"L'JOURNAL OF OBJECT TECHNOLOGY

Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2002

Vol. 7, No. 6, July-August 2008

Efficient Integrity Checking for Essential
MOF + OCL in Software Repositories

Miguel Garcia, Institute for Software Systems,
Hamburg University of Science and Technology (TUHH), Germany

The efficient detection of run-time violations of integrity constraints (or their avoid-
ance in the first place) has not been satisfactorily addressed for the combination of
object model and constraint definition language most widely accepted in industry,
namely OMG’s Essential MOF and Object Constraint Language (OCL). We identify
the dimensions relevant to this problem, and classify existing proposals by their po-
sition in the solution space. After this comparative survey, we propose a solution
for the efficient integrity checking of invariants expressed in OCL over the Essential
MOF data model, and describe the software architecture of its implementation using
object-relational mapping technology.

1 INTRODUCTION

Model-Driven Software Engineering (MDSE) encompasses traditional areas of both Lan-
guage Design and Software Engineering (language definition and tooling, manipulation of
programs and models, refinement of specifications into lower-level abstractions) follow-
ing a unified conceptual and technical framework (metamodeling and declarative model
transformations). By expressing a language definition as a metamodel, the information
about abstract syntax and static semantics (including typing rules) becomes machine-
processable, enabling language-aware manipulation along a toolchain in a reusable, declar-
ative manner. Metamodels are expressed in Essential MOF (EMOF) [1] (covering struc-
tural aspects), and are extended with constraints expressed in OCL [2], to be evaluated
over finite populations of instances. An OCL class invariant is a Boolean function over a
database snapshot.

As MDSE techniques are applied to development processes of ever increasing com-
plexity, additional demands are placed on the infrastructure supporting those processes.
Software repositories [3] play a pivotal role in the management of software artifacts con-
forming to an EMOF data model, checking the integrity constraints given as OCL invari-
ants. The task of runtime integrity checking has proven non-scalable if performed without
regard for optimization techniques, yet many EMOF software repositories in use today do
not adequately address this concern. Solving this industrially relevant problem requires
identifying a calculus expressive enough to handle OCL yet tractable enough that opti-
mizations of collection operations are feasible. Moreover, an empirical evaluation of the
proposed approach should validate the findings before real-world deployment.

Cite this document as follows: Miguel Garcia: Efficient Integrity Checking for Essential MOF
+ OCL in Software Repositories, in Journal of Object Technology, vol. 7, no. 6, July-
August 2008, pages 101-119,

http://www.jot.fm/issues/issues_2008_7/article3.pdf

http://www.jot.fm/issues/issue_2008_07/article3/

o ;P_/ EFFICIENT INTEGRITY CHECKING FOR ESSENTIAL MOF + OCL IN SOFTWARE REPOSITORIES

Integrity checking is an instance of the model-checking problem, i.e. determining
whether a concrete world satisfies predicates. In turn, query evaluation is an area thor-
oughly studied in the academic literature. We follow the engineering approach of coher-
ently combining existing scientific knowledge to solve an industrial problem. Our work
falls just short of building a concrete product based on the technology choices made (be-
cause that’s a task for industry). Rather, we disclose the detailed reasoning behind our
approach (which industry refrains from doing).

The structure of this article is as follows. Sec. 2 provides context on the artifacts sub-
ject to integrity checking in MDSE repositories, followed by a review in Sec. 3 of the
strategies for integrity checking available to repository designers. Sec. 4 covers the often
overlooked interplay between expressiveness of the constraint language and runtime cost
of integrity checking. Sec. 5 presents a technology choice that balances these conflict-
ing requirements. A review of the difficulties associated to checking computationally-
complete OCL can be found in Sec. 6, followed by the translation rules into the chosen
calculus (Sec. 7) and a sample of the optimization techniques thus enabled (Sec. 8). Re-
lated work (Sec. 9) includes pointers to the main-memory case and to recent progress
on integrity checking in the SQL/relational setting. Sec. 10 concludes. Familiarity with
metamodeling techniques and object-oriented databases is assumed. Knowledge about
OCL is helpful but not required.

2 ROLE OF ESSENTIAL MOF AND OCL IN MODEL-DRIVEN SOFT-
WARE ENGINEERING

The MDSE approach of adopting and extending results from previously separate disci-
plines can be seen at work in the best practices for defining the syntax, static seman-
tics, and behavior of domain-specific languages (DSLs). Following MDSE principles,
the abstract syntax of a DSL is represented as an object-oriented model (expressed in
EMOF) thus attaining a number of advantages compared to an EBNF approach. This
object-oriented model additionally captures the static semantics of the DSL (e.g., declare-
before-use) in the form of invariants expressed in the Object Constraint Language (OCL).
As shown in [4], the type checking rules of a DSL are also amenable to an OCL formu-
lation, an area previously treated separately in DSL design. Additional benefits naturally
emerge once the language definition is available as a metamodel (and can thus be pro-
cessed mechanically):

e Abstract Syntax Trees (ASTs) can be exchanged with ease in a toolchain (e.g.,
between a compiler front-end and an static analyzer), fostering interoperability.

e The declarativeness of the OCL formulation allows applying formal techniques
to language processing, in particular Hoare-style program verification of model-
transformation algorithms, so as to know at transformation design-time whether
well-formed output will always be generated for well-formed input [5].

102 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

3 INTEGRITY CHECKING IN MDSE SOFTWARE REPOSITORIES

e Prototypes exist [6, 7, 8] where an AST definition is augmented with annotations
to univocally determine a concrete syntax. From this augmented definition, a gen-
erator can derive: (a) grammars for different parser generators, making parsers in-
terchangeable; (b) classes whose instances represent Concrete Syntax Tree (CST)
nodes, thus allowing for OCL to be used to query and constrain a CST; (c) a vis-
itor to transform a well-formed CST (as checked with OCL) into an AST; (d) an
unparser from CST to textual notation (i.e., a pretty-printer); and (e) a text edi-
tor supporting usability features such as syntax-directed completion, markers for
violations of well-formedness, use-defs navigation, folding, and structural views.

e Following a similar approach, a concrete visual syntax can be defined, allowing for
the generation of a diagram editor for the DSL in question [9].

3 INTEGRITY CHECKING IN MDSE SOFTWARE REPOSITORIES

Given the ubiquity of EMOF and OCL in MDSE, it comes as no surprise that software
repositories are required to manage artifacts conformant to EMOF + OCL metamod-
els [10]. Infrastructural functionality expected of such repositories includes scalability,
concurrent access, integrity checking and enforcement, versioning [11], and view main-
tenance. These capabilities in turn are needed to support higher-level use cases such
as: traceability between requirement specs and implementation artifacts, impact analysis,
refactoring, and avoidance of architectural erosion [12].

The implementers of some EMOF + OCL software repositories in use today have not
paid enough attention to the formal foundation of those languages, with the end result that
it cannot be determined anymore whether some tool behaviors are correct or not. Analyses
of ambiguities in past revisions of the MOF and OCL specification can be found in [13]
and [14]. A formalism that offers rigorous precision is a good start, yet Fegaras and Maier
define in [15] additional criteria for a calculus to be suitable for a query language:

e Coverage: whether the calculus has enough expressive power to represent all con-
cepts of the query language. In the case of OCL, these concepts include aggrega-
tion, duplicate values, sort orders, several collection types (sets, bags, ordered sets,
lists), negation, and user-defined (potentially recursive) functions.

o FEase of manipulation: expressions in the calculus should lend themselves to uni-
form matching and rewriting, such as in type-checking or optimization.

e Evaluation fitness: whether all valid query plans can be derived from an expression
in the calculus. A formalism that expresses queries at too low a level of abstraction
acts as a barrier to effective evaluation.

By relying on a formal calculus that is suitable with respect to OCL, precise defini-
tions for the problems of query optimization, integrity checking, and view maintenance

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 103

S

EFFICIENT INTEGRITY CHECKING FOR ESSENTIAL MOF + OCL IN SOFTWARE REPOSITORIES

become possible, and correctness of their solutions can be examined. Efficient imple-
mentations are the next step. Before discussing a calculus that fulfills the above criteria,
we elaborate on the alternative approach of directly anchoring the semantics of EMOF
+ OCL in terms of the Relational Data Model, turning OCL into a surface syntax. This
would acknowledge the fact that results from the object-oriented and deductive database
communities have become mainstream in SQL3 and are thus likely to be efficiently sup-
ported by conformant DBMSs. We see however some disadvantages with this approach:

Pre-SQL3 relational formalisms do not fulfill the coverage criteria as defined above.
Queries involving aggregation or sort orders need be formulated as a mixture of
relational algebra interspersed with control structures. Only those fragments brack-
eted between control structures are amenable to optimization.

Post-SQL3 extended-relational formalisms strongly resemble the calculus adopted
in our approach. Algorithms for incremental view maintenance based on these
formalisms can thus serve as a foundation for our solution architecture.

It is more efficient to manipulate query plans at the highest level of abstraction
possible. Once optimized, object-level queries can be cast in terms of relational
algebra thus opening the way for further potential optimizations.

EMOF concepts cannot be mapped one-to-one to relational “counterparts”, thus
making a direct relational anchoring non-trivial in itself. For example, a relational
view may contain the primary keys of its base relations, while each object in an
object view has a globally unique object-ID.

4 CONSTRAINT LANGUAGE EXPRESSIVENESS AND ITS IMPACT
ON THE RUNTIME COST OF INTEGRITY CHECKING

There is a mutual dependency between the expressiveness of a constraint language and
the computational complexity of evaluating integrity constraints upon updates to database
state. Three categories can be distinguished:

1.

Design-time avoidance of integrity violations: By carefully limiting the expressive
power of the data model and constraint language, it is possible to determine at
database schema design time whether some ordering of update transactions may
violate the integrity constraints. After this proof has been carried out (e.g. based
on algorithm model-checking as shown by Lamport in [16]) no run-time checks
are needed. An example of this approach for a variant of the F-Logic language is
presented in [17]. Actually there is still a run-time overhead in that each transac-
tion is augmented with its generated weakest precondition. Those fragments of the
precondition which cannot be proved to be implied by the database invariants have
to be checked at runtime.

104

JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 INCREMENTAL INTEGRITY CHECKING FOR OCL

2. Run-time integrity checking with efficient evaluation: For more expressive con-
straint languages, not all integrity checks can be skipped at runtime. Nevertheless,
the evaluation of those remaining checks can be made more efficient than that for
arbitrary formulas in first-order predicate logic (PSPACE-complete in the worst-
case for finite object graphs [18]). We aim at identifying the subset of OCL whose
expressive power fits in this category. An algorithm for incremental view mainte-
nance [19] optimizes integrity checking, as discussed in Sec. 5.

3. Run-time integrity checking with best-effort evaluation: For some specific com-
binations of database schemas and full-OCL invariants, custom checks are derived
whose efficiency is comparable to that of category 2 above, sometimes using heuris-
tics. For the remaining cases, large data sets have to be scanned. This approach is
followed in [20] and [21] where the non-declarative subset of OCL is also adopted
(including control structures and negation).

The chosen complexity of integrity checking (second item above) does not preclude
ad-hoc queries from using full-OCL (and require full scans of entity extents in some
cases). It seems questionable, however, for the formulation of an integrity constraint to
require computational completeness, as the constraint is rendered non-declarative. Those
constraints, if really needed, are best enforced by the business logic that manipulates the
software repository, e.g. following Design-By-Contract [22], as recommended by best
practices evolved over the years for the architecture of multi-tier information systems.

5 INCREMENTAL INTEGRITY CHECKING FOR OCL

Integrity enforcement comprises two runtime phases: (a) violation detection and (b) con-
sistency restoration. For each OCL invariant, a view to hold the object-IDs of those
instances not fulfilling it is defined (a denial view). At transaction commit time, all such
views should be empty, otherwise a consistency restoration policy is to be applied (roll-
back, compensating action, or postponing consistency restoration altogether). Policies for
consistency restoration are outside the scope of this article. Given that most transactions
leave the majority of invariants unaffected, full recomputation of views after each up-
date is impractical. Instead, incremental maintenance is preferred, a process comprising
design and runtime activities:

1. At database design time, each view definition is mechanically analyzed to deter-
mine which update operations (when performed on certain data elements) affect the
resultset .

2. For such events, actions are generated to react to them, taking as input the delta
caused by the update and using it to bring the materialized view into an up-to-date
state (a self-maintenance strategy as opposed to querying the base extents).

3. At runtime, the planned actions are executed upon being triggered by the updates
being monitored, performing change propagation.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 105

o #_/ EFFICIENT INTEGRITY CHECKING FOR ESSENTIAL MOF + OCL IN SOFTWARE REPOSITORIES

An efficient algorithm for incremental view maintenance in an EMOF + OCL context
is not as concise as the above summary might suggest because:

e Update operations on an object model are richer than their relational counterpart,
given the additional collection types available (lists, ordered sets, bags).

e Method overriding is an issue in that a subclass may redeclare a side-effects-free
operation (an OCL defined one), with that operation being used in an invariant.
Instances of the subtype should have the overriding definition evaluated in place of
the overridden one.

e Updates may have side effects, which in turn may affect invariants. These side ef-
fects result from inverse relationships maintained automatically in EMOF between
two entities (its closest counterpart in relational databases is referential integrity).
For example, upon deleting an instance which is bidirectionally linked to another,
this second instance will have its reference cleared.

A concrete realization of the above ideas, satisfying the complexity requirements in-
troduced in Sec. 4, is provided by the MOVIE algorithm for incremental view mainte-
nance [19], explained in detail by its author in his PhD thesis [23]. A thorough perfor-
mance evaluation [24] confirms its practical usefulness. The MOVIE algorithm is based
on the translation of queries into the monoid calculus and their subsequent optimization,
as discussed in [25] and [26]. The monoid calculus embodies the relational calculus, and
has proven versatile enough to support both traditional as well as innovative optimiza-
tions. The software architecture of the proposed solution comprises:

1. The design time mapping of a model expressed in EMOF into a relational database
schema (performed by a ready made component [27]). Data manipulation occurs
at runtime only as EMOF-level update operations that are intercepted and matched
against event patterns derived by MOVIE from view definitions for invariants.

2. The design time translation of OCL invariants into monoid calculus expressions.
The resulting event patterns (derived by MOVIE for runtime interception) corre-
spond to EMOF-level update operations. The accompanying actions generated by
MOVIE to effect view maintenance are also EMOF-level updates.

The data definition, manipulation, and query languages (DDL, DML, DQL) of our
solution are: EMOF, EMOF-level update operations, and full-OCL. The (incrementally
maintainable) constraint language is the subset of OCL translatable into monoid calculus,
and moreover valid as input for MOVIE (as defined in Sec. 4.1.2.2 of [23]). Although full-
OCL is our standard DQL, nothing prevents the user from expressing read-only queries
directly in SQL or in the ORM-level query language, JPQL [28] (Java Persistence Query
Language, sometimes referred to as EJB3QL). Writing these “pass-through queries” in
SQL requires knowledge of the mapping decisions encapsulated in item 1 above.

The barriers to efficient evaluation introduced by full-OCL are covered next, followed
by an in-depth discussion of the translation of OCL into monoid calculus as a prerequisite
to applying the MOVIE algorithm.

106 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

6 COMPUTATIONALLY COMPLETE CONSTRAINT LANGUAGE

6 COMPUTATIONALLY COMPLETE CONSTRAINT LANGUAGE

Proposals using full-OCL for integrity constraints [20, 21] involve re-evaluating candidate
broken invariants on a set of instances collected at runtime. The applied strategy consists
in minimizing the amount of relevant instances, instead of avoiding re-computing subex-
pressions whose value has not changed (e.g., by caching their values). This is a major
difference with incremental view maintenance. The essential aspects of the full-OCL
approaches are illustrated with two examples, including the difficulties introduced by re-
cursion. For a more detailed presentation see Sec. 4 in [21].

A core aspect of [20] and [21] is the observation that for each data element on which
an OCL invariant depends, it is possible to derive a navigation-based query in the di-
rection from the data element back to the instance where the invariant is evaluated. On
the wake of an update on some data element, these navigation paths lead to a set of in-
stances relevant for re-evaluating the invariant in question. For example, in an scenario
where Departments may have good and bad Employees (Figure 1(a)), an integrity con-
straint may require the union of two sets (all bad employees and those good employees
over forty) not to contain a hobbyist:

context Department
inv noHobbyst : badEmps->union(goodEmps->select(age > 40))
->select (hasHobby)->isEmpty ()

badEmps goodEmps

= Department goodEmps 0. * H Employee
= hasHobby : EBoolean
= age : Elnt hasHobby hasHobby age
badEmps 0 .. *
(a) Departments have good and bad employees (b) Reachability for noHobbyst

Figure 1: The noHobbyst example

Given a Department d, adding or removing employees (good or bad), as well as chang-
ing their hobby status may affect the invariant noHobbyst when evaluated for d. However,
for this particular invariant, age updates are relevant only for good employees. This in-
tuition is reflected in the reachability path shown as a tree in Figure 1(b). Thanks to
bidirectional associations, upon an update to a node in that tree, the fixed-length path
to the root can be followed to find the Department instance (i.e., d) on which invariant
noHobbyst should be re-evaluated at transaction-commit time.

Special care is required for recursive functions ranging over dynamic data struc-
tures, as illustrated by the forward-only list of Figure 2. In that example, the invariant
lastWagonHasLightsOn is fulfilled for a Wagon w in a train as long its last wagon has the
lights on. In this case, a statically fixed back-navigation path will not achieve the desired
result, as the required number of links to traverse changes at runtime. A conservative
approach consists in re-evaluating recursive invariants for all instances of their contexts,

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 107

o ;P_/ EFFICIENT INTEGRITY CHECKING FOR ESSENTIAL MOF + OCL IN SOFTWARE REPOSITORIES

thus achieving completeness at the expense of efficient evaluation. It is not clear from
[20, 21] how recursion over dynamic data structures is dealt with.

context Wagon

H wagon inv lastWagonHasLightsOn : £(Q)
= hasLightsOn : EBoolean
% f() : EBoolean context Wagon::f()
def : if next.oclIsUndefined()

then hasLightsOn
else next.f()
endif

next 0..1

Figure 2: The lastWagonHasLightsOn example

7 TRANSLATION OF OCL INTO MONOID CALCULUS

Queries translated into the monoid calculus refer to the same object-oriented schema
as their OCL counterparts. No schema mapping is needed because most EMOF con-
structs have a direct counterpart in the monoid calculus, with the following exceptions:
(a) EMOF-level ordered sets (no duplicates, insertion order preserved) are represented
as monoid lists; (b) EMOF dictionaries (Maps in Java) are represented as sets of (key,
value) pairs, where pairs are monoid lists. Under these conventions, for the purposes
of side-effect-free queries, the result of evaluating the monoid translation agrees with its
original OCL formulation. For update purposes instead, these conventions would not be
consistent, as for example monoid lists do not capture the semantics of EMOF ordered
sets (which require membership testing before insertion). We do not claim to optimize
updates, whose semantics are enforced by the ORM engine. The fact that the same data
schema is shared by both OCL and monoid expressions makes possible to optimize the
monoid formulation without the additional complication of data mapping. No schema
changes are introduced during rewriting for optimization. Finally, the optimized version
is semantics preserving with respect to its original formulation.

An internal node in the AST of an OCL class invariant stands for a function applica-
tion, with each subnode providing actual arguments. Some OCL constructs (e.g. let v
= ... 1in ...) add identifiers to the scope visible in subtrees. Such syntax can be re-
moved by expanding definitions, thus achieving the shape of “function application only”
mentioned before. This rewriting does not alter meaning as OCL has call-by-value evalu-
ation semantics. Terminal nodes are not tagged with function applications but with any of:
(a) a literal constant; (b) the predefined OCL variable self; (c) entity extents of the form
ClassName.allInstances(). The variable self ranges over an entity extent, namely that
for the class where the invariant was defined. Unlike UML, there are no class-scoped at-
tributes or associations in EMOF. We assume furthermore that invocations of user-defined,
non-recursive functions have been replaced with their definitions (this may involve substi-
tuting usages of formal arguments by their corresponding actual arguments). To account

108 JOURNAL OF OBJECT TECHNOLOGY VOL 7,NO. 6

7 TRANSLATION OF OCL INTO MONOID CALCULUS

for late binding (choosing a function definition based on the actual type of a usage instead
of its declared type) a potentially verbose case distinction is needed. This is no principle
obstacle with whole-model analysis: all possible actual types are known at translation
time and the actual type of an object can be queried with oc1IsTypeO£f(). After this pre-
processing step, each internal node stands for the invocation of either an OCL predefined
function or a user-defined (directly or indirectly) recursive function.

The Monoid Calculus

The monoid calculus provides a uniform notation for collections such as lists, bags and
sets, based on the observation that the operations of set and bag union and list concate-
nation are monoid operations (that is, they are associative and have an identity element).
Monoids for collection types are known as collection monoids. Operations like conjunc-
tions and disjunctions on booleans and integer addition are instead primitive monoids.
Borrowing notation from [25], a monoid of type T is a pair (&, Zg) Where & is an associa-
tive function of type T X T — T and Zg is the left and right identity of . A monoid may
be commutative (i.e., when @ is commutative), idempotent (i.e., when Vx : x ® x = x), or
both. For example, (+,0) is a commutative and anti-idempotent monoid, while (U, {}) is
both commutative and idempotent.

An expression of the form ®[e | e ... e,] is a comprehension over monoid . Unlike
the prominent role granted in functional programming languages to list comprehensions,
the notation above uniformly captures collection operations, whose kind is revealed by
the outermost braces ([] for lists, { }} for bags, {} for sets). Each e; is a qualifier, which
can either be a generator of the form v < E, where v is a variable and E is a collection-
valued expression, or a filter p (a boolean valued predicate). Informally, each generator
v « E sequentially binds variable v to the elements of expression E’s value, making it
visible in successive qualifiers. A filter evaluating to true results in successive qualifiers
(if any) being evaluated under the current bindings, otherwise ’backtracking’ takes place.
The head expression e is evaluated for those bindings that satisfy all the filters, and taken
togethers these values constitute the resulting collection. For example, the following SQL-
like nested query:

select distinct e(x)
from (select d(y) from E as y where gq(y)) as x
where p(x)

istranslated as { e(x) | x « {d(y) | y « E, g}, p(x)}

Applying a function f to each element in a collection (map f xs in Haskell) is thus
expressed as [f(x) | x « xs], while filter p xs becomes [f(x) | x « xs, p(x)].
Comprehensions in turn are syntactic sugar for monoid homomorphisms, which express
structural recursion on the collection constructor (++ for lists, U for sets, & for bags), as
shown pictorially in Figure 3 [29]. For example, taking ® to be max(x,y) = case x<y
of true -> y | false -> x makes (—oo;max|) C find the maximum of collection C.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 109

o ;P_/ EFFICIENT INTEGRITY CHECKING FOR ESSENTIAL MOF + OCL IN SOFTWARE REPOSITORIES

AN ®
Zo T.,_ 900/ \®.__

xq{ N xq{
- 1 (z;eD

2! w2

Figure 3: Graphical representation of the homomorphism from monoid (T,[]) to (z,®)
(the latter not necessarily a collection monoid)

Translation Rules

Transformations for languages with a number of syntactic constructs (such as OCL) take
the form of LHS — RHS pattern-based substitutions, where each OCL construct is
matched by only one LHS . The transformation algorithm can be shown to correctly pre-
serve meaning if each rewrite transformation is proved meaning-preserving. This follows
case by case from definitions (in the respective semantic domains of OCL and monoid cal-
culus). The rewrite rules are terminating because they decrease the number of occurrences
of OCL constructs available for matching, and are confluent given that the LHS s partition
the set of shapes that OCL constructs may take (each OCL construct being matched by
one rewrite rule). Translation operates bottom-up from the leaves of the AST. For each
node all required information is available locally due to pre-processing: no lookup of the
correct binding for an OCL variable is needed as no such usages are left except for self.

Regarding the possible OCL constructs, Figure 4 depicts the relevant fragment of the
OCL metamodel [30], i.e. the classes whose instances are nodes in an AST. As part
of preprocessing, some constructs have been desugared (LetExp, VariableExp), while
others do not appear in invariants (MessageExp). Occurrences of UnspecifiedValueExp,
InvalidLiteralExp, and NullLiteralExp stand for the result of applying a partial func-
tion outside its domain. StateExp and TypeExp are functions that access instance-level
data (the current state, given an associated statechart) and the actual type (which remains
constant througout the lifetime of the instance, as EMOF lacks dynamic reclassification).
Related to this, the boolean operation oc1IsKind0f() reports whether a pair of types be-
longs to the transitive closure of the direct subtype relationship <; of EMOF + OCL [4].

OCL Monoid calculus
c->select(e | boolExpr(e)) | [e| e « ¢, boolExpr(e) |
c->reject(e | boolExpr(e)) | [e| e « ¢, boolExpr(e) = false |

e
e

c->exists(e | boolExpr(e)) | V{ boolExpr(e)| e « c}

c->forAll(| boolExpr(e)) | A{ boolExpr(e)| e « ¢}

c->collect(e | expr(e)) [expr(e) | e « c]

1 =length([e| e « ¢, boolExpr(e)])
where length(x) = +[1 | e « x]

c->one(e | boolExpr(e))

Table 1: Non-recursive subcases of LoopExp

110 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

7 TRANSLATION OF OCL INTO MONOID CALCULUS

|| OCLExpression

B IfExp [VariableExp H MessageExp E StateExp H UnspecifiedValueExp
H callexp H LetExp [TypeExp H LiteralExp
H FeatureCallExp E LoopExp H TupleLiteralExp H EnumLiteralExp H NullLiteralExp
E OperationCallExp [IterateExp El InvalidLiteralExp H PrimitiveLiteralExp H CollectionLiteralExp
[NavigationCallExp H IteratorExp E| StringLiteralExp B NumericLiteralExp B BooleanLiteralExp
[PropertyCallExp [ElAssociationClassCallExp

Figure 4: Fragment of the OCL 2.0 metamodel (only inheritance relationships shown)

OCL constructs of the form LiteralExp are translated as follows: (a) a literal of the
primitive types (integer, real, string, or boolean) has a corresponding monoid constant,
the same goes for literals of a user-defined enumerations; (b) a collection literal of type
ordered set or list is translated as a monoid list, while set and bag collections have direct
counterparts; (c) a tuple literal is translated as a set of pairs (tag, value).

The iterator expressions (LoopExp) comprise non-recursive subcases (Table 1). The
remaining subcases are first desugared to their iterate() form as defined in the OCL
standard ([30], Sec. 11.9 and A.3.1.3). iterate() in turn can be expressed as a left-fold.
To capture this primitive recursive function, the function composition monoid (o, Ax.x) is
needed [25] where the function composition, o, defined as (f o g) x = f(g(x)), is asso-
ciative but neither commutative nor idempotent. Even though the type of this monoid,
T.(a) = @ — a, is parametric, it is still a primitive monoid. For a list L = [ay, ay, ..., a,],
applying o[Ax.f(x,a) | a « L] to z expands to (Ax.f(x,a;)) o ... o (Ax.f(x,a,))(z)
which computes the left-fold f(...(f(f(z,a,),an-1),...a;). The formulation of OCL’s
c->iterate(a ; acc=init | expr(acc,a)) is thus the comprehension o[dacc.expr |
a < c](init). The expressive power of comprehensions involving o lies in their ability to
compose functions that propagate a state during list iteration. For example, the reverse of
list Lis o[Ax.x++[a] | a « L]([]). Actually, the OCL standard defines the semantics of all
LoopExp in terms of iterate(), but as can be seen from Table 1 the additional expressive
power is not necessary, and may complicate optimization by hiding properties that ® may
exhibit (commutativity, idempotence).

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 111

o ;P_/ EFFICIENT INTEGRITY CHECKING FOR ESSENTIAL MOF + OCL IN SOFTWARE REPOSITORIES

OCL Monoid calculus
c->count (m) +[1|e « c,e =m]
c->excludes (m) NMe#m|e ¢}
cl->excludesAll(c2) | AM{Ale#m | e «— c1} | m « c,}
c->includes (m) fe=m|e <« c}
cl->includesAll(c2) | A{V{e=m|e « c1} | m < ¢,}

<

c->isEmpty) c=1]

c->sum() +[e | e « c]

c->size() +[1 | e «]
cl->product(c2) {(x,y) | x < c1,y « ¢}

Table 2: Standard OCL operations on all collection types

In EMOF terminology, a structural feature is either (a) an instance field or association
end; or (b) a method. Accessing the value of (a) is represented with PropertyCallExp. In-
voking an (OCL-defined, side-effect free) method is represented with OperationCallExp.
Therefore, occurrences of these constructs are translated as function application in monoid
expressions. The sibling of PropertyCallExp (AssociationClassCallExp) is not rele-
vant for EMOF, as class-scoped structural features are not allowed. The pending cases of
OperationCallExp not translated so far comprise: (a) operations on the primitive types
boolean, integer, real, and string; and (b) collection operations (not to be confused with
iterator operations). The first group can be translated as-is given that all storage engines
implement them natively. From the point of view of optimization, they are handled as
black-boxes. Translation rules for collection operations appear in Tables 2 to 4, classified
by computational complexity, which is not apparent from the uniform OCL syntax.

The implementation of OCL AST transformations is discussed in [31], including tech-
niques such as the encapsulation of walker code, instantiation of type-parametric visitors
with type substitutions, and tracking the input-output relationship between AST nodes
along a chain of visitors.

8 OPTIMIZATIONS WITH MONOID CALCULUS

The invariant noHobbyst (Figure 1 in Sec. 6) is amenable to a basic optimization, pushing
selections below joins (the predicate hasHobby = true appears only after building partial
results, performing it earlier increases selectivity). The vast body of query optimization
algorithms is not applicable to the surface syntax of OCL: the same concept can be ex-
pressed in so many different ways that ease of manipulation (Sec. 3) is impracticable.

We claim that query optimization is required for two purposes in an EMOF + OCL
setting: (a) for ad-hoc queries, and (b) to optimize expressions obtained from OCL in-
variants before their maintenance plans are derived by MOVIE. The case for (a) should
be evident. As for (b), the authors of [21] observe that invariant rewriting may disconcert
users, who would be faced with integrity violation errors based on expressions they have

112 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

8 OPTIMIZATIONS WITH MONOID CALCULUS

OCL Monoid calculus
cl->excluding(c2) [ele —ci,ANMd+eld e cl]
c->append (m) c+H+[m]
c->asBag() le| e < c}}
c->asOrderedSet ()

[e]| e «]
c->asSequence()
c->asSet() {e| e« c}
c->flatten() dle| s — c,e — s
c->including(m) cd [[m]]
cl->intersection(c2) ®fe|e—c,Vie=d|d «]
c->prepend (m) [[m]] dc
cl->union(c2) ciUcep

same translation as for (cl1->union(c2))->

cl->symmetricDifference(c2
y tevd (c2) excluding((cl->intersection(c2)))

Table 3: Overloaded collection operators (@ stands for the merge operator of the resulting
collection monoid)

(o[A(x, k).(ifk = ithenaelse x,k — 1) | a «]

c->at(i) (NULL, length(x))).fst
c->first() ofdx.a|a «]
c->last() same translation as for c->at(c->size())

(o A(x, k).(ifa = mthenkelse -1,k — 1) | a «]
(=1, length(x))).fst
c->subOrderedSet (j,k) | (o[A(x,i).ifj < i < kthen ([a]++x,i— 1)
c->subSequence(j,k) else (x,7 — 1) ({1, length(c))).fst
(o[A(x, k).ifi = k then ([m]++[a]++x,i— 1)
else ([a]++x,i — 1) | a « c|([], length(c))).fst

c->index0f(m)

c->insertAt(k,m)

Table 4: Collection operations involving comprehensions of function composition

never seen before. As a consequence, rewriting in general (and optimization in particular)
is explicitly avoided. The usability concern in question can be addressed in that error
messages can be produced by evaluating the original OCL invariant once it is known (by
optimized evaluation) that it has been broken. Actually, re-evaluation is inherent to the
approach in [21], thus incurring no additional overhead.

The primitive operations supported by storage managers or query engines correspond
to query algebra operators (semi-joins, selection supported by indexes, etc.) The monoid
calculus takes advantage of this fact by offering a uniform framework for query transla-
tion, rewriting for optimization, and execution plan generation: query optimization can
be made aware of the physical schema (table partitioning applied as part of ORM), sav-
ing I/O costs. To illustrate this kind of optimization, we show an end-to-end example of
translation, optimization, and plan generation aware of physical schema, adapted to the
EMOF + OCL setting from [26].

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 113

o ;P_/ EFFICIENT INTEGRITY CHECKING FOR ESSENTIAL MOF + OCL IN SOFTWARE REPOSITORIES

Consider a database of Films and the actors appearing in them (recording in how
many scenes, scenes), together with the films’ directors, as shown in Figure 5.

E Film . . £l Person
o title : EString directors 1.* | name : EString
actor | 1
H Cast

= scenes : Elnt
cast 1..*

Figure 5: EMOF-level logical schema for the films, actors, and directors database

Assuming that most queries access either actors or directors, it makes sense to ver-
tically decompose the logical schema into four tables (see Figure 6). Clustering table
columns that are frequently accessed together avoids unnecessary 1/O, as its elements are
stored physically contiguous.

Person

— P PK | #
name Cast
Directors
PK |#
PK | #
) Films FK | actor
FK @rector scenes
EK | film ———— P PK £ —— FK |fim

title

Figure 6: Physical schema for the films, actors, and directors database

The OCL query below (in terms of the logical schema in Figure 5) returns the titles of
Hitchcock-style films: the director appears as an actor in exactly one scene.

f.directors->exists(d
f.cast->exists(¢
->collect(£ | f.title)

Film.allInstances()->select(f |
|
|

c.scenes = 1 and c.actor =d)))

Its translation as a monoid comprehension is as readable as the OCL version:

{ftitle| f « film,
some{some{d = c.actor | ¢ « f.cast,c.scenes = 1} |
d < f.directors}

114 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

8 OPTIMIZATIONS WITH MONOID CALCULUS

Before optimization can start, the connection to the physical schema is established by
replacing film by its definition in terms of the vertically decomposed tables, using the nest
operator to reconstruct the owned collections of actors and directors for each film. With
that, the monoid comprehension can be normalized: all variables ranging over collections
(i.e., f, d, c) appear first followed by a predicate in conjunctive normal form. This not
yet optimized formulation has a direct counterpart in query algebra (Figure 7), a tree
of cartesian products. In principle, relational optimizations could start from there, thus
guaranteeing that monoid-based optimizations do not end up in execution plans worse
than relational optimization (e.g., exchanging two generators results in join reordering).

¢, title ((Films X Directors X o —1(Cast
fp'tltle((Te fp-#=dp.film dp) fp-#=cp-filmAd,.director=c,.actor (cp-scenes 1(Cp)))

Figure 7: Query algebra formulation, non-optimized stage

The semijoin E; ¥ E; is a join variant that delivers only those left operand objects
having at least one join partner with respect to the join predicate p. Its implementation is
efficient because as soon as a join partner is found for an E; object, then it is known to
belong to the result and no further E, objects need be accessed. The monoid comprehen-
sion formulation allows detecting those access patterns that correspond to semijoins. In
the example, after partial flattening of subqueries (not shown), the shaded subexpression
in Figure 8 is one such case.

{ftitle | f « films, d « f.directors,

some{d = c.actor | ¢ < f.cast,c.scenes = 1} }
Figure 8: Semi-join access pattern

The resulting optimized formulation appears in Figure 9.

Filmsy, X (Directorsg, X (0c, .scenes=1(Castc,)))
fp #=dp.film cp.actor=d,.directorAd,.film=c,.film

Figure 9: Query algebra formulation, optimized stage

The resulting query plan expressed in relational algebra has a straightforward trans-
lation into JPQL [28], the ORM-level query language. Further potential relational op-
timizations may be performed by the RDBMS. In keeping with MDSE principles, this
translation is not implemented as string manipulations but as an AST-to-AST transforma-
tion [32]. Well-formedness is thus ensured before delivering output for further processing.

Without the conceptual framework of the monoid calculus, applying similar rewritings
directly on OCL ASTs would not have been feasible. This is further evidence to the claim
that integrity checking for EMOF + OCL should follow the approach proposed here.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 115

o ;P_/ EFFICIENT INTEGRITY CHECKING FOR ESSENTIAL MOF + OCL IN SOFTWARE REPOSITORIES

9 RELATED WORK

The influence of the Object Query Language (OQL) defined in the 1990s by the Ob-
ject Data Management Group (ODMG) cannot be understated, reaching to JPQL today.
Trigoni [33] formalizes type inference for OQL queries. Additionally, algorithms are
provided for applying two semantic optimization heuristics: constraint introduction and
constraint elimination. These refined heuristics take into consideration association rules
discovered with data mining, which are not as strong as integrity constraints (they may
have exceptions in fact). Given that these “rules” statistically hold most of the time, it
pays off to monitor their validity status at runtime. Unless they become invalid, they can
be used during optimization to increase selectivity and to skip evaluations, thus improving
performance. As with other heuristic techniques, safety measures are built in to prevent
the cost of analysis to exceed optimization speed-up.

Ritter et. al. [10] also aim at integrity checking by translating OCL into a view
definition language, this time SQL’92. However, no systematic performance analysis is
made. The Dresden OCL Toolkit [34] compiles full-OCL into RDBMS stored procedures
including control structures, thus compromising query optimization in the general case.

The optimization of object-based queries is not only relevant for the persistent case:
naive evaluation over instances in main-memory also results in unacceptable performance.
A succint account of this problem and a heuristic solution for 6-joins in Java 5 appears
in [35]. A recent book on the subject of database integrity is [36]. Most contributions
focus on the relational case. The book [37] is devoted to view materialization.

10 CONCLUSIONS AND FURTHER WORK

We have addressed an industrially relevant problem by going back to first principles, lever-
aging research results from object databases to improve the efficiency of software repos-
itories for EMOF + OCL. Our choice of integrity checking mechanism does not require
for the database to be in a consistent state before an update can take place, yet reporting
of integrity violations is sound and complete (no false positives, no missed violations).
This is deemed vital to account for the realities of collaborative design environments.

Incremental view maintenance adds a measure of reactivity to the monitoring of in-
variants. Unlike the more powerful Event Condition Action rules (ECA) of an active
DBMS, view definitions based on OCL invariants cannot make statements about events
external to the database state, nor range over several snapshots as in versioned data mod-
els [11] (values in pre- and poststates can only be referred from OCL postconditions, not
from class invariants). OCL-based views are however sufficient to support a variety of use
cases in software repositories, such as monitoring the conformance of artifacts to coding
and modeling conventions [12]. Moreover, not all views need be maintained incremen-
tally (as required for integrity constraints): in some cases results are only periodically
needed (e.g., after an integration build, or on a daily or weekly basis). Examples include:
(a) detecting opportunities for applying refactorings; (b) checking mutual consistency be-

116 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

10 CONCLUSIONS AND FURTHER WORK

tween artifacts and documentation; and (c) deriving software metrics.

As usual, irrespective of whether an OCL-based view is tagged for incremental or

batch evaluation, it makes for concise composite queries. Materialized views naturally
support OCL’s derive statement, which is used to specify values for attributes or associ-
ation ends. Looking into the future, the proposed infrastructure can serve as a basis for
supporting ECA and versioning functionality through extensions to the OCL language.

REFERENCES

(1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Object Management Group: Meta Object Facility (MOF) Core Specification, formal/06-01-
01, http://www.omg.org/docs/formal/06-01-01.pdf (Jan 2006)

Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. Addison-Wesley, Boston, MA, USA (2003) ISBN 0321179366.

Dittrich, K.R., Tombros, D., Geppert, A.: Databases in Software Engineering: a Roadmap.
In: ICSE - Future of SE Track. (2000) 293-302

Garcia, M.: Rules for Type-checking of Parametric Polymorphism in EMF Generics. In
Bleek, W.G., Schwentner, H., Ziillighoven, H., eds.: Software Engineering 2007 — Beitrige
zu den Workshops. Volume 106 of GI-Edition Lecture Notes in Informatics. (2007) 261-270
http://www.sts.tu-harburg.de/ mi.garcia/pubs/2007/mdsdHeute/garcia-emfgen-2.pdf.

Garcia, M., Moller, R.: Certification of Transformations Algorithms in Model-Driven
Software Development. In Bleek, W.G., Résch, J., Ziillighoven, H., eds.: Software En-
gineering 2007. Volume 105 of GI-Edition Lecture Notes in Informatics. (2007) 107-118
http://www.sts.tu-harburg.de/ mi.garcia/pubs/2007/se2007/GarciaMoeller.pdf.

Muller, P.A., Fleurey, F., Fondement, F., Hassenforder, M., Schneckenburger, R., Gérard, S.,
Jézéquel, J.M.: Model-Driven Analysis and Synthesis of Concrete Syntax. In Nierstrasz, O.,
Whittle, J., Harel, D., Reggio, G., eds.: MoDELS. Volume 4199 of LNCS., Springer (2006)
98-110 http://1glpc35.epfl.ch/lgl/docs/papers/MDASOCS-5-pam.pdf.

Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete syn-
taxes in model engineering. In Jarzabek, S., Schmidt, D.C., Veldhuizen, T.L., eds.: GPCE,
ACM (2006) 249-254

Daly, C.J.: AST framework generation with Gymnast. In: Tech Exchange Panel: Language
Toolkits, EclipseCON 2005 (2005)

Ehrig, K., Ermel, C., Hiansgen, S., Taentzer, G.: Generation of Visual Editors as Eclipse Plug-
ins. In: ASE ’05: Proceedings of the 20th IEEE/ACM Intnl Conf on Automated Software
Engineering, New York, NY, USA, ACM Press (2005) 134-143

Ritter, N., Steiert, H.P.: Enforcing Modeling Guidelines in an ORDBMS-based UML Repos-
itory. In: Intnl Resource Mgmt. Assoc. Conf. 2000 (Information Modeling Methods and
Methodologies Track of IRMA 2000), Anchorage, Alaska (May 2000) 269-273

Kovse, J.: Model-Driven Development of Versioning Systems. PhD thesis, TU Kaiser-
slautern, Germany (August 2005)

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 117

http://www.omg.org/docs/formal/06-01-01.pdf
http://www.sts.tu-harburg.de/~mi.garcia/pubs/2007/mdsdHeute/garcia-emfgen-2.pdf
http://www.sts.tu-harburg.de/~mi.garcia/pubs/2007/se2007/GarciaMoeller.pdf
http://lglpc35.epfl.ch/lgl/docs/papers/MDASOCS-5-pam.pdf

o ;#_/ EFFICIENT INTEGRITY CHECKING FOR ESSENTIAL MOF + OCL IN SOFTWARE REPOSITORIES

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Ruokonen, A., Hammouda, I., Mikkonen, T.: Enforcing Consistency of Model-
Driven Architecture Using Meta-Designs. In: European Conf. on MDA: Workshop
on Consistency in Model Driven Engineering (C@MoDE 2005). (Nov. 2005) 127-141
http://practise.cs.tut.fi/files/publications/EEWES/metadesign.pdf.

Amelunxen, C., Schiirr, A.: On OCL as part of the Metamodeling Framework
MOFLON. In: 6th OCL Workshop at the UML/MoDELS Conference. (2006) http://st.inf.tu-
dresden.de/OCLApps2006/topic/acceptedPapers/13_Amelunxen MOFLON.pdf.

Brucker, A.D., Wolff, B.: The HOL-OCL Book. Technical Report 525, ETH Ziirich (2006)
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006.

Fegaras, L., Maier, D.: Towards an Effective Calculus for Object Query Languages. In:
SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD Intl Conf. on Management of Data,
New York, NY, USA, ACM Press (1995) 47-58 http://lambda.uta.edu/sigmod95.ps.gz.

Lamport, L. The +CAL Algorithm Language. In: NCA °06: Proc
of the Fifth IEEE Intnl Symposium on Network Computing and Applica-
tions, Washington, DC, USA, IEEE Computer Society (2006) 5-10 See also
http://research.microsoft.com/users/lamport/pubs/pluscal.pdf.

Lawley, M.: Transaction Safety in Deductive Object-Oriented Databases. In Ling, T.W.,
Mendelzon, A., Vieille, L., eds.: DOOD. Volume 1013 of LNCS., Springer (1995) 395-410

Stockmeyer, L.J.: The Complexity of Decision Problems in Automata Theory and Logic.
Technical Report MAC TR-133, MIT, Cambridge MA, Project MAC (1974)

Ali, M.A., Fernandes, A.A.A., Paton, N.-W.: MOVIE: an incremental maintenance system
for materialized object views. Data Knowl. Eng. 47(2) (2003) 131-166

Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In Dubois, E.,
Pohl, K., eds.: CAiSE. Volume 4001 of LNCS., Springer (2006) 81-95 Project homepage
http://www.lsi.upc.edu/“jcabot/research/Incremental OCL/index.html.

Altenhofen, M., Hettel, T., Kusterer, S.: OCL Support in an Industrial Environment. In
Demuth, B., Chiorean, D., Gogolla, M., Warmer, J., eds.. OCL for (Meta-)Models in Mul-
tiple Application Domains, Dresden, University Dresden (2006) 126-139 http://st.inf.tu-
dresden.de/OCLApps2006/topic/acceptedPapers/03_Altenhofen_OCLSupport.pdf.

Meyer, B., Mingins, C., Schmidt, H.: Providing trusted components to the industry. Com-
puter 31(5) (1998) 104-105

Ali, M.A.: Incremental Maintenance of Materialized Views in Object-Oriented
Databases. PhD thesis, University of Manchester, UK (September 2002)
http://computing.unn.ac.uk/staft/CGMA2/projectlinks.html.

Ali, M.A., Paton, N.W., Fernandes, A.A.A.: An Experimental Performance Evaluation of
Incremental Materialized View Maintenance in Object Databases. In Kambayashi, Y., Wini-
warter, W., Arikawa, M., eds.: DaWaK. Volume 2114 of LNCS., Springer (2001) 240-253

Fegaras, L., Maier, D.: Optimizing Object Queries using an Effective Calculus. ACM Trans.
Database Syst. 25(4) (2000) 457-516

118

JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

http://practise.cs.tut.fi/files/publications/EEWES/metadesign.pdf
http://st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/13_Amelunxen_MOFLON.pdf
http://st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/13_Amelunxen_MOFLON.pdf
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006
http://lambda.uta.edu/sigmod95.ps.gz
http://research.microsoft.com/users/lamport/pubs/pluscal.pdf
http://www.lsi.upc.edu/~jcabot/research/IncrementalOCL/index.html
http://st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/03_Altenhofen_OCLSupport.pdf
http://st.inf.tu-dresden.de/OCLApps2006/topic/acceptedPapers/03_Altenhofen_OCLSupport.pdf
http://computing.unn.ac.uk/staff/CGMA2/projectlinks.html

10 CONCLUSIONS AND FURTHER WORK

[26]

[27]
(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

Grust, T., Scholl, M.H.: Translating OQL into Monoid Comprehensions—Stuck with
Nested Loops? Technical Report 3a/1996, Dept. of Computer and Information Sci-
ence, Database Research Group, U Konstanz, (September 1996) http://www.inf.uni-
konstanz.de/dbis/publications/download/GS:TR96a.ps.gz.

Elver Project: Teneo EMF Persistency, http://www.eclipse.org/emft/projects/teneo/ (2007)

EJB 3.0 Expert Group: JSR 220: Enterprise JavaBeans, Version 3.0: EJB 3.0 Simplified
API. Available at http://java.sun.com/products/ejb/docs.html (2005)

Grust, T.. Monad Comprehensions. A Versatile Representation for Queries. In: The Func-
tional Approach to Data Management - Modeling, Analyzing and Integrating Heterogeneous
Data. Springer Verlag (Sept 2003) 288-311 ISBN: 978-3-540-00375-5.

Object Management Group: OMG OCL Specification v2.0, formal/2006-05-01 (May 2006)
http://www.omg.org/technology/documents/formal/ocl.htm.

Garcia, M.: How to process OCL Abstract Syntax
Trees (2007) http://www.eclipse.org/articles/article.php?file=Article-
HowToProcessOCLAbstractSyntaxTrees/index.html, Eclipse Technical Article.

Garcia, M.: Formalizing the Well-formedness Rules of EJB3QL in UML + OCL. In Kiihne,
T., ed.: Reports and Revised Selected Papers, Workshops and Symposia at MoDELS 2006,
Genoa, Italy. LNCS 4364, Springer-Verlag (2006) 6675

Trigoni, A.: Semantic Optimization of OQL Queries. PhD thesis, University of Cambridge,
UK (October 2002) http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-547 .html.

Demuth, B., HuBmann, H., Loecher, S.: OCL as a Specification Language for Business
Rules in Database Applications. In Gogolla, M., Kobryn, C., eds.: UML. Volume 2185 of
LNCS., Springer (2001) 104-117

Willis, D., Pearce, D.J., Noble, J.: Efficient Object Querying for Java. In
Thomas, D., ed.: ECOOP. Volume 4067 of LNCS., Springer (2006) 28-49
http://www.mcs.vuw.ac.nz/"djp/files/ WPN_ECOOPO06.ps.

Doorn, J.H., Rivero, L.C., eds.: Database Integrity: Challenges and Solutions. Idea Group
Publishing (2002)

Gupta, A., Mumick, L.S., eds.: Materialized views: techniques, implementations, and appli-
cations. MIT Press, Cambridge, MA, USA (1999)

ABOUT THE AUTHORS

Miguel Garecia is a PhD candidate and research assistant at the Institute for Software Sys-
tems at the Hamburg University of Science and Technology (TUHH), Germany. He can
be reached at miguel.garcia@tuhh.de. See also http://www.sts.tu-harburg.de/ mi.garcia.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 119

http://www.inf.uni-konstanz.de/dbis/publications/download/GS:TR96a.ps.gz
http://www.inf.uni-konstanz.de/dbis/publications/download/GS:TR96a.ps.gz
http://www.eclipse.org/emft/projects/teneo/
http://java.sun.com/products/ejb/docs.html
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.eclipse.org/articles/article.php?file=Article-HowToProcessOCLAbstractSyntaxTrees/index.html
http://www.eclipse.org/articles/article.php?file=Article-HowToProcessOCLAbstractSyntaxTrees/index.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-547.html
http://www.mcs.vuw.ac.nz/~djp/files/WPN_ECOOP06.ps
mailto:miguel.garcia@tuhh.de
http://www.sts.tu-harburg.de/~mi.garcia

