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We have proposed lightweight family polymorphism, a programming style to sup-
port reusable yet type-safe mutually recursive classes, and introduced its formal core
calculus .FJ. In this paper, we give a formal translation, which changes only type
declarations, from .FJ into FGJself , an extension of Featherweight GJ with self type
variables. They improve self typing and are required for the translation to preserve
typing. Therefore we claim that self type variables represent the essential difference
between .FJ and Featherweight GJ, namely, lightweight family polymorphism provides
better self typing for mutually recursive classes than Java generics. To support this
claim rigorously, we show that FGJself enjoys type soundness and the formal translation
preserves typing and reduction.

1 INTRODUCTION

Simple inheritance with which C++ and Java (without generics) are equipped is not
suitable for extending mutually recursive classes—their subclasses do not refer to
each other but refer to the superclasses since it is not allowed to inherit superclass
members with different signatures (in fact, it is not safe in general to allow covariant
change of member signatures.) This “signature mismatching” problem is often re-
solved by typecasting, but it is a potentially unsafe operation. Ideally, extension of
mutually recursive classes should yield another set of mutually recursive classes with-
out losing type safety. There have been many proposals [3, 5, 6, 18, 19, 9, 20, 15, 11]
to solve the above-mentioned problem. Ernst [11] has coined the term “family poly-
morphism” for a particular programming style using virtual classes [17] of gbeta [10]
and applied it to the problem. The term “family” roughly means a set of mutually
recursive classes, which are extensible without the mismatching.

We have proposed lightweight family polymorphism [22], a programming style in
object-oriented programming to support reusable yet type-safe mutually recursive
classes, as a solution. Our proposal is, as its name suggests, a lightweight version of
family polymorphism. We identified a minimal set of language features for program-
ming extensible mutually recursive classes in Java-like languages. We formalized the
proposed features as .FJ, an extension of Featherweight Java [12], and proved the
soundness of its type system.

Actually, however, it had been known that similar programming [5, 23] is pos-
sible in Java 5.0 and C# 2.0 with generics [2] and F-bounded polymorphism [7],
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THE ESSENCE OF LIGHTWEIGHT FAMILY POLYMORPHISM

although this programming requires a lot of boilerplate code for complicated pa-
rameterizations. It makes us wonder if our proposal is merely a convenient syntactic
sugar for programming using Java-style generics—in other words, does our proposal
have any essential advantages?

Our answer to the question is that the proposed features can be considered
mostly as a syntactic sugar for the boilerplate code which would be required with
Java generics, but lightweight family polymorphism has an essential advantage in
self typing over Java generics—we can give more precise types to this (the self
reference).

In this paper, we rigorously derive the answer above. Furthermore, we wish to
propose a language feature for the target language to remedy the disadvantage in
self typing. For these purposes, we give a formal translation, which changes only
type declarations, from .FJ into an extension of Featherweight GJ [12] with self
type variables, which we propose in this paper. The reason why we restrict the
translation to change only type declarations—that is, no typecasts or executable
code such as method declarations can be added—is that we aim to expose the
similarity and difference of typing schema between the two languages. Self type
variables, which allow the type of this to be a type variable, are essential for
the translation to preserve typing. Without them, program fragments that have
a certain form involving this would be ill typed after translation.1 Therefore, we
claim that the features in .FJ can be considered as a syntactic sugar and that self
type variables are a language mechanism to bridge the essential gap between .FJ
and Featherweight GJ in self typing. To support this claim rigorously, we show that
Featherweight GJ with self type variables enjoys type soundness and the formal
translation preserves typing and reduction.

We summarize our technical contributions as follows:

• an extension of Featherweight GJ with self type variables, called FGJself ,

• a formal translation from .FJ into FGJself ,

• a type soundness theorem of FGJself , and

• theorems of correctness of the formal translation.

Besides theoretical interest, the translation can be used for an implementation of
lightweight family polymorphism, although there has been another possibility [22]
using erasure [2]. The advantage of the present one is that the translation preserves
the original type information without using typecasts.

Rest of This Article. Section 2 reviews lightweight family polymorphism and
.FJ. Section 3 shows the outline of the translation and proposes self type variables.

1In fact, they could be well typed by using some workarounds [23, 5], but additional executable
code would be inserted in the translation. See Section 5 for details.
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2 LIGHTWEIGHT FAMILY POLYMORPHISM

Section 4 gives FGJself and the formal translation, and proves their properties. Sec-
tion 5 discusses related work. Section 6 concludes.

This article is a revised version of the workshop paper [21]. We simplify the
proof of subject reduction for FGJself (in Appendix C) by referring to Kamina and
Tamai [16], who have proposed a mechanism similar to our self type variables.

2 LIGHTWEIGHT FAMILY POLYMORPHISM

In this section, we briefly review the key features supporting lightweight family
polymorphism and its formal core calculus .FJ through an example of extensible
mutually recursive classes. We would like to refer interested readers to the previous
work [22] for more details.

Programming in Lightweight Family Polymorphism.

Lightweight family polymorphism is realized by nested inheritance2, relative path
types and so on. These features are crucial to support type-safe and extensible
mutually recursive classes so that extension of a family (set of mutually recursive
classes) can yield another family.

Figure 1 shows the running example from [22]. This example features a family
for graphs composed of nodes and edges, and its extending family for graphs in
which each node has a color and each edge has a weight. The weight of an edge
depends on the colors of the two nodes connected to the edge. Type declarations
peculiar to lightweight family polymorphism are colored in red.

First, mutually recursive classes are declared as nested classes in a top-level class.
In Figure 1, class Graph has two nested classes Node and Edge. Hereafter, we use
the notion “family” to refer to nested classes and its enclosing (top-level) class. For
example, family Graph consists of classes Graph, Graph.Node and Graph.Edge. (We
use absolute nested class names3, such as Graph.Node, to specify nested classes in a
particular family.) This class nesting has a special inheritance mechanism. Mutu-
ally recursive classes in a family are extended simultaneously when their enclosing
class is extended. Members in a nested class in a top-level class are inherited by
a nested class of the same name in the derived top-level class. In Figure 1, class
ColorWeightGraph is declared as an extension of class Graph. Therefore, classes
Node and Edge in class ColorWeightGraph inherit members from classes Node and
Edge in class Graph, respectively.

In nested classes, relative path types such as .Node and .Edge are used for mu-
tual references instead of absolute class names. A relative path type refers to a
nested class in the same top-level class and its meaning will change when it is

2Originally coined by Nystrom et al. [18].
3They are called fully qualified names in the Java terminology.
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class Graph {

class Node {

Vector<.Edge> es=new Vector<.Edge>();

void add(.Edge e){ es.add(e); }}

class Edge {

.Node src, dst;

void connect(.Node s, .Node d){

src = s; dst = d; s.add(this); d.add(this);

} } }

class ColorWeightGraph extends Graph {

class Node { Color color; }

class Edge {

int weight;

void connect(.Node s, .Node d){

weight = colorToWeight(s.color, d.color);

super.connect(s, d);

} } }

Graph.Edge e; Graph.Node n1, n2;

ColorWeightGraph.Edge we; ColorWeightGraph.Node cn1, cn2;

e.connect(n1, n2); // 1: OK

we.connect(cn1, cn2); // 2: OK

we.connect(n1, cn2); // 3: compile-time error

e.connect(n1, cn2); // 4: compile-time error

<G extends Graph>

void connectAll(Vector<G.Edge> es, G.Node n1, G.Node n2){

for (G.Edge e: es) e.connect(n1, n2); }

Vector<Graph.Edge> ges; Graph.Node gn1, gn2;

Vector<ColorWeightGraph.Edge> ces; ColorWeightGraph.Node cn1, cn2;

connectAll(ges, gn1, gn2); // 5: OK (G as Graph)

connectAll(ces, cn1, cn2); // 6: OK (G as ColorWeightGraph)

connectAll(ces, gn1, gn2); // 7: compile-time error

Figure 1: Graph and ColorWeightGraph classes and a family-polymorphic method.

inherited to nested classes in a derived top-level class—relative path types in inher-
ited members refer to one another in the derived family, as desired. For example,
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2 LIGHTWEIGHT FAMILY POLYMORPHISM

.Edge in class Graph.Node refers to Graph.Edge. However, when it is inherited
to ColorWeightGraph.Node, it will refer to ColorWeightGraph.Edge. The use of
relative path types benefits the overriding connect() in ColorWeightGraph.Edge.
The parameters s and d refer to ColorWeightGraph.Node since their types are given
.Node. Thus, the field color can be accessed on them without typecasts. In sum-
mary, thanks to relative path types we can prevent mutual references from being
hard-linked to classes in a particular family and can keep their mutual relationship
through family extension. If we wrote the method signature by the absolute class
names Graph.Node, typecasts would be necessary since the signature is not allowed
to change covariantly when the method is overridden in subclasses for type safety.
The languages without a mechanism like relative path types force us to do such
possibly unsafe programming using typecasts.

Absolute class names such as Graph.Edge are used to declare variables or create
objects outside families. When absolute class names are used, relative path types in
the member signatures are resolved to be absolute with the family names. For ex-
ample, in the middle of Figure 1 the variable e of type Graph.Edge has the method
connect() with the parameter type Graph.Node, whereas the variable we of type
ColorWeightGraph.Edge has the method connect() with ColorWeightGraph.Node.
So, the method invocations 1 and 2 are well typed. The method invocation 3 is not
allowed since n1 does not agree with the formal parameter type ColorWeightGraph.
Node. A little surprisingly, the method invocation 4 is not allowed, either, since sub-
typing between nested classes is not allowed for safety, that is, ColorWeightGraph.
Node is not substitutable for Graph.Node, even though there is an inheritance rela-
tion. Therefore, the objects from different families cannot be mixed.

Family-polymorphic methods overcome inconvenience associated with the ab-
sence of subtyping. They can work uniformly over different families and are realized
as parametric methods which have family parameters with their upper bounds.
An example is shown at the bottom of Figure 1. The family-polymorphic method
connectAll() takes as input a vector of edges and two nodes of any family that
extends family Graph such as Graph and ColorWeightGraph. The family names for
es, n1 and n2 are given by the family parameter G, which is (implicitly) instantiated
in order for method invocations to be well typed. For example, in 5 and 6, G is
instantiated to Graph and ColorWeightGraph, respectively. However, there is no
instantiation to make 7 well typed, so it results in a compile-time error.

The essence of lightweight family polymorphism is self typing for mutually re-
cursive classes, as mentioned in Introduction. The self reference this of a nested
class is given a relative path type since the meaning of this changes in subclasses.
For example, this is of type .Edge in Graph.Edge, so it can be used as arguments
to the method invocations s.add() and d.add() in connect(). (If this had type
Graph.Edge in Graph.Edge, then these method invocations would be ill typed since
there is no subtyping between Graph.Edge and .Edge in either direction. In fact,
subtyping between them should not be allowed since the latter can change its mean-
ing through family extension.) The translation in the next section will reveal that
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F, G ::= C | X family names
A, B ::= C | C.C absolute class names

S, T, U ::= F | F.C | .C types
L ::= class C / C {T f; M NL} top-level class declarations
M ::= <X/C>T m(T x){↑e;} method declarations

NL ::= class C {T f; M} nested class declarations
d, e ::= x | e.f | e.<F>m(e) | new A(e) expressions
v ::= new A(v) values

Figure 2: .FJ: Syntax.

self typing is an essential difference from Java generics.

In summary, it is important to declare the signatures of members with relative
path types for type-safe reuse and extension. If nested classes in a family type-check,
it is always safe to resolve their member signatures with any family extending that
family. In other words, members with relative path types are polymorphic over
families.

.FJ: A Formal Core Calculus of Lightweight Family Polymorphism

We formalized the features reviewed above as .FJ, an extension of Featherweight
Java [12]. We defined its syntax, type system and operational semantics, and proved
its properties. Here, we review only the syntax, judgments and properties. See
Appendix A for the typing and reduction rules.

Figure 2 shows the .FJ syntax. The metavariables C, D and E range over (simple)
class names; X and Y range over type variable names; f and g range over field names;
m ranges over method names; x and y range over variables. (We choose the metavari-
ables F and G for family names instead of P and Q, which are used in the original
syntax [22], to avoid confusion since P and Q will be used in Featherweight GJ for
different meanings. For the same reason, we choose NL for nested class declarations
instead of N.) The symbols / and ↑ are read extends and return, respectively.
Although constructor declarations are omitted for simplicity, we assume that every
class has an obvious constructor that takes initial values of all the fields and assigns
them. We put an over-line for a possibly empty sequence. Furthermore, we ab-
breviate pairs of sequences in a similar way, writing “T f;” for “T1 f1;. . . Tn fn;”,
where n is the length of T and f and so on. Sequences of type variables, field dec-
larations, parameter names, method declarations, and nested class declarations are
assumed to contain no duplicate names. We write the empty sequence as • and
denote concatenation of sequences using a comma. Note that the invocation of a
family-polymorphic method requires the actual arguments F in the formal language,
although they are implicitly inferred in Figure 1. In fact, an inference algorithm for
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them has been developed [22]. A class table CT is a mapping from absolute class
names A to (top-level or nested) class declarations. A .FJ program is a pair (CT ,
e) of a class table and an expression.

The main judgments of the .FJ type system are as follows: the subtyping judg-
ment “∆ ` S<:T” is read “S is a subtype of T under the bound environment ∆”;
the type well-formedness judgment “∆; A ` T ok” is read “T is a well-formed type
in (the body of) class A under the bound environment ∆”; the typing judgment for
expressions “∆; Γ; A ` e:T” is read “an expression e has a type T under the bound
environment ∆ and the type environment Γ in the enclosing class A.” Here, a type
environment Γ is a finite mapping from variables to types, written x:T; a bound
environment ∆ is a finite mapping from type variables to their bounds (top-level
classes), written X<:C.

The operational semantics is defined by the reduction relation “e−→e′”, read
“an expression e reduces to an expression e′ in one step”. We write −→∗ for the
reflexive and transitive closure of −→.

The type system of .FJ has been proved sound with respect to the operational
semantics, as the following theorems show.

Theorem 2.1 (.FJ Subject Reduction) If ∆; Γ; A ` e:T and e −→ e′, then
∆; Γ; A ` e′:T′, for some T′ such that ∆ ` T′<:T.

Theorem 2.2 (.FJ Progress) If ∅; ∅; B ` e:A and e is not a value, then e −→ e′,
for some e′.

Theorem 2.3 (.FJ Type Soundness) If ∅; ∅; B ` e : A and e −→∗ e′ with e′ a
normal form, then e′ is a value v with ∅; ∅; B ` v : A′ and ∅ ` A′ <: A.

3 AN OUTLINE OF THE TRANSLATION

In this section, we outline the translation from lightweight family polymorphism to
Java generics. First, we describe the basic ideas of the translation with the example
in Section 2. Although most parts of the example will be well typed after translation
in this approach, we find that some program fragments involving this will not be
well typed. To make all translations well typed, we then propose self type variables
for Java generics. Recall that this translation changes only type declarations, but
does not add any executable code.

Basic Ideas of the Translation

The point of the translation is in how to simulate relative path types with Java
generics. In particular, we need types that represent mutually recursive classes
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class Graph { }

class Graph$Node<Node / Graph$Node<Node,Edge>,

Edge / Graph$Edge<Node,Edge>> {

Vector<Edge> es=new Vector<Edge>();

void add(Edge e){ es.add(e); }

}

class Graph$Edge<Node / Graph$Node<Node,Edge>,

Edge / Graph$Edge<Node,Edge>> {

Node src, dst;

void connect(Node s, Node d){

src = s; dst = d; s.add(this); d.add(this);

} }

class ColorWeightGraph / Graph { }

class ColorWeightGraph$Node<Node / ColorWeightGraph$Node<Node,Edge>,

Edge / ColorWeightGraph$Edge<Node,Edge>>

/ Graph$Node<Node,Edge>{ Color color; }

class ColorWeightGraph$Edge<Node / ColorWeightGraph$Node<Node,Edge>,

Edge / ColorWeightGraph$Edge<Node,Edge>>

/ Graph$Edge<Node,Edge>{

int weight;

void connect(Node s, Node d){

weight = colorToWeight(s.color, d.color); super.connect(s, d);

} }

class Graph$NodeFix / Graph$Node<Graph$NodeFix, Graph$EdgeFix>{..}

class Graph$EdgeFix / Graph$Edge<Graph$NodeFix, Graph$EdgeFix>{..}

<G$Node / Graph$Node<G$Node,G$Edge>,

G$Edge / Graph$Edge<G$Node,G$Edge>, G / Graph>

void connectAll(Vector<G$Edge> es, G$Node n1, G$Node n2){

for (G$Edge e: es) e.connect(n1, n2); }

Figure 3: Translation of the classes and method in Figure 1

and that will change their meanings as classes are extended. Such types can be
realized by type variables in parameterized classes, as pointed by Bruce et al. [5]
and Torgersen [23]. We explain the basic ideas of the translation, by using the
example in the last section.

The generic classes at the top of Figure 3 are the translation of the nested classes
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in Figure 1. Red parts show how types are translated. The classes Node and Edge

in Graph are translated to top-level generic classes Graph$Node and Graph$Edge, in
which the character $ is used to make atomic names from qualified names. These
classes are parameterized by type variables Node and Edge, which substitute for
relative path types .Node and .Edge, respectively. To express extensible mutual
recursion, these type variables are bounded by the classes in which they appear and
the arguments to the bounds are the type variables themselves—in other words,
type variables are F-bounded [7]. Then, a method invocation on such a type vari-
able is given an expected type: for example, the method invocation of s.add() in
connect() of Graph$Edge has the signature Edge→void, in which the type variable
Edge represents the relative path type .Edge.

In the translation of a subfamily, the inheritance relation is made explicit: for
example, ColorWeightGraph$Node<Node,Edge> extends Graph$Node<Node,Edge>.
However, the upper bounds of type variables are refined covariantly. So, the derived
generic classes inherit the members with the same signatures but the type variables
in them have refined upper bounds. As a result, for example, it is legal to access the
fields s.color and d.color in the overriding connect() in ColorWeightGraph$Edge,
without using typecasts, since s and d are of type Node whose upper bound is
ColorWeightGraph$Node, which has color. Although classes are no longer nested,
generic classes from one family will always work together due to the given F-bounded
constraints.

Fixed point classes, non-generic subclasses of these generic classes, have to be
declared for object creation—the generic classes cannot be instantiated since their
type parameters cannot be instantiated with any types that can be composed from
existing class definitions. Fixed point classes correspond to absolute class names in
lightweight family polymorphism. We make their names by adding a suffix Fix to the
generic class names. A fixed point class Graph$NodeFix extends Graph$Node and in-
stantiates the type variables with itself and another fixed point class Graph$EdgeFix,
defined in the middle of Figure 3. (The omitted class bodies contain only con-
structors.) Type variables in types of members inherited from a generic class are
instantiated with the names of the fixed point classes, just as relative path types
are resolved to be absolute when an absolute path type is used. The fixed point
classes ColorWeightGraph$NodeFix and ColorWeightGraph$EdgeFix for the de-
rived family ColorWeightGraph are defined similarly. Note that fixed point classes
in a subfamily are not substitutable for ones in its super family since they are not in
inheritance relations. For example, ColorWeightGraph$NodeFix 6<: Graph$NodeFix.
This fact corresponds to that in lightweight family polymorphism there is no sub-
typing between nested classes.

To translate a family-polymorphic method, which has a family parameter X whose
upper bound is C, we have to simulate types of form X.D. We need types that
can represent the generic classes translated from the upper bound family C and
its subfamilies. Such types can be realized by parameterizing the method with all
generic classes in the translation of family C. Each type X.D is translated to a type
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variable X$D, which is F-bounded. For example, the translation of connectAll() in
Figure 1 is found at the bottom of Figure 3. Types G.Node and G.Edge translate
to G$Node and G$Edge, respectively. The type variables and their upper bounds
that the translation introduces are colored in red. A careful reader may notice that
the type variable G has no connection with G$Node and G$Edge. Nevertheless, the
method body is well typed (and would be, even when it took an argument of type G).
It is because relative path types in .FJ can refer only to sibling classes and cannot
to, say, the enclosing class as is possible in other languages [14, 9]. So, it is sufficient
to represent the connection among nested classes by F-bounded constraints. Note
that X$D must be introduced to the parameterization clause for all nested classes in
the upper bound of X even if some of them do not appear in the method signature.
For example, even if G.Edge did not appear in the signature of connectAll(), the
translated connectAll() would have the same parameterization as that in the figure
since G$Node requires G$Edge to appear in its upper bound.

The actual type argument to a method invocation is translated similarly: if it
is a top-level class name, it will translate to a sequence of the names of the fixed
point classes generated from this top-level class, followed by the top-level class name
itself; if it is a type variable X, it will translate to a sequence of type variables of
form X$C, followed by the type variable itself.

Self Type Variables

Most parts of the program are well typed after the translation described above.
Unfortunately, however, program fragments that have a certain form will not be
well typed since how this is typed in generic classes is different from that in nested
classes in lightweight family polymorphism. In this subsection, we examine this
problem and propose self type variables for Java generics to improve its self typing.

This problem occurs in the translation of a method invocation in which this

is passed to the parameters of relative path types as the arguments. For instance,
s.add(this) and d.add(this) in connect() of Graph$Edge in Figure 3 are, ac-
tually, not well typed, because this has type Graph$Edge<Node,Edge> with the
typing rules of Java generics, but it does not agree with the parameter type Edge,
which is a type variable. However, the type of this should translate to a type
variable so that such translated method invocations will be well typed since this is
given a relative path type.

In this paper, we propose self type variables to modify self typing of Java generics
as a solution to the problem. In the proposal, on the one hand, we allow the type of
this in a generic class to be a type variable, chosen from the F-bounded constraints,
just as the types of other mutual references. On the other hand, we limit subclassing
and instantiation of such a class for safety.

More precisely, if the upper bound of a type variable is the same as the name of
the class, the type variable can be given as the type for this. We call such a type
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variable a self type variable since the self type (the type for this) is represented by
a type variable. For example, Edge is the self type variable in Graph$Edge since, as
the following code shows, the class name (colored in magenta) and the upper bound
(in green) of Edge are the same Graph$Edge<Node,Edge>:

class Graph$Edge<Node / Graph$Node<Node,Edge>,

Edge / Graph$Edge<Node,Edge>> { ..

void connect(Node s, Node d){

... s.add(this); d.add(this); // well typed

} }

As a result, s.add(this) and d.add(this) in connect() become well typed.

For type safety, we limit subclassing and instantiation of such a generic class
that has a self type variable. Otherwise, type safety would be lost. For example,
consider the following class declaration:

class Graph$EdgeFake / Graph$Edge<Graph$NodeFix, Graph$EdgeFix>{..}

which at first looks fine because both arguments to the superclass Graph$Edge sat-
isfy the constraints. However, if this class were allowed, invoking method connect()

on an object of the class would result in an ill-typed expression. For example, as-
sume that fake has type Graph$EdgeFake, and n1 and n2 have type Graph$NodeFix.
Then, the method invocation fake.connect(n1, n2) would produce the method in-
vocations n1.add(fake) and n2.add(fake), which are ill typed since the argument
type Graph$EdgeFake is incompatible with the parameter type Graph$EdgeFix.
(Note that Graph$EdgeFake is not a subtype of Graph$EdgeFix since they are not
in inheritance relation.)

There are two cases when subclassing of a class that has a self type variable is al-
lowed. The first case is that the subclass is a fixed point class such as Graph$EdgeFix—
the extending class instantiates the self type variable of the extended class with
itself. The second case is that the subclass has a self type variable and instan-
tiates the self type variable of the superclass with it as ColorWeightGraph$Node

does. In other words, the self type variable is inherited. Instantiation of a class
that has a self type variable is not allowed regardless of type instantiation. For ex-
ample, Graph$Edge<Graph$NodeFix,Graph$EdgeFix> cannot be instantiated since
Graph$Edge has self type variable Edge.

Subclassing and instantiation of a class that does not have a self type variable
are always allowed as before.

Self type variables offer more flexible self typing than Java generics; even more
flexible self typing is supported in Scala by self type annotations [20]. Although
self types can be arbitrary in Scala, type safety is still guaranteed because of two
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S, T, U ::= X | N types
N, P, Q ::= C<T> non-variable types

L ::= class iopt C<X/N>/N{T f; M} class declarations
M ::= <X/N>T m(T x){↑e; } method declarations

d, e ::= x | e.f | e.<T>m(e) | new N(e) expressions
v ::= new N(v) values

Figure 4: FGJself : Syntax.

requirements: (1) the self type of a class must be a subtype of the self type of its
superclass, (2) a class being instantiated in a new expression must be a subtype of the
self type of the class. Our rules described above correspond to these requirements.

4 FORMALIZATION

In this section, we formalize self type variables as FGJself based on Featherweight
GJ (FGJ) [12] and prove the soundness of its type system. Then, we formalize the
translation from .FJ into FGJself . Finally, we prove that the translation is correct
with respect to typing and reduction.

FGJself : An Extension of Featherweight GJ with Self Type Variables

We give the formal definition of FGJself . The differences from that of FGJ are found
in the syntax and type system, but not in the operational semantics.

Syntax

Figure 4 shows the syntax of FGJself . The difference from the FGJ syntax is found
in a class declaration, in which an optional number i is introduced after keyword
class. This i is used to indicate that the i-th type variable of a generic class is
the self type variable. If i does not appear in a class declaration, we consider the
class to be a usual class, which does not have a self type variable. Our formalization
requires self type variables to be explicitly specified as opposed to the example in
Section 3. Formalizing an inference rule for i would be easy as done in Kamina
and Tamai [16]. There are no other differences from the FGJ syntax except that
typecasts are omitted for simplicity. Note that the meaning of the metavariables is
the same as that in the .FJ syntax. The new metavariables N, P and Q are introduced
to range over non-variable types.

A class table CT is a mapping from class names C to class declarations L. An
FGJself program is a pair (CT , e). In what follows, we assume a fixed class table
CT to simplify the notation.
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The following auxiliary functions are used as in FGJ [12]. A function bound∆(T)
returns the upper bound of type T. A lookup function fields(N) returns a sequence
T f of field names of class N with their types. A lookup function mtype(m, N) returns
the signature, written <Y/P>U→U, of given method and class names. A lookup
function mbody(m<U>, N) returns the method body with formal parameters, written
x.e, of given method and class names. They are defined essentially the same as
those of FGJ; we refer readers to Figure 10 in Appendix B for their definitions.

Type System

A type environment Γ is a finite mapping from variables to types, written x:T. A
bound environment ∆ is a finite mapping from type variables to non-variable types,
written X<:N. Application of type substitution [T/X] is defined in the customary
manner. The main judgments of FGJself consist of one for subtyping “∆ ` S<:T”,
ones for well-formedness (mentioned later), one for expression typing “∆; Γ ` e:T”,
one for method typing “C<X/N> ` M ok”, and one for class typing “` L ok”. Although
FGJ has a single well-formedness judgment “∆ ` T ok” for all types, we distinguish
the well-formedness judgments for upper bounds “∆; X ` N ok-bound” and for super-
classes “C<X/N> ` N ok-superclass” from “∆ ` T ok” for other types, namely the field
types, the return and parameter types of methods, the type arguments to method
invocations, and the class names for object creations. The judgment for correct class
instantiation “∆ ` N ok-inst” is given to avoid defining the duplicate rules for the
three well-formedness judgments above. We abbreviate a sequence of judgments in
the following way: ∆ ` T1 ok, . . . , ∆ ` Tn ok to ∆ ` T ok; ∆; X1 ` N1 ok-bound, . . . ,
∆; Xn ` Nn ok-bound to ∆; X ` N ok-bound; C<X/N> ` M1 ok, . . . , C<X/N> ` Mn ok to
C<X/N> ` M ok. The rules for subtyping relation and expression typing, which are
essentially the same as those of FGJ [12], are shown in Appendix B.

Figure 5 shows well-formedness rules and typing rules for methods and classes.
In the figure, we use an auxiliary function selftype(C<T>), which returns the self type
of non-variable type C<T>, defined as follows:

selftype(C<T>) = C<T> if class C<X/N>/N{..}
selftype(C<T>) = Ti if class i C<X/N>/N{..}

Subtyping. The subtyping relation is the reflexive and transitive closure of the
inheritance relation / (extends), as in FGJ [12].

Well-formedness. The well-formedness rules for types, upper bounds and super-
classes are similar in that Object is always a well-formed type, upper bound and
superclass. However, their difference can be found in the case of class types C<T>.
All rules require that the class type is correctly instantiated, derived by (WF-Inst),
but each has a characteristic premise about self type variables.

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 79



THE ESSENCE OF LIGHTWEIGHT FAMILY POLYMORPHISM

Correct Class Instantiation:

class iopt C<X/N> / N {...}

∆ ` T ok ∆ ` T <: [T/X]N

∆ ` C<T> ok-inst
(WF-Inst)

Well-formed Types:

∆ ` Object ok
(WFT-Object)

X ∈ dom(∆)

∆ ` X ok
(WFT-Var)

selftype(C<T>) = C<T>

∆ ` C<T> ok-inst

∆ ` C<T> ok
(WFT-Class)

Well-formed Upper Bounds:

∆; X ` Object ok-bound
(WFB-Object)

selftype(C<T>) = Ti = X

∆ ` C<T> ok-inst

∆; X ` C<T> ok-bound
(WFB-ClassSelf)

selftype(C<T>) = C<T>

∆ ` C<T> ok-inst

∆; X ` C<T> ok-bound
(WFB-Class)

Well-formed Superclasses:

C<X/N> ` Object ok-superclass
(WFS-Object)

selftype(D<S>) = Si = C<X>

X<:N ` D<S> ok-inst

C<X/N> ` D<S> ok-superclass
(WFS-ClassFix)

selftype(C<X>) = Xi = selftype(D<S>)
X<:N ` D<S> ok-inst

C<X/N> ` D<S> ok-superclass
(WFS-ClassSelf)

selftype(D<S>) = D<S>

X<:N ` D<S> ok-inst

C<X/N> ` D<S> ok-superclass
(WFS-Class)

Method Typing:

∆ = X<:N, Y<:P ∆ ` T, T ok
∆; Y ` P ok-bound

∆; x:T, this : selftype(C<X>) ` e0:S

∆ ` S<:T class iopt C<X/N>/N{..}
override(m, N, <Y/P>T→T)

C<X/N> ` <Y/P>T m(T x){↑e0;} ok
(GT-Method)

Class Typing:

∆ = X<:N C<X/N> ` N ok-superclass
∆ ` T ok ∆; X ` N ok-bound
C<X> = Ni C<X/N> ` M ok

` class i C<X/N>/N{T f; M} ok
(GT-ClassSelf)

∆ = X<:N C<X/N> ` N ok-superclass
∆ ` T ok ∆; X ` N ok-bound

C<X/N> ` M ok

` class C<X/N>/N{T f; M} ok
(GT-Class)

Figure 5: FGJself : Well-formedness rules and typing rules for methods and classes.

A class type C<T> is a well-formed type if class C does not have a self type variable
(WFT-Class). The upper bound C<T> of a type variable X, where Ti is the self type
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of C<T>, is well-formed under bound environment ∆ if X is Ti (WFB-ClassSelf).
That is, X is F-bounded by C<T>. There are two cases (WFS-ClassFix, WFS-
ClassSelf) for a superclass D<S> of C<X/N>, where Si is the self type of D<S>, to
be well formed. The former is when Si is the extending class C<X>, meaning that
C<X> is a fixed point class of D<S>. The latter is when Si is the self type variable Xj

of C<X>, meaning that the self type variable is inherited correctly.

Expression Typing. As mentioned before, the typing rules for expressions are
the same as those of FGJ [12]. See Figure 10 in Appendix B for their definitions.
Since the rules for well-formed types are slightly changed, it may be worthwhile
noting that the rule (GT-New) for object creations new N(e) requires that N is
a well-formed type (∆ ` N ok), meaning that classes that have self type variables
cannot be instantiated as mentioned in Section 3.

Method Typing. The judgment “C<X/N> ` M ok” is read “a method declaration
M in class iopt C<X/N>/N{..} is ok.” The rule (GT-Method) checks that the
method body is well typed under the bound environment and type environment in
which the type of this is selftype(C<X>). The premise using override checks that
the method correctly overrides (if it does) the method of the same name in the
superclass with the same signature (modulo renaming of type variables) in which
covariant overriding of the return type is allowed.

Class Typing. The judgment “` L ok” is read “a class declaration L is ok.” There
are two rules, one for classes with self type variables (GT-ClassSelf) and one for
classes without them (GT-Class). Both rules require that superclasses are ok. In
the rule GT-ClassSelf, where the class declaration is class i C<X/N>/N{T f; M},
the self type variable is Xi as indicated by i. The rule checks that Xi is a true self type
variable for class C<X> i.e., the upper bound Ni of Xi equals the class name C<X>. For
example, this typing rule can be applied to class declaration of Graph$Node, with
now the number 1 after class, in Section 3:

. . .
Graph$Node<Node,Edge> = Graph$Node<Node,Edge>

` class 1 Graph$Node<Node / Graph$Node<Node,Edge>,

Edge / Graph$Edge<Node,Edge>> { .. } ok

The equality between the class name (colored in magenta) and the upper bound (in
green) of the first type variable Node means that Node is truly the self type variable
of class Graph$Node.

A class table CT is ok if all its definitions are ok.
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fields(N) = T f

new N(e).fi −→ ei

(GR-Field)

mbody(m<U>, N) = x.e0

new N(e).<U>m(d) −→ [d/x, new N(e)/this]e0

(GR-Invk)

Figure 6: FGJself : Reduction.

Operational Semantics

The operational semantics is given by the reduction relation e−→e′. The rules are
the same as those of FGJ [12], defined in Figure 6. We write [d/x, e/y]e0 for the
expression obtained from e0 by replacing x1 with d1, . . . , xn with dn, and y with e.
Two reduction rules, one for field access and one for method invocation, are defined
straightforwardly. The reduction rules may be applied at any point in an expression,
so we also need the obvious congruence rules (if e −→ e′ then e.f −→ e′.f, and the
like), omitted here. We write −→∗ for the reflexive and transitive closure of −→.

Type Soundness

The type system of FGJself is sound with respect to the operational semantics. Type
soundness is proved in the standard manner via subject reduction and progress [26,
12].

Theorem 4.1 (Subject Reduction) If ∆; Γ ` e:T and e −→ e′, then ∆ ` T′ <:

T, for some T′ such that ∆; Γ ` e′:T′.

Proof. See Appendix C. �

Theorem 4.2 (Progress) If ∅; ∅ ` e:T and e is not a value, then e−→e′, for some
e′.

Proof. Similar to that for FGJ [12]. �

Theorem 4.3 (Type Soundness) If ∅; ∅ ` e:T and e−→∗e′ with e′ a normal
form, then e′ is a value v with ∅; ∅ ` v:T′ and ∅ ` T′<:T.

Proof. Immediate from Theorems 4.1 and 4.2. �

A Formal Translation from .FJ into FGJself

Figure 7 shows the definition of the formal translation. As mentioned before, this
translation changes only type declarations. The translation of sequences is abbrevi-
ated in a straightforward way. For example, “|F.E|” stands for “|F.E1|, . . . ,|F.En|”,
where n is the length of E; “|F|C” for “|F1|C1, . . . ,|Fn|Cn”, and so on.
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Translation of Types:

|C| = C |C.E| = C$EFix

|X| = X |X.E| = X$E

|.E| = E

Definition of classes:

classes(Object) = •

class C/D{ .. NL }

classes(D) = E′

classes(C) =
E′, {E | E 6∈ E′, class E{..} ∈ NL}

Translation of Type Arguments:

classes(C) = E

|F|C = |F.E|, |F|
(Tr-Arg)

Translation of Expressions:

|x|∆,Γ,A = x (Tr-Var)

|e0.fi|∆,Γ,A = |e0|∆,Γ,A.fi

(Tr-Field)

∆; Γ; A `.FJ e0:T0

mtype .FJ(m, bound∆(T0@A))
= <X/C>U→U0

|e0.<F>m(e)|∆,Γ,A

= |e0|∆,Γ,A.<|F|C>m(|e|∆,Γ,A)

(Tr-Invk)

|new A0(e)|∆,Γ,A = new |A0|(|e|∆,Γ,A)

(Tr-New)

Definition of Ceiling:

dC.Ee =

{
C$E if class E{..} ∈ NL

dD.Ee otherwise

where class C/D{..NL}

Translation of Methods:

classes(C) = E

|X/C| = |X.E1|/dC.E1e<|X.E|>, . . . ,
|X.En|/dC.Ene<|X.E|>,X/C

(Tr-ParaMethod)

Γ = x:T, this:thistype(A) ∆ = X<:C

|<X/C>T0 m(T x){↑e0; }|A
= <|X/C|>|T0| m(|T| x){↑|e0|∆,Γ,A;}

(Tr-Method)

Translation of Classes:

classes(C) = E

|/C| = |.E1|/dC.E1e<|.E|>, . . . ,
|.En|/dC.Ene<|.E|>

(Tr-ParaClass)

class C/D{..} classes(C) = E

classes(D) = E′ Ei ∈ E′

|class Ei {T f; M}|C =
class i C$Ei<|/C|>/dD.Eie<|.E′|>{

|T| f;|M|C.Ei
}

(Tr-NClass1)

class C/D{..} classes(C) = E

classes(D) = E′ Ei 6∈ E′

|class Ei {T f; M}|C =
class i C$Ei<|/C|>/Object{

|T| f;|M|C.Ei
}

(Tr-NClass2)

classes(C) = E

fix (C) = class |C.E1|/dC.E1e<|C.E|>{}
. . . class |C.En|/dC.Ene<|C.E|>{}

(Fix)

|class C/D{T f; M NL}|
= class C/D {|T| f;|M|C} |NL|C

fix (C)
(Tr-TClass)

Figure 7: Translation of types, expressions, methods and classes.
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Translation of Types

Translation |T| of type T is defined at the top of the left column. Note that the two
rules in the first row show that the result is a class name, whereas the other three
rules show that the result is a type variable. Recall that $ is a character used to
make an atomic name.

Translation of Expressions

We define an auxiliary function classes(C) = E to collect all names E of nested classes
in a family C including those of inherited ones.

Translation of an expression e requires bound environment ∆, type environment
Γ and enclosing class A as auxiliary information and is written |e|∆,Γ,A. The trans-
lation of a variable reference and field access is straightforward. The translation of
an object creation requires the translation of the class name.

Translation of a method invocation e0.<F>m(e) requires the translations |F|C
of the type arguments F besides the translations of subexpressions e0 and e. As
mentioned in the previous section, the translation |Fi|Ci

of each type argument Fi

with respect to a top-level class Ci is a sequence of fixed point classes if Fi is a
top-level class or one of types of form X$D if Fi is a type variable. Both cases require
the nested class names in class Ci to make the sequence. Here, class Ci is the upper
bound of Xi, the formal parameter corresponding to the argument Fi, and is obtained
from the signature of m() in .FJ by using the lookup function mtype .FJ on the type
T0 of the receiver e0. (bound∆(T0@A) stands for the class name to look up. When
T0 is a relative path type, it is resolved with A (by T0@A) and, when T0 contains
a type variable, the type variable is replaced with its upper bound, to obtain an
absolute class name. See Appendix A for their definitions.) The sequence is derived
by the rule (Tr-Arg), in which classes is used. For example, |CWGraph|Graph is a
sequence of CWGraph$NodeFix, CWGraph$EdgeFix, CWGraph. (CWGraph stands for
ColorWeightGraph.)

Ceiling of Absolute Class Names

The translation of methods and classes is a little involved since there can exist nested
classes that do not appear explicitly as class declarations but it is legal in .FJ to
mention an absolute type corresponding to such implicit classes. This situation
arises when we do not redefine a nested class in a subfamily. The type system will
assume that the subfamily has an empty nested class, which lacks field and method
declarations. For example, consider the following code:

class C { class E1 {...} class E2 {...} }

class D / C { class E1 {...} }
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Class E2 is not redefined in class D, but we can create the object of type D.E2.

Such implicit classes raise a problem in the translation. If we simply applied the
translation strategy in Section 3 to the code above, the translation would be:

class 1 C$E1<E1 / C$E1<E1,E2>, E2 / C$E2<E1,E2>>{...}

class 2 C$E2<E1 / C$E1<E1,E2>, E2 / C$E2<E1,E2>>{...}

class 1 D$E1<E1 / D$E1<E1,E2>, E2 / D$E2<E1,E2>> / C$E1<E1,E2> {...}

Note that the F-bounded constraints of class D$E1<E1,E2> requires the presence of
class D$E2<E1,E2>, which is absent, however. So, class D$E1<E1,E2> is not a legal
declaration, meaning that the translation fails.

One way to deal with such references to missing classes is to generate empty
generic classes corresponding to the implicit classes. In this approach, an empty
class D$E2<E1,E2> would be added to the translation above.

We instead take another approach to save such generation. We replace the
missing class names caused by implicit classes with the names of the generic classes
translated from the nearest explicit superclasses of the implicit classes. For example,
in this approach, the class declaration for D$E1<E1,E2> will be:

class 1 D$E1<E1 / D$E1<E1,E2>, E2 / C$E2<E1,E2>> / C$E1<E1,E2> {...}

Note that the upper bound of E2 is here C$E2<E1,E2> (colored in red above) instead
of D$E2<E1,E2>. We introduce the notion of the ceiling of an absolute class name to
refer to such a nearest explicit superclass name. The formal definition of the ceiling
dC.Ee of C.E can be found at the bottom of the left column in Figure 7. Ceilings
will be used to determine upper bounds and superclass names in the translation of
methods and classes.

We cannot, however, save generating the fixed point classes corresponding to
implicit classes since they are not substitutable for ones from another family as
mentioned before. That is, D$E2Fix is always defined regardless of the presence of
the class declaration for D.E2 in the source program.

Translation of Methods

Translation |M|A of a method declaration M (= <X/C>T0 m(T x){↑e0;}) in a class A

consists of the translation of the signature and that of the body. Translation |Xi/Ci|
of each type parameterization Xi/Ci is a sequence of pairs of a type variable and
its upper bound, whose class name is obtained by ceiling. Translation of |e0|∆,Γ,A

of a method body e0 is the one derived under bound environment from the type
parameterization, type environment from the formal parameters, and enclosing class
A. Note that thistype(A) is a .FJ function, which returns the type for this in class
A, defined as follows: thistype(C.E) = .E; thistype(C) = C.
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Translation of Classes

Translation |NL|C of a nested class declaration NL in a top-level class C is a generic
class with a self type variable consisting of a set of F-bounded constraints |/C| and
the translation of the field and method declarations. A set of F-bounded constraints
|/C| is defined similarly to |X/C|. The difference is in how to make the names of type
variables: a relative path type translates to a type variable of the same name in
which “.” is removed. If a nested class does not have a superclass, the superclass
of the translation will be Object. Otherwise it will be another generic class with a
self type variable.

Translation |L| of a top-level class declaration L consists of the translations of its
nested classes, the fixed point classes, and the class declaration in which the field
and method declarations are translated and the nested classes are removed. The
function fix (C) is defined to generate a sequence of fixed point classes C$E1Fix . . .
C$EnFix for nested classes E in top-level class C. The generated classes have bodies
that are empty except constructor declarations. Recall that fixed point classes are
generated for all nested classes whether they are implicitly inherited or explicitly
redefined in subfamilies.

Correctness

Now, we prove that the translation preserves typing and reduction. Note that one-
step reduction in .FJ corresponds to also one-step reduction in FGJself , due to the
way the translation is defined. The translation |∆| of a bound environment ∆ is
defined similarly to |X/C|. We write `FGJ and −→FGJ for the judgment and reduction
relation of FGJself , respectively.

Theorem 4.4 (Translation Preserves Typing) If a .FJ class table CT is ok,
then by using the typing rules of FGJself |CT| is ok and

1. if ∆; Γ; C ` e:T, then |∆|; |Γ| `FGJ |e|∆,Γ,C:|T|.

2. if ∆; Γ; C.E ` e:T, then |∆|, |/C|; |Γ| `FGJ |e|∆,Γ,C.E:|T|.

Theorem 4.5 (Translation Preserves Reduction) If ∆; Γ; A ` e:T and e−→e′,
then |e|∆,Γ,A−→FGJ |e′|∆,Γ,A.

5 RELATED WORK

Extensible Mutually Recursive Classes with Generics

Encoding extensible mutually recursive classes with generics has been an active topic
for a long time. When Wadler discussed the expression problem [25], his original
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solution using generics turned out to be untypable due to the same problem of
self typing as ours. He pointed out as the reason that fixed point classes are not
really fixed points: for instance, Graph$EdgeFix is not equivalent to Graph$Edge<

Graph$NodeFix, Graph$EdgeFix> since the latter is not a subtype of the former.
Self type variables amount to considering these two types to be equivalent in type-
checking: we can consider that the type system implicilty inserts a downcast from
the ordinary self type Graph$Edge<Node, Edge> to a subtype Edge before this. This
implicit downcasting is safe thanks to the restriction on instantiation and subclassing
of classes with self type variables.

There is a workaround to make all translated programs well typed with the
typing rules of FGJ without any extension like self type variables. The basic idea
is to introduce an expression that will refer to the same object as this, but whose
type is a type variable. We describe two approaches. One by Torgersen [23] is to
introduce an extra argument which is assumed to accept the receiver object, for
example:

void connect(Node s, Node d, Edge self) { ... s.add(self); ... }

e.connect(n1, n2, e);

Another one by Bruce, Odersky, and Wadler [5] is to declare abstract methods which
will be implemented in fixed point classes so that they simply return this, as follows:

class Graph$Edge<Node / Graph$Node<Node,Edge>,

Edge / Graph$Edge<Node,Edge>>{

abstract Edge getThis();

void connect(Node s, Node d){ .. s.add(getThis()); ... }

}

class Graph$EdgeFix / Graph$Edge<Graph$NodeFix, Graph$EdgeFix>{

Graph$EdgeFix getThis(){ return this; }

}

Both approaches insert additional code (colored in red). Since the addition contains
executable code, the run-time behavior changes: the former requires an evaluation
of the extra argument and the latter requires an extra method invocation.

Other Mechanisms for Flexible Self Typing

LOOJ [4] is another variant of Java 5.0 extended with a built-in type ThisClass,
which represents self types. Its meaning changes when moving to subclasses as that
of a relative path type changes. Since this is of type ThisClass in LOOJ4, one may

4More precisely, this is of type @ThisClass representing a narrower type, but it does not
matter in this argument.
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expect that a translation to LOOJ will be successful. However, although useful in
a self-recursive class, ThisClass will not help us, in the mutually recursive setting,
since the syntax does not allow ThisClass to appear in the upper bounds of type
variables. So the following code is not allowed.

class Graph$Node<Edge / Graph$Edge<ThisClass>> {..}

class Graph$Edge<Node / Graph$Node<ThisClass>> {..}

In Scala [20], we can give self references arbitrary types explicitly as mentioned
before. This mechanism is much more flexible than our extension, in which only
type variables can be chosen for explicit self types. Chin et al. [8] have proposed a
similar mechanism in an extension of variant parametric types [13].

Integration with Other Typing Mechanisms

Although self type variables are not as powerful as arbitrary self types in Scala, we
feel that they are a lightweight yet useful extension of generics. Here, we give a
short discussion how they can be integrated into other typing mechanisms.

Self type variables are easily integrated with Java’s interfaces and wildcards [24].
An interface type can be the upper bound of a self type variable in a generic class
if the class implements the interface. When the class is fixed, the fixed point class
will have to implement a fixed point interface of the interface.

Self type variables are applicable to variants of Featherweight GJ, provided that
F-bounded polymorphism is supported. A good example is FGJ# [16], which sup-
ports a similar mechanism, namely type inference for this, although it is invented
independently. We find that the type system has a flaw—it allows unsafe subclass-
ing and instantiation of a generic class whose self type is a type variable—resulting
in failure of type soundness. It can be easily modified by adding a few restrictions.

Self type variables can be adapted to FGJω [1], an extension of FGJ with type
constructor parameterization. The example for simulating generic data-types with
binary methods is:

class Collection<Self<Z> / Collection<Self, Z>, X>{
Collection<Self, X> append(Self<X> that){ .. }

<Y> Collection<Self, Y> flatMap(Function<X, Self<Y>> f){ .. }
}

Self is a type constructor variable. Its application to (any) Z yields the type
Self<Z>, which has an upper bound Collection<Self,Z>. The type for this

is straightforwardly of type Collection<Self,X>. However, Self<X> is more ap-
propriate.
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6 CONCLUSION

We have shown that the formal translation from .FJ into FGJself . We have proved
that the type system of FGJself is sound and the translation is correct.

The translation has clarified that the features of lightweight family polymor-
phism, namely nested classes, relative/absolute path types and family-polymorphic
methods, can be considered as a syntactic sugar for a lot of complicated parame-
terizations and fixed point classes, which would be required in Java generics. The
translation has also clarified that lightweight family polymorphism provides bet-
ter self typing for mutually recursive classes than Java generics, for which we have
proposed self type variables to remedy the disadvantage of self typing.

We conclude that lightweight family polymorphism provides not only a set of
convenient notations but also a more suitable type system, in particular for self
typing, than Java generics for extensible mutually recursive classes.
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A .FJ: DEFINITIONS

In this appendix, we show the definitions of .FJ. Figure 8 shows the definitions of
subtyping, type well-formedness and expression typing. Figure 9 shows the defini-
tions of method and class typing, and reduction. (The obvious congruence rules for
reduction are omitted.) In the figures, m 6∈ M (and E 6∈ NL) means the method of
name m (and the nested class of name E, respectively) does not exist in M (and NL,
respectively). Application of type substitution [F/X] is defined in the customary man-
ner. We abbreviate a sequence of judgments in the following way: ∆; A ` T1 ok,..,
∆; A ` Tn ok to ∆; A ` T ok; ∆; Γ; A ` e1:T1,.., ∆; Γ; A ` en:Tn to ∆; Γ; A ` e:T;
A ` M1 ok,.., A ` Mn ok to A ` M ok; ∆ ` S1<:T1,.., ∆ ` Sn<:Tn to ∆ ` S<:T;
C ` NL1 ok,.., C ` NLn ok to C ` NL ok.

We need four more definitions. We write bound∆(T) for the upper bound of T with
respect to ∆, defined by: bound∆(A) = A, bound∆(X) = ∆(X) and bound∆(X.C) =
∆(X).C. The resolution T@S of T at S, required for expression typing, intuitively
denotes the class name that T refers to in a given class S. For exmpale, it is used
to determine which class to look up for fields or methods when a receiver’s type
is relative: fields and mtype require absolute path types as arguments. The def-
inition is: .D@F.C = F.D; .D@.C = .D; F@T = F; F.C@T = F.C. The only
interesting case is the first clause: it means that a relative path type .D in F.C

refers to F.D. The functions thistype(A) and superclass(A) are defined as follows:
thistype(C) = C; thistype(C.E) = .E; superclass(C) = D; superclass(C.E) = D.E

where class C/D{..}.

B FGJself : OMITTED DEFINITIONS

Figure 10 shows the definitions of the auxiliary functions, subtyping and expression
typing of FGJself . We abbreviate a sequence of judgments in the following way:
∆; Γ ` e1:T1,.., ∆; Γ ` en:Tn to ∆; Γ ` e:T; ∆ ` S1<:T1,.., ∆ ` Sn<:Tn to ∆ ` S<:T.
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B FGJSELF: OMITTED DEFINITIONS

Subtyping:

∆ ` T <: T

∆ ` X <: ∆(X)

∆ ` T <: Object

class C / D {...}

∆ ` C <: D

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U

Type Well-formedness:

∆; A ` Object ok

bound∆(F) ∈ dom(CT )

∆; A ` F ok

C = bound∆(F)
class C / D{..class E {..} ..}

∆; A ` F.E ok

C = bound∆(F) class C / D{..NL}
E 6∈ NL ∆; A ` D.E ok

∆; A ` F.E ok

∆; C.D ` C.E ok

∆; C.D ` .E ok

Field Lookup:

fields(Object) = •

class C / D{T f;..} fields(D) = U g

fields(C) = U g, T f

fields(Object.C) = •

class C / D{..class E{T f;..}..}

fields(D.E) = U g

fields(C.E) = U g, T f

class C / D {...NL} E 6∈ NL

fields(D.E) = U g

fields(C.E) = U g

Method Type Lookup:

class C / D {...M...}

<X/C>T0 m(T x){ ↑ e; } ∈ M

mtype(m, C) = <X / C>T→T0

class C / D {...M...} m 6∈ M

mtype(m, D) = <X / C>T→T0

mtype(m, C) = <X / C>T→T0

class C / D {..class E {..M}..}

<X/C>T0 m(T x){ ↑ e; } ∈ M

mtype(m, C.E) = <X / C>T→T0

class C / D {..class E {..M}..}

m 6∈ M mtype(m, D.E) = <X / C>T→T0

mtype(m, C.E) = <X / C>T→T0

class C / D {...NL} E 6∈ NL

mtype(m, D.E) = <X / C>T→T0

mtype(m, C.E) = <X / C>T→T0

Expression Typing:

∆; Γ; A ` x : Γ(x)

∆; Γ; A ` e0 : T0

fields(bound∆(T0@A)) = T f

∆; Γ; A ` e0.fi : Ti@T0

∆; Γ; A ` e0 : T0

mtype(m, bound∆(T0@A)) = <X / C>U→U0

∆; A ` F ok ∆ ` F <: C

∆; Γ; A ` e : T ∆ ` T <: ([F/X]U)@T0

∆; Γ; A ` e0.<F>m(e) : ([F/X]U0)@T0

∆; A ` A0 ok fields(A0) = T f

∆; Γ; A ` e : U ∆ ` U <: (T@A0)

∆; Γ; A ` new A0(e) : A0

Figure 8: .FJ: Subtyping, type well-formedness and expression typing.
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Method Typing:

∆ = X<:C

∆; x : T, this : thistype(A); A ` e0:U0

∆ ` U0 <: T0 ∆; A ` T0, T, C ok
mtype(m, superclass(A)) = <Y / D>S→S0

implies (X, C, T, T0) = (Y, D, S, S0)

A ` <X / C>T0 m(T x){ ↑ e0;} ok

Class Typing:

C.E ` M ok ∅; C.E ` T ok

C ` class E {T f; M} ok

C ` M ok C ` NL ok ∅; C ` T, D ok

` class C / D{T f; M NL} ok

Method Body Lookup:

class C / D{...M...}
<X / C>T m(T x){ ↑ e0; } ∈ M

mbody(m<F>, C) = x.[F/X]e0

class C / D {...M...} m 6∈ M

mbody(m<F>, C) = mbody(m<F>, D)

class C / D {...NL}

class E {...M} ∈ NL

<X / C>T m(T x){ ↑ e0; } ∈ M

mbody(m<F>, C.E) = x.[F/X]e0

class C / D {...NL} E 6∈ NL

mbody(m<F>, C.E) = mbody(m<F>, D.E)

class C / D {...NL}

class E {...M} ∈ NL m 6∈ M

mbody(m<F>, C.E) = mbody(m<F>, D.E)

Computation:

fields(A) = T f

new A(e).fi −→ ei

mbody(m<F>, A) = x.e0

new A(e).<F>m(d)

−→ [d/x, new A(e)/this]e0

Figure 9: .FJ: Method and class typing, and reduction.

C PROOF OF THEOREM 4.1

In this appendix, we prove the subject reduction theorem of FGJself . The structure of
the proof is similar to that of FGJ [12], beginning with weakening lemmas, followed
by various substitution lemmas, showing the properties of the lookup functions.
Since self type variables are a small extension, it is sufficient to update a lemma to
Lemma C.9 and add Lemma C.10. Other lemmas are unchaged and their proofs are
omitted. Refer to the proofs of FGJ [12] for the omitted proofs. In what follows,
the metavariable Z (and V) ranges over type variables (and types, respectively).

Lemma C.1 (Weakening) Suppose ∆, X<:N ` N ok and ∆ ` U ok. (1) If ∆ `
S<:T, then ∆, X<:N ` S<:T. (2) If ∆ ` S ok-inst, then ∆, X<:N ` S ok-inst. (3) If
∆; Γ ` e:T, then ∆; Γ, x:U ` e:T and ∆, X<:N; Γ ` e:T.

Lemma C.2 (Type Substitution Preserves Subtyping) If ∆1, X<:N, ∆2 ` S <:

T and ∆1 ` U <: [U/X]N with ∆1 ` U ok and none of X appearing in ∆1, then
∆1, [U/X]∆2 ` [U/X]S <: [U/X]T.
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C PROOF OF THEOREM 4.1

Bound of type:

bound∆(X) = ∆(X)
bound∆(N) = N

Subtyping:

∆ ` T <: T (S-Refl)

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U

(S-Trans)

∆ ` X <: ∆(X) (S-Var)

class iopt C<X/N>/N{...}

∆ ` C<T> <: [T/X]N
(S-Class)

Field Lookup:

fields(Object) = •
(F-Object)

class iopt C<X/N>/N{S f; M}

fields([T/X]N) = U g

fields(C<T>) = U g, [T/X]S f

(F-Class)

Method Type Lookup:

class iopt C<X/N>/N{S f; M}

<Y/P>U m(U x){ ↑ e;} ∈ M

mtype(m, C<T>) = [T/X](<Y/P>U→U)
(MT-Class)

class iopt C<X/N>/N{S f; M} m 6∈ M

mtype(m, C<T>) = mtype(m, [T/X]N)
(MT-Super)

Method Body Lookup:

class iopt C<X/N>/N{S f; M}

<Y/P>U m(U x){ ↑ e0;} ∈ M

mbody(m<V>, C<T>) = x.[T/X, V/Y]e0

(MB-Class)

class iopt C<X/N>/N{S f; M} m 6∈ M

mbody(m<V>, C<T>)
= mbody(m<V>, [T/X]N)

(MB-Super)

Valid Method Overriding:

mtype(m, N) = <Z/P>U→U0 implies
(Y,Q,T) = (Z, P,U) and Y <: Q ` T0 <: U0

override(m, N, <Y/Q>T→T0)

Expression Typing:

∆; Γ ` x:Γ(x) (GT-Var)

∆; Γ ` e0:T0 fields(bound∆(T0)) = T f

∆; Γ ` e0.fi:Ti

(GT-Field)

∆; Γ ` e0:T0

mtype(m, bound∆(T0)) = <Y/P>U→U

∆ ` V ok ∆ ` V <: [V/Y]P
∆; Γ ` e:S ∆ ` S <: [V/Y]U

∆; Γ ` e0.<V>m(e):[V/Y]U
(GT-Invk)

∆ ` N ok fields(N) = T f

∆; Γ ` e:S ∆ ` S <: T

∆; Γ ` new N(e):N

(GT-New)

Figure 10: FGJself : Subtyping, auxiliary functions, and expression typing.

Lemma C.3 (Type Substitution Preserves Correct Class Instantiation) If
∆1, X<:N, ∆2 ` T ok-inst and ∆1 ` U <: [U/X]N with ∆1 ` U ok-inst and none of X
appearing in ∆1, then ∆1, [U/X]∆2 ` [U/X]T ok-inst.
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Lemma C.4 Suppose ∆1, X<:N, ∆2 ` T ok and ∆1 ` U <: [U/X]N with ∆1 ` U ok
and none of X appearing in ∆1. Then, ∆1, [U/X]∆2 ` bound∆1, [U/X]∆2

([U/X]T) <:

[U/X](bound∆1,X<:N,∆2
(T)).

Lemma C.5 If ∆ ` S <: T and fields(bound∆(T)) = T f, then fields(bound∆(S))
= S g and Si = Ti and gi = fi for all i ≤ |f|.

Lemma C.6 If ∆ ` T ok and mtype(m, bound∆(T)) = <Y/P>U→U0, then for any S

such that ∆ ` S <: T and ∆ ` S ok, we have mtype(m, bound∆(S)) = <Y/P>U→U0
′

and ∆, Y<:P ` U0
′ <: U0.

Lemma C.7 (Type Substitution Preserves Typing) If ∆1, X<:N, ∆2; Γ ` e:T

and ∆1 ` U <: [U/X]N where ∆1 ` U ok and none of X appears in ∆1, then ∆1, [U/X]∆2;
[U/X]Γ ` [U/X]e:S for some S such that ∆1, [U/X]∆2 ` S <: [U/X]T.

Lemma C.8 (Term Substitution Preserves Typing) If ∆; Γ, x : T ` e:T and
∆; Γ ` d:S where ∆ ` S <: T, then ∆; Γ ` [d/x]e:S for some S such that ∆ ` S <: T.

Lemma C.9 If mtype(m, C<T>) = <Y/P>U→U and mbody(m<V>, C<T>) = x.e0 where
∆ ` V ok and ∆ ` V <: [V/Y]P and ∆ ` C<T> ok-inst, then there exist some N and S

such that ∆ ` C<T> <: N and ∆ ` N ok-inst and ∆ ` S <: [V/Y]U and ∆ ` S ok-inst
and ∆; x : [V/Y]U, this : selftype(N) ` e0:S.

Proof. By induction on the derivation of mbody(m<V>, C<T>) using Lemma C.8 with
a case analysis on the last rule used. �

Lemma C.10 If ∆ ` N <: P, then ∆ ` selftype(N) <: selftype(P)

Proof. By induction on the derivation of ∆ ` N <: P. Note that if C<X/N> `
N ok-superclass, then X<:N ` selftype(C<X>) <: selftype(N). �

Proof. (Theorem 4.1) By induction on the derivation of e −→ e′ with a case
analysis on the reduction rule used. We show only the case of GR-Invk. Other
cases can be proved as described in [12].

Case GR-Invk: e = new N(e).<V>m(d) mbody(m<V>, N) = x.e0

e′ = [d/x, new N(e)/this]e0

By the rules GT-Invk and GT-New, we have

∆; Γ ` new N(e):N mtype(m, bound∆(N)) = <Y/P>U→U ∆ ` V ok
∆ ` V <: [V/Y]P ∆; Γ ` d:S ∆ ` S <: [V/Y]U T = [V/Y]U ∆ ` N ok

By Lemma C.9, ∆; x : [V/Y]U, this : selftype(P) ` e0:S for some P and S such that
∆ ` P ok-inst and ∆ ` N <: P and ∆ ` S <: [V/Y]U and ∆ ` S ok-inst. Since
N = selftype(N), by Lemma C.10 ∆ ` N <: selftype(P). Then, by Lemmas C.1
and C.8, ∆; Γ ` [d/x, new N(e)/this]e0:T0 for some T0 such that ∆ ` T0 <: S. By
S-Trans, we have ∆ ` T0 <: T. Finally, letting T′ = T0 finishes the case. �
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D PROOF OF THEOREMS 4.4 AND 4.5

First, we develop a number of the required lemmas.

Lemma D.1 1. If fields(C) = T f, then fieldsFGJ(|C|) = |T| f.

2. If fields(C.Ei) = T f where classes(C) = E, then fieldsFGJ(dC.Eie<|U|>) =
|T@Ui| f for U where U = F.E or U = .E.

3. If mtype(m, C) = <X/C>T→T0, then mtypeFGJ(m, C) = <|X/C|>|T|→|T0|.

4. If mtype(m, C.Ei) = <X/C>T→T0 where classes(C) = E, then mtypeFGJ(m, dC.Eie
<|U|>) = <|X/C|>|T@Ui|→|T0@Ui| for U where U = F.E or U = .E.

Proof. Each can be proved by induction on the derivation of fields(C), fields(C.Ei),
mtype(m, C) and mtype(m, C.Ei), respectively. Note that if classes(C) = E and ∆; C.Ej `
T ok for some ∆, then [|U|/|.E|]|T| = |T@Ui| for U where U = F.E or U = .E. �

Lemma D.2 If ∆ ` S<:T, then |∆| `FGJ |S|<:|T|.

Proof. By induction on the derivation of ∆ ` S<:T. �

Lemma D.3 If ∆ ` F<:C and classes(C) = E, then |∆| `FGJ |F|C<: ([|F|C/|X|C]
dC.Eie<|X.E|>), C.

Proof. By case analysis on F using the fact that |[F/X]T| = [|F|C/|X|C]|T|. �

Lemma D.4 1. if ∆; C ` F, C ok and ∆ ` F<:C, then |∆| `FGJ |F|C ok.

2. if ∆; C ` T ok, then |∆| `FGJ T ok.

3. if ∆; C.Ei ` T ok where classes(C) = E, then |∆|, |/C| `FGJ |T| ok.

4. if classes(C) = E, then |X<:C|; |X.Ei| `FGJ dC.Eie<|X.E|> ok-bound.

5. if ∅; A ` C ok, then `FGJ fix (C) ok

Proof. Each can be easily proved. �

Proof. (Theorem 4.4) We prove the theorem in two steps: first, it is shown that if
∆; Γ; C ` e:T then |∆|; |Γ| `FGJ |e|∆,Γ,C:|T|, and if ∆; Γ; C.E ` e:T then |∆|, |/C|; |Γ|
`FGJ |e|∆,Γ,C.E:|T|; and second, we show CT is ok.

The first part is proved by induction on the derivation of ∆; Γ; C ` e:T and
∆; Γ; C.E ` e:T. We show only the latter case since the former can be proved
similarly to the latter. The proof below shows only the case for field accesses. Other
cases for method invocations and object creations can be proved similarly.
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Case: e = e0.fi ∆; Γ; C.E ` e0:T0

fields(bound∆(T0@C.E)) = T f T = Ti@T0

By induction hypothesis, |∆|, |/C|; |Γ| `FGJ |e0|∆,Γ,C.E:|T0|. Case analysis on T0.

Subcase: T0 = F

By Lemma D.1(1) and the fact that |∆(F)| = |∆|(|F|), fieldsFGJ(bound (|∆|,|/C|)(|F|))
= |T| f. Since Ti@T0 = Ti, by GT-Field |∆|, |/C|; |Γ| `FGJ |e0|∆,Γ,C.E.fi:|Ti|.

Subcase: T0 = C′.Dj where classes(C′) = D

Since there exists class |C′.Dj| /dC′.Dje<|C′.D|>{}, by Lemma D.1(2) fieldsFGJ(|C′.Dj|)
= |T@C′.Dj| f. By GT-Field, |∆|, |/C|; |Γ| `FGJ |e0|∆,Γ,C.E .fi: |Ti@C′.Dj|.

Subcase: T0 = X.Dj where X<:C′ ∈ ∆ and classes(C′) = D

Since bound∆(X.Dj) = C′.Dj, by Lemma D.1(2) fieldsFGJ(bound (|∆|,|/C|)(|X.Dj|)) =
fieldsFGJ(dC′.Dje<|X.D|>) = |T@X.Dj|. By GT-Field, |T| = |Ti@X.Dj|.

Subcase: T0 = .Ej where classes(C) = E

Since .Ej@C.E = C.Ej, fieldsFGJ(bound (|∆|,|/C|)(|.Ej|)) = fieldsFGJ(dC.Eje<|.E|>) =
|T@.Ej| f, by Lemma D.1(2). By GT-Field, |T| = |Ti@.Ej|.

The second part (|CT | ok) follows from the first part with examination of the
rules GT-Method, GT-Class and GT-ClassSelf. It is easy to show that: if C `
M ok, then C `FGJ |M|C ok; if C.Ei ` M ok where classes(C) = E, then C$Ei<|/C|>`FGJ

|M|C.Ei
; if C ` NL ok, then `FGJ |NL|C ok; if ` L ok, then `FGJ |L| ok. �

We need the following three lemmas from [22]. We write A <# B if either (1)
A = C, B = D, and ` C <: D, or (2) A = C.E, B = D.E, and ` C <: D.

Lemma D.5 If A <# B and mtype(m, B) = <X/C>U→U0, then mtype(m, A) = <X/C>U→U0.

Lemma D.6 If ∆, X<:C; Γ; A ` e : T and ∆ ` F ok and ∆ ` F <: C, then there exists
some S such that ∆; [F/X]Γ; A ` [F/X]e : S and ∆ ` S <: [F/X]T.

Lemma D.7 If ∆; Γ, x:T; A ` e : T and ∆; Γ; A ` d : S and ∆ ` S <: T, then there
exists some S such that ∆; Γ; A ` [d/x]e : S and ∆ ` S <: T.

Lemma D.8 If X<:C ∈ ∆ and ∆; Γ; A ` e:T and ∆ ` F<:C, then |[F/X]e|∆,Γ,A =
[|F|C/|X|C]|e|∆,Γ,A

Proof. By induction on the derivation of ∆; Γ; A ` e:T. Note that if ∅; B ` C<:D,
then |F|D = [|F|C/|X|C]|X|D. �

Lemma D.9 If ∆; Γ; A ` e:T and ∆′; Γ′; A0 ` e0:T0, then |[e/x]e0|∆,Γ,A = [|e|∆,Γ,A/x]
|e0|∆′,Γ′,A0.
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D PROOF OF THEOREMS 4.4 AND 4.5

Proof. By induction on the derivation of ∆′; Γ′; A0 ` e0:T0. �

Proof.(Theorem 4.5) By induction on the derivation of e−→e′ with a case analysis
on the last reduction rule used. We show only the cases for computation. Other cases
for the congruence rules can be proved immediately by the induction hypothesis.

Case: e = new A0(e).fi e′ = ei fields(A0) = T f

Since |new A0(e).fi|∆,Γ,A = new |A0|(|e|∆,Γ,A).fi, fieldsFGJ(|A0|) = |T@A0| f by Lem-
mas D.1(1, 2). By GR-Field, new |A0|(|e|∆,Γ,A).fi−→|ei|

Case: e = new A0(e).<F>m(d) e′ = [d/x, new A0(e)/this]e
′
0

mbody(m<F>, A0) = x.e′0

Assume that <X/C>T0 m(T x){↑e0;}. By the definition of mbody , e′0 = [F/X]e0. By
Tr-New and Tr-Invk, |new A0(e).<F>m(d)|∆,Γ,A = new |A0| (|e|∆,Γ,A). <|F|C>m(
|d|∆,Γ,A). Let ∆′ = X<:C, Γ′ = x:T, this:A0. Since mbodyFGJ (m<|F|C>, |A0|) = x.e′′0
where e′′0 = [|F|C/|X|C]|e0|∆′,Γ′,A0 , we must show that
|[d/x, new A0(e)/this]e

′
0|∆,Γ,A = [|d|∆,Γ,A/x, new |A0|(|e|∆,Γ,A)/this]e

′′
0.

[|d|∆,Γ,A/x, new |A0|(|e|∆,Γ,A)/this]e
′′
0 (by Lemma D.8)

= [|d|∆,Γ,A/x, new |A0|(|e|∆,Γ,A)/this]|[F/X]e0|∆′,Γ′,A0 (by Lemma D.9)
= |[d/x, new A0(e)/this][F/X]e0|∆,Γ,A.

�
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