
Vol. 6, No. 9, Special Issue: TOOLS EUROPE 2007, October 2007

The Message-Oriented Mobility Model

Jorge Vallejos, Tom Van Cutsem, Elisa Gonzalez Boix,
Stijn Mostinckx, Jessie Dedecker ,Wolfgang De Meuter
Programming Technology Lab, Vrije Universiteit Brussel, Belgium
{jvallejo,tvcutsem,egonzale,smostinc,jededeck,wdmeuter}@vub.ac.be

Mobile networks composed of devices interconnected by wireless communication media
frequently suffer from partitions. If mobile devices depend on software services running
on remote devices, such partitions may render the software services unavailable. We
propose the use of code mobility to mitigate the unavailability of software services in
mobile networks. We discuss the issues of existing mobility mechanisms, identify four
characteristics necessary to support code mobility in mobile networks, and propose a
model for code mobility, the Message-Oriented Mobility (MOM) model, that features
such characteristics.

1 INTRODUCTION

Currently, wireless technology is revolutionising the way software systems serve their
users. New visions of computing can be realised where users are continually sur-
rounded with mobile and embedded computing devices. Whereas these scenarios
are becoming ever more realistic from a technical point of view, programming such
devices remains notoriously difficult due to the limited resources and volatile con-
nections these devices can sustain between each other. Mobile networks composed of
such devices frequently suffer from partitions due to the combination of the volatile
connections and the physical mobility. If the mobile device depends on software ser-
vices running on remote devices, such partitions result in those services becoming
unavailable.

In this work, we explore the use of code mobility to circumvent the problem
of service unavailability due to network partitions in mobile networks. Software
services provided with the capacity of migrating from one device to another are
less dependent on individual devices – services are not constrained to always run
on the same device – and are consequently less vulnerable to the effects of network
partitions on the availability of these devices [4]. A mobile service can, for instance,
follow its user hopping from one device to another as the user moves about and uses
a new device (a scenario frequently studied in the context of mobile computing under
the name of follow-me services [11, 3, 18, 16]). Thus, the service can either continue
working on the new device or otherwise “hibernate” and be moved to an appropriate
host later after having been transported by the user in a mobile device like a PDA.
However, this solution only works if the network partition is predictable: the service
has to be moved when the connection to the departing device using the service is still

Cite this document as follows: Jorge Vallejos, Tom Van Cutsem, Elisa Gonzalez Boix, Stijn
Mostinckx, Wolfgang De Meuter: The Message-Oriented Mobility Model, in Journal of Object
Technology, vol. 6, no. 9, Special Issue: TOOLS EUROPE 2007, October 2007, pages
363–382,
http://www.jot.fm/issues/issues 2007 10/paper18

http://www.jot.fm/issues/issues_2007_10/paper18

THE MESSAGE-ORIENTED MOBILITY MODEL

available, e.g. on request by the user. Hence, we focus on non-automatic – proactive
– mobility. An automatic mechanism for mobility is unsuitable because services
would need to be moved automatically upon disconnection, which is impossible at
that point.

In the field of programming language research, proactive code mobility schemes
have been traditionally associated with a move instruction that expects e.g. an object
and a location, and which pushes the object towards that location [20, 25]. We argue
in this work that this instruction has the same implications as the goto instruction
in the sixties. We present a list of arguments against move that stem from software
engineering and security concerns, and formulate the need for a more structured
mobility mechanism in order for programmers to be able to track the location of
objects.

To achieve proactive mobility of running services in mobile networks, this pa-
per proposes an object-oriented programming language model called the message-
oriented mobility (MOM) model. The contributions of this work are threefold:

1. We propose a structured language mechanism that aligns mobility with mes-
sage sending: objects can implement special “move methods” which, when
invoked, collocate the objects with their caller. This mechanism allows a ser-
vice programmer to express when and what part of a service to move while
protecting the security of the devices involved in the move process.

2. We describe a programmer-transparent mechanism of strong mobility which
can transfer running services between devices while taking care of stopping a
service, saving its program state, and resuming it remotely.

3. We complement the move process with a decentralised network reconfiguration
mechanism that automatically updates the references to the moved service over
the network.

The paper is structured as follows. Section 2 identifies the requirements of proac-
tive mobility models for mobile networks and the issues of existing code mobility
models in this context. Section 3 describes the different components of the message-
oriented mobility model. Section 4 evaluates our mobility model with respect to the
requirements identified in this paper. Section 5 validates this model by presenting
a high level mobility pattern for follow-me services. Before concluding, we describe
related work in section 6.

2 MOVING SERVICES IN MOBILE NETWORKS

In this section, we identify the requirements of proactive code mobility models for
mobile networks and discuss the issues of existing code mobility models in this
context.

364 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

2 MOVING SERVICES IN MOBILE NETWORKS

Requirement #1: Strong Mobility

As explained in the introduction, we require a service to be moved in order to
fully preserve its availability. Moving a running service is a decision that not only
concerns the data of the service program, i.e. behaviour and data state, but also
the computations in which the running program is involved at the time of the move.
This “runtime” state is typically a combination of a heap of data objects and a
stack of activation records which traces the service’s control flow and represents all
unfinished computations. Both have to be moved if the runtime state of the program
is to be transferred intact. The type of mobility where data and computations are
moved between devices is known as strong mobility [8].

In the literature, a lot of mobility schemes are described where only data is moved
[12]. There are multiple reasons for this choice: the runtime stack of a service is
usually not reified in the language, it is not serialisable, and it is tightly bound to the
execution platform. These limitations lead to so-called semi-strong mobility schemes
requiring programmers to manually encode the runtime state of a service as data
upon migration, and to decode this data via a number of branching instructions after
migration to get back into the correct computational context where the program was
before migration. A semi-strong mobility scheme requires programmers to foresee
all possible ways in which a service can be moved. As there is no mechanism which
can transparently take care of migrating the service at any point, at any time, all
possible states in which a service can be moved have to be statically determined.
From a user’s point of view, this means that he cannot always move a service from
one device to another. However, the effect that we want to achieve is that a service
can be migrated as unrestrained as possible e.g. it can be hibernated when placing a
device in sleep mode. Thus, we claim there is a need for a strong mobility mechanism
that migrates both data and computation and which circumvents the problems of
manually serialising the runtime stack of a program.

Requirement #2: Decentralised Network Reconfiguration

Deciding how and what part of the service should migrate from one device to another
is not the only issue programmers need to tackle when implementing code mobility.
The change of location of the moved service may lead to inconsistencies in the
communication between this service and the rest of the services over the network,
e.g. references pointing to the old location of the moved service. Early code mobility
approaches, mostly developed for load-balancing purposes [15], avoided this problem
by collocating the services that communicate often (services were moved together
with all the software resources they needed to operate properly). This technique
is no longer applicable, however, because some services cannot, and in some cases
should not, be moved, e.g. fixed hardware resources such as screens and speakers,
or software containing confidential information such as address books or personal
agendas.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 365

THE MESSAGE-ORIENTED MOBILITY MODEL

In the context of mobile networks, we require an extra step of network recon-
figuration in the move process that ensures correct communication with the mobile
service at any moment of the move. Such reconfiguration mechanism should be
reliable even in the presence of network partitions, which also rules out message
forwarding schemes and global reconfiguration strategies (realised by central servers
[9]). In mobile networks, a device cannot rely on another one playing the role of
higher authority since there is no certainty that connection with such an authority
will continue to be available in the location where the interaction happens. We
require a decentralised reconfiguration mechanism similar to the techniques used in
peer-to-peer architectures [19, 17].

Requirement #3: Structured Mobility

It is common practice to incorporate mobility in a programming language by explic-
itly introducing the concept of location and by complementing it with a simple move
instruction [8, 20]. We only partially agree with that. Surely, mobile programs are
written with the explicit assumption in mind that parts of the program will reside
on and move between different locations. However, this does not imply that mobile
programming languages should explicitly model the concept of a location. Dealing
with absolute locations seems like an unattainable language design choice when one
has to deal with mobile networks which are inherently dynamically defined.

A more fundamental problem with the move operator is that it bypasses the
language’s interaction mechanisms (such as message passing, function calling and
process spawning) and moves a running process or object to a specified destination
device. We argue that such an operator is suspiciously comparable to the goto

operator and may be one of the major obstacles for code mobility to be lifted from
a technical programming trick to solid engineering levels.

Similar to the goto instruction, a move instruction has a strong tendency to
obscure the actual locations of objects. Especially since distributed programs have
a vast arsenal of object-oriented programming techniques such as regular control flow
instructions (such as while or for), late bound message passing, double dispatch,
meta programming and exception handling at their disposal. With only a few lines
of code that use this construct, networked object-soups can be created the structure
of which cannot be predicted or understood by programmers. Analogous to the case
of structured programming, we claim there is a need for structured mobility, i.e.,
language mechanisms that can help programmers to determine the relative loci of
objects by reading the code.

Requirement #4: Secure Mobility

The migration of a service may entail a number of security issues at the devices
involved in the move process, i.e. the current and new hosting devices of the mobile

366 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

2 MOVING SERVICES IN MOBILE NETWORKS

service. The migration of a local service without the acknowledgement of the current
hosting device (e.g. system’s or user’s permission) may affect its proper functioning
and cause privacy problems (e.g. when moving a database containing confidential
information). This is what occurs in mobile agent technologies. In such approaches,
agents can autonomously move to new devices (using a move instruction). This
property is identified as a security hazard by Vigna and Thorn [20, 25] who state
that mobile agents are suspiciously similar to worms that once launched they can
be hard or impossible to control.

The arrival of the service to the new hosting device may also produce security
issues which are mainly related to resource rebinding. In traditional process mi-
gration mechanisms, security problems are mitigated because there is little or no
resource rebinding [15]. However, when a mobile service needs access to local file
systems, windowing systems, networking interfaces and so on, security problems
arise. In order to protect the resources of the devices in mobile networks, we require
a mobility mechanism that enables them to autonomously decide what to expose to
the moved service. As previously explained in this section, this decision cannot rely
on a central server due to the connection volatility that exists between the server
and the mobile devices.

We argue that a secure mobility mechanism should be conceived as a two-party
contract between the devices involved in the move process, more specifically, the
service that is going to be moved and another residing on the device receiving the
moving service. Thus, services are neither pulled unilaterally by remote hosts nor
pushed unilaterally to a remote host.

Summary

In this section, we present a number of requirements to support code mobility in
mobile networks. We summarise these criteria as follows:

Strong mobility To preserve service availability, we require a mechanism of strong
code mobility that consistently moves both the behaviour and the runtime
state of a service without putting extra burden on programmers.

Decentralised network reconfiguration We need a decentralised network re-
configuration mechanism that automatically updates the references to the
moved service over the network, and which is resilient to network partitions.

Structured mobility We require a code mobility mechanism that enables pro-
grammers to write structured mobile programs and to predict the relative loci
of objects by reading the code.

Secure mobility Security should be conceived as a two-party contract between
the services involved in the move process. Services should neither be pulled
unilaterally by remote hosts nor be pushed unilaterally to a remote host.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 367

THE MESSAGE-ORIENTED MOBILITY MODEL

While some of the criteria explained above can be observed in other mobility
schemes or distributed languages, to the best of our knowledge no single approach
exhibits all of them. We further discuss the related work in Section 4.

3 THE MESSAGE-ORIENTED MOBILITY (MOM) MODEL

To address the requirements discussed in the previous section, we introduce the
MOM model for code mobility in mobile networks. It extends the actor model [1]
of concurrency and distribution with the notion of move methods which enables
programmers to work with strong code mobility in a structured and secure manner.
In this section, we describe the three constituent parts of the MOM model: move
methods, strong mobility of actors, and decentralised network reconfiguration.

In what follows, we employ an actor language, called AmbientTalk, to illustrate
the use of the MOM model. AmbientTalk provides dedicated features for the soft-
ware development of mobile services, some of which we have used to implement our
code mobility model. For the sake of conciseness, we do not present an in-depth
discussion of AmbientTalk itself. Instead, we introduce specific features as necessary
in the course of this section and refer the reader to dedicated publications [5, 6] for
more information about this language.

Move Methods

In the MOM model, services are represented as actors which are also the units of
mobility. An actor can declare that it is allowed to be moved by other actors by
implementing a new kind of method called a move method. An actor on a remote
device can declare that it is willing to receive a mobile actor by sending it a move
message, which is any message corresponding to one of the mobile actor’s move
methods. Upon processing this message, the mobile actor is moved from its current
location to the location of the sending actor. In other words, the sender pulls the
receiver actor towards its own location.

The following code sample sketches the definition of a mobile game application
implemented as an actor in AmbientTalk (see more details of this implementation
in Section 5):

makeMobileGame(userID,localServices):: actor({
guiActor: void;

user: void;

// actor constructor

init():: {
guiActor:= localServices.get("gui");

user:= userID

}

368 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 THE MESSAGE-ORIENTED MOBILITY (MOM) MODEL

...

// a move method

move come(services):: {
// rebind the GUI resource

guiActor:= services.get("gui");

...

}
})

AmbientTalk actors (declared using the actor construct) consist of a number
of fields and methods which are referred to as the actor’s behaviour. As shown in
the example above, fields are defined using a name : value syntax while methods
are defined using a name(parameters) :: body syntax. Move methods are dis-
tinguished from ordinary methods by a move keyword that is prefixed before the
method name. In the example, come is a move method. An actor may implement
multiple move methods, each with their own distinct name.

The variables of an actor may refer to two kinds of values: regular objects or
other actors. When an actor is moved, all regular objects are moved along (i.e.
they are transferred by-copy). However, variables that referred to actors at the
old location will become remote references at the new location. In other words,
acquaintance actors are transferred by-reference.

When one of an actor’s move methods is invoked, before executing the body of
the move method, the actor is first moved to the location of the object that invoked
the method. Only upon arrival at that location is the body of the move method
executed. Hence, the body of a move method serves to do “post-move processing”.
This enables the moved actor, for instance, to rebind services that were left behind at
its old host to equivalent services at its new host or to pull acquaintance actors from
its old location to its new location. Note that such service rebinding is performed
through parameter passing: the actor initiating the move, e.g. the sender of the
come message, explicitly passes all (references to) services it wants to share with
the moving actor as arguments to the move method, e.g. a guiActor service, and
the moved actor receives these parameters once it arrives. In the body of the move
method, the moved actor can then choose whether to keep referring to the original
service at its old location or to rebind the variable to point to the local service passed
to it.

A final aspect of the semantics of move methods is that, when the actor to move
is already colocated with the sender actor, the body of the move method is not
executed (i.e. the request to move is ignored). Because the actor does not need to
be moved, it is not necessary to do any post-move processing.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 369

THE MESSAGE-ORIENTED MOBILITY MODEL

Strong Mobility of Actors

The MOM model provides a strong code mobility mechanism that moves the data
and computation of a running service without suffering from the problems described
in Section 2 raised by having an implicit runtime stack. We benefit from the event-
driven nature of actors for this purpose. Actors are structured around an event
loop which responds to incoming events – modelled as messages – and handles one
message at a time by dispatching to the appropriate event handler (method). Parts
of an actor which have to be performed “in the future” are not stored in an implicit
runtime stack, but are rather encapsulated in a message which is put into the actor’s
(explicit) event queue. A service structured according to this model has the property
that its runtime stack is empty every time it handles the next event in the queue.
All “future” computations are stored as events in the message queue. Hence, if
the request to move is modelled as an event (a message), an event-driven service
can respond to such a “move” event by moving its data and its (accessible and
serialisable) event queue and be confident that it has not lost any computational
context. Upon arrival, the service simply continues its perpetual event loop.

The implementation of strong mobility for actors consists of moving the actor
from one device to another while taking along all messages already sent to it but not
yet processed by it (i.e its queue). Such messages represent the future computational
context of the moving actor, so it is imperative that they are taken along. If this
would not be the case, the actor would lose some of its computational context upon
arrival, resulting in mere semi-strong mobility. Messages sent to an actor while it
is moving should be properly received by that actor. This is made possible because
message passing and message processing are decoupled in the actor paradigm: while
the actor is moving to its new location, its message queue will still be available for
message reception at its old location until the actor has been fully moved.

The semantics of invoking a move method can be described as follows. When
the next message from an actor’s message queue is processed, method lookup is first
performed in order to find a method corresponding to the message. If the method
found is a move method, the implementation checks whether the actor that sent the
message is already collocated with the receiver. If this is the case, the message is
further ignored. Otherwise, the move process is initiated and the receiver actor is
moved to the location of the sender. Upon arrival, the method body is executed,
parameterised with the arguments passed to it by the sender actor. Before explaining
the move process in-depth, Figure 1 shows the effect of moving an actor (and its
message queue) and identifies the different parties which play a role in the process.

The move process consists of three steps which happen transparently from the
point of view of the programmer. This process requires the active participation
of the initial host of the mobile actor and the pulling host from which the move
message is sent (see the top left quarter of Figure 1). The three steps of the move
process are described in detail below:

1. The moving actor stops processing messages and the initial host asks the

370 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 THE MESSAGE-ORIENTED MOBILITY (MOM) MODEL

moving actor

proxy proxy

initiating actor
initial host pulling host

initial host pulling host

initial host pulling host

initial host pulling host

initiating actor

initiating actor initiating actor

move
message

new actormoving actor

moved actormoved actor

1

2 3

Receiving the move message Creating a new (empty) actor at the receiving host

Changing actor's address Moving actor's content and restarting actor

Communication capacity
of the mobile actor

Processing capacity
of the mobile actor

Figure 1: The move process of an actor.

pulling host to create a new actor (see the top right quarter of Figure 1). As
described later on in the process, this new actor will become the moved actor
at the pulling host. This new actor is created with an empty behaviour and
is deactivated, it will not process any messages. Nevertheless, this actor has a
message queue and hence is already capable of receiving messages.

2. The moving actor continues receiving messages at the initial host until the
pulling host sends back a reference to the new, moved actor. From that mo-
ment on, the moving actor becomes a proxy and all messages sent to it will
be forwarded to the moved actor (see the bottom left quarter of Figure 1).
This delegation happens transparently from the point of view of other actors
currently communicating with the moving actor.

3. The moving actor’s behaviour and all messages in its incoming message queue
are sent to the moved actor. When the behaviour and the message queue of
the moving actor arrives at the pulling host, they are used to reinitialise the
moved actor. The content of the old actor’s message queue is placed in front
of any messages which may already be present in the moved actor’s message
queue, because chronologically they were received by the moving actor before
any message could have been received by the moved actor. After this re-
initialisation, the moved actor is activated and starts processing messages (see
the bottom right quarter of Figure 1).

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 371

THE MESSAGE-ORIENTED MOBILITY MODEL

Decentralised Network Reconfiguration

The move process explained above requires a final network reconfiguration step to
ensure proper functioning of the system once the actor has moved. It is a decen-
tralised mechanism that performs a transparent update of references to the moved
actor. Three different cases requiring network reconfiguration have to be considered
after movement (see Figure 2):

third-party host

initial host pulling host

third-party host

initial host pulling host

Before the move After the move

moving
actor

moved
actor

proxy

1 1

3 3

2 2

Figure 2: Decentralised network reconfiguration.

1. Actors at the initial host which locally referred to the moving actor before it
moved, refer to the proxy afterwards. Messages sent to it are rerouted to the
moved actor at the pulling host.

2. Actors at the pulling host which remotely referred to the moving actor before
it moved, refer locally to the moved actor afterwards. Messages sent to it
are passed directly to the moved actor (no roundtrip via the initial host is
necessary).

3. Actors at any other third-party host remain referring to the actor at the initial
host after it moved. When an actor at the third-party host sends a message
to the moved actor at the initial host, this host informs the third-party host
of the new location of the moved actor. The third-party host will then resend
the message to the pulling host and updates its remote reference to the moved
actor. Using this mechanism, chains of forwarding proxies can never be formed
which improves reliability and performance.

Note that in the third case, the reconfiguration mechanism requires the active
collaboration of the initial host, which is responsible for updating remote references
that previously referred to the moving actor. As explained in the introduction, such
collaboration is not always possible in a mobile network, as this device may become
unavailable due to a network partition. In order to cope with this problem, we use

372 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

4 DISCUSSION

special remote references found in AmbientTalk called ambient references which,
when broken, enter a search mode to rediscover the moved actor via multicasting.
For more information about these references, we refer to [23].

4 DISCUSSION

We now evaluate the MOM model in the light of the four criteria for code mobility
in mobile networks identified in Section 2.

Strong Mobility The MOM model provides a strong mobility mechanism for ac-
tors. This mechanism enables an actor to gradually move (first its behaviour and
then its runtime state which is reified as a message queue) while ensuring the avail-
ability of its services for other actors over the network. During the move process,
none of its incoming messages are lost, such that the actor retains its full computa-
tional context upon arrival. It is important to recall from Section 1 that we focus
on proactive mobility, i.e. the actor is moved when the connection between its old
and new locations is still available. The MOM model does not explicitly deal with
disconnection during the move process.

Decentralised network reconfiguration The MOM model proposes a reconfig-
uration mechanism that prevents the references over the network to the mobile actor
from being affected by the move process. The references at the initial and pulling
hosts are automatically updated during the move process whereas the references at
third-party devices are updated by the initial host via message. In case of discon-
nection of the initial host upon message reception, the references at the third-party
device search for the moved actor via multicasting.

Structured mobility The MOM model presents move methods that cleanly align
mobility with the language default interaction mechanism of actors (message sending
protocol). As result of the execution of a move method, the actor is collocated with
the message sender which means that there is no need to explicit refer to any location.

Secure mobility The security issues regarding mobility (at the language-level)
are taken care of because move methods enforce a two-party contract: an actor can
only be moved if it is implementing a move method and if an actor on a remote host is
willing to send a corresponding move message. Moreover, involving the actor located
at the destination host in the move process mitigates some of the security problems
concerning resource rebinding, since it is this actor that decides on which resources to
share with the moved actor. Furthermore, message-oriented mobility only supports
pull mobility in which the actor is collocated with the sender actor, which prevents
actors to move unexpectedly to other devices. Of course, this language-level security

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 373

THE MESSAGE-ORIENTED MOBILITY MODEL

policy can only be enforced when assuming that the language’s virtual machine is
part of the trusted computing base, i.e. we assume that the VM hosting the actor to
move and the VM hosting the actor that requested the move can be trusted.

5 THE FOLLOW-ME PATTERN

To further illustrate the MOM model, we describe how follow-me services can be
conceived using this model. We show a mobility pattern where services can be
grouped into sessions and where these sessions can be moved towards the user.

As mentioned in the introduction, the main idea of follow-me services is to pro-
vide the user with services that “follow” him, hopping from one device to another,
adapting themselves to the different contexts found at the places where the user
moves. A simple implementation of such a scenario would enable the user to move
his services manually between devices, for instance from a fixed workstation to his
mobile device (like a PDA). Services can be grouped into sessions, and when a
session is moved towards the user, all session services follow.

The MOM model allows the user to logically pull his services from e.g. the work-
station to the PDA. We implement a framework for follow-me services using actors.
The implementation of the follow-me pattern considers three types of actors: system
actors which represent the devices and can discover remote sessions and pull them
towards the user, mobile session actors which group services into a single mobile
session and mobile service actors which represent any kind of mobile service. Fig-
ure 3 shows a sequence diagram of the (purely asynchronous) collaboration between
these actors. Dotted arrows represent the movement of an actor to the location of
the sender actor. The behaviour of each of the collaborators is described in detail
below.

aMobileSession aMobileApplication aMobileApplication

move
move

aSystemActor

pullSession(session)
followMe(services)

come(services)
come(services)

move

Figure 3: Sequence diagram of the Follow-Me pattern using the MOM model.

System Actors

A system actor is responsible for finding remote mobile sessions and moving them
to its device. This actor encapsulates any local services which the user wants to

374 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

5 THE FOLLOW-ME PATTERN

share with any mobile session pulled towards the device. Mobile sessions are found
using a pattern-based discovery mechanism of AmbientTalk which requires that the
session actors provide an identification which is broadcast to the network [7]. Once
the mobile session with the right identification is discovered, it is pulled towards the
system actor when this actor sends it the move message followMe. The following
code listing shows the behaviour of the system actor:

makeSystem(localServices):: actor({
services: void;

session: void;

init():: {
services:= localServices

};
...

pullSession(session):: {
// send the asynchronous "followMe" message to the session

session#followMe(services)

}
})

The system actor sends an asynchronous followMe message to the session (the
symbol denotes asynchronous message sending in AmbientTalk). The services

object is the only reference a mobile session receives when it is asked to move by
the system actor. These services are actors that abstract away the direct interaction
with hardware and software services (e.g. screen, speakers, databases), similar to
environment actors in SALSA [24]. For instance, the screen is a service modelled as
an actor. A moved actor that wants access to the screen has to be given a reference
to the screen actor explicitly in the services object it receives upon arrival.

Mobile Sessions as Actors

A mobile session actor is a container for a group of services which have to be moved
together. These services are stored by this actor in a simple vector. We assume that
the mobile sessions are distinguishable across the network via its user identifier. Part
of the implementation of the mobile session actors is shown below:

makeMobileSession(userID):: actor({
services: makeVector();

init():: {
broadcast(userID)

};
...

move followMe(localServices):: {
// pull the services of this session only if there are

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 375

THE MESSAGE-ORIENTED MOBILITY MODEL

// no local services providing the same functionality

services.forEach(

lambda(service)->{
serviceType: service#getType();1

localService: localServices.get(serviceType);

if(void(localService),

service#come(localServices),

service:= localService)})
}

})

Our focus is on the followMe move method of the mobile session actor, whose
body is executed after the session itself is moved by a system actor. During post-
move processing, the mobile session actor asks its registered services to come to the
new location (by invoking their come move method and passing along the services
it was given by the follow-me actor) only if there is no service at this location that
provides the same functionality. Otherwise, the mobile session rebinds these new
services. This example shows how the MOM model can be used to structurally move
parts of a service together.

Mobile Services as Actors

A mobile service actor represents any kind of actor that implements a move method
named come. Upon arrival to the new location the service has the possibility to
reconfigure itself by rebinding services passed as parameters in the come method.
As a concrete example, consider the following mobile game actor which represents
a (distributed) game application that requires a GUI and speakers to work.

makeMobileGame(userID,localServices):: actor({
guiActor: void;

speakerActor: void;

user: void;

// actor constructor

init():: {
bind(localServices);

user:= userID;

broadcast(user)

};
bind(services):: {

guiActor:= services.get("gui");

speakerActor:= services.get("speakers")

1In AmbientTalk, the result of an asynchronous message can be a future which corre-
sponds to a proxy for a result that is not yet computed. We refer to [7] for further informa-
tion about this language abstraction.

376 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

6 RELATED WORK

};
...

// a move method

move come(services):: {
bind(services)

}
})

Whenever the actor is moved, it rebinds these services. For the sake of simplicity,
we assume that if some service is unavailable the functionality of the actor using
such service becomes disabled (unbound). For instance, if the speakers cannot be
rebound, the game continues without audio.

The scenario of the follow-me services demonstrates how one can concisely de-
fine a mobile service using the MOM model. The example features a simple yet
representative mechanism to move running services in mobile networks. Without
the MOM model, coding these mobile services requires to manually handle concerns
like mobility of computational state, reconfiguration of the network, abstractions for
structured mobility and security.

6 RELATED WORK

In the literature, there are an important number of programming languages and
frameworks that have direct support for object mobility like Emerald [10] and Obliq
[10], agent mobility like Telescript [26] and Aglets [12], and actor mobility like
SALSA [24], Actor Architecture (AA) [9] and ProActive [2]. Although these ap-
proaches accomplish some of the four requirements for proactive code mobility in
mobile networks identified in Section 2, to the best of our knowledge none of them
succeed in all of them. In this section, we discuss the solutions and shortcomings of
such mobility approaches and compare them with the MOM model.

Strong mobility The mobility of running services have been mainly studied in the
context of agents and actors. IBM Aglets [12] and ProActive [2] are Java frameworks
that support the mobility of living entities (agents and active objects, respectively).
Unfortunately, because Java threads are not serialisable, both approaches only sup-
ports semi-strong mobility, which as we argued in Section 2 does not suffice for our
purposes of proactive service migration. The AA framework [9] provides a form of
strong mobility on actors. Similar to the MOM model, this framework preserves the
availability of the actor during the move by putting it in in-transit state. Messages
sent to an in-transit actor are delayed in the original host until the actor notifies its
arrival at the new location.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 377

THE MESSAGE-ORIENTED MOBILITY MODEL

Decentralised network reconfiguration In the literature, location updating
and message rerouting have been addressed in two different ways: via central servers
that keep track of the location of the mobile services, or via forwarding proxies. The
AA framework, for instance, implements a centralised network reconfiguration mech-
anism which is supported by a dedicated entity called the mobility manager. When
actors move to another location, they have to update their location in the mobility
manager which takes care of message rerouting. Unlike the network reconfiguration
mechanism presented in the MOM model, the reconfiguration mechanism of AA is
not an automatic mechanism since it requires that actors explicitly register their
location each time they migrate to a new host. SALSA [24] is an actor-based pro-
gramming language that also uses a naming service in which actors have to register
their changes of locations. However, this is a decentralised naming service based
on a Chord distributed lookup protocol [22] which is resilient to the network par-
titions. The ProActive framework proposes a message rerouting mechanism that is
entirely based on forwarding proxies. This framework attempts to keep the chain
of forwarding proxies as short as possible by means of active collaboration of the
sending host where messages that are forwarded are marked so that the receiving
objects knows if the sender has the latest location or another one.

Structured mobility As previously explained, code mobility has is often achieved
by the introduction of move instructions and explicit locations. The Telescript [26]
programming language, for instance, introduces a move instruction called go which
requires the notion of places. The AA framework has a migrate operator which
receives as parameter absolute locations such as destination host name or IP ad-
dress. SALSA provides an migrate method defined upon actors which takes as
parameter a high-level universal description of the new location. The Emerald [10]
object-oriented programming language is a pioneer in exploring the use of relative
locations for code mobility. This language provides an attach declaration that en-
ables programmers to collocate objects and special parameter-passing styles to allow
the argument objects of a remote method invocation to be moved along with the
invocation, permanently (call-by-move) or temporarily (call-by-visit).

Secure mobility Obliq mitigates the security issues that stem from move instruc-
tions by introducing protected objects and the notion of self-inflictedness. Put
briefly, no object can move a protected object except for the protected object
itself. Obliq provides mobility as the combination of cloning an object on a remote
location and aliasing references from the original to the cloned object. Migration
to a host requires then the active collaboration of that host as it needs to provide
an execution engine, a function responsible for creating the clone of the object that
wants to move. Telescript tries to mitigate security issues by providing a security
model based on capabilities. These capabilities are used for reconfiguration pur-
poses of agents upon arrival to new locations. Such capability-based security model
allows places to restrict the actions a visiting agent can perform. Likewise, SALSA

378 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

7 CONCLUSION AND FUTURE WORK

prevents most of the security issues regarding mobility via access control lists [21].
If an actor is not present in the access control list of a remote host, the actor will be
rejected upon moving to that host. Similarly, if an actor is not present in the access
control list of another actor, it is not allowed to migrate that actor to another host.
Unlike the MOM model, this security mechanism explicitly requires programmers
to manually deal with these access control lists when developing mobile services.

As said before, none of the code mobility mechanisms described in this section
fulfil all the requirements for proactive code mobility in mobile networks. However,
some of these mechanisms have significantly influenced the MOM model. For ex-
ample, our model adopts an Emerald-like use of relative locations for code mobility
by means of the move methods. In addition, the MOM model provides a security
mechanism for rebinding local resources based on capabilities that is reminiscent
of Telescript. Finally, we make use of proxy actors for the decentralised network
reconfiguration mechanism which is similar to the concept of forwarding proxies of
ProActive.

7 CONCLUSION AND FUTURE WORK

Within the domain of mobile computing, this paper focuses on the use of proactive
code mobility to mitigate the unavailability of services due to network partitions.
We identify a number of requirements a code mobility mechanism should accomplish
in this context. We require a mobility mechanism that (1) does not hamper the
availability of the services, (2) ensures the readability and structure of the code, (3)
guarantees the security of the devices involved in the move process, and (4) performs
a decentralised network reconfiguration after the move. We subsequently propose an
event-driven mobility model, called the message-oriented mobility (MOM) model,
which exhibits such criteria. The basis of MOM model is the combination of a
strong mobility scheme with the actor model. The introduction of an explicit move
instruction has been circumvented by providing a new kind of method called move
methods. Furthermore, the model transparently ensures that none of the incoming
messages are lost such that services retain their full computational context upon
arrival. We illustrate our model by implementing a Follow-me service that allows
users to pull services from one device to another.

Although the MOM model can help in tackling some of the challenges for code
mobility faced in mobile networks, a number of challenging issues needs to be fur-
ther explored. For instance, in the MOM model we represent mobile services as
single actors. We are currently investigating an extension of the model that en-
ables programmers to also deal with services composed of multiple actors. Moving
such services, programmers may want to perform different actions on the actor com-
ponents rather than just moving them (e.g. rebinding or recreating actors upon
arrival). A solution for this case is to introduce an annotation system that allows
the programmers to declaratively indicate the actions to be executed for every actor
of a service when it is requested to move.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 379

THE MESSAGE-ORIENTED MOBILITY MODEL

In the move process proposed in the MOM model, a proxy is left at the old host of
the moved actor to forward local messages (sent from the same proxy’s location) and
to inform the new location to actors residing in third-party devices. We are currently
investigating network reconfiguration techniques of peer-to-peer architectures [19,
17] as more scalable and reliable schemes to avoid chains of forwarding proxies in
case of multiple moves of the actor.

The MOM model proposes a two-party contract between the devices involved
in a move process as a solution for security at the language-level. This scheme
assumes that both devices trust each other. We are currently investigating more
advanced security techniques based on capabilities [13, 14] to complement our model.
Capabilities allows the mobile service to be sure that only trusted devices can request
its move.

REFERENCES

[1] G. Agha. Actors: a Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

[2] F. Baude, D. Caromel, F. Huet, and J. Vayssiere. Communicating mobile active
objects in java. In HPCN Europe LNCS 1823, pages 633–643, 2000.

[3] S. Berger, H. Shulzrine, S. Sidiroglou, and X. Wu. Ubiquitous computing using sip.
In NOSSDAV 03: Proceedings of the 13th international workshop on Network and
operating systems support for digital audio and video, New York, NY, USA, 2003.

[4] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software Science
and Computation Structures: First International Conference, FOSSACS ’98, 1998.

[5] J. Dedecker. Ambient-Oriented Programming. PhD thesis, Vrije Universiteit Brussel,
2006.

[6] J. Dedecker and W. Van Belle. Actors for Mobile Ad-hoc Networks. In International
Conference on Embedded and Ubiquitous Computing EUC2004, 2004.

[7] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter. Ambient-
Oriented Programming in Ambienttalk. In Proceedings of the 20th European Confer-
ence on Object-Oriented Programming (ECOOP), Nantes, France, 2006.

[8] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE
Transactions on Software Engineering, 24(5):342–361, 1998.

[9] M.-W. Jang. The Actor Architecture. Technical report, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2004.

[10] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald
system. ACM Transactions on Computer Systems, 6(1):109–133, February 1988.

[11] J. A. Landay and G. Borriello. Design patterns for ubiquitous computing. IEEE
computer ubicomp, August 2003.

[12] D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with
Aglets. Addison Wesley, 1998. http://aglets.sourceforge.net.

[13] H. M. Levy. Capability-Based Computer Systems. Butterworth-Heinemann, Newton,
MA, USA, 1984.

[14] M. Miller, C. Morningstar, and B. Frantz. Capability-based financial instruments.
In Proceedings of Financial Cryptography. springer-Verlag, 2000.

380 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

http://aglets.sourceforge.net

7 CONCLUSION AND FUTURE WORK

[15] D. S. Milojicic, F. Douglis, and R. G. Wheeler, editors. Mobility: Processes, Com-
puters, and Agents. ISBN: 0-201379-28-7. Addison Wesley and ACM Press, 1999.

[16] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support
system. In Mobile Computing and Networking, pages 32–43, 2000.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages 329–350, November 2001.

[18] I. Satoh. Physical mobility and logical mobility in ubiquitous computing environ-
ments. In MA ’02: Proceedings of the 6th International Conference on Mobile Agents,
pages 186–202, London, UK, 2002. Springer-Verlag.

[19] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proceedings of the
2001 ACM SIGCOMM Conference, pages 149–160, 2001.

[20] T. Thorn. Programming languages for mobile code. ACM Computing Surveys,
29(3):213–239, 1997.

[21] R. Toll and C. Varela. Mobility and security in worldwide computing. In Proceedings
of the 9th ECOOP Workshop on Mobile Object Systems, Darmstadt, Germany, 2003.

[22] C. Tolman and C. Varela. A fault-tolerant home-based naming service for mobile
agents. In XXXI Conferencia Latinoamericana de Informática, Cali, Colombia, 2005.

[23] T. Van Cutsem, J. Dedecker, S. Mostinckx, E. Gonzalez, T. D’Hondt, and W. De
Meuter. Ambient references: Addressing objects in mobile networks. In Proceedings
of the Dynamic Language Symposium - OOPSLA ’06, Portland, U.S.A., 2006.

[24] C. Varela and G. Agha. Programming dynamically reconfigurable open systems with
SALSA. SIGPLAN Not., 36(12):20–34, 2001.

[25] G. Vigna. Mobile agents: Ten reasons for failure. In IEEE International Conference
on Mobile Data Management (MDM ’04), pages 298–299, January 2004.

[26] J. E. White. Telescript technology: Mobile agents. Software Agents, 1996.

ABOUT THE AUTHORS

Jorge Vallejos is a PhD student at the Programming Technology
Laboratory of the Vrije Universiteit Brussel, Belgium. His research
interests are language design and implementation for mobile and
context-aware computing. He is funded by the flemish project of
Context-Driven Adaptation of Mobile Services (CoDAMoS). His co-
ordinates can be found at http://prog.vub.ac.be/˜jvallejo.

Tom Van Cutsem is a PhD student at the Programming Technol-
ogy Laboratory of the Vrije Universiteit Brussel, Belgium. His re-
search interests are language design and implementation, distributed
programming and reflective architectures. He is funded by a doctoral
scholarship of the Fund for Scientific Research, Flanders (F.W.O.).
His coordinates can be found at http://prog.vub.ac.be/˜tvcutsem.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 381

http://prog.vub.ac.be/~{}jvallejo
http://prog.vub.ac.be/~{}tvcutsem

THE MESSAGE-ORIENTED MOBILITY MODEL

Elisa Gonzalez Boix is a PhD student at the Programming Tech-
nology Laboratory of the Vrije Universiteit Brussel, Belgium. Her
research interests are memory management for distributed systems.
More specifically, her research is focused on how to reconcile dis-
tributed garbage collection with the characteristics of mobile ad hoc
networks. She can be reached at http://prog.vub.ac.be/˜egonzale.

Stijn Mostinckx is a PhD student at the Programming Tech-
nology Laboratory of the Vrije Universiteit Brussel, Belgium. In
the past two years, he has been involved in the development of
the ambient-oriented programming paradigm and AmbientTalk. His
main research interest is the use of exception handling techniques
to deal with partial failures. His coordinates can be found at
http://prog.vub.ac.be/˜smostinc.

Jessie Dedecker Jessie Dedecker is a post-doctoral research assis-
tant at the Vrije Universiteit Brussel. His research interests are pro-
gramming language design and implementations, distributed compu-
tation and biologically-inspired programming models. He is funded
by the Interuniversity Attraction Poles Programme, Belgium. Fur-
ther information can be found at http://www.dedecker.net/jessie.

Wolfgang De Meuter is a professor at the Vrije Universiteit
Brussel. He has been active in the field of object-orientation
since the early nineties. His research interests include program-
ming languages and their evaluators, aspect-oriented programming,
meta-programming and more recently also language constructs for
ambient-oriented systems. He has organized numerous successful
workshops at previous ECOOP’s and OOPSLA’s. His coordinates
can be found at http://prog.vub.ac.be/˜wdmeuter/WolfHome.

382 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

http://prog.vub.ac.be/~{}egonzale
http://prog.vub.ac.be/~{}smostinc
http://www.dedecker.net/jessie
http://prog.vub.ac.be/~{}wdmeuter/WolfHome

