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Mapping and visiting represent different programming styles for traversals of collec-
tions of data. Mapping is rooted in the functional programming paradigm, and visiting
is rooted in the object-oriented programming paradigm. This paper explores the simi-
larities and differences between mapping and visiting, seen across the traditions in the
two different programming paradigms. The paper is concluded with recommendations
for mapping and visiting in programming languages that support both the functional
and the object-oriented paradigms.

1 INTRODUCTION

In this paper we compare and contrast mapping, as used in many functional pro-
gramming languages, with visiting, as used via the Visitor design pattern in many
object-oriented languages. This includes imperative mapping in languages that sup-
port both the imperative and the functional paradigms. It also includes functional
visiting in object-oriented languages, which most often ignores the functional her-
itage of list and tree traversal.

In our judgement, mapping, as known from functional programming, is elegant
and easy to understand. In contrast, the Visitor design pattern from object-
oriented programming is much more difficult to program and to understand. It
is our experience that students have a hard time grasping the Visitor pattern. In
Section 4 we point out “excessive scaffolding” as part of the reason for this. Even
among the designers of the original collection of design patterns [4] there are diverg-
ing opinions about the Visitor pattern. Vlidssides [15] quotes Erich Gamma for
saying that

... in my recent pattern talk I list my bottom-ten patterns, and
Visitor is at the very bottom.

Based on these observations, we find it worthwhile to seek mapping and visiting
solutions that make use of inspiration from both functional and object-oriented
programming.

In Section 2 we review simple mapping as supported by library functions of
functional programming languages. We take the opportunity to generalize simple
mapping to general mapping in Section 3. Next, in Section 4 we review visiting
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in object-oriented programming, and we compare it with general mapping. This
includes the “natural object-oriented solution”, the Visitor design pattern, a double
dispatch solution, the walkabout approach, and visitor componentization in the
scope of Eiffel [7]. As a particular concern, we discuss in Section 5 how rounds
of visiting (and visitors) can be combined. In Section 6 we review and discuss
mixed-paradigm solutions, which balance the influence of functional and object-
oriented approaches. In Section 7 we conclude the paper with recommendations
for the treatment of mapping and visiting in future mixed-paradigm programming
languages.

Throughout the paper we illustrate technical points with program snippets writ-
ten in the programming languages SML, C#, Eiffel, CLOS, or F#. Full programs
are presented in Appendices A-D.

2 MAPPING IN FUNCTIONAL PROGRAMMING

Mapping is best known from traversal of linear list structures, but mapping can be
applied on any data structure that represents a collection of data.

We start with the mapping problem in the functional programming paradigm.
The mapping problem is the following:

• Apply a function f on each element e in the collection c and return the resulting
collection of values f(e).

Typically the collection c is implemented as a list of elements. Using functional
programming techniques it is straightforward to write a map function. E.g. in SML
it can be defined recursively as:

fun map (f,l) =

if null l then nil

else cons(f (hd l),map(f,(tl l)))

In the expression map(f,l) the map function is applied on a function f and a
list l. If f(x) = x+1 and l = [1,2,3,4,5] then map(f,l) evaluates to the list
[2,3,4,5,6]. 1

The map function is perhaps more elegantly defined recursively, using pattern
matching, in its curried form, as:

fun map f [] = []

| map f (h::t) = f h :: map f t

1null, nil, hd, tl are all defined in the SML standard library structure List. cons can be
defined as val cons = op:: where :: is the SML infix concatenation operator.
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There is a natural imperative variant of the mapping problem:

• Apply a procedure p on each element e in a collection c for the sake of the
effects of p.

Again using SML this may be defined as:

fun imp_map p [] = ()

| imp_map p (h::t) = (p h);(imp_map p t)

Note the only differences between map and imp map are the sequence operator ;

instead of the infix cons operator :: and the unit result instead of an empty list.

The map function is inherently higher-order having the type:

val map: (’a -> ’b) -> ’a list -> ’b list

and the imperative map function being a specialization for the generic map function
with the type:

val imp_map: (’a -> unit) -> ’a list -> unit

Two rounds of mapping can be combined in two different ways. We assume that
we work with a linear collection (a list) such as [x, y, z] and that we wish to
combine the mappings of two functions f and g on this collection. In the functional
programming paradigm, this can be done as follows:

(1) map(g, map (f, [x; y; z]))

(2) map(compose(g,f), [x; y; z])

The expression compose(g,f) denotes the combined function, and it corresponds
to the mathematical notation g ◦ f. As a matter of terminology, the first form of
combination will be called pipelined combination and the second one will be called
interleaved combination.

In the functional paradigm, the results of (1) and (2) are equivalent, namely
[g(f(x)), g(f(y)), g(f(z))]. Solution (2) is preferred because it involves only
a single traversal, and because it avoids allocation of memory to an intermediate
collection.

In the imperative programming paradigm we find that pipelined combination is
the most natural combination. It can be expressed by

(3) imp_map (f, [x, y, z])); imp_map (g, [x, y, z]))
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which gives rise to the actions f(x), f(y), f(z), g(x), g(y), and g(z) in this
particular order. Thus, f is first applied on all elements, and next g is applied
on all elements. If compose(f,g) denotes a new procedure which applies f and g

sequentially (f before g), then the composition

(4) imp_map(compose(f,g), [x, y, z])

gives rise to an interleaved combination, leading to the actions f(x), g(x), f(y),
g(y), f(z), and g(z) in this order.

Akin to mapping is filtering and folding (also known as reduction or accumula-
tion). Filtering applies a predicate on each element of a list and returns a list of the
elements satisfying the predicate:

fun filter p [] = []

| filter p (h::t) = if (p h)

then h::(filter p t)

else (filter p t)

Folding recursively folds a list into a single result by applying a function to the
head element of a list and the result of folding the tail of a list. A constant is
returned for the empty list:

fun fold f b [] = b

| fold f b (h::t) = f (h, fold f b t)

A function that sums up all the elements of a list, may easily be obtained by
instantiating the generic higher-order fold function:

val sum = fold (fn x => fn y => x+y) 0

3 GENERAL MAPPING

We now generalize the mapping idea described above. In order to distinguish the
general mapping ideas from the mapping described in Section 2, the latter is referred
to as simple mapping.

We identify the following different aspects of the general mapping problem:

• Traversal.

– Element selection. The selection of a subset of the collection, on which
a function should be applied.
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– Element order. The order in which a function is applied on the elements
of the selected subset.

• Function selection. The selection of a function to be applied in the calcula-
tion aspect.

• Calculation. The actual calculation performed by the selected function on
the selected element.

• Result. The materialization or aggregation of the result of the mapping.

General mapping includes, of course, simple mapping, but it also embraces traversals
such as filtering and folding.

In simple mapping the element selection is trivial in the sense that all elements of
the collection are selected. A need for element selection can be handled by filtering
before simple mapping. In addition, in simple mapping a fixed function is applied
on each element. Therefore the function selection is trivial. In functional program-
ming the element order aspect of simple mapping is of no significance, whereas in
imperative programming the ordering aspect is crucial.

It is a virtue of simple mapping that the calculation aspect is strictly separated
from the traversal aspect. It implies that the evaluation/action on each element
of the collection is done without any knowledge about the way the elements are
traversed. In simple mapping, the traversal is not in any way dependent on the
outcome of the calculations that are carried out on individual elements of the input
collection.

The traversal aspect and the result aspect of simple mapping are intertwined.
As already mentioned, simple mapping always produces an output collection of the
same form as the input collection. The resulting collection of simple mapping is
formed in the “immediate slipstream” of the traversal.

In functional programming, simple mapping is used extensively on linear list
structures together with filtering and folding. This leads to a programming style with
multiple pipelined traversals that involves simple mapping, filtering, and possibly
ends with a folding. Both filtering and folding can be understood in relation to
the four aspects of general mapping introduced above. Filtering is responsible for
element selection; The calculation and the result aspects of filtering are trivial.
Folding is responsible for aggregating a result by pair-wise composition of elements
from the list. The element selection and calculation aspects of folding are both
trivial. Use of mapping, filtering, and folding separate different concerns at the
expense of efficiency, due to multiple traversals.

We may indeed implement a generalized version of the map, fold and filter

functions that combines simple mapping, filtering and folding via function param-
eters f, c and b. f is the function to be applied in the calculation aspects, c is
the function that controls the result aspects, and b is the base value to be returned
when the list is empty.
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fun genmap f c b [] = b

| genmap f c b (h::t) =

c ((f h),(genmap f c b t))

We may obtain map, imp map, fold and filter by suitable instantiation of
genmap:

fun map f l =

genmap f cons [] l

fun imp_map p l =

genmap p (fn (x,y) => ()) () l

fun fold f b l =

genmap (fn x => x) f b l

fun filter p l =

genmap (fn x => x)

(fn (x,y) => if (p x)

then (x::y)

else y)

[] l

In a pure functional language, the order in which mapping, filtering or folding
takes place is immaterial. However, in impure strict languages such as SML, the
recursive call may need to take place in reverse order due to side effects, e.g. folding
in the reverse order may be defined as:

fun foldl f b [] = b

| foldl f b (h::t) = foldl f (f (h, b)) t

genmap may also be further generalized to take the order of traversal into account:

fun genmapm false f c b (h::t) =

genmapm false f c (c(f h,b)) t

| genmapm true f c b (h::t) =

c ((f h),(genmapm true f c b t))

| genmapm _ f c b [] = b

genmap uses a boolean flag to decide in which order the filtering/mapped function
f and the folding function c are applied. When the flag is true the traversal is in
reverse order of the list as the recursive call to genmap will ensure that the list is
followed until the end before f and c are applied as the function returns from the
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recursion. When the flag is false the argument (c(f h,b)) will ensure that the
result is passed to the recursive call of genmap and the functions will thus be applied
in the order of the elements of the list. Clearly the order of traversal only matters
if c or f have side effects.

Note that function selection in genmap is still trivial. We return to a further
generalization in Section 6.

Simple mapping can also be applied on non-linear data structures, such as tree
structures. Such structures are usually defined using discriminated union types, e.g.:

datatype ’a tree = Leaf of ’a | Node of ’a *

’a tree * ’a tree

and map is straightforwardly generalized to:

fun treemap f (Leaf x) = Leaf (f x)

| treemap f (Node(x,n1,n2)) =

Node(f x,treemap f n1, treemap f n2)

Simple functional mapping applied on a tree produces another tree, which in an
additional traversal can be folded to a simple value. Preorder, inorder, and postorder
traversals represent different element orderings in imperative tree mapping. See e.g.
Harrison’s book on Abstract Data Types in Standard ML [5].

It is common to encode some application specific structure into the tree type, e.g.
a type for abstract syntax trees of arithmetic expressions would usually be defined
as:

datatype exp = PlusExp of exp * exp

| MinusExp of exp * exp

| TimesExp of exp * exp

| DivideExp of exp * exp

| Identifier of string

| Literal of int

When encoding an application specific structure into the tree type, application
specific functions for mapping, filtering and folding must be constructed. It is com-
mon to write specialized functions in such a way that they combine one or more
traversals and the final folding. One reason for this is that in many practical set-
tings multiple tree traversals and construction of intermediate tree structures are
not desired. However, this blurs the mapping idea in favour of the application of a
specific recursive function in which the calculation aspect and the traversal aspects
are intertwined.
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4 VISITING IN OBJECT-ORIENTED PROGRAMMING

The variations of mapping described in the previous section are primarily rooted in
the functional programming paradigm. We now discuss mapping in the context of
object-oriented programming. Due to the influence of the visitor design pattern the
term “visiting” is often used instead of “mapping”.

The mapping idea from above relies on function parameters, along the lines of
map(f,collection) where f is a function. In many object-oriented programming
languages it is not possible to pass a function/method (such as f) as parameter
to another function/method (such as map). Instead, the function f must be em-
bedded in some class C, and an object o of class C must be passed instead of f:
map(o,collection). In itself, this leads to clumsy programs. On the other hand,
the class C behind the object o can be used to group several methods which are
related to a particular kind of traversal, and it can be used to hold some state which
is relevant for the traversal. This leads to the Visitor design pattern.

When working in the object-oriented programming paradigm, linear structures,
and in particular tree structures, are often structured according the Composite de-
sign pattern [4]. A Composite design pattern is based on a recursive data structure
in which inner nodes and leaves have a common, uniform interface. A Composite
design pattern may involve many different classes. The function selection aspect of
general mapping can elegantly be controlled by use of virtual methods in the class
hierarchy of the Composite design pattern.

In order to be concrete we study sample traversals of a composite structure. The
example throughout this paper will be operations on abstract syntax trees (ASTs)
of arithmetic expressions. This is a typical example, both in the literature about
design patterns, but also in practical “language processing situations”, such as in
the domain of compiler construction. The ASTs that we work with are composed
on the basis of the following BNF grammar, which corresponds to the SML exp

datatype discussed in Section 3.

Exp ::= PlusExp | MinusExp | TimesExp |

DivideExp | Identifier | Literal

PlusExp ::= Exp + Exp

MinusExp ::= Exp - Exp

TimesExp ::= Exp * Exp

DivideExp ::= Exp / Exp

The given BNF gives rise to a number of expression classes which together form
a Composite in which Identifier and Literal are leaves. An AST may be tra-
versed with many different purposes, such as evaluation of the value of an expression,
type checking the expression, generation of lower-level code for the expressions, or
source-level pretty printing of the expression. The running example illustrates an
expression evaluator and a reverse polish pretty printer. These are both instances
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of functional mappings that involve built-in folding of the tree structure to a simple
value.

The natural object-oriented solution

The natural object-oriented expression traversal solution is illustrated as C# pro-
grams in Appendix A. A given traversal is programmed by a virtual method in class
Exp, and in the subclasses of Exp. (To save some space we have left out the classes
for MinusExp and DivideExp). The properties of this solution are well-known:

1. Methods for different kinds of traversal (evaluation and reverse polish pretty
printing) are spread throughout all the expression classes.

2. The traversal, calculation, and result aspects of general mapping are all inter-
twined.

3. The function selection aspect is governed by virtual functions in the Exp class
hierarchy.

4. If an additional kind of traversal is needed it is necessary to change the source
program of all involved expression classes. This is a particular problem in case
the source programs of the classes are not available.

The observations in item 1 and item 4 give rise to the Visitor design pattern, which
we discuss next.

The Visitor design pattern

The Visitor design pattern is typically built on top of the Composite design
pattern. The Visitor pattern unites all methods of a particular traversal in a single
class. Thus, the Visitor pattern is a refactoring of the natural object-oriented
solution in Appendix A.

In the introduction to Section 4 we discussed the transition from map(f,collection)

to map(v,collection), where v is an instance of a class, say V. The class V holds
f as an instance method. The class V can now be understood as a Visitor, which
encapsulates different functions to be applied on different types of elements. (This
can be understood in light of the Function selection aspect of general mapping).
Traversal with a Visitor is usually initiated by v.map(collection). As a mat-
ter of terminology, the name “map” is substituted by “visit”, and it leads to the
activating form v.visit(collection).

We now look at a version of the program in Appendix A which is programmed
according to the Visitor design pattern. The Visitor pattern provides an inter-
face from the Exp classes to the traversal functionality via the Accept method. The
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Visitor pattern does not separate the traversal and the calculation aspects of gen-
eral mapping, although extensions, such as the depthfirstadaptor in SableCC [3],
provide a refinement of the pattern where functionality for pre and post depth first
traversal may be specified. The Visitor design pattern should only be used for a
stable Exp class hierarchy for which we anticipate a number of different traversals
in the future. If the Exp class hierarchy is extended with new subclasses, each of
the Exp Visitor classes must be modified with additional methods for these new
subclasses.

The new version of the C# program from Appendix A is shown in Appendix
B. In this solution the class Exp and its subclasses support visiting at an abstract
level via the virtual Accept method. A given visiting need is implemented in a
class of its own, which implements the Visitor interface. The expression classes
have no concrete knowledge of any particular visitor. The Visitor interface is type
parametrized by T and D, where T is the result type of the Visit methods, and D

is the type of some extra information which needs to be passed around during the
visiting process.

The solution shown in Appendix B requires a lot of object-oriented scaffolding
in terms of the Visitor interface, the classes that implement Visitor, the Visit

methods, and the Accept methods. The Visit and Accept methods are indirectly
mutually recursive: Expression objects are passed as parameters to Visit methods,
and visitor objects are passed as parameters to Accept methods. The natural object-
oriented solution shown in Appendix A is simpler, due to direct recursive calls and
the fact that most necessary information is present inside the expression classes.
In our example, the use of the Visitor design pattern adds more than 50% extra
source code on top of the natural object-oriented solution.

The reasons behind the mentioned object-oriented scaffolding can be explained
in two different ways. It can be seen as the price we have to pay for generalizing,
refactoring and encapsulating the methods related to a given kind of traversal. It
can, alternatively, be seen as a way to simulate double dispatch on a collection type
and a visiting type (see below). Either way, use of the Visitor design pattern
represents an algorithmic complication because the traversal must be programmed
via indirect recursion in the methods of two different classes.

A double dispatch solution

In reality, the Visitor solution discussed above relies on a double dispatch on the
Exp type and the Visitor type. Because most object-oriented programming lan-
guages (such as Java and C#) only support single dispatch, the double dispatch is
realized in a two step process: First, dispatch takes place on the visitor:

visitor.visit(expression, ...)

The visitor, in turn, dispatches on an expression:
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expression.accept(visitor, ...)

The additional code complexity of the Visitor design pattern becomes apparent
if the Visitor design pattern is viewed as a way to simulate double dispatch. The
calls of both visit and accept methods in two different classes make it difficult
to understand and follow the traversal and the calculations during the traversal.
With this perspective, the Visitor design pattern is quite a burden, at least for less
experienced programmers.

In object-oriented programming languages that support multiple dispatch the
visitor pattern can be programmed more directly. In Appendix C we show a double
dispatch solution in CLOS [6, 12] which relies on multi-methods. The mentioned
two-step process is substituted by a single step:

visit(expression, visitor, ...)

The activation of the visit function dispatches on both parameters in order to
locate an applicable visit method. The visit methods recurse directly instead
of indirectly. It is worth noticing that the expression class hierarchy is not at all
affected by the visiting needs. Thus, no accept methods are necessary. The visitor
is programmed in a so-called generic function outside the classes. This is a direct
consequence of the use of multi-methods.

The encapsulation and grouping of all methods that contribute a given kind
of visitor is an important objective of the Visitor design pattern. In a solution
based on double dispatch, where the methods are localized outside the classes, this
objective must be achieved by other means. A module or package concept can be
used to group related methods.

The Walkabout visitor

In the paper The Essence of the Visitor Pattern [11] Palsberg and Jay have described
how to provide a generic visitor class which they call Walkabout. (Notice that the
word “generic” - in this context - has nothing to do with type parametrization).
The Walkabout class contains a single visit method which can be specialized to
visit a particular class, for instance the Exp class in our example. The selection of
the appropriate visit method is programmed by means of reflection. The default
behaviour of the visit method, applied on some object o, is to traverse all objects
reachable from o. The properties of the walkabout approach can be summarized as
follows:

• All visitor needs can be programmed as visit methods in the Walkabout class
and its subclasses.

• The visited classes (Exp and it’s subclasses in our example) are not at all
affected by the visitor. In particular, there is no need for an accept method
in these classes.
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• The visit method of class Object—which serves as the default visit method—
is clumsy and slow due to the use of reflection.

Relative to general mapping the walkabout approach can be characterized as
follows:

• The traversal and the calculation aspects are intertwined. The element selec-
tion is carried out by the visit method. The traversal is—per default—almost
all-embracing because the visit method of class Object traverses all refer-
ences to all reachable objects.

• The function selection is programmed explicitly.

• The result aspect is obtained by imperative means (change of the state of the
Walkabout object, for instance). A functional visit method in the Walkabout
class has not been discussed.

Visitor Componentization

In the paper Componentization: The Visitor Example [9] Meyer and Arnout intro-
duce a “componentizable” visitor in Eiffel. The goal of this work is to provide for
visiting via a single, reusable class in the class library of Eiffel. The visit(c:C)

method in an instance of the Visitor[C] class carries out visiting of C objects. Rel-
ative to our example, C could be the class Exp. The Visitor class is implemented
in Eiffel [7, 8], and it relies on programming language concepts which are specific
to Eiffel. An instance of the Visitor class accepts a collection of procedures. In
this context, a collection of procedures is dealt with by an Eiffel tuple, and proce-
dures are represented as Eiffel agent objects. An instance of the Visitor class applies
a selected procedure to elements of the collection of C objects during a traversal.
Inside the Visitor, the visitor procedures are organized such that the selection of
the appropriate procedure does not require linear search. The selection of the most
appropriate procedure relies on reflection [1].

5 VISITOR COMBINATION

In the paper Visitor Combination and Traversal Control [14], Visser describes how
to combine a number of visitors to a single visitor. The combinations can be seen
as aggregation of two (or more) visitors to a single visitor. The aggregated visitor
itself implements the Visitor interface. The paper therefore, in reality, explains
how to build visitors that adhere to the Composite design pattern [4].

One of the visitor combinations from [14] is called Sequence. Figure 1 shows the
Sequence visitor for the expression classes. The Sequence visitor combines two other
visitors, first and second, sequentially, as a pipelined combination (see Section 2).
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Thus, the activation someSequence.Visit(someExpression, ...) covers a full
tree traversal with the visitor first followed by a full tree traversal with the visitor
second. Because of the coupling between the traversal and calculation aspects in
the Visitor pattern, it is not easy to imagine an interleaved combination of two
visitors.

Only imperative visitors are illustrated in [14]. Our expression Visitor interface,
as shown in Appendix A, prescribes Visit operations that return some type T.
The Sequence visitor, shown in Figure 1, is actually an imperative visitor. The
value returned by the first visitor is ignored. The value of the second visitor is
returned as the value of the combined visitor. This approach leads to an unfortunate
asymmetry between call of Accept on first and call of Accept on second in Figure
1.

From a functional programming point of view, it is natural to program a more
genuine functional combination of two visitors. This leads to the class Functional-
Composition, which is shown in Figure 2. The first visitor produces data of type
T1 which is constrained to be of type Exp. This allows the second visitor to be applied
on the result returned by the first visitor. The second visitor produces data of a non-
constrained type T2. This combination can be used to (1) transform an expression
tree followed by (2) some interpretation/rendering of the transformed tree. In Figure
2 the use of extra information relative to the combined visitor is also improved. D1

and D2 are the types of the extra information passed to the first and second

visitors respectively. The extra information passed to a FunctionalComposition

visitor is of type Product<D1,D2>, where the generic class Product is a simple,
straightforward pairing of two values of type T1 and T2.

Another combination of visitors from [14] is called Choice and corresponds to
some extent to the filter in the functional paradigm.

Finally, [14] describes how to control the traversal. This corresponds to element
selection and element order of general mapping, as addressed in Section 3.

The issue of combining traversals is important and worthwhile. However, Visser’s
proposed combination of Visitors is much more complicated to deal with than the
combination of mappings described in Section 2 of this paper. The combinations
shown in Figures 1 and 2 become even more complicated if it is attempted to lift
them from specific expression visitors to generic visitors. Many specialized visitor
classes are involved, and the derived fragmentation of control blurs the algorithmic
comprehension of the traversal for most programmers.

6 MIXED-PARADIGM SOLUTIONS

Section 3 discussed generalized mapping and showed how a generalized mapping
function could be defined. However, the function selection aspect of generalized
mapping is trivial as lists in traditional functional programming languages, such as
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class Sequence<T,D>: Visitor<T,D>{
private Visitor<T,D> first, second;

public Sequence(Visitor<T,D> first,
Visitor<T,D> second){

this.first = first; this.second = second;
}

public T Visit(PlusExp e, D extraInfo){
e.Accept(first, extraInfo);
return e.Accept(second, extraInfo);

}

public T Visit(TimesExp e, D extraInfo){
e.Accept(first, extraInfo);
return e.Accept(second, extraInfo);

}

public T Visit(Identifier e, D extraInfo){
e.Accept(first, extraInfo);
return e.Accept(second, extraInfo);

}

public T Visit(Literal e, D extraInfo){
e.Accept(first, extraInfo);
return e.Accept(second, extraInfo);

}
}

Figure 1: The Sequence visitor programmed in C#.

SML, consist of elements of the same type. In object-oriented programming it is
quite common to have collections of mixed types as long as the elements share a
common super type, which ultimately could be the type Object of all objects.

In languages combining higher-order functional programming with object-oriented
programming, such as F#, a list with mixed element types, may then be defined as
e.g.:

let mixedlist =

[((new ListElementType1()) :> ListElements) ;

((new ListElementType2()) :> ListElements)];;

Note that in F# the elements, of type ListElementType1, respectively ListEl-

ementType2, explicitly have to cast to the common supertype ListElements using
the :> operator.

Clearly map, fold, etc. may be used on such lists and the function selection may
be made less trivial as we can generalize the functions to be applied to dispatch on
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class FunctionalComposition<T1,T2,D1,D2>: Visitor<T2,Product<D1,D2>>
where T1: Exp {
private Visitor<T1,D1> first;
private Visitor<T2,D2> second;

public FunctionalComposition(Visitor<T1,D1> first, Visitor<T2,D2> second){
this.first = first; this.second = second;

}

public T2 Visit(PlusExp e, Product<D1,D2> extraInfo){
T1 result = e.Accept(first, extraInfo.First);
return result.Accept(second, extraInfo.Second);

}

public T2 Visit(TimesExp e, Product<D1,D2> extraInfo){
T1 result = e.Accept(first, extraInfo.First);
return result.Accept(second, extraInfo.Second);

}

public T2 Visit(Identifier e, Product<D1,D2> extraInfo){
T1 result = e.Accept(first, extraInfo.First);
return result.Accept(second, extraInfo.Second);

}

public T2 Visit(Literal e, Product<D1,D2> extraInfo){
T1 result = e.Accept(first, extraInfo.First);
return result.Accept(second, extraInfo.Second);

}
}

Figure 2: The FunctionalComposition visitor programmed in C#.

the type of elements in the list. In F# we can program this dispatch explicitly using
pattern matching on the dynamic type, e.g.:

let fmixed (e:ListElements) =

match e with

| :? ListElementType1 as ee -> 1

| :? ListElementType2 as ee -> 2 ;;

With this set-up, the result of the expression map fmixed mixedlist is [1;2].
Clearly dynamic dispatch may be used as the basis of function selection, e.g. if the
super type ListElements defines a virtual method f, specialized by each subclass,
we may define:

let fmixed args (e:ListElements) = e.f args;;
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Paramount to the formulation of the map function based on pattern matching is
the fact that the type of a list is defined as a disjoint union type, e.g. a list type in
F# could be defined as:

type ’a mylist = Empty

| Cons of ’a * ’a mylist

In fact the built-in list type in F# is defined as:

type ’a list = ([])

| (::) of ’a * ’a list

where (::) is defined as an infix operator. Using the type mylist as defined above,
map may be defined as:

let rec map f l =

match l with

| Empty -> Empty

| Cons(h,t) -> Cons(f(h),(map f t));;

If we recast the definition of lists in an object-oriented setting, we typically do not
use discriminated union type, but use a common (abstract) class and subtypes for
each variant, following the Composite design pattern [4].

In F# an object-oriented version of list may be defined as:

type ’a Mylist =

class

new() = {}

end;;

type ’a Mycons =

class

inherit ’a Mylist

val h: ’a

val t: ’a Mylist

new(a,b) = {h = a; t = b}

end;;

type ’a Myempty =

class

inherit ’a Mylist

new() = {}

end;;
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Keeping to a functional programming style, map on the above definition of list, could
be defined in F# as:

let rec mymap f (l:’a Mylist) =

match l with

| :? (’a Mycons) as e ->

(new Mycons<’a>(f(e.h),(mymap f (e.t))))

:> ’a Mylist

| :? (’a Myempty) as e -> (new Myempty<’a>())

:> ’a Mylist;;

mymap takes as arguments a function f and an object-oriented list l. Based on
pattern matching on the run-time concrete type of the list, mymap either recurses
over the list or returns an empty list. This formulation of map is very close in spirit
to the functional version based on discriminated union, but has a heavy notational
overhead. To reduce this overhead and make the function more ”functional” we may
use the notion of active patterns [13]:

let (|Cons|Nil|) (l:’a Mylist) =

match l with

| :? (’a Mycons) as e ->

Cons(e.h,e.t)

| :? (’a Myempty) as e -> Nil;;

The notation (|Cons|Nil|) introduces two so-called structured names Cons and
Nil which may be used in pattern matching later. We may e.g. use them in the
definition of mymap:

let rec mymap f (l:’a Mylist) =

match l with

| Cons(h,t) -> cons(f(h),mymap f t)

| Nil -> nil()

where cons and nil are defined as:

let cons (h,t:’a Mylist) =

(new Mycons<’a>(h,t)):> ’a Mylist;;

let nil () =

(new Myempty<’a>()):> ’a Mylist;;

Clearly mymap may be generalized, using active patterns, with two additional
functions for combining the head and tail, as well as processing the empty list as
in the functional styled genmap, thus achieving a function implementing all aspects:
traversal, function selection, calculation and result, of generalized mapping:
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let rec TreeWalker f c b (ee:Exp) =
match ee with
| :? PlusExp as e -> (c (f (TreeWalker f c b e.e1)) (f (TreeWalker f c b e.e2)))
| :? MinusExp as e -> (c (f (TreeWalker f c b e.e1)) (f (TreeWalker f c b e.e2)))
| :? TimesExp as e -> (c (f (TreeWalker f c b e.e1)) (f (TreeWalker f c b e.e2)))
| :? DivideExp as e -> (c (f (TreeWalker f c b e.e1)) (f (TreeWalker f c b e.e2)))
| :? Identifier as e -> (b e.f1)
| :? IntegerLiteral as e -> (b e.f1);;

Figure 3: A generalized tree-walker function programmed in F#.

let rec genmap f c b (l:’a Mylist) =

match l with

| Cons(h,t) ->

(c (f h,(mymap f t)))

| Nil -> b)

;;

Following the object-oriented styled definition of lists above, it is relatively
straightforward to use a similar pattern to implement a generalized tree-walker func-
tion for expression trees. A generalized tree-walker function is shown in Figure 3.
However, in most cases we would prefer not to use the same functions c and f as
we walk a tree, but rather use specific functions depending on the node type. This
may be achieved using a combination of the higher-order function technique used for
the TreeWalker function and the Visitor class. An example is shown in Appendix
D where the running example of operations on abstract syntax trees is presented.
We bundle a set of related functionality using an instance of a concrete class (i.e.
an object) implementing an abstract visitor class. This solution may especially be
appropriate if the functions share some state that could be encapsulated by the
object.

Thus by mixing functional and object-oriented programming we achieve a generic
program for visiting/treewalking, thus eliminating the scaffolding from the class
hierarchy needed in the visitor pattern, but still keeping the visitor functions together
in an implementation of the Visitor interface.

7 CONCLUSION

In this paper we have reviewed mapping in functional programming and visiting in
object-oriented programming. We have looked at generalizations in both paradigms
and seen how the concepts can be amalgamated in languages that support both
paradigms. Especially by using functional programming techniques with higher-
order functions, we may move the scaffolding code for tree walking, found in the
visitor pattern, from the base classes to a higher-order function as demonstrated
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in Section 6. Combining two rounds of mapping is second nature in the functional
paradigm. Combined with filtering and folding, mapping provides a powerful pro-
gramming technique, which may be generalized to a single higher-order function as
demonstrated in section 2. In the object-oriented paradigm this is not straightfor-
ward, but using type parametrization it is possible to transfer some of the concepts
from the functional world into the object-oriented world, as illustrated in Section 5.

Both element selection and function selection are needed in the visitor pattern,
thus a double dispatch solution is elegant. In Section 4 we showed how this can
be done in CLOS. However, none of the current mainstream languages support
double dispatch, though experimental prototypes, such as Multi-Java [2], exist. In
CLOS functions are placed outside the class definitions, and CLOS offers only a
rudimentary language mechanism, in the form of namespaces, for bundling together
related functionality.

The F# solution, described in Section 6, bundles related functionality using an
instance of a concrete class (i.e. an object) implementing an abstract visitor class.
This may be an appropriate solution if the functions share some state that could
be encapsulated by the object. However, in many cases this is a heavy solution as
the bundle of functionality does not share state, and alternative solutions are called
for. Eiffel, as described in Section 4, provides language constructs in the form of
tuples and agent objects, that cater for such bundling, but the selection of the most
appropriate method relies on the heavy machinery of reflection.

In most cases bundling of related functionality could be solved with a class
consisting of a set of static methods. This could be an elegant solution if the
language supports static overloading. One may also prefer a language mechanism,
such as mixins, as found e.g. in the SCALA language [10], possibly combined with a
concept like extension methods from C# 3.0, that will allow the mixin of methods
at a later stage than class definition time. Alternatively type parametrization may
be sufficient.

The structure of the collection to be visited has to be known to the programmer
of the respective functions, be it mapping on lists or treewalkers/visitors on trees,
as quite at bit of semantic knowledge is encoded in the structure, e.g. the structure
of expression trees records knowledge of the type of nodes. However, if the structure
of the collection is not known, we will need to be able to inspect the structure. In
Section 4 we looked at one approach where reflection is used. However, there is
a high performance penalty for using reflection. It would be preferable to include
language constructs that directly would allow the programmer to investigate this
structure dynamically, for example by allowing programmatic inspection of a class’
structure.

Looking beyond mapping and visiting, other design patterns might also be ab-
stracted using language constructs, thus eliminating the scaffolding code from the
base classes. We have briefly looked at the Singleton design pattern. However, it
seems that removing the scaffolding code from the base class in this case, would re-
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quire language mechanisms that allow abstractions over classes, thus treating classes
as first class classes. It is a matter of future research to determine if such language
constructs are implementable and useful.
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A NATURAL OBJECT-ORIENTED VISITING

using System;
using System.Collections.Generic;

namespace NaturalOOSolution
{

abstract class Exp{
public abstract int Eval(Environment env);
public abstract string ReversePolish();
protected const string SPACE = " ";

}

class PlusExp : Exp {
private Exp e1, e2;

public PlusExp(Exp a, Exp b){
e1 = a;
e2 = b;

}

public override int Eval(Environment env){
return e1.Eval(env) + e2.Eval(env);

}

public override string ReversePolish(){
return e1.ReversePolish() + SPACE + e2.ReversePolish() + SPACE + "+" ;

}
}

class TimesExp : Exp {
private Exp e1, e2;

public TimesExp(Exp a, Exp b){
e1 = a;
e2 = b;

}

public override int Eval(Environment env){
return e1.Eval(env) * e2.Eval(env);

}

public override string ReversePolish(){
return e1.ReversePolish() + SPACE + e2.ReversePolish() + SPACE + "*";

}
}

class Identifier : Exp {
private string name;

public Identifier(string s) {name = s;}

public override int Eval(Environment env){
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return env[name];
}

public override string ReversePolish(){
return name;

}
}

class Literal : Exp {
private string litString;

public Literal(string s) { litString = s; }

public override int Eval(Environment env){
return Int32.Parse(litString);

}

public override string ReversePolish(){
return litString;

}
}

class Environment: Dictionary<String, int>{};

class Program {

public static void Main() {
Exp ast = new TimesExp(new PlusExp (new Literal("1"), new Identifier("x")),

new Literal("2"));
Environment env = new Environment(); env.Add("x",7);
Console.WriteLine(ast.Eval(env));
Console.WriteLine(ast.ReversePolish());

}
}

}

B THE VISITOR DESIGN PATTERN

using System;
using System.Collections.Generic;

namespace VisitorSolution
{

interface Visitor<T,D>{
T Visit(PlusExp e, D extraInfo);
T Visit(TimesExp e, D extraInfo);
T Visit(Identifier e, D extraInfo);
T Visit(Literal e, D extraInfo);

}
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abstract class Exp{
public abstract T Accept<T,D>(Visitor<T,D> v, D x);

}

class PlusExp : Exp {
private Exp e1, e2;

public PlusExp(Exp a, Exp b){
e1 = a;
e2 = b;

}

public Exp LeftOperand{get {return e1;}}
public Exp RightOperand{get {return e2;}}

public override T Accept<T,D>(Visitor<T,D> v, D x){
return v.Visit(this, x);

}
}

class TimesExp : Exp {
private Exp e1, e2;

public TimesExp(Exp a, Exp b){
e1 = a;
e2 = b;

}

public Exp LeftOperand{get {return e1;}}
public Exp RightOperand{get {return e2;}}

public override T Accept<T,D>(Visitor<T,D> v, D x){
return v.Visit(this, x);

}
}

class Identifier : Exp {
private string name;

public Identifier(string s) {name = s;}

public string Name{get {return name;} }

public override T Accept<T,D>(Visitor<T,D> v, D x){
return v.Visit(this, x);

}
}

class Literal : Exp {
private string litString;

public string LiteralString{get {return litString;}}

public Literal(string s) {litString = s; }
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public override T Accept<T,D>(Visitor<T,D> v, D x){
return v.Visit(this, x);

}
}

class Environment: Dictionary<String, int>{};

class Interpreter: Visitor<int, Environment> {
public int Visit(PlusExp e, Environment env){
return (e.LeftOperand.Accept(this, env) + e.RightOperand.Accept(this, env));

}

public int Visit(TimesExp e, Environment env){
return (e.LeftOperand.Accept(this, env) * e.RightOperand.Accept(this, env));

}

public int Visit(Identifier e, Environment env){
return env[e.Name];

}

public int Visit(Literal e, Environment env){
return Int32.Parse(e.LiteralString);

}
}

class ReversePolishConverter: Visitor<string, None> {

private const string SPACE = " ";

public string Visit(PlusExp e, None x){
return e.LeftOperand.Accept(this, x) + SPACE + e.RightOperand.Accept(this, x) +

SPACE + "+";
}

public string Visit(TimesExp e, None x){
return e.LeftOperand.Accept(this, x) + SPACE + e.RightOperand.Accept(this, x) +

SPACE + "*";
}

public string Visit(Identifier e, None x){
return e.Name;

}

public string Visit(Literal e, None x){
return e.LiteralString;

}
}

class None {};

class Program {
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public static void Main() {
TimesExp ast = new TimesExp(new PlusExp (new Literal("1"), new Identifier("x")),

new Literal("2")); // (1 + x) * 2
Environment env = new Environment(); env.Add("x",9);
Interpreter interpreter = new Interpreter();
ReversePolishConverter reversPolishConverter = new ReversePolishConverter();
None nothing = new None();

Console.WriteLine(interpreter.Visit(ast, env));
Console.WriteLine(reversPolishConverter.Visit(ast, nothing));

}
}

}

C DOUBLE DISPATCH VISITING IN CLOS

;;; Visitor in CLOS - Common Lisp Object System.

;; Expression Classes

(defclass Expression () ())

(defclass PlusExpression (Expression)
((a1 :initarg :firstAddend :accessor firstAddend)
(a2 :initarg :secondAddend :accessor secondAddend)))

(defclass MinusExpression (Expression)
((m :initarg :minuend :accessor minuend)
(s :initarg :subtrahend :accessor subtrahend)))

(defclass TimesExpression (Expression)
((f1 :initarg :firstFactor :accessor firstFactor)
(f2 :initarg :secondFactor :accessor secondFactor)))

(defclass DivideExpression (Expression)
((dividend :initarg :dividend :accessor dividend)
(divisor :initarg :divisor :accessor divisor)))

(defclass Identifier (Expression)
((name :initarg :name :accessor name)))

(defclass IntegerLiteral (Expression)
((literal :initarg :literal :accessor literal)))

;; Visitor classes

(defclass Visitor () ())
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(defclass Interpreter (Visitor) ())

(defclass ReversePolish (Visitor) ())

;; Visit multi methods.
;; Notice that the visit method specializes on both an Expression
;; and a (kind of) of visitor.

(defmethod visit ((e PlusExpression) (v Interpreter) &optional extra)
(+ (visit (firstAddend e) v extra) (visit (secondAddend e) v extra)))

(defmethod visit ((e MinusExpression) (v Interpreter) &optional extra)
(- (visit (minuend e) v extra) (visit (subtrahend e) v extra)))

(defmethod visit ((e TimesExpression) (v Interpreter) &optional extra)
(* (visit (firstFactor e) v extra) (visit (secondFactor e) v extra)))

(defmethod visit ((e DivideExpression) (v Interpreter) &optional extra)
(/ (visit (dividend e) v extra) (visit (divisor e) v extra)))

(defmethod visit ((e Identifier) (v Interpreter) &optional extra)
(lookup-identifier extra (name e)))

(defmethod visit ((e IntegerLiteral) (v Interpreter) &optional extra)
(convert-string-to-integer (literal e)))

(defmethod visit ((e PlusExpression) (v ReversePolish) &optional extra)
(concatenate ’string (visit (firstAddend e) v extra) " "
(visit (SecondAddend e) v extra) " " "+"))

(defmethod visit ((e MinusExpression) (v ReversePolish) &optional extra)
(concatenate ’string (visit (minuend e) v extra) " "
(visit (subtrahend e) v extra) " " "-"))

(defmethod visit ((e TimesExpression) (v ReversePolish) &optional extra)
(concatenate ’string (visit (firstFactor e) v extra) " "
(visit (SecondFactor e) v extra) " " "*"))

(defmethod visit ((e DivideExpression) (v ReversePolish) &optional extra)
(concatenate ’string (visit (dividend e) v extra) " "
(visit (divisor e) v extra) " " "/"))

(defmethod visit ((e Identifier) (v ReversePolish) &optional extra)
(name e))

(defmethod visit ((e IntegerLiteral) (v ReversePolish) &optional extra)
(literal e))
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;; Auxiliary stuff.
(defun convert-string-to-integer (str &optional (radix 10))
"Given a digit string and optional radix, return an integer."
; Details not relevant for this paper

)

(defun lookup-identifier (env name)
(cdr (assoc name env :test (function equal))))

;; Some sample visiting:
(defun main ()
(let* ((expr1 (make-instance ’PlusExpression

:firstAddend (make-instance ’IntegerLiteral :literal "3")
:secondAddend (make-instance ’IntegerLiteral :literal "2")))

(expr2 (make-instance ’TimesExpression
:firstFactor (make-instance ’IntegerLiteral :literal "3")
:secondFactor (make-instance ’Identifier :name "var")))

(expr3 (make-instance ’MinusExpression
:minuend expr1
:subtrahend expr2))

(interpretation (make-instance ’Interpreter))
(reverse-polish (make-instance ’ReversePolish))
(env ’(("x" . 5) ("var" . 7)))
)

(list (visit expr1 interpretation env)
(visit expr2 interpretation env)
(visit expr3 interpretation env)

(visit expr1 reverse-polish)
(visit expr2 reverse-polish)
(visit expr3 reverse-polish)
)))

D VISITING IN F#

type Exp =
class
new() = {}

end;;

type PlusExp =
class
inherit Exp

val e1:Exp
val e2:Exp
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new(a,b) = {e1 = a; e2 = b}
end;;

type MinusExp =
class
inherit Exp

val e1:Exp
val e2:Exp
new(a,b) = {e1 = a; e2 = b}

end;;

type TimesExp =
class
inherit Exp

val e1:Exp
val e2:Exp
new(a,b) = {e1 = a; e2 = b}

end;;

type DivideExp =
class
inherit Exp

val e1:Exp
val e2:Exp
new(a,b) = {e1 = a; e2 = b}

end;;

type Identifier =
class
inherit Exp

val f1:string
new(s) = {f1 = s}

end;;

type IntegerLiteral =
class
inherit Exp

val f1:string
new(s) = {f1 = s}

end;;

type Environment =
class
inherit System.Collections.Generic.Dictionary<string,int>

new() = {}
end;;

let env = new Environment();;

let Lookup (s:string) =
match env.TryGetValue(s) with
| (_,x) -> x

;;
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type ’a Visitor =
class
abstract member visitPlusExp: ’a * ’a -> ’a
abstract member visitMinusExp: ’a * ’a -> ’a
abstract member visitTimesExp: ’a * ’a -> ’a
abstract member visitDivideExp: ’a * ’a -> ’a
abstract member visitIdentifier: string -> ’a
abstract member visitIntegerLiteral: string -> ’a
new() = {}

end;;

let rec TreeWalker (c:’a Visitor) (ee:Exp) =
match ee with
| :? PlusExp as e -> (c.visitPlusExp ((TreeWalker c e.e1),(TreeWalker c e.e2)))
| :? MinusExp as e -> (c.visitMinusExp ((TreeWalker c e.e1),(TreeWalker c e.e2)))
| :? TimesExp as e -> (c.visitTimesExp ((TreeWalker c e.e1),(TreeWalker c e.e2)))
| :? DivideExp as e -> (c.visitDivideExp ((TreeWalker c e.e1),(TreeWalker c e.e2)))
| :? Identifier as e -> (c.visitIdentifier e.f1)
| :? IntegerLiteral as e -> (c.visitIntegerLiteral e.f1);;

type Interpreter =
class
inherit int Visitor
override x.visitPlusExp (x,y) = x + y
override x.visitMinusExp (x,y) = x - y
override x.visitTimesExp (x,y) = x * y
override x.visitDivideExp (x,y) = x / y
override x.visitIdentifier s = Lookup s
override x.visitIntegerLiteral s = System.Int32.Parse s
new() = {}

end;;

let inter (ee:Exp) = TreeWalker (new Interpreter() :> int Visitor) ee;;

let SPACE = " ";;

type ReversePolish =
class
inherit string Visitor
override x.visitPlusExp (x,y) = x + SPACE + y + SPACE + "+"
override x.visitMinusExp (x,y) = x + SPACE + y + SPACE + "-"
override x.visitTimesExp (x,y) = x + SPACE + y + SPACE + "*"
override x.visitDivideExp (x,y) = x + SPACE + y + SPACE + "/"
override x.visitIdentifier s = (Lookup s).ToString()
override x.visitIntegerLiteral s = s
new() = {}

end;;

let reversepolish (ee:Exp) = TreeWalker (new ReversePolish() :> string Visitor) ee;;

let ast = new TimesExp(new PlusExp (new IntegerLiteral("1"), new Identifier("x")),
new IntegerLiteral("2")) :> Exp;;

do env.Add("x",9);;
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do System.Console.WriteLine(inter ast);;
do System.Console.WriteLine(reversepolish ast);;
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