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Abstract 
Object-oriented programming languages are being widely adopted as one of the 
most powerful languages due their flexibility and reusability. However, these 
languages suffer from memory mismanagement that could be critical especially in 
real-time and embedded systems. Automatic memory management through 
garbage collector handles this problem. Concurrent garbage collection based on 
sporadic or deferrable server is considered the most famous collectors in this area. 
In such algorithms, the garbage collection task is assumed to be the single aperiodic 
task in the system. When there are other different types of traffic, with short 
deadlines and long deadlines, the single server provides poor performance. The 
garbage collection task may have to wait till a less urgent or a higher deadline 
request finishes its execution that leads to an increase in the system memory 
requirement and perhaps a deadline miss of the garbage collection thread.  
This paper concentrates on minimizing the system memory requirement when there 
are multiple sources of events by introducing a new concurrent garbage collector. In 
the proposed collector, the system will have multiple servers; rather than one as in 
the available garbage collectors. These servers can either share or not share their 
capacities, i.e. a server can use the unused capacity of other servers in case of 
sharing. The two schemes give preference to higher priority servers. We also 
propose a modification in the copying collector that enhances its performance. The 
simulation results show that using multiple servers with capacity sharing in garbage 
collection scheduling strategy exhibits a better performance in terms of reducing the 
system memory requirement and meeting most of deadlines than using either single 
server or multiple servers without capacity sharing collectors. However, the 
capacity-sharing scheme gave lower response times for jobs with short deadlines, 
like GC task, than without capacity sharing scheme. 
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1 INTRODUCTION 

Memory management in real-time and embedded systems is handled using automatic 
memory management (i.e. Garbage Collection or GC for short) which enables the 
programmers to overcome the potential danger of manual memory management, such 
as memory leaks, dangling pointers, fragmentation, and so on. The garbage collector 
distinguishes the memory objects that are no longer in use (garbage) from the live 
objects and reclaims the garbage for future use [1, 4]. The advent of garbage 
collection to the real-time scene causes serious obstacles as traditional garbage 
collection threatens the schedulability and predictability of tasks that demand strict 
real-time requirement. So, some effort had been put in order to make it suited to real-
time systems. 

Scheduling incremental garbage collection algorithms was the solution to 
enhance the position of garbage collection in the real-time scene. The main aim 
towards scheduling garbage collection is to achieve low overhead and enough 
predictability for hard real-time tasks. Many works in the literature have classified 
garbage collection scheduling mechanisms into two categories: sequential and 
concurrent garbage collection [4]. Sequential garbage collection failed to achieve the 
aims of GC scheduling in real-time systems. Thus, the main trend is towards 
concurrent GC techniques. 

Concurrent GC is a great step towards truly and efficient real-time garbage 
collection algorithms. Some variants of concurrent GC have been developed. Among 
them are the background approach [4], Metronome [5], time-triggered GC and its 
auto-tuning form [1, 12]. Although all of these approaches remove the obstacles 
caused by traditional garbage collection in real-time systems, they rely on a relatively 
large amount of redundant system memory. So, some other concurrent GC algorithms 
had been put on reducing the system memory requirement and guaranteeing the 
schedulability of hard real-time mutators under automatic memory management. 

Among these techniques are the sporadic server (SS) based GC [3] and the 
deferrable server (DS) based GC [2]. Both of them are based on the resource reserving 
mechanism. A garbage collector is treated as a periodic or aperiodic task and is 
scheduled concurrently with other tasks in the system. The deferrable server based GC 
achieves the most minimum worst-case response time of a garbage collector among 
all other concurrent garbage collectors. It also achieves the minimum worst-case 
system memory requirement while meeting hard deadlines for all tasks [2]. 

The two latter GC scheduling strategies are single aperiodic server based garbage 
collector. In such algorithms, the GC task is assumed to be the only aperiodic task 
overall the system. Although the single server minimizes the number of capacity 
exhaustions, it provides poor performance when there are several aperiodic jobs with 
different temporal requirement. A single server processes the jobs in a FIFO (First 
Input First Output) order that is not a good policy [13]. This can lead to the situation 
in which a short (and urgent request) is delayed due to the fact that the server is 
processing a long request. The case in which the GC thread may have to wait till a 
less urgent or a higher deadline request finishes its execution that leads to an increase 
in the system memory requirement and perhaps a deadline miss of the GC thread. To 
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alleviate the problem of FIFO, other queuing disciplines were used like the SRO 
(Shortest Remaining Time at Overrun) [13]. However, the event at the head of the 
queue is still non-preemptive and the rest of the jobs in the queue have to wait until it 
finishes which delays the response times of lower deadline threads like the GC task 
that may have to wait till a higher deadline ones execute. 

The aforementioned problem can be solved using multiple servers at different 
priorities [14]. The priority assigned to servers is done at a priority level that 
commensurates with the deadline of the jobs it serves. This scheme is truly 
preemptive; if the server that handles the long deadline aperiodic request is running 
while the urgent or lower deadline request arrives; the processor will be immediately 
switched to the high priority server. The servers can use the sharing or non-sharing 
protocol. 

This paper proposes a new concurrent garbage collector based on multiple 
servers. There are two possible schemes when using multiple servers; sharing capacity 
and non-sharing capacity [14]. In capacity sharing scheme, a server can use the 
unused capacity of other servers, while in non-sharing scheme this sharing is not 
allowed between the servers. 

2 BACKGROUND AND PREVIOUS WORK 

Many literatures have categorized the garbage collection algorithms into two classes: 
reference counting and tracing. Reference counting requires an additional reference 
count (RC) field for each object [5, 15]. Whenever a pointer has been changed by a 
mutator, RC field is also updated. When the RC value drops to zero, the object is 
reclaimed immediately. The tracing algorithm is classified again into mark-sweep and 
copying. The mark-sweep collector traverses the pointers to find live objects and 
marks them. Then, a collector scans the entire heap and reclaims garbage objects that 
have not been marked. Typically copying collectors maintain two equal-sized spaces 
called fromspace and tospace. When a garbage collector is triggered, it traverses the 
pointers and copies the live objects into the new tospace. 

The basic tracing garbage collection algorithms are inherently stop-the-world 
fashion, and sometimes their pause time is intolerable for the applications that require 
short or bounded response time. Incremental garbage collection algorithms [2, 4, 17] 
have been proposed to distribute and hide the garbage collection pause time 
throughout the execution of mutators. This approach, in effect, reduces the 
intermediate pause delay,  but it is difficult to guarantee the schedulability of real-time 
tasks without cooperation with the scheduling mechanism. The most common 
strategies of the GC is the concurrent GC. It is based on the resource reserving 
mechanism. The resource here means both CPU and memory. While CPU is reserved 
for GC, the memory is reserved for the other tasks. A garbage collector is treated as a 
periodic or aperiodic task and is scheduled concurrently with other tasks in the 
system. The diversity of this strategy is presented by [1, 11, 14]. 

Although the concurrent GC solved the problems of traditional GC in real-time 
systems, they are not optimized solutions because the amount of the worst-case 
system memory requirement can be reduced further. One way for reducing the system 
memory requirement problem is the deferrable server based GC scheduling strategy 
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[26]. It is a concurrent garbage collector that is based on a deferrable server together 
with a particular parameter configuration scheme. This parameter configuration 
scheme could also be applied into other approaches such as the sporadic server (SS) 
based GC and time-based GC. The benefits were to minimize the worst-case response 
time of a garbage collector, and so is the worst-case system memory requirement, 
with the schedulability of tasks with hard time constraint not jeopardized. 

Sporadic Server Based GC  

Kim, et al. designed a concurrent GC based on a sporadic server (SS) [14]. It treats 
GC as an aperiodic task and utilizes the classic aperiodic server strategy of scheduling 
aperiodic tasks in real-time systems. Figure 1 shows the behavior servicing an 
aperiodic task using SS. A sporadic server is used to serve the needs of GC, and the 
period for the server is equal to that for the highest priority periodic task. Since the 
priorities are assigned under the rule of Rate Monotonic (RM) scheme, the period for 
the server is the shortest among all tasks. 

On the other hand, in order to meet the deadlines of all periodic tasks, the 
utilization of the sporadic server (given by the portion of the capacity out of one 
period) must be kept in a limited range. The result is that the capacity is very small 
and usually not enough for a GC cycle. Thus, a single GC cycle may last several 
periods of the server before it completes, which increases the worst-case response 
time of GC and there’s a need for a certain amount of available memory during the 
long GC cycle. However, this algorithm shows better performance on reducing the 
system memory requirement than the background approach. 

DS based GC  

Yugiang Xian and Gaungze Xiong designed a concurrent GC based on the deferrable 
server algorithm [24]. It resembles the sporadic server based GC in treating GC as an 
aperiodic activity. It assumes that the GC is the only aperiodic task in the system (this 
is only for simplicity). It utilizes the deferrable server strategy of scheduling aperiodic 
tasks in real-time systems. Figure 1 shows the behavior servicing an aperiodic task 
using DS. The server has the shortest period among all other tasks; consequently, it 
will be assigned the highest priority according to the rate monotonic scheduling 
strategy. The capacity of the server is selected through a particular parameter 
configuration scheme.  

This Scheme is addressed using two different approaches, that is, the utilization 
based analysis and exact analysis of the selection of parameters. The exact analysis is 
better than the utilization one in parameter calculation because it takes into 
consideration the individual task set. In this way, DS based GC achieves the worst –
case response time for the GC thread compared with all previous concurrent garbage 
collectors. So, it achieves the best results in minimizing the system memory 
requirement with the schedulability of tasks with hard time constraint not jeopardized. 
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Figure 2. The heap of incremental copying garbage collector B: evacuation 
pointer, S: scan pointer, T: allocation pointer 

 
 
 
 
 
 
 
 
 

Incremental Copying Collector  

This subsection presents the basic idea of operation for incremental copying collectors 
[4, 8, 9, 11]. In most copying collectors, the heap is divided into two equally sized 
areas denoted tospace and fromspace, as illustrated in Figure 2. New objects are 
allocated at the top of tospace, at the position denoted by T. Allocation proceeds in 
this way until tospace is filled up. Then, a flip is performed, changing the meaning of 
tospace and fromspace. The old tospace now becomes fromspace and vice versa. 
Fromspace will contain a mixture of live and dead objects. The live objects must be 
moved, evacuated, from fromspace into tospace in order to enable a future flip. The 
evacuated objects are placed at the bottom, at the location denoted by B. The 
evacuation procedure is performed incrementally as new objects are allocated at the 
top of tospace. When no free memory remains in tospace, another flip is performed, 
effectively reclaiming the memory occupied by dead objects. Another GC cycle is 
now initiated, evacuating the live objects from the new tospace. 
 
 
 
 
 
 
 
 
 
The notion of tri-color marking terminology [15] is useful when discussing 
incremental tracing algorithms like the incremental copying collector. Heap objects 
can be in one of three different states as seen by the garbage collector. These states are 
denoted black, grey and white. Black objects are those objects that have been marked 
as being reachable and their contents have been scanned for pointers to other 
reachable objects. Grey objects are those objects that have been identified as 
reachable but they have not been scanned for pointers to other live objects. While 
white objects are those objects that have not been found yet by the garbage collector. 

Since the mutator executes interleaved with the collector, we must make sure it 
does not introduce pointers to fromspace objects into black objects. Assignments to 
pointers are monitored by the write barrier [16] and attempts to violate the consistency 
of the GC scheme are caught. It was proposed that instead of evacuating the 
fromspace object immediately, the write-barrier reserves an area for the objects for 

Figure 1. The behaviors servicing an aperiodic task of DD and SS  
(The arrows with a number accompanying means replenishment) 
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lazy evacuation [4]. A background garbage collector evacuates the object before the 
normal evacuation process.  

However, in the proposed technique, we will use the incremental copying 
collector mentioned in [3] which adds modifications to the original technique. In the 
new environment, the garbage collector scans the root-set incrementally while 
traditional approaches scan the root-set entirely before normal evacuation. There are 
two kinds of tasks that run on the system: periodic and aperiodic tasks. This paper 
suggests that the scan and evacuation processes of aperiodic tasks are performed first. 
This is performed on each task one after another according to the first coming first 
scanned and evacuated principle. Afterwards, the scan and evacuation of periodic 
tasks is performed to each task according to the longest-period first stack scanned 
principle. 

Since the contents of stack may change by each task instance, two factors aid in 
reducing the additional evacuation and floating garbage produced by garbage 
collector for periodic tasks: 1) the priori scanning and evacuation of aperiodic tasks 2) 
longest-period-first stack scanning for periodic mutators since the shorter the period 
of a task, the higher the possibility of mutation. The global variables tend to be shared 
and modified by multiple mutators. So, lazy scanning can reduce the overhead of 
barrier processing. 

As in [3], instead of using the lazy evacuation technique presented in [4], the 
garbage collector performs the asynchronous evacuation after the normal evacuation 
process by maintaining temporary Update Entry. The garbage collector also initializes 
the new tospace right after the flip, instead of initializing the heap incrementally. The 
initialization time can be reduced with an efficient hardware support denoted in [3]. 

Scheduling tasks using multiple servers 

The idea of using multiple servers to serve distinct streams of aperiodic tasks was 
introduced in [10]. There are important reasons why more than one server be desirable 
in a particular implementation. One reason is that the system contains separate 
functional components each is best handled by a different server. Another reason is 
that tasks with different temporal properties are better handled by different servers. 
Using a single server to process urgent and non-urgent tasks results in poor 
performance as the urgent tasks are unnecessary delayed by the non-urgent ones 
specially if the non-urgent is scheduled as high priority tasks [14].  

Each server will be assigned a budget, a priority and a replenishment period. 
Each server is assumed to serve a distinct stream of aperiodic tasks according to the 
given parameters. The main problem with using multiple servers is how to partition 
the available capacity among the different servers. When using the non-sharing 
scheme, this may cause higher capacity exhaustion which will reduce the performance 
of the server. One busy server can exhaust its budget while the other servers are idle 
and have capacity.  

Alan and Bernat in [4] introduced and evaluated a new scheme called the 
capacity sharing protocol, in which multiple servers share their capacity. This scheme 
is less sensitive to the specific parameters of the application and hence can be applied 
to a variety of systems. Whenever a capacity of a server is exhausted, the unused 
capacity from another server is used.  
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The server to which the server is going to plug is dynamically selected at the time 
instant when the capacity is exhausted. This will require each server to have a pointer 
to another server from which the accounting is going to be performed. When the 
server points to another server, it is called plugged to a host, and the server pointing to 
the host is called guest server. When the server is running on its own capacity, it is 
said to be unplugged. 

There are some rules that govern the sharing protocol [4]: 
1. initially all servers are unplugged and running on their own capacity 
2. each server uses its available capacity until it is exhausted 
3. whenever the capacity of a server is exhausted, it still has further work to do 

and it is serving the highest priority task, it can choose another server that has 
unused capacity to plug into. The other server runs on the priority of the 
exhausted server (not its own priority). If no server is found free, the server is 
demoted to background priority. 

4. if the server is plugged to another server and it is preempted, or a capacity 
replenishment occurs, the server immediately is unplugged from the host 

5. whenever a replenishment occurs, all servers of lower or equal priorities that 
of the server for which the capacity is replenished are promoted to the normal 
priority (if they happen to be running at a low priority) 

The capacity sharing protocol is equivalent to the single server mechanism when all 
servers run at the same priority. However, it shows a full preemptive behavior when 
servers are assigned different priorities. This technique is simple and very easy to 
implement and has very low memory and computational overhead. 

3 SYSTEM MODEL AND ASSUMPTIONS 

The proposed system model is assumed to be a real-time system composing of four 
periodic tasks with hard time constraint τ = {τ1 , τ2 , τ3 , τ4} and one aperiodic task (for 
simplicity) with soft time constraint (τap). The tasks are called mutators, with respect 
to the GC. The task set (TS1) used is shown in Table 1. Any nomenclature denoted in 
the paper is provided in Table 2. Each task is characterized by a five-element tuple 
defined as: (C, T, D, A, α) 

The underlying assumptions under which the system will operate are as follows:  
A1 There is only one aperiodic task in the system. It is assumed to arrive at 

certain time instants: 22ms, 110ms, and 200ms respectively.  
A2 There is no blocking factor among the tasks. 
A3 The context switching and scheduling overhead is negligible. 
A4 C, T, D, A and α for any task (periodic or aperiodic) are known a priori, and 

the deadline of each periodic task is equal to its period (D = T)  
A5  Lmax , Fmax , υς are known a priori. 
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Table 1: The task set (TS1) details 
 

Symbol Description 
τ Periodic mutator task 

τap Aperiodic mutator task 
Cς , υς Worst-case execution time ,Collection speed for garbage collector 

 
Cap,   Rap, Dap Worst-case execution time, response time, deadline for τap  

A Maximum amount of memory allocated by the mutator task during 
T (periodic), during Rap (aperiodic) 

α Portion of live memory out of A 
C , T , D Worst-case execution time ,  period , deadline for τ 

R , Rς Worst-case response time of τ  and GC 
Lmax Maximum amount of live memory 
Fmax Maximum amount of the uncollected garbage 

Tss , Css Period and capacity for a sporadic server 
Tds , Cds Period and capacity for a deferrable server 

 
Table 2: The nomenclature used 

 

A6 The execution time of GC and that of any periodic mutator task τ are in the 
worst case all along, that is, are always equal to Cς , C . So, is the amount of memory 
allocated by τ during T. 

A7 The execution time of any aperiodic task τap is in its worst case all along, that 
is, is always equal to Cap. So, the amount of memory allocated by τap during Rap since 
Rap may exceed the deadline. 

A8 Not until the end of one GC cycle can the memory reclaimed in that cycle be 
available to mutators.  

A9 For each periodic mutator task τ , the memory consumption behavior repeats 
periodically, and the consumed memory during one period becomes 'dead' when that 
period completes. 

A10 For the aperiodic mutator τap , the memory consumption behavior repeats at 
each invocation during Rap , and the consumed memory becomes 'dead' at the end of 
the execution or at the worst-case response time of the aperiodic mutator task.   

A11 The amount of floating garbage arising during a GC cycle is equal to the 
amount of garbage generated by mutators during the cycle.  

A12 For each task (periodic or aperiodic), the amount of memory consumed by it 
in each time grain is equal to A/C.  

A13 The GC task arrives at threshold = 3000  
The periodic mutators are scheduled by the Rate-Monotonic (RM) scheduling 

policy described in [11]. This scheduling strategy assigns fixed priorities to tasks 

Task C T D A α 

τ1 2 10 10 488 0.53
τ2 4 30 30 528 0.46
τ3 10 50 50 800 0.38
τ4 15 100 100 1296 0.57

GC 4 - 20 - -
τap 10 - 100 400 0.5



 
 
 
 
 
 

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 147 

according to their periods. The task period is equal to its deadline. The task with the 
shortest period is given the highest priority in order to minimize the response time of 
the task to meet its deadline.  

According to this strategy, if a low priority process is executing and a high 
priority one is invoked, then the low priority process is preempted and has to wait till 
the high priority process finishes its execution. When the high priority process 
finishes, the low priority process can continue its execution unless there is no other 
high priority task ready to execute. 

The aperiodic tasks in the system, including the GC thread, are scheduled by 
distinct real-time scheduling strategies. In all these strategies, only one aperiodic task 
is assumed to be invoked at selected time instants: 22 ms, 110 ms, and 200 ms 
respectively during the hyperperiod. They are chosen such that the aperiodic task 
arrives before one of the GC invocation. This is the worst-case situation that can delay 
the response time of the GC task upon invocation (i.e. a less urgent or higher deadline 
aperiodic task arrives before the invocation of the GC task). This may cause the GC to 
miss its deadline. Accordingly, the system memory requirement increases and hence 
large areas of memory are required to be able to meet the worst-case situation. 

GC Scheduling Based On Single Server 

Using one single server to process urgent and less urgent jobs may result in poor 
performance as the urgent jobs are unnecessary delayed by the non-urgent ones, and 
the non-urgent ones are scheduled at a high priority [4]. Hence, the GC task may be 
delayed by a non-urgent task. In this part of work, we aim to explore the behavior of 
the GC under the given system model which contains an additional aperiodic task. 

There are two possible types of scheduling. The first one is based on the 
deferrable server (DS) [19, 20] and the other is based on the sporadic server (SS) [11, 
18]. Both techniques have been tested and validated in [11, 18, 19, 20] with a task set 
containing only periodic tasks while the GC was the only aperiodic task in the system. 
In the following subsections, we will investigate the performance of DS and SS GC 
under the proposed system model which its task set contains: a number of periodic 
tasks, the GC and one aperiodic task. 

GC scheduling based on single deferrable server 

In this scheduling strategy, the deferrable server task (DS) is used to serve the GC 
needs like any other aperiodic task in the system. The DS can service an aperiodic 
task anytime during its period provided that the system still has some unused 
execution time. This is called bandwidth preserving algorithm. At the end of the DS 
period, if any portion of the execution time is not used, it is discarded. Figure 3 
depicts the operation of the DS GC for the task set arrivals. 

The DS server’s period is taken to be 4ms and the capacity (Cds) is 1ms as 
derived in [2]. It is the maximum value that satisfies the schedulability condition for 
all hard tasks from the exact analysis in [20]. The figure illustrates the worst-case 
situation that may meet the GC task. We assume that the aperiodic task (τap), which is 
less urgent and has longer execution and deadline time, arrives before the GC task. At 
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t=22ms, the request for task τap arrives demanding 10ms. However, just a little bit 
later, at t = 23ms, a request for the GC task arrives, which only requires 4ms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The single server has the problem of effectively scheduling the jobs in FIFO order and 
it is non- preemptive, making an adequate use of the available capacity. Due to the 
fact that the server is busy servicing task τap, GC task will have to wait until τap 
finishes its execution. As the requested execution time for task τap is very long, 
compared to GC, several replenishments are required to finish its execution. From the 
figure, we find that τap had a response time of 35ms while its deadline was 100ms. 
However, the response time of GC was 50ms while its deadline was 20ms despite that 
it is more urgent and has a shorter requested execution time. Thus, the GC task misses 
its deadline which will effectively increase the system memory requirement. 

From the analysis of the given system, it was found that having another aperiodic 
task in the system beside the GC task could cause the GC to miss its deadline. This 
can cause serious problems to the system by increasing the system memory 
requirement. Thus, the performance of the DS GC under this system is under question 
specially, as we have seen, if the aperiodic task arrived before the GC task. 

GC scheduling based on single sporadic server 

This scheduling strategy is based on the sporadic server (SS). As in the DS, SS 
preserves its server execution time at its high-priority level until an aperiodic request  
occurs. It differs from the DS algorithm in the way it replenishes its server execution 
time. The DS algorithm 
 periodically replenishes its server execution time to full capacity. The SS algorithm 
replenishes its capacity one SS period after the arrival of any aperiodic request, and 
the amount replenished is equal to that consumed by the aperiodic request. SS has the 
same problem of DS. SS GC also uses FIFO order or SRO queuing policy for 
scheduling the arriving aperiodic tasks. Figure 4 depicts the operation of the SS GC 
for the task set arrivals. 
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Figure 3. GC Scheduling strategy operation based on single deferrable server 
for the given task set arrivals (server parameters  T=4, C=1)  
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Figure 4. GC Scheduling strategy based on single sporadic server (server parameters T=4, C=1) 
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The SS server’s period is 4ms and the capacity (Css) is 1 ms. It is the maximum 
capacity of the SS server that guarantees that all hard tasks meet their deadlines from 
[3]. From the figure, it is observed that τap had a response time of 37ms while the GC 
task had a response time of 52ms which exceeds its deadline (D=20). This will also 
increase the system memory requirement as in the DS GC. 

4 THE PROPOSED GC SCHEDULING BASED ON MULTIPLE 
SERVERS 

As stated in [4], jobs with different temporal properties are better handled by different 
servers. It seems more adequate to use two servers for GC and τap as they both have 
different properties. The priority of the server is set up in relation to the urgency of the 
request; therefore the short and urgent aperiodic request will have a higher priority 
than the long and less urgent one. Hence, GC task will have higher priority than τap. 
This scheme is truly preemptive; if the server that handles the long aperiodic request 
τap is running while GC task arrives; the processor will be immediately switched to 
GC (the higher priority thread). GC scheduling based on multiple servers is divided 
into two protocols: without capacity sharing and with capacity sharing. 

GC scheduling based on multiple servers without capacity sharing 

Figure 5 depicts the scenario of scheduling the two aperiodic tasks (GC & τap) with 
two servers. Each task is scheduled by a separate server. The capacity used previously 
in the single server has been divided into two budgets (capacities): 0.8ms, 0.2ms. 
Server1 will have a capacity of 0.8ms and it is assigned to handle GC task while 
server2 will have a capacity of 0.2ms and it is assigned to handle τap. This assignment 
was proposed according to the importance of each task.  
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Figure 5. GC Scheduling strategy based on multiple servers without capacity sharing 
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Both servers are DS and will have the same replenishment period of 4ms. According 
to the scheduling technique without capacity sharing, once the GC task arrives at 
t=23.6, server2, which was currently running, is preempted. This allows GC task to be 
served directly upon its arrival without delay. However, server2 now suffers a much 
longer delay because it has a smaller capacity (0.2ms) than before in single server and 
therefore will need more replenishment periods to finish its computation. According 
to this, the response time for τap was 194.2ms which diverges greatly from its deadline 
while the response time of GC was 14.2ms. Note that if there are other aperiodic 
tasks, besides the GC task, and are more urgent than the GC, then the server assigned 
to the GC will have a smaller capacity. This in effect will increase the response time 
of the GC task. Consequently, the system memory requirement may reach a limit that 
exceeds the required threshold at the ends of the GC cycles. 

In this scheme, each server works on its own capacity. The capacity of server1 
assigned to handle GC is wasted when the GC task finishes its execution. The 
scheduling technique without capacity sharing suffers from having missed deadlines 
for both GC and the aperiodic tasks.  

GC scheduling based on multiple servers with capacity sharing 

To overcome the problems that face the system when the scheduling is based on a 
single server or multiple servers without capacity sharing, this research proposes to 
use multiple servers with capacity sharing to schedule the aperiodic tasks. Whenever 
capacity exhaustion occurs in the servers, the unused capacity from another server is 
exploited, effectively sharing or stealing it. The capacity sharing protocol considers 
the partitioned capacity as a common resource that can be shared between the servers. 

The type of servers used can either be a DS or SS, which yields four possible 
combinations of both. Figures 6-9 shows the aperiodic tasks scheduling using capacity 
sharing protocol for the four combinations of server types. The principles discussed in 
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section 2 are applied during the scheduling. From [4], the worst-case response time of 
all hard tasks is unaffected under a host selection policy that always selects a server 
with equal or higher priority than the guest server. This means that if there are distinct 
priorities of the servers in the system and the priorities of hard tasks lie between them 
then the dynamic selection of the host has to be directed towards a higher priority 
server than the guest priority in order to maintain the schedulability of hard tasks. In 
our task set, there are only two servers with the highest consecutive priorities in the 
system (they have the same configuration as in the protocol without capacity sharing). 
They can be plugged to each other without any fear on hard tasks schedulability. 
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Figure 6: GC Scheduling strategy based on multiple servers with capacity sharing  
(server1: DS, parameters: T=4, C=0.8, server2: DS, parameters: T=4, C=0.2) 
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Figure 7. GC Scheduling strategy based on multiple servers with capacity sharing  
(server1: SS, parameters: T=4, C=0.8, server2: DS, parameters: T=4, C=0.2) 
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In all figures, due to the immediate serving of GC thread upon arrival, it meets its 
deadline in all situations. Moreover, the response times of τap were 99,101,100.2,101 
ms in Figures 6-9 respectively. The results are very near to the aperiodic task 
deadline. This means that the scheduling of both GC and the other aperiodic task is 
better with capacity sharing protocol than with any other method. 

In the current system, we have two servers at different priorities with no other 
hard tasks between them. So, we can assign the whole capacity (1ms) to the highest 
priority server (server1 which is assigned handle to GC task) and none to the other 
server. With this configuration, GC scheduling based on multiple servers with 

Figure 9. GC Scheduling strategy based on multiple servers with capacity sharing  
(server1: SS, parameters: T=4, C=0.8, server2: SS, parameters: T=4, C=0.2) 
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(server1: DS, parameters: T=4, C=0.8, server2: SS, parameters: T=4, C=0.2) 
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capacity sharing is equivalent to GC scheduling based on single server but with full 
preemption as disscused in [4]. 

5 SIMULATION RESULTS 

This section presents the simulation results of the system memory requirement of the 
multiple servers with capacity sharing based GC in all its variations against the single 
server based GC including deferrable and sporadic server. We used the task set (TS1) 
given in Table 1 and the incremental GC is of the type copying collector. For TS1, C� 
is 4ms. The GC thread is invoked when the system memory requirement reach the 
threshold 3000 and the last GC has safely completed. 

Figure 10 illustrates the contrast of multiple servers without capacity sharing 
garbage collector (we will call it the multiple servers) and the single server based 
garbage collector using deferrable and sporadic servers. From the figure, it can be 
seen that the system memory requirement is reduced when basing the scheduling on 
multiple servers without capacity sharing. This is using the given capacities of the 
servers. However, in this task set, there are only two aperiodic tasks; GC which has 
the higher priority, and τap. The server devoted to serve the GC needs is assigned a 
capacity of value 0.8 in order to enable the GC thread to meet its deadline at every 
invocation. However, if there are other aperiodic tasks that are more urgent than GC 
task then the server responsible for serving the GC needs may be assigned insufficient 
capacity to enable the GC to meet its deadline. This will increase the system memory 
requirement since several replenishments occur. Sometimes, at the end of the GC 
cycle, the system memory requirement may exceed the required threshold and 
consequently the whole system is crashed. 

Figures 11-14 compares the proposed strategy that uses the capacity sharing 
protocol in all its variations to the single deferrable server and single sporadic server 
based GC. The results show that the scheduling based on the proposed strategy in all 
its variations outperforms the single server based garbage collectors in minimizing the 
system memory requirement. 
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Figure 12. System memory requirement of TS1 with 
the single aperiodic server ( DS & SS) and Multiple 

server with capacity sharing ( DS,SS)  DS for GC and 
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the single aperiodic server ( DS & SS) and Multiple 

server without capacity sharing ( all servers DS) 
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Figure 15 shows the average response times of GC task and τap for the different types 
of scheduling. The type of server is denoted by a number where 1: Single DS, 2: 
Single SS, 3: MS without capacity sharing, 4: MS with capacity sharing (DS), 5: MS 
with capacity sharing (DS, SS), 6: MS with capacity sharing (SS, DS), 7: MS with 
capacity sharing (SS). From the figure, it is observed that GC scheduling based on 
multiple servers with capacity sharing in all its variations aids the GC thread to meet 
its deadline at every invocation for the task set. The average response time of τap is 
also very close to its deadline.  

GC scheduling based on multiple servers without capacity sharing also inssures that 
the GC task meet its deadline but for this task set only. However, the average response 
time of the other aperiodic task (τap) diverges greatly from its deadline. Thus, the GC 
scheduling based on single server leads to a very large average response time of the 
GC task. This occurs as it has to wait till τap finishes its execution to begin. 

6 CONCLUSIONS 

This paper concentrates on finding a better GC scheduling strategy for embedded real-
time systems that contain limited memory size, in the case of having another periodic 
task in the system. Previous work considered the GC to be the only aperiodic task in 
the system. Using a single server to serve both GC task and the aperiodic task is not a 
good policy as both of them have different temporal requirement. The GC task may 
have to wait till a less urgent request finishes which leads to an increase in the system 
memory requirement. 

This research proposes a new concurrent garbage collector based on multiple 
servers. Two variations of the multiple servers can be used: without capacity sharing 
and with capacity sharing. The first protocol (without capacity sharing) has a serious 
problem. The server devoted to GC thread may be assigned a small capacity and since 
the server works on its own capacity, this may lead to a long response time of GC task 
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as more replenishment occurs. Consequently, this may lead to an overflow in the 
system memory requirement than the required threshold at GC cycles ends. 

Thus the second variation is suggested to schedule the GC work via multiple 
servers with capacity sharing. In this scheme, the partitioned capacity is a shared 
resource between servers. It is proven through results that scheduling GC based on 
multiple servers with capacity sharing, whatever the type of the servers used, 
surpasses single server and multiple servers based garbage collectors in minimizing 
both the response time of the GC task and the system memory requirement. This is 
very critical issue for embedded real-time systems. 
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