
Vol. 7, No. 5, Special Issue: Workshop on FTfJP 07, June 2008

Adding Type Constructor Parameterization
to Java

Vincent Cremet, France
Philippe Altherr, Switzerland

We present a generalization of Java’s parametric polymorphism that enables param-
eterization of classes and methods by type constructors, i.e., functions from types to
types. Our extension is formalized as a calculus called FGJω. It is implemented in
a prototype compiler and its type system is proven safe and decidable. We describe
our extension and motivate its introduction in an object-oriented context through two
examples: the definition of generic data-types with binary methods and the definition
of generalized algebraic data-types. The Coq proof assistant was used to formalize
FGJω and to mechanically check its proof of type safety.

INTRODUCTION

Most mainstream statically typed programming languages (Java, C++, Ada) let the
programmer parameterize data structures and algorithms by types. The general term
for this mechanism is parametric polymorphism, which is called “generics” in Java
and “templates” in C++. Parametric polymorphism allows the same piece of code
to be used with different type instantiations. Some languages, like Haskell [Jon03],
additionally let the programmer parameterize code by type constructors, i.e., func-
tions from types to types. One typical application of this feature is to parameterize
a piece of code by a generic data-type, i.e., a data-type which is itself parameter-
ized by a type. Although this mechanism has been widely recognized as useful in
Haskell, for example to represent monads [Wad92] as a library, there is little work
about the introduction of type constructor parameterization in Java-like languages.
In this paper we present a type-safe design for Java. Our syntax partially inspired
the independent integration of type constructor parameterization in the Scala [Ot07]
compiler where the feature is called type constructor polymorphism [MPO07].

A type constructor, or type operator, is a function that takes a list of types and
returns a type. For instance, the Java class List of the standard library defines
a type constructor; List can be applied to a type T with the syntax List<T> to
denote the type of lists of T s. In Java, classes and methods can be parameterized
by types but not by type constructors. Our generalization of Java’s parametric
polymorphism lifts this restriction.

Our design is introduced and explained in the next two sections through two
different examples: the definition of generic data-types with binary methods and the
definition of generalized algebraic data-types. Section 1 shows how type constructor

Cite this article as follows: Vincent Cremet, Philippe Altherr, ”Adding Type Constructor Param-
eterization to Java”, in Journal of Object Technology, vol. 7, no. 5, Special Issue: Workshop
on FTfJP 07, June 2008, pp. 25-65
http://www.jot.fm/issues/issue 2008 06/article2/

http://www.jot.fm/issues/issue_2008_06/article2/

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

parameterization lets us improve the classical solution to represent binary methods in
Java; the improved solution applies to the case where the binary method belongs to
a generic class. Section 2 shows how to enhance the Visitor design-pattern with type
constructor parameterization in order to implement generalized algebraic data-types.
Section 3 describes our FGJω calculus (pronounce “FGJ-omega”), which formalizes
our design for type constructor parameterization in Java. We have proven that
FGJω’s type system is both safe and decidable. Section 4 explains the interesting
and novel aspects of the proofs. The proofs are detailed in appendix and the proof of
type safety has been additionally formalized in a proof assistant. Section 5 reviews
related work and Section 6 concludes with a summary of our contributions and
mentions possible continuations.

A prototype FGJω compiler, which consists of a type-checker and an inter-
preter, along with the formalization and the proofs developed in the Coq proof
assistant [Pro04] are available on the FGJω home page [ACa].

1 GENERIC DATA-TYPES WITH BINARY METHODS

Binary methods [BCC+96] are a well-known challenge for object-oriented program-
ming. This section first presents the problem posed by binary methods. Then, it
describes a classical technique based on parametric polymorphism that can some-
times be used to solve the problem. Finally, it shows how to generalize this technique
to generic data-types with the help of type constructor parameterization.

Binary methods

A binary method is a method whose signature contains occurrences of the current
class in contravariant positions, for example as the type of a parameter. The clas-
sical examples of problematic binary methods are comparison methods where the
receiver and the arguments should be of the same type. When such methods have
to be implemented in a subclass, it would be necessary to refine the type of their
parameter, which is not allowed (actually it would be unsafe).

In the code below, we illustrate the problem with the binary methods lessThan
and greaterThan of the class Ord. To implement lessThan in OrdInt, it would be
necessary to change the type of the parameter that from Ord to OrdInt to have
access to the field i of that but this is not a legal overriding. If it was, it would be
unsafe, as shown by the last line of our example.

abstract class Ord {
abstract boolean lessThan(Ord that);

boolean greaterThan(Ord that) { return that.lessThan(this); }
}
class OrdInt extends Ord { int i;

26 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

1 GENERIC DATA-TYPES WITH BINARY METHODS

@Override // compile-time error (method overrides nothing)

boolean lessThan(OrdInt that) { return this.i < that.i; }
}
Ord o1 = new OrdInt();

Ord o2 = new AnotherOrd();

o1.lessThan(o2); // runtime error (if code was allowed to compile)

Classical solution

The classical technique is to parameterize the base class with a type Self, also
called its self type, which represents the exact type of the current object (concrete
subclasses are expected to instantiate Self with their own type). The type Self

is bounded by the type of the base class and occurrences of the base class in the
signature of binary methods are replaced with Self. If, like in our example, this
leads to code where this occurs in places where an instance of Self is expected,
a method self of type Self must be added to the base class and the offending
occurrences of this must be replaced with calls to self. Concrete subclasses are
expected to implement self by returning this.

abstract class Ord<Self extends Ord<Self>> {
abstract Self self();

abstract boolean lessThan(Self that);

boolean greaterThan(Self that) { return that.lessThan(self()); }
}
class OrdInt extends Ord<OrdInt> { int i;

@Override OrdInt self() { return this; }
@Override boolean lessThan(OrdInt that) { return this.i < that.i; }

}
Ord<OrdInt> o1 = new OrdInt();

Ord<AnotherOrd> o2 = new AnotherOrd();

o1.lessThan(o2); // compile-time error (as expected)

Generalizing the problem and the solution

The above technique does not always directly apply when the base class is generic.
To see why, we consider a class ICollection, representing immutable collections of
objects, that is parameterized by the type X of its elements. For the purpose of our
demonstration a collection declares just two methods: append, which merges two
collections into a new one, and flatMap, which applies a function from elements to
collections to all the elements of a collection and merges the returned collections
into a new one.

// functions from X to Y

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 27

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

abstract class Function<X,Y> { abstract Y apply(X x); }

abstract class ICollection<X> {
abstract ICollection<X> append(ICollection<X> that);

abstract <Y> ICollection<Y> flatMap(Function<X,ICollection<Y>> f);

}

Both methods are binary methods because the current class occurs in the type
of their parameter. A simple and efficient implementation of append and flatMap

for immutable linked lists is illustrated below. Unfortunately this implementation is
possible only if the occurrences of ICollection in their signatures can be replaced
with IList, which is allowed for the return types but not for the parameter types.

class IList<X> extends ICollection<X> {
IList() { ... } // constructs an empty list

boolean isEmpty() { ... } // tests emptiness

X head() { ... } // gets first element

IList<X> tail() { ... } // gets all elements but the first

IList<X> add(X that) { ... } // adds an element at the head

@Override // compile-time error (method overrides nothing)

IList<X> append(IList<X> that) {
return isEmpty() ? that : tail().append(that).add(head());

}
@Override // compile-time error (method overrides nothing)

<Y> IList<Y> flatMap(Function<X,IList<Y>> f) {
return isEmpty() ? new IList<Y>()

: f.apply(head()).append(tail().<Y>flatMap(f));

}
}

Applying the same technique as for the class Ord by replacing every occurrence of
ICollection<X> with a type parameter Self solves the problem for append but not
for flatMap. It is unclear with what ICollection<Y> should be replaced. Replacing
it by Self would not work as it would make the method less general.

abstract class ICollection<Self extends ICollection<Self,X>,X> {
abstract Self append(Self that);

abstract <Y> ? flatMap(Function<X,?> f);

}
class IList<X> extends ICollection<IList<X>,X> {/* same as above */}

For flatMap, we need more than a self type, we need a self type constructor, i.e.,
Self should represent a type constructor instead of a type. This is expressed in
the following definition, where Self<Z> extends ICollection<Self,Z> declares a

28 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

2 GENERALIZED ALGEBRAIC DATA-TYPES

type constructor expecting one parameter Z such that when Self is applied to some
type Z it returns a subtype of ICollection<Self,Z>.

abstract class ICollection<Self<Z> extends ICollection<Self,Z>,X> {
abstract Self<X> append(Self<X> that);

abstract <Y> Self<Y> flatMap(Function<X,Self<Y>> f);

}

This lets us define the class IList with append and flatMap methods that indeed
override the methods of ICollection.

class IList<X> extends ICollection<IList,X> { ...

@Override IList<X> append(IList<X> that) { ... }
@Override <Y> IList<Y> flatMap(Function<X,IList<Y>> f) { ... }

}

2 GENERALIZED ALGEBRAIC DATA-TYPES

An algebraic data-type is a type that is defined by the union of different cases.
Operations on such types are usually implemented through pattern-matching. Clas-
sically, in Java, algebraic data-types are implemented by an abstract base class
and a subclass for each case and operations on such types by the Visitor design
pattern [GHJV94].

When an algebraic data-type is generic and different cases instantiate its type
parameter with different types, it is called a generalized algebraic data-type (GADT)
[KR05]. In this section we show that the Visitor design pattern is not expressive
enough to implement operations on a GADT without resorting to type downcasts
or to code duplication. Our contribution is to show that visitors can faithfully
implement operations on GADTs if they are augmented with a type constructor
parameter.

Limitations of visitors

The following example implements an algebraic data-type Expr representing expres-
sions of a simple programming language.

abstract class Expr {}
class IntLit extends Expr { int x; } // 0 | 1 | ...

class BoolLit extends Expr { boolean x; } // false | true

class Plus extends Expr { Expr x; Expr y; } // x + y

class Compare extends Expr { Expr x; Expr y; } // x < y

class If extends Expr { Expr x; Expr y; Expr z; }// x ? y : z

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 29

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

Although we have omitted them for space reason, we assume that each subclass
has a constructor that initializes all its fields. Thus, we can create values representing
valid expressions but unfortunately also values representing invalid ones.

new Plus(new IntLit(2), new IntLit(3)) // 2 + 3

new Plus(new IntLit(2), new BoolLit(true)) // 2 + true

Forbidding the creation of invalid expressions is easy. The classical solution is
to augment the class Expr with a type parameter X representing the kind of values
that the expression evaluates to.

abstract class Expr<X> {}
class IntLit extends Expr<Integer> { int x; }
class BoolLit extends Expr<Boolean> { boolean x; }
class Plus extends Expr<Integer> { Expr<Integer> x, y; }
class Compare extends Expr<Boolean> { Expr<Integer> x, y; }
class If<Y> extends Expr<Y> { Expr<Boolean> x; Expr<Y> y,z;}

Since different cases instantiate its type parameter X with different types, the
type Expr is by definition a generalized algebraic data type. Values representing
valid expressions may still be built but values representing invalid ones are now
rejected.

new Plus(new IntLit(2), new IntLit(3)) // 2 + 3

new Plus(new IntLit(2), new BoolLit(true)) // compile-time error

Operations on algebraic data-types like Expr can be implemented with the Visi-
tor design pattern [GHJV94]. This pattern requires the definition of a class Visitor
that declares an abstract method for each case of the data-type and that is param-
eterized by the return type R of the operation.

abstract class Visitor<R> {
abstract R caseIntLit (IntLit expr);

abstract R caseBoolLit (BoolLit expr);

abstract R casePlus (Plus expr);

abstract R caseCompare (Compare expr);

abstract <Y> R caseIf (If<Y> expr);

}

The pattern also requires that the base class Expr declares a new method accept

that applies a visitor to the expression. The method must be implemented in each
subclass. For conciseness, we give only two representative subclasses.

30 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

2 GENERALIZED ALGEBRAIC DATA-TYPES

abstract class Expr<X> {
abstract <R> R accept(Visitor<R> v);

}
class IntLit extends Expr<Integer> { int x;

<R> R accept(Visitor<R> v) { return v.caseIntLit(this); }
}
class Plus extends Expr<Integer> { Expr<Integer> x, y;

<R> R accept(Visitor<R> v) { return v.casePlus(this); }
}

We can now implement a first operation that converts an expression into a string.

class PrintVisitor extends Visitor<String> {
<X> String print(Expr<X> e) { return e.accept(this); }
String caseIntLit(IntLit expr) { return String.valueOf(expr.x); }
String casePlus(Plus expr) {

return print(expr.x) + "+" + print(expr.y);

}
<Y> String caseIf(If<Y> expr) {

return print(expr.x) + "?" + print(expr.y) + ":" + print(expr.z);

}
...

}

We can also implement an operation that evaluates an expression but not without
resorting to some downcasts because the result type of that operation depends on
the actual type of the evaluated expression.

class EvalVisitor extends Visitor<Object> {
<X> Object eval(Expr<X> e) { return e.accept(this); }
Object caseIntLit(IntLit expr) { return expr.x; }
Object casePlus(Plus expr) {

return (Integer)eval(expr.x) + (Integer)eval(expr.y);

}
<Y> Object caseIf(If<Y> expr) {

return (Boolean)eval(expr.x) ? eval(expr.y) : eval(expr.z);

}
...

}

Admittedly, there is a way of implementing an evaluator based on visitors without
resorting to downcasts. The solution is to define a new visitor Visitor2 where each
case returns a value of the appropriate type.

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 31

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

abstract class Visitor2 {
abstract Integer caseIntLit (IntLit expr);

abstract Boolean caseBoolLit (BoolLit expr);

abstract Integer casePlus (Plus expr);

abstract Boolean caseCompare (Compare expr);

abstract <Y> Y caseIf (If<Y> expr);

}

This solution is not very satisfactory; it involves a lot of code duplication. The
class Visitor2 is almost identical to the class Visitor, the difference lying only
in the return type of its methods. The class Expr and its subclasses must also be
augmented with a new method accept2 whose declaration and implementations are
again almost identical to the ones of the method accept. This is not scalable as
each time an operation that returns a new kind of type needs to be implemented, a
lot of code has to be duplicated. Furthermore, this is only possible if the operation
implementer may modify the classes implementing the data-type. So, a question
arises: would it be possible to write a single “universal” visitor?

A universal visitor

A single visitor taking as a parameter a function R from types to types can replace
both of our previous visitors. The return type of each case of this visitor is obtained
by applying R to the evaluation type of the case. The syntax R< > indicates that
R stands for a unary type constructor and that we are not interested in naming its
parameter.

abstract class Visitor<R<_>> {
abstract R<Integer> caseIntLit (IntLit expr);

abstract R<Boolean> caseBoolLit (BoolLit expr);

abstract R<Integer> casePlus (Plus expr);

abstract R<Boolean> caseCompare (Compare expr);

abstract <Y> R<Y> caseIf (If<Y> expr);

}

The method accept corresponding to this visitor is similarly parameterized by
a function R from types to types.

abstract class Expr<X> {
abstract <R<_>> R<X> accept(Visitor<R> v);

}
class IntLit extends Expr<Integer> { int x;

<R<_>> R<Integer> accept(Visitor<R> v) { return v.caseIntLit(this); }
}

32 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

2 GENERALIZED ALGEBRAIC DATA-TYPES

Anonymous Type Constructors

The print and the evaluation visitors can both be implemented by instantiating the
visitor with the appropriate type function.

class PrintVisitor extends Visitor<<Y> => String> { ... }
class EvalVisitor extends Visitor<<Y> => Y> { ... }

For instance, the class EvalVisitor instantiates R with the type constructor
<Y> => Y. Such an expression, called an anonymous type constructor, represents
a function from types to types. The expression <Y> => Y represents the identity
function, it takes a type parameter Y and returns the same type Y. Although in our
examples anonymous type constructors are always used in class bounds, they can
be used wherever type constructors are expected or in other words wherever type
arguments are expected in standard Java.

In the class EvalVisitor the method eval can now be declared with a more
precise return type.

<X> X eval(Expr<X> e) { return e.accept(this); }

One can check that the returned value corresponds to the declared return type.
Since e is of type Expr<X> the type of e.accept(this) is (<Y> => Y)<X> (obtained
from R<X> with R instantiated to <Y> => Y), which reduces in one step to X. Similarly
one can check that the other methods of the visitor return values of the right type.

The following example demonstrates that visitors with more complex return
types can also be implemented. It assumes that expressions may evaluate to mul-
tiple values and implements an evaluator that collects all the possible values of an
expression.

class MultiEvalVisitor extends Visitor<<Y> => Set<Y>> {
<X> Set<X> eval(Expr<X> e) { return e.accept(this); }
Set<Integer> casePlus(Plus expr) {

Set<Integer> set = new HashSet<Integer>();

for (int a: eval(expr.x))

for (int b: eval(expr.y)) set.add(a + b);

return set;

}
...

}

One could contend that our visitor is not truly universal. For example, it
cannot implement (without downcasts) an evaluator that represents integers with
BigIntegers and booleans with Bytes. However, this has more to do with the way

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 33

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

our data-type is defined than anything with our visitor. Indeed, the definition of our
data-types ties integer and boolean expressions to the types Integer and Boolean.
This has not to be. The data-type can be defined in such a way that integer and
boolean expressions are not tied to any concrete type. With such a data-type and
an accordingly adapted visitor, it is possible to reuse the same visitor to implement
both an evaluator that represents integer and boolean expressions with Integers
and Booleans and one that represents them with BigIntegers and Bytes. The im-
plementation of such a data-type and visitor is given on FGJω’s home page [ACa].

3 FORMALIZATION: THE FGJω CALCULUS

The FGJω calculus is a formalization of our design for type constructor parameter-
ization in Java. It is an extension of Featherweight Generic Java (FGJ) [IPW99],
a core language for Java with a focus on generics. Our calculus enhances FGJ by
replacing all the parameters representing types with parameters representing type
constructors. Its syntax is given below. All the elements newly introduced or mod-
ified with respect to FGJ are highlighted. Like in FGJ, a program consists of a list
of class declarations and a main term.

class declaration D ::= class C<P> / C ′<K>? { F M }
field declaration F ::= T f;
method declaration M ::= <P> T m(T x) { return t; }
term t ::= x | t.f | t.<K>m(t) | new C<K>(t)
type parameter declaration P ::= X<P> / C<K>?

type constructor K ::= X | C | <P> => T
type T ::= K<K>

The metavariables C, m, f resp. range over class, method and field names; x
and X resp. range over variables and type constructor variables. The notation x
stands for the possibly empty sequence x1 . . . xn and |x| for its length. In the class
and type parameter declarations, the symbol / replaces the keyword extends and
the question mark indicates that the superclass and the upper bound are optional.

A type parameter declaration X<P> / C<K>? specifies that the parameter X
represents a type constructor that accepts arguments conforming to the parameters
P and that returns a type conforming to the bound C<K> (if present) when it is
applied to such arguments. A type constructor K is either a type variable X, a
class name C, or an anonymous type constructor <P> => T that expects arguments
conforming to the parameters P and that returns the type T . A type T consists of
a type constructor K applied to a list of type constructors K.

Except for the subtyping rules and the conformance rules of type constructors
to type parameters, given below, FGJω’s type system and semantics are similar to
FGJ’s ones. The main difference is that subtyping includes the reduction of types
so that a type like (<X> => List<X>)<Integer> is a subtype of List<Integer>.
A complete formalization of FGJω’s type system can be found in the appendix.

34 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

3 FORMALIZATION: THE FGJω CALCULUS

(S-Refl)
(S-RedL)
(S-RedR) ∆ ` T <: T

T → T ′

∆ ` T ′ <: U

∆ ` T <: U

U → U ′

∆ ` T <: U ′

∆ ` T <: U

(S-Class)
(S-Var)

class C<P> / C ′<K
′
> {F M }

∆ ` C ′<K
′
>[vars(P)\K] <: U

∆ ` C<K> <: U

X<P> / C<K
′
> ∈ ∆

∆ ` C<K
′
>[vars(P)\K] <: U

∆ ` X<K> <: U

(Poly-Sat) ∀ i, ∆ ` Ki ∈ Pi[vars(P)\K]

∆ ` (K) ∈ (P)

(Sat)

P
′
= params∆(K) ∆, P ` vars(P) ∈ P

′

P 0 = erase(P) (∆, P 0 ` K<vars(P)> <: C<K>)
?

∆ ` K ∈ X<P> / C<K>
?

where

{
erase(X<P> / C<K>

?
) = X<erase(P)> / none

vars(X<P> / C<K>
?
) = X

The syntax allows types like (<X> => X)<Integer>, which is both a subtype and
a supertype of Integer (thanks to S-RedL, S-RedR and S-Refl). Such types are
only marginally useful; for example to avoid repeating long and/or complex types
like in (<X> => Pair<X,X>)<MyLongAndComplexType>. If judged undesirable, they
could easily be forbidden through some simple syntax changes.

Our examples use some syntactic sugar; empty lists of type arguments and
empty lists of type parameters are omitted: Integer<>, X<> extends C<...> and
<> => List<Integer> are resp. abbreviated as Integer, X extends C<...> and
List<Integer>. This implies that expressions like Integer and List<Integer>

can denote both a type and a type constructor but there is never an ambiguity
because it is always clear which one is expected from the context.

Thanks to this syntactic sugar any Java type also denotes a FGJω type. In-
terestingly, some Java types like List<Integer> denote FGJω types even without
syntactic sugar but they are interpreted in a slightly different way. Indeed, in FGJω,
Integer denotes a type constructor and not a type like in Java but this is fine be-
cause in FGJω List expects a type constructor and not a type. Most Java types
denote FGJω types only thanks to the syntactic sugar : for example Integer and
List<List<Integer>> resp. denote Integer<> and List<<> => List<Integer>>.

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 35

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

4 THEORETICAL STUDY OF FGJω

The type system of FGJω is both safe and decidable. The detailed proofs of these
properties can be found in appendix. Here we outline the main arguments of our
reasoning. The Coq proof assistant [Pro04] was used to formalize FGJω and to
mechanically check most parts of its proof of type safety, including all the difficult
ones. The formalization and the proofs are available on the FGJω home page [ACa].

FGJω is type safe

When we claim that FGJω is type safe, we mean that well-typed FGJω programs
never go wrong or equivalently that well-typed programs either reduce forever or
reduce to a value. More precisely, we prove that if p is a well-formed FGJω program,
t is its main expression and t reduces in zero or more steps to an irreducible term
u, then u is a value.

The combination of subtyping and higher-order polymorphism makes type safety
proofs difficult (as a demonstration of this claim see the complexity of a type safety
proof [CG03] for a calculus similar to FGJω). The difficulty comes from the nu-
merous dependencies that exist between subtyping, type reduction and type well-
formedness. We present a proof technique that makes the proof tractable; the
technique is simple but apparently new.

Our proof of type safety is based on a small-step operational semantics similar
to the one of FGJ. Usually this property is proven by showing two theorems: a
progress theorem (well-typed terms that are not values are reducible) and a subject-
reduction theorem (term reduction preserves typing) [WF94]. The originality of
our work is to prove these properties for a more general type system, called FGJΩ

(pronounce “FGJ-big-omega”), with the same syntax and semantics as FGJω but
less constraining typing rules. The type safety of FGJω is then deduced from the
proof of type safety of FGJΩ. This implies that we prove neither the progress nor the
subject-reduction for FGJω but we believe that this is not a big weakness. Indeed,
the main interest of these properties is to prove type safety, which we do with our
alternative technique.

Compared to the original type system, FGJΩ alleviates some constraints that
were introduced to ensure decidability (for instance it permits the use of transitivity
in subtyping). More importantly, while checking that a type application K<K> is
well-formed, FGJΩ never enforces that the arguments K conform to the bounds of
the parameters of K, only the conformance of arities is enforced. As we will explain
later, it turns out that bound conformance has no impact on type safety. With the
removal of this test type well-formedness no longer depends on subtyping and the
proof becomes easier.

36 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

4 THEORETICAL STUDY OF FGJω

FGJω’s type system is decidable

We say that FGJω’s type system is decidable if there exists an algorithm that, for
every input program, returns “yes” if the program is well-formed and “no” otherwise.

The most challenging issue with regard to decidability is subtyping. In FGJ, the
decidability of subtyping essentially relies on the fact that there is no cycle in the
class inheritance relation. This ensures that by following the superclass of a class,
in the process of establishing that a type is a subtype of another, we always stop,
either because we found an appropriate supertype or because we reached a class
that has no superclass.

The proof that FGJω’s type system is decidable is a bit more complex because
types sometimes need to be reduced in order to establish a subtyping judgment. So,
there is a potential risk for the type-checker to be caught in an infinite reduction
sequence. We show that types that are well-formed with respect to the conformance
of arities (we call such types well-kinded types) can never be infinitely reduced (they
are strongly normalizable). The proof of this property is similar to the proof of strong
normalization for terms of the simply typed lambda calculus [Tai67, BBLS05]. This
similarity is not surprising since well-kinded FGJω types are almost isomorphic to
well-typed lambda-terms. The only difference is the presence of bounds attached to
FGJω’s type parameters and the fact that these bounds are reducible. For example,
the anonymous type constructor <X / T> => U reduces to <X / T ′> => U if T
reduces to T ′. There is no similar reduction step in the lambda-calculus. However,
it is possible to translate well-kinded FGJω types using a translation function J·K into
well-typed terms of the simply typed lambda-calculus with pairs, for which strong
normalization still holds. We then prove that each time a FGJω type T reduces to
U in one step, the lambda-term JT K reduces to JUK in at least one step. Suppose
now, by contradiction, there exists an infinite sequence of reductions starting from
a well-kinded type T . Then there exists also an infinite sequence of reductions
starting from the well-typed term JT K, which contradicts the strong normalization
of lambda-terms.

The main idea of the translation is to translate an anonymous type constructor
into a pair whose first component corresponds to a translation of the same con-
structor but where its parameters have no bounds and whose second component is
a translation of the sole parameters (with their bounds). The interesting cases of
the translation are shown below. The function type(P) returns a suitable type for
P , and fst returns the first component of a pair.

J<P> => T K = (λvars(P) : type(P).JT K, JP K)
JK<K>K = (fst JKK) JKK

Bound conformance

The main difference between FGJω and FGJΩ is that in the latter types where
arguments do not conform to the bounds of the corresponding parameters are well-

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 37

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

formed. Intuitively, it seems that to ensure type safety such types should be rejected.
Let us illustrate this with the following example.

class A<X extends Number> {
int f(X x) { return x.intValue(); }

}
int g(A<String> y) { return y.f("hello"); }

The function g seems unsafe since any of its execution resolves in the impossible
computation of "hello".intValue(). In FGJω, the method g cannot be defined
and thus will never be executed because types like A<String> where some arguments
do not conform to the bounds of the corresponding parameters are not well-formed.
However, in order to prevent any execution of g, it is sufficient to prevent the
creation of values of such types. Indeed, if no such value can ever be constructed, it
will never be possible to call the seemingly unsafe method g. That is exactly what
FGJΩ does; types like A<String> are well-formed but no values of that type can
ever be constructed. Thus, the method g, which is well-formed in FGJΩ, will never
be executed.

Note that in FGJω, like in FGJΩ, values of types like A<String> can never be
constructed. Thus, the type system of FGJω is strictly more constraining than the
one of FGJΩ. The advantage of the additional constraints is that they prevent the
definition of methods like g, which would anyway never be executed even if they
were allowed. The disadvantage is that they significantly increase the complexity of
a type safety proof based on the proofs of subjection reduction and progress even
though they are not needed at all to prove the type safety.

Erased bounds

In the rule Sat, which verifies that in an environment ∆ a type constructor K con-

forms to a parameter X<P> / C<K>
?
, the premise that verifies that the constructor

K conforms to the bound C<K> uses the environment ∆ augmented with the pa-
rameters P but with their bounds erased. Intuitively, the bounds should be kept
and this would probably be sound. This restriction was introduced for technical
reasons; it lets us prove that the subtyping judgment is preserved by substitution of
type constructors K (appendix, Lemma 22). With erased bounds, this important
property can be verified using a simple induction on the structural size of the kind
of the substituted type constructors K followed by an induction on the derivation
depth of the subtyping judgment. The restriction allows for a simpler proof but, as
illustrated below, it has for consequence that less programs are well-formed. How-
ever, we believe that it has a very limited impact. For instance none of our examples
is affected by this restriction and we are not aware of interesting examples where
the more general rule would be necessary.

38 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

5 RELATED WORK

class A<F<X extends Number> extends Number> { }
new A<<Y> => Y>()

In order for the program to be well-formed, the type constructor <Y> => Y has
to conform to the parameter F<X extends Number> extends Number. Therefore,
the rule Sat requires that <Y> => Y is applicable to any possible argument of F,
which is trivially true since Y has no bound, and that in an environment consisting
of the sole variable X, (<Y> => Y)<X>, which reduces to X, is a subtype of Number,
which is true only if the variable X occurs in the environment with its bound Number.
As the rule Sat erases this bound, the above program is rejected.

The rule Sat is the only rule where bounds are erased. For instance the bounds
of a method’s type parameters are used to typecheck the body of the method. This
is the case for the following method which is well-formed only because X is declared
as a subtype of Number.

<X extends Number> Number foo(X x) { return x; }

5 RELATED WORK

Higher-order subtyping The combination of subtyping and higher-order poly-
morphism that exists in FGJω has been intensively studied in the context of lambda-
calculi (Fω

<: [PS94], Fω
≤ [CG03]) and object-calculi (Obω<:µ [AC96]) under the name

of higher-order subtyping. In FGJω, subtyping is restricted to the comparison of
types while, with higher-order subtyping, subtyping is lifted to arbitrary type con-
structors using a pointwise comparison. In our examples, we never had to compare
type constructors for subtyping but we admit that this feature could simplify an
extension of our design with variant type constructors. We believe that our proof of
type safety could be adapted but we provide no evidence of it.

The originality of our work is to consider a calculus that is close to a real object-
oriented programming language so that no encoding is needed, neither for objects
nor for classes. Our set of typing rules can appear larger and more complex than
those of the previously cited calculi but it is self-contained: in order to reach the
same level of formalization of a class-based language, the cited calculi should also
include complex encodings of objects, classes, inheritance, etc.

Contrary to Fω
<: and Obω<:µ, our calculus has bounds on type constructor ab-

stractions, so that we can write <X extends String> => List<X> and not sim-
ply <X> => List<X>. This feature, called bounded type operator abstraction, is
already present in Fω

≤ but FGJω additionally allows the parameters to mutually
depend on each other in their bounds, a feature that is called F-bounded poly-
morphism [CCH+89]. It is used by our solution for expressing binary methods of
generic data-types in Section 1. FGJω is, to our knowledge, the first calculus to
provide F-bounds in combination with type constructor parameterization.

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 39

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

Like the previously cited calculi, FGJω does not identify eta-convertible type
constructors like List and <X> => List<X>. The responsibility of writing types in
such a manner that the compiler never has to compare such type constructors is left
to the programmer.

Monads The example presented in Section 1 is similar to what Haskell program-
mers call monads [Wad92], an abstraction for pluggable computations. One pecu-
liarity of our implementation is that the “plug” operation (flatMap) is a method of
the class representing the monadic data-type (ICollection), while it is an external
function (written >>= and called ”bind”) in Haskell.

GADTs In Section 2, our encoding of GADTs relies on our extension of Java with
type constructor parameterization. There exists a similar solution [KR05] that is
based on an extension of Java with type equality constraints.

Virtual types Scala virtual types [Ot07] are able to express some use cases of
type constructor parameterization [ACb, MPJ06]. The principle is to encode the
declaration of a parameter representing a type constructor like X< > as the decla-
ration of an abstract type (type parameter or virtual type) X bounded by Arity1,
where Arity1 is a class with a single virtual type (say A1). A type like X<String>

can then be expressed in Scala by the refined type X{type A1 = String}, a sort of
intersection type which represents all instances of X in which the virtual type A1 is
equal to String. It is an open question whether FGJω can be entirely encoded this
way, especially when more complex bounds and anonymous type constructors are
involved.

Implementation Shortly after we implemented and made public a prototype
compiler for FGJω, type constructor parameterization was independently integrated
into the Scala compiler under the name of type constructor polymorphism [MPO07].
The authors of the Scala implementation based their syntax on an unpublished ver-
sion of the present paper where type constructor parameterization were described in
the context of Scala. However they extended our syntax to make type constructor
parameterization smoothly interact with pre-existing features of the language. In
particular, the Scala implementation provides declaration-site variance annotation
for type constructor parameters and adds the concept of class members representing
type constructors. This last feature is an extension of the mechanism of virtual
types in Scala, it permits abstract declarations, like type T[X] <: Pair[X,X],
and concrete ones like type T[X] = Pair[X,X]. The latter can be used to emulate
FGJω’s anonymous type constructors, which are still missing in Scala. As for FGJω,
the problem of inferring type constructor arguments for methods and classes is not
addressed by the Scala implementation (such arguments must be explicitly given by
the programmer). Our work can be considered as a theoretical foundation for the
subset of Scala that corresponds to FGJω.

40 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

6 CONCLUSION

Anonymous type constructors in Haskell Contrary to our calculus, there is
no syntax for anonymous type constructors in Haskell. However a restricted form of
anonymous type constructors exists internally; they arise from partial applications
of type constructors. For instance, Haskell permits types like Pair A even if Pair

has been declared with two type parameters. Such a construct is actually a par-
tial type application and is equivalent to <X> => Pair<A,X> in our design. Thus,
Haskell is able to represent all the anonymous type constructors that correspond to
partial type applications but not the others. This is a restriction compared to our
design: for example, the FGJω anonymous type constructor <X> => Pair<X,A> is
not expressible as a partial application of Pair. In Haskell, which has a complete
type inference mechanism based on unification, such a limitation is needed to en-
sure decidability of type-checking. Indeed the unification between types that contain
anonymous type constructors (also called higher-order unification) is a well-known
undecidable problem. In FGJω we adopt the Java philosophy of explicit type anno-
tations along with some simple type inference (in fact none in our prototype) and
are therefore not bound by this limitation. A study of an extension of Haskell with
anonymous functions at the level of types [NT02] shows there is some interest for
this feature even in the Haskell community.

6 CONCLUSION

Summary

This paper describes a simple way of adding type constructor parameterization to
Java. The main elements of the proposed extension, a generalized syntax for type
parameters and generalized typing rules, have been gradually introduced through
two concrete examples that cannot be expressed with type parameterization only.
Our extension, called FGJω, has been implemented in a prototype compiler, formal-
ized and important properties of its type system, like decidability and safety, have
been proven. To our knowledge, our work is the first to propose a design (that is
proven sound) for integrating type constructor parameterization to Java. Our work
constitutes also the first proof of safety for a type system that combines higher-order
polymorphism and F-bounded polymorphism. The degree of confidence of this proof
is very high since most parts of it, including all the difficult ones, have been mechan-
ically checked in a theorem prover. Our proof is based on an original technique that
breaks the problematic dependency between type well-formedness and subtyping by
considering a more general type system, FGJΩ A similar technique could be used to
simplify the type safety proof of FGJ.

Future work

Our calculus still misses some useful features of Java-like languages, for instance
wildcard types [IV06, THE+04], which have been popularized by their implementa-

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 41

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

tion in Java. A continuation of this work would be to study, at a theoretical level, the
interaction between type constructor parameters and wildcard types, in particular
with respect to the decidability of subtyping [KP06]. From a more pragmatic point
of view, it would also be interesting to investigate whether type constructor param-
eters are compatible with the most common strategies for type argument inference
in Java-like languages [OZZ01, Ode02].

Acknowledgments We would like to thank the anonymous referees, whose in-
sightful and very detailed comments helped us significantly improve the paper. We
also thank Rachele Fuzzati for helping us improving the explanations.

REFERENCES

[ACa] Philippe Altherr and Vincent Cremet. FGJ-omega web page.
http://lamp.epfl.ch/∼cremet/FGJ-omega/.

[ACb] Philippe Altherr and Vincent Cremet. Messages posted on the Scala
mailing list. Accessible from http://lamp.epfl.ch/∼cremet/FGJ-omega/.

[AC96] Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer Verlag, 1996.

[BBLS05] U. Berger, S. Berghofer, P. Letouzey, and H. Schwichtenberg. Program
extraction from normalization proofs. Studia Logica, 82, 2005. Special
issue.

[BCC+96] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, the Hopkins Objects
Group (Jonathan Eifrig, Scott Smith, Valery Trifonov), Gary T. Leavens,
and Benjamin Pierce. On binary methods. Theory and Practice of Object
Systems, 1(3):221–242, 1996.

[CCH+89] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C.
Mitchell. F-bounded polymorphism for object-oriented programming. In
Proceedings of the fourth international conference on Functional program-
ming languages and computer architecture (FPCA’89), pages 273–280,
New York, NY, USA, 1989. ACM Press.

[CG03] Adriana B. Compagnoni and Healfdene H. Goguen. Typed operational
semantics for higher order subtyping. Information and Computation,
184:242–297, August 2003.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison
Wesley, Massachusetts, 1994.

42 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

6 CONCLUSION

[IPW99] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In ACM Symposium on
Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA), October 1999. Full version in ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 23(3), May 2001.

[IV06] Atsushi Igarashi and Mirko Viroli. Variant parametric types: A flexi-
ble subtyping scheme for generics. ACM Transactions on Programming
Languages and Systems, 28(5):795–847, 2006.

[Jon03] Simon Peyton Jones. The Haskell 98 language and libraries: The revised
report. Cambridge University Press, 2003.

[KP06] Andrew J. Kennedy and Benjamin C. Pierce. On decidability of nominal
subtyping with variance, September 2006. FOOL-WOOD ’07.

[KR05] Andrew Kennedy and Claudio Russo. Generalized algebraic data types
and object-oriented programming. In ACM Symposium on Object Ori-
ented Programming: Systems, Languages, and Applications (OOPSLA).
ACM Press, October 2005.

[MPJ06] Adriaan Moors, Frank Piessens, and Wouter Joosen. An object-oriented
approach to datatype-generic programming. In Workshop on Generic
Programming (WGP’2006). ACM, September 2006.

[MPO07] Adriaan Moors, Frank Piessens, and Martin Odersky. Towards equal
rights for higher-kinded types. Accepted for the 6th International
Workshop on Multiparadigm Programming with Object-Oriented Lan-
guages at the European Conference on Object-Oriented Programming
(ECOOP), 2007.

[NT02] Matthias Neubauer and Peter Thiemann. Type classes with more higher-
order polymorphism. In Proceedings of the seventh ACM SIGPLAN
International Conference on Functional Programming (ICFP’02), pages
179–190, New York, NY, USA, 2002. ACM Press.

[Ode02] Martin Odersky. Inferred type instantiation for GJ. Note sent to the
types mailing list, January 2002.

[Ot07] Martin Odersky and the Scala Team. The Scala Language Specification
(version 2.5). http://www.scala-lang.org/docu/files/ScalaReference.pdf,
June 2007.

[OZZ01] Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local
type inference. In Proc. ACM Symposium on Principles of Programming
Languages, pages 41–53, 2001.

[Pro04] The Coq Development Team (LogiCal Project). The Coq proof assistant
reference manual (version 8.0). http://coq.inria.fr, 2004.

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 43

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

[PS94] Benjamin C. Pierce and Martin Steffen. Higher-order subtyping. In
IFIP Working Conference on Programming Concepts, Methods and Cal-
culi (PROCOMET), 1994. Full version in Theoretical Computer Science,
vol. 176, no. 1–2, pp. 235–282, 1997 (corrigendum in TCS vol. 184 (1997),
p. 247).

[Tai67] William W. Tait. Intensional interpretations of functionals of finite type
I. Journal of Symbolic Logic, 32(2):198–212, June 1967.

[THE+04] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ah,
Gilad Bracha, and Neal Gafter. Adding wildcards to the Java program-
ming language. In Proceedings of the 2004 ACM symposium on Applied
computing, pages 1289–1296. ACM Press, 2004.

[Wad92] Philip Wadler. Monads for functional programming. In M. Broy, edi-
tor, Marktoberdorf Summer School on Program Design Calculi, volume
118 of NATO ASI Series F: Computer and systems sciences. Springer-
Verlag, August 1992. Also in J. Jeuring and E. Meijer, editors, Advanced
Functional Programming, Springer Verlag, LNCS 925, 1995.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115, 1994.

ABOUT THE AUTHORS

Vincent Cremet received a Ph.D. in Computer Science from EPFL, Switzerland in
2006. His research interests include the design and formal proof of advanced type sys-
tems for object-oriented languages. He can be reached at vincent.cremet@gmail.com.
See also http://lamp.epfl.ch/∼cremet/.

Philippe Altherr received a Ph.D. in Computer Science from EPFL, Switzerland
in 2006. His research interests include programming language design and compiler
implementation techniques. His email address is philippe.altherr@gmail.com.

44 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

mailto:vincent.cremet@gmail.com
http://lamp.epfl.ch/$sim $cremet/
mailto:philippe.altherr@gmail.com

6 CONCLUSION

APPENDIX INTRODUCTION

In this appendix we present a formal description of our two calculi, FGJω and FGJΩ.
Starting from such description we then prove that the type systems of both FGJω

and FGJΩ are safe and that FGJω’s type system is also decidable.

Well-kindedness vs. well-formedness

The complexity of the type safety proof is caused by the dependency of type well-
formedness on subtyping. This dependency arises from the fact that type parameters
have bounds and that arguments in type applications must be subtypes of these
bounds. For example, if a class C has a single parameter X extends String, the type
C<T> is well-formed, only if T is a subtype of String. The dependency is already
present in FGJ but it becomes really problematic only in the context of FGJω, where
types are potentially reducible. In particular, the proof of the preservation of type
well-formedness by reduction is difficult.

Our solution to make the proof of type safety tractable is to define a new notion
of type well-formedness that does not enforce the above mentioned subtyping con-
straints. Types that are well-formed with respect to this new definition are called
well-kinded ; they satisfy the minimal property that type constructors are always
applied to arguments of the right arity. Types that are well-formed with respect to
the classical definition are simply called well-formed.

Implementation in Coq

The type safety proof of FGJΩ presented in this appendix has been formalized in
the Coq proof assistant. The implementation of the proof in Coq is available on the
FGJω home page [ACa]. In Coq we have represented binders by De Bruijn’s indices
instead of variables and, to simplify the proof, we have not considered methods
overriding inherited concrete methods since they do not play a central role in the
complexity of the proof.

Appendix overview

Section A defines FGJω. Section B proves some basic properties of well-kinded types.
Section C proves that the type system of FGJω is decidable. Section D defines FGJΩ

and proves that its type system is more general than the one of FGJω. Section E
proves that FGJΩ is type safe. Since FGJΩ is a relaxed version of FGJω, this trivially
implies that FGJω is also type safe.

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 45

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

A DEFINITION OF FGJω

Preamble: first-class rows

In the complete formalization of FGJω we refine the syntax presented in Section 3
by grouping type constructors into tuples (called rows in the following). Before
justifying this choice, we describe the changes that such refinement introduces in the
syntax. We consider the example of a generic class for representing pairs expressed
in the original syntax.

class Pair<X0<>,X1<>> { X0<> fst; X1<> snd;

Pair<X1,X0> reverse() { return new Pair<X1,X0>(snd, fst); }
}

In the code that follows, we have applied the following transformations. The two
type constructor parameters X0 and X1 are replaced with a single row parameter
X. The description of its two components are put in parentheses after the delimiter
::. Every occurrence of X0 in the class is replaced with a row projection X@0

that denotes the first component of the row X (and similarly for X1). The syntax
(X@1,X@0) denotes a concrete row made of the two type constructors X@1 and X@0.
Such a row is passed as argument to Pair inside the method reverse.

class Pair<X :: (<>,<>)> { X@0<> fst; X@1<> snd;

Pair<(X@1,X@0)> reverse() { return new Pair<(X@1,X@0)>(snd, fst); }
}

As we can see, the correspondence between both syntaxes is quite direct. The
changes in the syntax are summarized in the following table.

Original syntax Syntax with first-class rows

Π ::= P Π ::= X :: (P)
P ::= X<Π> / N ? P ::= <Π> / N ?

K ::= X | C | <Π> => T K ::= R@i | C | <Π> => T
T ::= K<K> T ::= K<R>

N ::= C<K> N ::= C<R>

R ::= X | (K)

In FGJω, and also in FGJ, it is natural to think of the type parameters that are
declared by a same class or a same method as a group since they can be mutually
recursive in their bounds. In particular, they must be simultaneously substituted for
some corresponding arguments. Note that such simultaneous substitutions are un-
defined if not enough arguments are provided. For example, what does the variable
X1 become in the simultaneous substitution Pair<X0,X1>[(X0,X1)\(String)]?

46 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

A DEFINITION OF FGJω

Having substitutions that are potentially undefined requires to formally treat them
as partial functions, which is quickly intractable in a proof. Actually, we could
prove that well-kinded types never lead to undefined substitutions but then, every
single lemma should be augmented with the hypothesis that every involved type is
well-kinded, which is incredibly heavy.

Making rows explicit in the syntax solves the problem posed by undefined si-
multaneous substitutions since a simultaneous substitution is decomposed into the
single substitution of a row, which is always defined, and the reduction of one or sev-
eral type projections. The previously undefined substitution becomes well-defined
when explicit rows are used. Admittedly, the resulting type gets stuck (because
(String)@1 is not reducible) but this is a kind of problem that is not technically
difficult to solve.

Pair<(X@0, X@1)>[X\(String)]
= Pair<((String)@0, (String)@1)>
→ Pair<(String, (String)@1)>

Syntax of FGJω

The abstract syntax of FGJω is summarized in Fig. 1.

Semantics of FGJω

The semantics of FGJω is defined in Fig. 3. It comes as a one-step reduction relation
that must be repeatedly applied in order to reach a value. The definition uses
auxiliary functions defined in Fig. 2 for, respectively, collecting the field names of a
class (fields(C) = f), finding the class that contains the implementation of a given
method (lookupC(m) = C ′) and computing the type instantiation C<R> of a class
C as seen from a class type N (superclassC(N) = C<R>).

Typing rules of FGJω

The typing rules use the following typing entities.

Typing entities
Kind k ::= ∗ type kind

| k → ∗ type constructor kind

| (k) row kind
Type environment ∆ ::= ∅ | ∆, Π
Term environment Γ ::= ∅ | Γ, x: T

Typing rules of FGJω are described by several judgments. The following table
presents the main judgments with their interpretation.

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 47

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

Symbols
Class name C ::= · · ·
Method name m ::= · · ·
Field name f ::= · · ·
Variable x ::= this | · · ·
Row variable X, Y ::= · · ·
Programs
Program p ::= D return t;
Class declaration D ::= class C<Π> / N ? {F M }
Field declaration F ::= T f ;
Method declaration M ::= <Π> T m(T x) { return t; }
Term t, u ::= x method parameter, current instance

| t.f field selection
| t.<R>m(t) method call
| new N(t) instance creation

Row parameter Π ::= X :: (P)
Type constr. descriptor P, Q ::= <Π> / N ?

Constructor row R ::= X row variable
| (K) row constructor

Type constructor K ::= R@i row projection
| C class type constructor
| <Π> => T anonymous type constructor

Type S, T, U ::= K<R>

Class type N ::= C<R>

Figure 1: Syntax of FGJω

∆ ` T :: k T is well-kinded (of kind k) Fig. 5
T → T ′ T reduces in one-step to T ′ Fig. 6
∆ ` T <: U T is a subtype of U Fig. 7
∆ ` K ∈ P K conforms to P Fig. 8
∆ ` R ∈ Π R conforms to Π Fig. 8
∆ ` T ::: k T is well-formed (of kind k) Fig. 9
∆; Γ ` t : T t has type T Fig. 10
override(m, C<Π>, C ′) C overrides the method m of class C ′ Fig. 11
C<Π> ` F (, resp. M) wf F (resp. M) is well-formed in C Fig. 11
` D wf D is well-formed Fig. 11
` p wf p is well-formed Fig. 11

In the rules, T [X\R] stands for the substitution of the row R for the variable X
in T , and t[x\v] stands for the substitution of the value v for the variable x in t.

The reduction from a type construct A to a type construct A′ (Fig. 6) is noted

A → A′. The reflexive transitive closure of this relation is noted A
∗−→ A′.

48 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

B PROPERTIES OF WELL-KINDED TYPES

class C<Π> / none {T f ; M }
fields(C) = f

class C<Π> / C ′<R> {T f ; M }
fields(C ′) = f

′

fields(C) = f
′
, f

m is defined in C

lookupC(m) = C

m is not defined in C
class C<Π> / C ′<R> {F M }

lookupC′(m) = C ′′

lookupC(m) = C ′′

superclassC(C<R>) = C<R>

class C<X :: (P)> / N {F M }
C 6= C ′ superclassC′(N [X\R]) = C ′<R′>

superclassC′(C<R>) = C ′<R′>

class C<Π> / N ? {F M }
Π = X :: (P)

Fi ∈ C<X>

class C<Π> / N ? {F M }
Π = X :: (P)

Mi ∈ C<X>

Figure 2: Fields (fields(C) = f), method lookup (lookupC(m) = C ′), superclass
instantiation (superclassC(N) = C<R>) and member access (F, M ∈ C<X>)

B PROPERTIES OF WELL-KINDED TYPES

This section enumerates a set of basic properties about well-kinded types. For
readability, properties are sometimes represented as admissible inference rules. The
proofs are similar in structure and complexity to the corresponding proofs for the
simply typed λ-calculus.

Lemma 1 [Type well-kindedness is preserved by type substitution]

Let Π = X :: (P). Assume ∆ ` R :: kind(Π).

∆, Π, ∆′ ` T :: ∗
∆, ∆′[X\R] ` T [X\R] :: ∗

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 49

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

(R-Context)
t → t′

e[t] → e[t′]
(R-Select)

v = new C<R>(v) fields(C) = f

v.fi → vi

(R-Call)

v = new C<R>(w) C ′ = lookupC(m)
<Y :: (P)> T m(T x) { return t; } ∈ C ′<X>

C ′<R′> = superclassC′(C<R>)

v.<R′′>m(v) → t[X\R′][Y \R′′][this\v][x\v]

Semantic entities
Value v, w ::= new N(v)
Evaluation context e ::= [] | e.f | e.<R>m(t) | v.<R>m(v, e, t)

| new N(v, e, t)

Figure 3: One-step reduction (t → u)

R irreducible

bound∆(C<R>) = C<R>

R irreducible
(X :: (P)) ∈ ∆ Pi = <Y :: (Q)> / N

bound∆(X@i<R>) = N [Y \R]

T → T ′ (leftmost reduction)
bound∆(T ′) = N

bound∆(T) = N

class C<Π> / N ? {F M }
params∆(C) = Π

params∆(<Π> => T) = Π

(X :: (P)) ∈ ∆ Pi = <Π> / N ?

params∆(X@i) = Π

params∆(Ki) = Π

params∆((K)@i) = Π

Figure 4: Bound (bound∆(T) = N) and parameters (params∆(K) = Π)

Proof: Similar to the preservation of typing by substitution in the simply typed
lambda-calculus. Qed

Lemma 2 [Type well-kindedness is preserved by type reduction]

50 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

B PROPERTIES OF WELL-KINDED TYPES

(WK-Var)
(X :: (P)) ∈ ∆

∆ ` X :: (kind(P))
(WK-Row)

∆ ` K :: k

∆ ` (K) :: (k)

(WK-Class)
class C<Π> / N ? {F M }

∆ ` C :: kind(Π) → ∗
(WK-Proj)

∆ ` R :: (k)

∆ ` R@i :: ki

(WK-Fun)

∆ ` Π wk
∆, Π ` T :: ∗

∆ ` <Π> => T :: kind(Π) → ∗
(WK-Apply)

∆ ` K :: k → ∗
∆ ` R :: k

∆ ` K<R> :: ∗

(WK-Param)

∆ ` Π wk

(∆, Π ` N :: ∗)?

∆ ` <Π> / N ? wk
(WK-Section)

∆, X :: (P) ` P wk

∆ ` (X :: (P)) wk

where

{
kind(Π) = (kind(P)) if Π = X :: (P)
kind(P) = kind(Π) → ∗ if P = <Π> / N ?

Figure 5: Type well-kindedness (∆ ` K, T,R :: k, ∆ ` P, Π wk). Kinds
(kind(Π) = k, kind(P) = k)

(RT-App)
K = <X :: (P)> => T

K<R> → T [X\R]
(RT-Proj)

(K)@i → Ki

(RT-Ctx)
A → A′

E[A] → E[A′]

where


Type construct A ::= T | K | R | Π | P
Red. context E ::= [] | E<R> | K<E> | E@i | <E> => T

| <Π> => E | (K, E, K
′
)

| <E> / N ? | <Π> / E | X :: (P , E, Q)

Figure 6: Reduction of type constructs (A → A′)

∆ ` T wk T → U

∆ ` U wk

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 51

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

(S-Refl)
∆ ` T <: T

(S-Class)

class C<X :: (P)> / N {F M }
∆ ` N [X\R] <: U

∆ ` C<R> <: U
(S-Var)

(X :: (P)) ∈ ∆
Pi = <Y :: (Q)> / N
∆ ` N [Y \R] <: U

∆ ` X@i<R> <: U

(S-RedL)

T → T ′

∆ ` T ′ <: U

∆ ` T <: U
(S-RedR)

U → U ′

∆ ` T <: U ′

∆ ` T <: U

Figure 7: Subtyping (∆ ` T <: U)

(Poly-Sat)
∀ i, ∆ ` R@i ∈ Pi[X\R]

∆ ` R ∈ (X :: (P))

(Sat)

Π = X :: (P) Π′ = params∆(K) ∆, Π ` X ∈ Π′

Π0 = erase(Π) (∆, Π0 ` K<X> <: N)?

∆ ` K ∈ <Π> / N ?

where

{
erase(X :: (P)) = X :: (erase(P))
erase(<Π> / N ?) = <erase(Π)> / none

Figure 8: Satisfaction (∆ ` R ∈ Π, ∆ ` K ∈ P), and bound erasure (erase(Π) =
Π′, erase(P) = P ′)

Proof: Similar to the preservation of typing by reduction in the simply typed
lambda-calculus. Using Lemma 1. Qed

Lemma 3 [Confluence of type reduction]

T
∗−→ S1 T

∗−→ S2

∃U, S1
∗−→ U ∧ S2

∗−→ U

52 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

C DECIDABILITY OF FGJω ’S TYPE SYSTEM

(WF-Var)
(X :: (P)) ∈ ∆

∆ ` X ::: (kind(P))
(WF-Row)

∆ ` K ::: k

∆ ` (K) ::: (k)

(WF-Class)
class C<Π> / N ? {F M }

∆ ` C ::: kind(Π) → ∗
(WF-Proj)

∆ ` R ::: (k)

∆ ` R@i ::: ki

(WF-Fun)

∆ ` Π wf
∆, Π ` T ::: ∗

∆ ` <Π> => T ::: kind(Π) → ∗
(WF-Apply)

∆ ` K ::: k → ∗
∆ ` R ::: k

Π = params∆(K)
∆ ` R ∈ Π

∆ ` K<R> ::: ∗

(WF-Param)

∆ ` Π wf

(∆, Π ` N ::: ∗)?

∆ ` <Π> / N ? wf
(WF-Section)

∆, X :: (P) ` P wf

∆ ` (X :: (P)) wf

Figure 9: Type well-formedness (∆ ` K, T,R ::: k, ∆ ` P, Π wf)

Proof: The confluence of type reduction can be proven similarly to the confluence
of term reduction in the lambda-calculus, for example using the concept of parallel
reductions. Qed

Lemma 4 [Well-kinded types are strongly normalizable]

The principle of the proof that well-kinded types are strongly normalizable is
already explained in Section 4. It relies on a translation from well-kinded types to
well-typed terms of the simply typed lambda-calculus with pairs. The detail of the
translation and the proofs that the translation preserves typing and reduction can
be found in the Coq formalization [ACa].

C DECIDABILITY OF FGJω’S TYPE SYSTEM

Lemma 5 [Well-foundedness of the class inheritance relation is decidable]

Since the number of classes is finite, verifying the absence of cycles in the class
inheritance relation is decidable. For a binary relation over a finite set, the absence
of cycles is equivalent to well-foundedness. Consequently, the well-foundedness of
the class inheritance relation is decidable.

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 53

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

(T-Var)
Γ = x: T

∆; Γ ` xi : Ti

(T-Select)

U f ;∈ C<X> ∆; Γ ` t : T
N = bound∆(T) C<R> = superclassC(N)

∆; Γ ` t.f : U [X\R]

(T-Call)

∆; Γ ` t : T ∆ ` R′ ::: k ∆; Γ ` t : T
N = bound∆(T) C ′<R′′> = N C = lookupC′(m)

C<R> = superclassC(N)
<Y :: (P)> U m(U x) { return u; } ∈ C<X>

∆ ` R′ ∈ (Y :: (P))[X\R] ∆ ` T <: U [X\R][Y \R′]

∆; Γ ` t.<R′>m(t) : U [X\R][Y \R′]

(T-New)
∆ ` N ::: ∗ N = C<R> f = fields(C) ∆; Γ; N ` f = t wf

∆; Γ ` new N(t) : N

(WF-Field-Impl)

T f ;∈ C<X> C<R> = superclassC(N)
∆; Γ ` t : S ∆ ` S <: T [X\R]

∆; Γ; N ` f = t wf

Figure 10: Type assignment (∆; Γ ` t : T) and well-formedness of field implemen-
tations (∆; Γ; N ` f = t wf)

Lemma 6 [Decidability of type well-kindedness]

The type well-kindedness judgment (Fig. 5) is decidable since, for every rule, the
types that appear in the premises are smaller, with respect to their structural size,
than the types that appear in the conclusion.

Lemma 7 [Preliminary phase]

The well-formedness judgment for programs (rule WF-Program) contains a
preliminary phase that checks the conformance of arities (well-kindedness) in the
declared type parameter Π and the optional superclass N of each class (but not
in its members). This phase is modeled by the premise ` D wk and the rule
WK-Class-Decl. The phase terminates because of Lemma 6. This preliminary
check, together with Lemma 1, implies the interesting property that well-kindedness
propagates from a class type to its direct supertype.

Lemma 8 [Auxiliary judgments are decidable and deterministic]

54 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

C DECIDABILITY OF FGJω ’S TYPE SYSTEM

(WF-Program)

no duplicate fields in the program
no duplicate methods in a class

{ (C, C ′) | class C<Π> / C ′<R> {F M } } is well-founded
` D wk ` D wf ∅; ∅ ` t : T

` D return t; wf

(WK-Class-Decl)
∅ ` Π wk (Π ` N :: ∗)?

` class C<Π> / N ? {F M } wk

(WF-Class-Decl)
∅ ` Π wf (Π ` N ::: ∗)? C<Π> ` F ,M wf

` class C<Π> / N ? {F M } wf

(WF-Field-Decl)
Π ` T ::: ∗

C<Π> ` T f ; wf

(WF-Method-Decl)

Π ` Π′ wf
∆ = Π, Π′ ∆ ` T , T ::: ∗ Π = X :: (P)

Γ = this: C<X>, x: T ∆; Γ ` t : S ∆ ` S <: T
class C<Π> / C ′<R> {F M } ∧ C ′′ = lookupC′(m)

⇒ override(m, C<Π>, C ′′)

C<Π> ` <Π′> T m(T x) { return t; } wf

(Valid-Override)

<Y :: (P)> T m(T x) { return t; } ∈ C<X>

<Y :: (P
′
)> T ′ m(T

′
x) { return t′; } ∈ C ′<X ′>

Π = X :: (Q) C ′<R> = superclassC′(C<X>)

∆ = Π, (Y :: (P
′
))[X ′\R] ∆ ` Y ∈ (Y :: (P))

∆ ` T
′
[X ′\R] <: T ∆ ` T <: T ′[X ′\R]

override(m, C<Π>, C ′)

Figure 11: Well-formedness of programs (` p wf), classes (` D wk, ` D wf)
and members (C<Π> ` F, M wf); valid method overriding (override(m, C<Π>, C ′))

Under the assumptions that the class inheritance relation is well-founded (rule
WF-Program) and that well-kinded types are strongly normalizable (Lemma 4),
the following judgments are easily shown decidable and “deterministic” (given a set
of values in the left-hand side of an equality, there exists at most one corresponding
value in the right-hand side).

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 55

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

• fields(C) = F • lookupC(m) = C ′ • superclassC(N) = N ′

• bound∆(T) = N • params∆(K) = Π

Definition 1 [Definition: well-kinded environments]

` ∅ wk

` ∆ wk ∆ ` Π wk

` ∆, Π wk

` ∆ wk ∆ ` T wk

` ∆; x: T wk

Lemma 9 [Definition-theorem: well-founded type expansion]

The concept of type expansion is defined through the following rules. It represents
the step that lets us go from a class type to its superclass (E-Extends), from a
variable type to its upper-bound (E-Bound) and from a type to its reduced (E-
Red).

(E-Extends)
class C<X :: (P)> / N {F M }

∆ ` C<R> ≺ N [X\R]

(E-Bound)
(X :: (P)) ∈ ∆ Pi = <Y :: (Q)> / N

∆ ` X@i<R> ≺ N [Y \R]
(E-Red)

T → U

∆ ` T ≺ U

A useful property of type expansion is that it preserves well-kindedness: ∆ `
T ≺ U and ∆ ` T :: ∗ and ` ∆ wk implies ∆ ` U :: ∗. The case E-Extends
relies on the preliminary phase (Lemma 7).

The important property of type expansion is that it is well-founded, i.e. there
is no infinite sequence of type expansion steps starting from a well-kinded type.
The proof of this property is a corollary of the three following facts, which must be
proven in this order.

• A sequence of type expansion steps starting from a well-kinded class type
C<R> is necessarily finite. This is a consequence of the well-foundedness of
the class inheritance relation (WF-Program) and the strong normalization
of well-kinded types (Lemma 4).

• A sequence of type expansion steps starting from a well-kinded variable type
X@i<R> is necessarily finite. This is a consequence of the previous fact (be-
cause the bound of a type variable is a class type) and the strong normalization
of well-kinded types.

• A sequence of type expansion steps starting from an arbitrary type T is nec-
essarily finite. This is a consequence of the two previous facts and the strong
normalization of well-kinded types.

56 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

C DECIDABILITY OF FGJω ’S TYPE SYSTEM

Lemma 10 [Definition-theorem: well-founded sequence extension]

Given a binary relation R, we define the sequence extension Rseq of R as the
binary relation over sequences such that for all i and y:

(x1, . . . , xi, . . . , xn)Rseq(x1, . . . , y, . . . , xn) iff xiRy.

It is easy to show that if R is well-founded, the sequence extension of R is also
well-founded. It follows from this remark and from Lemma 9 that the sequence
extension of type expansion, noted ≺seq, is well-founded.

Lemma 11 [Decidability of subtyping]

Given two types T and U that are well-kinded in a well-kinded environment ∆,
the judgment ∆ ` T <: U is decidable. Indeed, in the premises of each subtyping
rule (Fig. 7), the sequence of two types that are involved in a subtyping judgment
are smaller, w.r.t. ≺seq, than the sequence of two types that occur in the conclusion
of the rule. The well-foundedness of ≺seq (Lemma 10) implies that the rules can be
turned into a terminating recursive algorithm.

To illustrate the principle of the proof, we consider the case S-Class. The
conclusion of the rule is the judgment ∆ ` C<R> <: U , which involves the types
C<R> and U . The main premise of the rule is the judgment ∆ ` N [X\R] <: U ,
which involves the types N [X\R] and U . Since ∆ ` C<R> ≺ N [X\R] by rule
E-Extends, the sequence of types (N [X\R], U) is smaller, w.r.t. ≺seq, than the
sequence (C<R>, U).

The rule S-RedL, and similarly S-RedR, is apparently not algorithmic because
the meta-variable T ′, which is used in the premises of the rule to represent one
possible result of reducing the type T , does not appear in the conclusion. An
algorithm should be able to “guess” the value of T ′. Fortunately there is a finite
number of possible type reductions, so an algorithm can just try them in order.

Lemma 12 [Decidability of satisfaction]

The termination of the satisfaction judgment (Fig. 8) is best explained by inlining
the rule Sat inside the rule Poly-Sat.

(Poly-Sat)

for all i, <Π> / N ? = Pi[X\R] Y :: (Q) = Π
Π′ = params∆(R@i) ∆, Π ` Y ∈ Π′

Π0 = erase(Π) (∆, Π0 ` R@i<Y > <: N)?

∆ ` R ∈ (X :: (P))

We show the termination of the judgment under the assumption that R and P
are well-kinded in the well-kinded environment ∆. In the inlined rule, there is a

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 57

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

subtyping premise ∆, Π0 ` R@i<Y > <: N and a satisfaction premise ∆, Π ` Y ∈
Π′.

For proving that the subtyping premise is decidable we show that the types
R@i<Y > and N are well-kinded in the context ∆, which lets us apply the decidability
of subtyping (Lemma 11).

The satisfaction premise ∆, Π ` Y ∈ Π′ is not problematic since it involves a
row parameter Π′ which has a smaller kind than the one ((X :: (P))) used in the
conclusion of the rule, i.e., we can prove that |kind(Π′)| < |kind(X :: (P))|.

Lemma 13 [Decidability of type well-formedness]

We show that a type well-formedness judgment like ∆ ` T ::: k is decidable
provided the environment ∆ is well-kinded. The definition of type well-formedness
(Fig. 9) recursively depends on itself and on the satisfaction judgment (in rule WF-
Apply). Since, for every rule of type well-formedness, the type constructs that
appear in the premises are smaller, with respect to their structural size, than the
types that appear in the conclusion, the termination of the judgment simply relies
on the fact that, in the rule WF-Apply, the judgment ∆ ` R ∈ Π is decidable. It
has previously been shown that it is actually the case if ∆, R and Π are well-kinded.
By hypothesis, ∆ is well-kinded. From the premises of the rule WF-Apply, we
know that K and R are well-formed. It is easy to prove, by simple induction, that
every well-formed type construct is also well-kinded. As a consequence, K and R,
which are well-formed, are also well-kinded in the environment ∆. Since K is well-
kinded in ∆, and ∆ is a well-kinded environment, the parameter Π of K, computed
in the context of ∆, is necessarily well-kinded too. This concludes the proof that
type well-formedness is decidable.

Lemma 14 [Decidability of typing]

The type assignment judgment (Fig. 10) depends on subtyping, satisfaction, and
type well-formedness. These judgments have been shown decidable. Since type
assignment is defined in a compositional way, it is also decidable.

Lemma 15 [Decidability of member and class well-formedness]

Well-formedness of members (and consequently of classes and programs) is decid-
able since it depends on all the other judgments, which have been shown decidable.

D A MORE GENERAL TYPE SYSTEM: FGJΩ

For proving that FGJω’s type system is safe, we consider another calculus with a
more general type system, called FGJΩ. Both calculi have the same abstract syntax

58 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

D A MORE GENERAL TYPE SYSTEM: FGJΩ

and the same semantics. The differences between them reside in the typing rules. In
what follows we just describe the differences. The well-kindedness of types (Fig. 5)
and the reduction of types (Fig. 6) stay unchanged. The differences start from the
subtyping relation. In order to distinguish FGJΩ judgments from FGJω ones, we
mark them with the subscript Ω.

Differences between FGJΩ and FGJω

• Subtyping in FGJΩ contains an additional rule S-Trans that states the tran-
sitivity of the relation provided the intermediate type is well-kinded.

(S-Trans)
∆ ` S :: ∗ ∆ `Ω T <: S ∆ `Ω S <: U

∆ `Ω T <: U

• Every sequence of judgments bound∆(T) = N , superclassC(N) = N ′ is re-
placed with a subtyping judgment ∆ ` T <: N ′ and a well-kindedness judg-
ment ∆ ` N ′ :: ∗. For instance in rules T-Select, T-Call and WF-Field-
Impl.

• Generally, a well-formedness judgment is replaced with a well-kindedness judg-
ment. For instance, Π ` T ::: ∗ is replaced with Π ` T :: ∗ in rule WF-
Field-Decl. However, there are two exceptions, which are explained in the
following two points.

• Rule T-New of FGJω imposes the condition ∆ ` C<R> ::: ∗ in the proof that
a term like new C<R>(t) is well-typed. In FGJΩ, this premise is replaced with
the two premises ∆ ` C<R> :: ∗ and ∆ `Ω R ∈ Π, where Π is the parameter
declared by the class C.

• Where it is checked that the superclass C ′<R> of a class C is well-formed in
rule WF-Class-Decl, the premise Π ` C ′<R> ::: ∗ should be replaced with
the two premises Π ` C ′<R> :: ∗ and Π `Ω R ∈ Π′, where Π′ is the parameter
declared by the class C ′.

• In FGJω, the rule Sat, which checks the conformance of a type constructor K
w.r.t. a parameter P , contains the premise ∆, Π ` X ∈ Π′ where Π and Π′

are respectively the parameters of P and K. In FGJΩ, this premise is replaced
with kind(Π) = kind(Π′).

Lemma 16 [Inclusion of FGJω inside FGJΩ]

In order to derive the type safety of FGJω from the type safety of FGJΩ, we have
to prove that every well-formed FGJω program is a well-formed FGJΩ program. This
fact is a corollary of the following implications, which are easily proven by induction
on the involved judgments.

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 59

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

• ∆ ` T <: U implies ∆ `Ω T <: U
• ∆ ` R ∈ Π implies ∆ `Ω R ∈ Π
• ∆ ` K ∈ P implies ∆ `Ω K ∈ P
• ∆ ` K, R, T ::: k implies ∆ ` K, R, T :: k
• ∆ ` P, Π wf implies ∆ ` P, Π wk
• ∆; Γ ` t : T implies ∆; Γ `Ω t : T
• C<Π> ` F, M wf implies C<Π> `Ω F, M wf
• override(m, C<Π>, C ′) implies overrideΩ(m, C<Π>, C ′)
• ` D wf implies `Ω D wf
• ` p wf implies `Ω p wf

E TYPE SAFETY OF FGJΩ (AND FGJω)

Classically, the proof that FGJΩ’s type system is safe is split into a progress theorem
(well-typed terms that are not values are reducible) and a subject-reduction theorem
(the type of a term is preserved by reduction).

Admissible rules in FGJΩ

Before proving progress and subject reduction we start by showing that FGJΩ sat-
isfies some good properties.

Lemma 17 [Reduction is preserved by type substitution]

T → T ′

T [X\R] → T ′[X\R]

R → R′

T [X\R]
∗−→ T [X\R′]

Lemma 18 [Subtyping and satisfaction are preserved by type reduction]

The following rules are admissible.

60 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

E TYPE SAFETY OF FGJΩ (AND FGJω)

∆ `Ω T <: U ∆
∗−→ ∆′ T

∗−→ T ′ U
∗−→ U ′

∆′ `Ω T ′ <: U ′

∆ `Ω R ∈ Π ∆
∗−→ ∆′ R

∗−→ R′ Π
∗−→ Π′

∆′ `Ω R′ ∈ Π′

∆ `Ω K ∈ P ∆
∗−→ ∆′ K

∗−→ K ′ P
∗−→ P ′

∆′ `Ω K ′ ∈ P ′

Proof: Easy. By induction on the derivations of the different judgments using
preservation of reduction by type substitution (Lemma 17). Qed

Lemma 19 [The subtyping transitivity rule can be eliminated in the empty context]

∅ `Ω T <: U implies there exists a derivation of the same judgment that does
not use the transitivity rule S-Trans.

Proof: We consider a system of subtyping rules (written ∆ `Ω− T <: U) that is
equivalent to the one of FGJΩ except that it does not contain the transitivity rule
S-Trans. We prove that this rule (reminded below) is actually admissible in this
system, by induction on the sequence (T, S, U). The well-founded relation that is
used by the induction is ≺seq (See Lemma 10).

∅ ` S :: ∗ ∅ `Ω− T <: S ∅ `Ω− S <: U

∅ `Ω− T <: U

We reason by case analysis on the last rules used to derive ∅ `Ω− T <: S and
∅ `Ω− S <: U . To illustrate how the proof proceeds, let us consider the case
where the former is S-RedR and the latter S-Class. In this case, S is a class
type C<R> and we have at disposal the subtyping assumptions ∅ `Ω− T <: S ′ and
∅ `Ω− N [X\R] <: U where C<R> → S ′, N is the superclass of C and X the name
of its type parameter. We want to prove that ∅ `Ω− T <: U .

As it is obtained by reduction of the class type C<R>, S ′ is necessarily a class
type C<R′> with R → R′. From R → R′ we deduce that N [X\R]

∗−→ N [X\R′]
(Lemma 17). Here we need a lemma that states that the subtyping relation without
transitivity rule is preserved by reduction (the proof is similar as for Lemma 18). We
apply this lemma to the judgment ∅ `Ω− N [X\R] <: U , which lets us deduce that
∅ `Ω− N [X\R′] <: U . This implies ∅ `Ω− C<R′> <: U by definition of subtyping

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 61

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

(rule S-Class). To sum up, we have ∅ `Ω− T <: C<R′> and ∅ `Ω− C<R′> <:
U . Since C<R> → C<R′>, we have ∅ ` C<R> ≺ C<R′>, by definition of type
expansion (rule E-Red). By consequence, the sequence (T, C<R′>, U) is smaller,
w.r.t. ≺seq, than the sequence (T, C<R>, U). It means we can apply the induction
hypothesis and conclude that ∅ `Ω− T <: U . Qed

Progress in FGJΩ

Lemma 20 [Subtyping of class types is compatible with subclassing (in the empty
context)]

∅ `Ω C<R> <: C ′<R′> implies C is a subclass of C ′.

Proof: By Lemma 19, there exists a derivation of ∅ `Ω C<R> <: C ′<R′> that
does not contain the rule S-Trans, i.e., the judgment ∅ `Ω− C<R> <: C ′<R′> is
derivable. By induction on this judgment it is easy to show that C is a subclass of
C ′. Qed

Lemma 21 [Progress]

If ∅; ∅ `Ω t : T and t is not a value, then there exists u such that t → u.

Proof: By induction on ∅; ∅ `Ω t : T , using Lemma 20. Let us consider for
example the case T-Select where t is a field selection t′.f . If t′ is not a value,
by (IH) there exists u′ such t′ → u′ and by rule R-Context we deduce that
t′.f → u′.f . If t′ is a value new C<R>(v), since the term t′.f is well-typed, we have
fields(C) = f with |f | = |v|, and ∅ `Ω C<R> <: C ′<R′> with (U f ;) ∈ C ′. By
Lemma 20, ∅ `Ω C<R> <: C ′<R′> implies C is a subclass of C ′. C is a subclass
of C ′ implies fields(C ′) ⊂ fields(C) = f . Since (U f ;) ∈ C ′ and fields(C ′) ⊂ f ,
necessarily f ∈ f , i.e. there exists i such that f = fi. By rule R-Select, we
conclude that new C<R>(v).f reduces to vi. Qed

Subject reduction in FGJΩ

Lemma 22 [Subtyping is preserved by type substitution]

Let Π = X :: (P). Assume ∆ ` R :: k, ∆ `Ω R ∈ Π and ` ∆, Π, ∆′ wk.

∆, Π, ∆′ ` T, U :: ∗ ∆, Π, ∆′ `Ω T <: U

∆, ∆′[X\R] `Ω T [X\R] <: U [X\R]

62 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

E TYPE SAFETY OF FGJΩ (AND FGJω)

Proof: The proof is by induction on the size of Π’s kind (|kind(Π)|, followed by an
induction on the derivation depth of the subtyping judgment ∆, Π, ∆′ `Ω T <: U .
We reason by case analysis on the last rule that was used to derive this judgment.
For conciseness, we just describe the case that needs the induction hypothesis about
the size of kind(Π). It is a subcase of the rule S-Var where the variable composing
T is exactly the one that R is substituted for, i.e. T = X@i<R′>. We have to prove
that ∆, ∆′[X\R] `Ω R@i<R′[X\R]> <: U [X\R]. The hypotheses coming from rule
S-Var are Pi = <Π′> / N , Π′ = Y :: (Q) and ∆, Π, ∆′ `Ω N [Y \R′] <: U .

(1) We substitute R for X in the last judgment by applying the hypothesis gener-
ated by the second induction. The IH applies because the judgment has a smaller
derivation depth. We obtain ∆, ∆′[X\R] `Ω N [Y \R′][X\R] <: U [X\R].

(2) By weakening the hypothesis ∆ `Ω R ∈ Π we obtain ∆, ∆′[X\R] `Ω R ∈ Π.
By inversing the rules Poly-Sat and Sat, used to derive this satisfaction judg-
ment, and from the definitions of Π, Pi and Π′ we deduce that ∆, ∆′[X\R], Π0 `Ω

R@i<Y > <: N [X\R] where Π0 = erase(Π′[X\R]).

(3) By inversion of the hypothesis ∆, Π, ∆′ ` X@i<R′> :: ∗ we deduce that ∆, Π, ∆′ `
R′ :: kind(Π′). Using Lemma 1 we substitute R for X in this judgment, which gives
∆, ∆′[X\R] ` R′[X\R] :: kind(Π′).

(4) It follows from the definition of Π0 that kind(Π0) = kind(Π′[X\R]) = kind(Π′),
so (3) becomes ∆, ∆′[X\R] ` R′[X\R] :: kind(Π0). Since there is no bound to
satisfy in Π0, this last judgment implies that ∆, ∆′[X\R] `Ω R′[X\R] ∈ Π0.

(5) We substitute R′[X\R] for Y in (2) by applying the hypothesis generated by
the first induction. The IH applies because |kind(Π0)| < |kind(Π)|. We obtain
∆, ∆′[X\R] `Ω R@i<R′[X\R]> <: N [X\R][Y \R′[X\R]].

(6) We remark that N [Y \R′][X\R] = N [X\R][Y \R′[X\R]] and by applying tran-
sitivity of subtyping (rule S-Trans) to (1) and (5) we conclude the proof. Qed

Lemma 23 [Satisfaction is preserved by type substitution]

Let Π = X :: (P). Assume ∆ ` R :: k, ∆ `Ω R ∈ Π and ` ∆, Π, ∆′ wk.

∆, Π, ∆′ ` K :: k′ ∆, Π, ∆′ ` P wk ∆, Π, ∆′ `Ω K ∈ P

∆, ∆′[X\R] `Ω K[X\R] ∈ P [X\R]

∆, Π, ∆′ ` R′ :: k′ ∆, Π, ∆′ ` Π′ wk ∆, Π, ∆′ `Ω R′ ∈ Π′

∆, ∆′[X\R] `Ω R′[X\R] ∈ Π′[X\R]

Proof: The first property is a corollary of Lemma 22. The second property is a
corollary of the first one. Qed

Lemma 24 [Typing is preserved by type substitution]

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 63

ADDING TYPE CONSTRUCTOR PARAMETERIZATION TO JAVA

Let Π = X :: (P). Assume ∆ ` R :: k, ∆ `Ω R ∈ Π and ` ∆, Π, ∆′ wk.

∆, Π, ∆′; Γ `Ω t : T

∆, ∆′[X\R]; Γ[X\R] `Ω t[X\R] : T [X\R]

Proof: By induction on the type assignment judgment using Lemma 1, Lemma 22
and Lemma 23. Qed

Lemma 25 [Typing is preserved by term substitution]

∅; x: U, Γ `Ω t : T ∅; ∅ `Ω v : S ∅ `Ω S <: U

∃T ′, ∅; Γ `Ω t[x\v] : T ′ ∧ ∅ `Ω T ′ <: T

Proof: By induction on the type assignment judgment. Qed

Lemma 26 [Typing is preserved by environment reduction]

∆; Γ `Ω t : T ∆
∗−→ ∆′

∆′; Γ `Ω t : T

∆; Γ `Ω t : T Γ
∗−→ Γ′

∃T ′, ∆; Γ′ `Ω t : T ′ ∧ ∆ `Ω T ′ <: T

Proof: The first property is proven by induction on type assignment using Lemma 18.
The second property is proven by induction on type assignment using transitivity
of subtyping (rule S-Trans) and Lemma 18. Qed

Lemma 27 [Typing is preserved by term reduction (= subject-reduction)]

∅; ∅ `Ω t : T t → t′

∃T ′, ∅; ∅ `Ω t′ : T ′ ∧ ∅ `Ω T ′ <: T

Proof: Easy but tedious. By induction on the judgment ∅; ∅ `Ω t : T using all
the lemmas proven in this section. The lemma can be generalized to an arbitrary
number of reduction steps from t to t′ (by induction on the number of steps using
rule S-Trans). Qed

64 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 5

E TYPE SAFETY OF FGJΩ (AND FGJω)

Lemma 28 [Type safety of FGJΩ]

If p is a well-formed FGJΩ program, t is its main expression, and t reduces in
zero or more steps to an irreducible term u, then u is a value.

Proof: Immediate using Lemma 21 (progress) and Lemma 27 (subject-reduction).
Qed

Lemma 29 [Type safety of FGJω]

If p is a well-formed FGJω program, t is its main expression, and t reduces in
zero or more steps to an irreducible term u, then u is a value.

Proof: By Lemma 16, every well-formed FGJω program is a well-formed FGJΩ

program. We conclude using Lemma 28. Qed

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 65

