations provide a convenient way to associate metadata with the AST
nodes for storing additional state. Due to the compiler MOP, we can use annotations
to extend the language semantics.

Size and performance We will discuss memory consumption in Section 6. The provided
caching scheme ensures that at runtime we generate a compiled method only once.
In situations where even this relatively low overhead is too large, we can statically
generate all bytecode before deployment.
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We now validate our approach by presenting two tools that we have built based on
PERSEPHONE. The first tool is a framework for instrumenting code (TREENURSE). TREE-
NURSE is very similar ByteSurgeon [13] or Javassist [11]. Using TREENURSE, we show how
the extensibility of our approach is used for communication between tools: we implement
a statement coverage tool that records the coverage information as annotations on the
reflective method. The second example presents TYPEPLUG, an optional type system that
uses textual annotations.

4 VALIDATION: INSTRUMENTATION USING ANNOTATIONS

TREENURSE is a framework for instrumenting code. It is modeled to have an interface
very similar to ByteSurgeon, a bytecode transformation framework [13]. In contrast to
ByteSurgeon, it works on the AST and is implemented as a PERSEPHONE compiler-plugin.

To present TREENURSE, we start with discussing a simple example. We have a method
that does an assignment and we want to annotate the code with trace statements for
debugging that increases a counter. The original code and what we want to actually do at
runtime are shown in Figure 4.

a := 1 max: 3 a := 1 max: 3.
AssignmentCounter inc.

Original Code Instrumented Code

Figure 4: Code instrumented with a counter.

Here it is important to understand that we want to change the semantics of the method,
but we don’t want to change the code itself. The counter is not part of the design of the
system, it is just a temporal addition for debugging. If we transform the code with the help
of the refactoring API of the AST, the result would be a new method where the debug-
ging code would be undistinguishable from the original code. Bytecode instrumentation
frameworks such as ByteSurgeon or Javassist have the same problem: once the bytecode is
transformed, we do not know which statements are part of the original method and which
have been added, except at the price of tedious bookkeeping.

An instrumentation framework built on top of PERSEPHONE does better: we use an-
notations to store the instrumentations in the reflective method and they are taken into
account when generating code, as shown in Figure 5.

The actual code to do this annotation with our framework looks like this:

method instrument: [ :node |
node isAssignment ifTrue: [ node insertAfter: [ AssignmentCounter inc | | ].

This code adds an after annotation to all assignments in a method with the effect of
incrementing the counter. We instrument the method by sending instrument: passing a
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R Annotation

AST
o

I:I ‘g b

original
bytecode

#[10 125 55 00 80 90]

instrumented 414 125 55 33 55 00 80 90 33]
bytecode

Figure 5: Instrumenting a reflective method with annotations.

block with the instrumentation code. We only want to instrument assignments so we select
them by sending isAssignment to each node passed to the block.

By implementing TREENURSE using reflective methods, TREENURSE has the following
unique properties:

e It works on AST nodes and not binary code.

e The instrumentation is stored as an annotation on the AST node. The original AST
is left untouched.

e The generation of bytecode is done lazily, on need. Instrumentation merely results in
the bytecode cache to be reset. This can lead to considerable time savings especially
for large programs.

The Instrumentation API

On all the AST nodes, we support the following transformation API:

Operation ‘ Description

insertBefore: | Annotate to insert code before this node
insertAfter: Annotate to insert code after this node
replace: Annotate to replace the node by the code

For an easy selection of the nodes to be instrumented, we provide dedicated iteration
interface, for example instrumentAssignments: iterates over all assignment nodes.

Meta Variables

The only variables that can be directly referenced from inside the block are self, super and
thisContext, as the code of the block is to be inlined into the instrumented method. Thus,
these variables will be bound to their values at runtime, not at instrumentation time. For
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everything else, block arguments have to be used. Each kind of node provides a different
set of meta variables that can be used as block arguments:

Node Metavariable | Description
any node node the node itself
message node receiver the receiver of the message
arguments a collection of all arguments
selector the selector of the message
method node arguments a collection of all arguments
selector the selector of the method
assignment node | variable the variable to be assigned a new value
variableName the name of the variable
value the value to be assigned to the variable
return node value the value to be returned
variable node value the value of the variable
literal node value the value of the literal

The following code gives an example of a replace annotation, which uses two meta
variables, one referencing the variable and the other the value of the assignment:

method instrumentAssignments: [ :node |
node replace: [ :variable :value | variable := value + 3000 |

TREENURSE replaces all assignments with a new assignment that adds the number
3000 to the value expression of the original code.

Example: Code Coverage Analysis

Code coverage analysis per expression is a conceptually simple task. Before an expression
gets executed it is marked as executed. After the program is run the executed expressions
are printed differently from the ones that were not executed. The most convenient way to
store information about a node is by adding an annotation to it that holds the informa-
tion. To keep track of how many times a node has been executed we create a subclass of
SingleValuedAnnotation named ExecutedAnnotation. We then add a method markExecuted
to ProgramNode via a class extension:

Node>>markExecuted
(self annotationAt: ExecutedAnnotation key) increment

If we now send markExecuted to any node, its execution count will be incremented,
which we can do using our instrumentation framework:

method instrument: [ :eachNode |
eachNode insertBefore: [ :node | node markExecuted | |.
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Here we iterate over all the nodes of the method, the block is evaluated for each node,
binding the node to the variable eachNode. Before each node, we insert code. The inserted
code is described by a block. This block references the meta variable node which references
the AST node at runtime.

Here we see a usage of the node meta variable. It reifies the node, so we can call the
markExecuted directly on the AST nodes. To produce the final output a pretty printer
presents the status of execution.

5 VALIDATION: PLUGGABLE TYPE SYSTEM

TYPEPLUG [20] is an optional, pluggable type system |7] for Squeak. It consists of a type
reconstructor and inferencer that is used by a type checker to check Squeak programs for
type correctness.

A type checker is an example for a program that works on code: we need to be able
to attach metadata to expressions (the types) and be able to reason about this metadata.
Thus the realization of a type system validates especially the extensibility of the reflective
methods. We need to be able to model metadata that describes the type of any expression
in the code.

With PERSEPHONE, types are represented as annotations on nodes in the AST. They
can be declared on method and block arguments, method and block return values and
temporary variable declarations. There are two different ways to declare types.

1. Using a special code browser to annotate the nodes. This has the advantage that
types are declared without changing the source code but can still be checked into a
source code management system. This is the preferred way for typing existing code
especially system classes like Boolean or Collection.

2. Textual annotations, which are placed in the source code.

The following code shows a method annotated with types:

bitFromBoolean: aBoolean <:type: Boolean :>
" (aBoolean ifTrue: [1] ifFalse: [0]) <:type: Integer :>

The method takes a boolean as an argument and returns an integer.

The TYPEPLUG case study shows that our representation provides the extensibility
needed for extending the language with a pluggable type system. TYPEPLUG demonstrates
the usefulness of providing textual annotations where the annotation itself is not limited to
be a static predefined datatype. PERSEPHONE supports annotations that contain general
Smalltalk code. The evaluation of this code can be completely controlled by the annotation
class itself or the compiler plugin. This allows for building complex annotations as required
e.g., for advanced type systems.
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6 PERFORMANCE AND MEMORY ANALYSIS

In this section we discuss results of performance benchmarks and memory consumption.
The machine used is an Apple MacBook Pro (2Ghz Intel Core Duo, 2GB RAM). We
present an analysis of the effect of our caching scheme and discuss memory consumption.

Performance of Cache

To analyze cache performance, we use the TinyBenchmark suite that is part of the normal
Squeak distribution (Table 2). The TinyBenchmark suite tests bytecode interpretation
and message send performance. For this test, we use the runtime of the benchmarks for
assessing cache performance. First, we record the runtime for an unmodified Squeak.
Then we run the benchmark with PERSEPHONE in two cases: with and without caching
the generated bytecode.

When running the benchmark with caching disabled, the system gets too slow to be
usable as bytecode needs to be generated for each method execution. We had to abort the
benchmark run after one hour. We see a noticeable speedup as soon as we turn on caching:
PERSEPHONE shows no detectable slowdown compared to standard Squeak, even though
bytecode had to be generated for the benchmark methods on the first execution.

Caching Scheme ‘ runtime
unmodified Squeak 6.9 seconds
Persephone, no cache >1 hour
Persephone, cache 6.9 seconds

Table 2: The effect of method caching.

Thus we can see that the cache provides a substantial speedup and enables a system
using reflective method to be as fast as the standard Squeak system.

Memory Considerations
Representing a method as an AST in which each node is an object obviously requires a lot

more memory than its corresponding compiled method which only stores the bytecodes.
Table 3 shows the memory consumption of the AST of a complete Squeak system.

Name ‘ number classes memory
Squeak 3.9 2244 20 MB
Squeak 3.9 AST 2244 123 MB

Table 3: Memory consumption.

We see that the system uses a lot of memory, but in a typical development scenario,
the system is already usable as is without any further optimization. In addition to that,
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reflective methods are mostly only reified for parts of the system, for example a single
package that needs to be analyzed.

To assess if the size is practically usable, we compare to the size of code loaded into
Eclipse, a development environment used widely in industry. We took the source of Ar-
goUML? and loaded it in Eclipse version 3.2. ArgoUML Version 0.24 consists of ca. 1300
classes, it is thus much smaller then Squeak. Eclipse allocates ca. 180MB of memory
when having the ArgoUML source loaded. Thus the memory consumption we see for
PERSEPHONE is typical for a modern development environment.

It is also to note that those figures have to be considered as upper bounds since we
have not yet fully applied some memory related optimizations. For example, the size of
the AST data can be optimized further by not referencing scanner-token data. In addition
to that, we plan to experiment with AST specific compression techniques [18].

7 RELATED WORK

Mirrors

Bracha and Ungar [8] suggest structuring the meta layer with the help of mirrors. In
this approach, objects are not reflective, they need a mirror that provides the reflective
API. They mention mirrors on methods as future work. Mirror methods and our reflective
methods share some similarities, but as mirrors are generated on demand they are not
persistent. They provide a high-level view on low-level objects. We instead provide the
high level view by default.

Annotations

Annotations are not new. For example, Javadoc tags are a form of annotation. More
recently, Java 1.5 adds support for annotations to the language. As of release 5.0, Java has a
general purpose annotation (also known as metadata) facility that permits you to define and
use your own annotation types. The facility consists of a syntax for declaring annotation
types, a syntax for annotating declarations, APIs for reading annotations, a class file
representation for annotations, and an annotation processing tool. Java 1.5 annotations
are only allowed for type, field, variable and method declarations and are not allowed on
type parameters or method invocations. VisualWorks and Squeak also support method
annotations (also called pragmas).

Spoon [34] is an open compiler for Java that provides compile-time reflection. With
Spoon, the Java AST can be transformed before it is compiled to bytecode. The processors
of Spoon are similar to the compiler-plugins of PERSEPHONE. Spoon provides support for
Java annotations, i.e., the transformation processors can read annotations. The main
difference to our work is that Spoon works at compile-time, not runtime. The AST is
compiled to bytecode and not available at runtime. Spoon provides an annotation-aware
compile-time transformation framework, but not causally connected structural reflection
at runtime. In addition to that, it is restricted to the annotation model provided by Java.

2http:/ /argouml.tigris.org/
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Higher Level Abstraction: Beyond Text

There have been a number of proposals over the years to move away from text as the only
representation of code. Dimitriev 14| argues that programs should no longer be text but
a graph described with a metamodel built for a certain kind of problem. The language
would be mapped to another one for execution or interpretation. Edwards [16] argues that
programs should no longer be text and the representation of a program should be the same
as its execution. His programs are trees created by copying. He also identifies the need
to customize the presentation of a program. Black [4] makes a case to free programs from
their linear structure and replace them with a much richer abstract program structure
(APS) that captures all of the semantics, but is independent of any syntax. Conventional
one and two dimensional syntax, abstract syntax trees, class diagrams, and other common
representations of a program are all different “views” on this rich abstraction. None of
these proposals discuss the use of the high-level representation for reflection.

Sub-method Structure

In LISP [30] source code is itself made up of lists. As a result macros can manipulate it
using the list-processing functions available in the language. This functionality is limited
to macros at compile time and cannot be applied to functions at runtime.

In IO [12] code is a runtime inspectable and modifiable tree. Message arguments are
passed as expressions and evaluated by the receiver. Selective evaluation of arguments
can be used to implement control flow. IO does not yet provide a way to extend the
representation.

Sub-Method Behavioral Reflection and AOP

Behavioral Reflection is concerned with the execution of programs [37]. The elements
reasoned about can be those of sub-method abstraction, like message sends and instance
variable accesses. Reflection frameworks like Reflex [40] or Geppetto [36] provide a static
model for sub-method structure, modeled as a sequence of operations. Thus they provide
less complete structural model then that of the AST. For implementation, they rely on
bytecode instrumentation.

In AOP [24], a joinpoint describes a point in the the execution of a program. Thus AOP
deals with an execution model, it does not provide a general, static model of code. The
structural model provided by PERSEPHONE in connection with partial behavioral reflection
would be an interesting basis for implementing an AOP system.

8 CONCLUSION AND FUTURE WORK

In this paper we have motivated the need for reflective methods and presented an imple-
mentation called PERSEPHONE. We validated our approach by implementing an instru-
mentation framework and a pluggable type system.

PERSEPHONE has been used very successfully in a number of projects. The TREE-
NURSE instrumentation framework has been used to implement a test coverage tool that
provides line-by-line coverage analysis. Additionally, the instrumentation framework is the
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basis of an ongoing experiment that analyzes how objects flow through the system. For
this, TREENURSE is used to instrument all variable assignments and accesses and message
sends.

We plan to explore the use of annotations in the context of behavioral reflection. Gep-
petto [36] has been implemented using bytecode instrumentation. We are evaluating how
Geppetto can use annotations on the AST instead of hooks at the bytecode level.

Compactness of the representation is an interesting field for future work. For our ex-
periments, memory consumption has never been a problem, but nevertheless, we plan to
research how to improve storage by optimizing the AST representation leveraging trans-
parent AST compression.

Another interesting direction is to use reflective methods to replace text: source code
could be reconstructed from the AST. The current version provides some support for
recovering formatting, but it needs to be improved and integrated with the tools.
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