
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 8, November-December 2008

Fathi Taibi, Fouad Mohammed Abbou, Md Jahangir Alam: “A Matching Approach for Object-
Oriented Formal Specifications”, in Journal of Object Technology, vol. 7, no. 8, November-
December 2008, pp. 139-153 http://www.jot.fm/issues/issue_2008_11/article3/

A Matching Approach for Object-
Oriented Formal Specifications

Fathi Taibi, University of Tun Abdul Razak, Selangor, Malaysia
Fouad Mohammed Abbou, Multimedia University, Selangor, Malaysia
Md Jahangir Alam, Multimedia University, Selangor, Malaysia

Abstract
Software merging is needed at different stages of software development to combine the
artifacts created or modified by the parallel work of the different developers involved in
the project. An accurate matching approach is the key to successful software merging
as well as to conflicts identification. In this paper, a new matching approach for Object-
Oriented formal specifications is proposed. Object-Z is used as a specification
language. However, the proposed approach is meant to be applicable to a wide range
of Object-Oriented software artifacts. Merging formal requirements specifications is
motivated by the fact that it could help in identifying (and resolving) conflicts that will
cost higher to identify (and resolve) at later stages of software development. The
proposed approach incorporates heuristics for both syntactic and structural similarity.
The empirical results obtained through a prototype implementation of the proposed
approach were very encouraging.

1 INTRODUCTION

Software artifacts incorporate the views of several developers working on a software
project, which makes software merging essential for successful large-scale software
development. Merging [Mens02] is needed at different development phases to combine
the partial artifacts created or modified by the parallel work of the different developers
involved in the project. For example, during integration, source code merging happens at
regular intervals to combine the work carried out by different programmers. The same
thing could be said about requirements specifications and design models. Merging
software artifacts manually is tremendously difficult, time consuming, error prone, and
very expensive. Thus, it must be automated.

In addition to promoting collaboration and distributed development, when used at an
early stage of the software development such as during requirements specification, the
merging process helps in identifying and resolving conflicts that will cost higher to
identify and resolve during later stages of development such as during testing or
integration.

A MATCHING APPROACH FOR OBJECT-ORIENTED FORMAL SPECIFICATIONS

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

Merging requirements specified informally (by textual or graphical means) is
difficult and time consuming because of the ambiguous nature of natural languages and
the notations used. Moreover, informal specifications are sometimes misleading. Formal
methods offer a better alternative because of their precise and accurate nature. One of
these methods is Object-Z [Smith00] that combines the strengths of two worlds: the
world of formal languages and the world of Object-Oriented (OO) methods. When used
to specify systems’ requirements, Object-Z produces specifications that are clear, precise,
and object-oriented.

Matching [Nejat07] the elements of the software artifacts to be combined is required
before merging. Matching is based around the concept of similarity. An accurate
matching approach is the foundation of any successful merging mechanism. Matching
allows identifying the correspondences between the artifacts, which helps in discovering
the inconsistencies [Nusei01] between them. This makes it possible to deal with those
conflicts so that the output from the merge process is consistent. In addition, other than
software merging and consistency checking, an accurate matching approach has several
other applications such as information retrieval, software reuse and evolution, etc.

In the following sections, first we introduce formal specification using Object-Z.
This is followed by discussing matching software artifacts by highlighting the means
needed to achieve it and the issues related to those means. After that, we proposed a new
matching approach for Object-Oriented formal specifications. The approach is then
empirically evaluated. This is followed by discussing related work, and the last section
concludes the paper and discusses future work.

2 FORMAL SPECIFICATION USING OBJECT-Z

Object-Z is an OO extension of the well-established formal specification language Z
[Spive92]. It is a state-based formal specification language in which system states, initial
states, and operations are modeled by schemas comprising a set of variable declarations
constrained by predicates. Figure 1 shows the components of an Object-Z class.

Figure 1: An Object-Z class

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 141

The Visibility-List states the class members that are visible outside the class (same as
public in Java). If the visibility list is omitted then all the class’ features are visible.
Visibility lists are not inherited, i.e. the derived class may nominate any inherited feature
in its own visibility list. Parent-Class is a list of all the parent (base) classes. Local-
Declarations contains the class attributes, and constants declarations with their
restrictions in some cases. An invariant is a property that must be satisfied by the class
objects all the time. The value of a class attribute must be compatible with the class
invariant and the invariants of all its parent classes. The state schema comprises two
parts, State-variable declarations, and a predicate section (State-Invariant) defining the
invariant of the class. State-Invariant places restrictions on State-Variable, and may make
use of the Local-Declarations as well. The Init schema is used to specify the initial values
of the state variables. An operation schema comprises four sections. Operation-name is a
String representing the operation’s name. Operation-variable contains the declaration of
the inputs and the outputs of the operation. -List contains a list of the state variables that
will be changed by the operation, i.e. the state variables that are not listed in the -List
are unchanged. The predicate section of an operation contains a pre-condition that must
be satisfied in order to execute a post-condition.

The following figure shows an example of two different views of an Object-Z class.

(a) (b)

Figure 2: Two views of an Object-Z class

A MATCHING APPROACH FOR OBJECT-ORIENTED FORMAL SPECIFICATIONS

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

The classes roomsInfo and HtlRooms represent two views of the same class taken from
two specifications of a simple hotel management system. In the class roomsInfo (figure
2a), all the elements are visible outside the class as there is no visibility list. status is a
state variable declared as a partial function from ROOM to GUEST. Initially, all the
rooms are vacant (status=∅). The operation Check-in and Check-out are used to add or
remove elements from status thus changing it value (Δ status). Checking in a guest g?
into a room r? requires verifying that the room is not occupied (r? ∉ dom status). A guest
g! occupying a room r! (r! ∈ dom status ∧ g! ∈ ran status) checks out at the end of his
stay at the hotel, and his association with the room is then removed from status. The
symbols ‘?’ and ‘!’ are used to highlight inputs and outputs respectively while ‘’’ is used
to highlight the new value of an attribute.

An accurate matching approach should identify roomsInfo and HtlRooms as a
positive match. However, relying on name similarity between them (or their elements)
will not provide an accurate answer. The following sections discuss the matching process
and how to compute all kind of similarity metrics between two OO formal specifications
based on a new proposed approach.

3 MATCHING

Matching is based around the concept of similarity. Syntactic (name) similarity could be
verified by comparing strings, such as class names, operation names, attributes,
signatures, etc. The Longest Common Substring (LCS) algorithm [Gusfi99] could be
used to compute a similarity metric between two strings. Its overall performance is
acceptable. However, it does not give accurate results in case of a change of word order,
which often happens when dealing with software artifacts created by different developers.
For example, a developer could name an attribute emptyrooms while another one could
use roomsempty for the same purpose. In this case, the two attributes should be identified
as a match. However, based on the LCS algorithm, their similarity is only 0.5.

The N-gram algorithm [Manni99] caters for this kind of limitations as it considers
the number of identical substrings of length N. Hence, the similarity between emptyrooms
and roomsempty based on the 2-gram algorithm is 0.8. However, intensive random
experiments have shown that the 2-gram algorithm does not provide accurate results in
case of short strings. For example, rm and rms are 0.66 similar based on 2-gram while
they are 0.8 similar based on LCS. In addition, the 2-gram algorithm does not provide
good matching results in case of long strings where a substring has been replaced by a
different word. For example, the similarity between emptyrooms and roomsunoccupied is
0.27 while it is 0.4 based on LCS.

For a matching approach to provide accurate results, it cannot rely solely on
syntactic similarity to find correspondences between the artifacts to be merged. For
example, the syntactic similarity between the classes roomsInfo and HtlRooms of figure 2
is 0.588 and 0.533 according to the LCS and 2-gram algorithms respectively. Syntactic
similarity should be merely used as starting point for the matching approach. Taking the

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 143

maximum returned value from LCS and 2-gram will be sufficient to start a structural
similarity algorithm. The initial syntactic matches will form the early landmarks based on
which the structural matching process operates.

Structural similarity incorporates several aspects of OO artifacts. It could be
computed by checking the ancestors, the descendants, the relationships, the structure
(elements), and the parameters (signatures) of the items to be matched. In the case of
formal specifications, predicates such as invariants, preconditions, and postconditions
could be used in the process. More elements used in the matching process will likely have
a positive effect on the accuracy of the matching process. Thus, combining syntactic with
structural similarity could help precisely indicating whether there is a match or not.

4 A MATCHING APPROACH FOR OBJECT-ORIENTED FORMAL
SPECIFICATIONS

The approach

Given two specifications S1 and S2, the matching approach computes an overall similarity
metric between all the classes of S1 and those of S2. The matches are identified based on a
chosen threshold. Figure 3 shows the matching algorithm.

Figure 3: The matching algorithm

Match makes a call to an overall similarity algorithm (overallSimilarity) that return a
value between 0 and 1 that combines both syntactic and structural similarity. The call is
made between all the classes of the two specifications (line 4), which results in an O(nm)
complexity. The classes whose overall similarity is bigger or equal to a chosen threshold
(line 5) are added to the correspondence relation (line 6). The latter will be an input to the
merging process. The higher the threshold is, the stricter the similarity requirement is.
After a match is identified and added to the correspondence relation R, the class Bj is not

A MATCHING APPROACH FOR OBJECT-ORIENTED FORMAL SPECIFICATIONS

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

discarded from the next round of comparison. Non-removal of a class Bj with a confirmed
match in S1 is motivated by the fact that it is up to the merging process (or a domain
expert) to normalize the correspondence relation by choosing the best possible match
among the correspondences available in case of multiple matches for a given class.

In addition to the matched classes, the correspondence relation R stores the
correspondences between the elements of the matched classes during the computation of
the overall similarity. In case the overall similarity between two classes is below the
threshold, all the elements added to R during the computation of the overall similarity
(i.e. associated with the current classes (Ai, Bj)) are removed (line 7). Typically, an OO
artifact is also a set of inter-related classes, which makes proposed matching approach
useful for wide range of OO artifacts.

The similarity algorithms

The proposed matching approach combines the LCS and 2-gram algorithms to compute a
syntactic similarity metric between the to-be-matched elements or their items. Given two
strings X and Y, the algorithm returns a value between 0 and 1 corresponding to the
syntactic similarity between them. The computation is case-insensitive and all the non-
relevant characters such as space are not taken into account. The following figure shows
the proposed algorithm.

Figure 4: Syntactic similarity algorithm

As discussed previously, both the LCS and 2-gram algorithms have their own limitations.
However, the experimental results obtained have shown that when the LCS algorithm
provides a low similarity value for a known positive match then the 2-gram algorithm
provides a better result and vise versa. Thus, we compute two similarity values (lines 9
and 10) based on the 2-gram and LCS algorithms respectively and return the maximum
value (line 11) among them. LCS(X, Y) returns the length of the longest common
substring between the parameters X and Y. For the 2-gram algorithm, we first need to
generate a list of substrings of size 2 for all the adjacent characters of each string (lines 5
and 6). Then we compute their intersection and disjoint union (lines 7 and 8) that are used

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 145

to compute the intended metric. For example, synSimilarity between Check-in and CkIn
returns 0.4 (i.e. Max(0.4, 0.33)).

The structural similarity is computed based on the structural sameness between two
classes (or two class’ elements such as operations). The following table summarizes all
the aspects that are taken into account.

Table 1: The elements used to compute structural similarity

Item Description
Class_name The name of the class
Visibility_list The public attributes and operations of the class
Inheritance_list The ancestor(s) of the class
Relationship_list The aggregated/composed class(es)
Attributes Local and state declarations
Invariant Local declaration predicate combined with state invariant.
INIT The predicate of the INIT schema.
Operation_list The operations of the class
Inputs / Outputs The inputs/outputs of an operation
pre/post conditions The pre/post conditions of an operation

The above list corresponds to the elements of an Object-Z class based on which a
structural similarity is computed. Most of the elements used have equivalences in other
OO artifacts. For example, the INIT schema corresponds to a constructor of a class, a list
of operations corresponds to a list a methods of a class in a program or a class diagram,
the inputs / outputs of an operation correspond to the arguments of a method, etc. The
predicates (invariants, pre-conditions, and post-conditions), which are not available in
other OO artifacts such as class diagrams; provide a positive added advantage to the
matching process for both classes and operations.

When computing structural similarity, we propose the use of the following rules:
• A class name contributes to the structure similarity of all its elements when

compared with the elements of other classes.
• For attributes and invariants, each attribute name is replaced by its respective

type.
• For inputs/outputs and pre-conditions/post-conditions, each argument (and

attribute) name is replaced by its respective type.
• When an element is missing from one (or both) class (es) of interest, the default

value taken is the syntactic similarity between the classes (i.e. their root).
The above rules are motivated by the fact that when comparing two set of attributes or
arguments, the type is the most important factor. Names as well as their order of
appearance could be ignored. In addition, for invariants, pre-conditions and post-
conditions we apply the same technique as what matters when comparing two sets of
predicates is to see how similar they are regardless to the identifiers used. Finally, the
class name, should contribute to the structural similarity of all its elements.

A MATCHING APPROACH FOR OBJECT-ORIENTED FORMAL SPECIFICATIONS

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

The following figure shows the complete structural similarity algorithm divided into two
sections, one for classes and second for class’ elements such as attributes, operations,
visibility lists, etc.

Figure 5: Structural similarity algorithm

The first part of the algorithm describes how structural similarity is computed for two
classes. If one of the classes (or both) are empty, then the algorithm returns their syntactic
similarity (line 5). Otherwise, it processes all the elements of the first class by comparing
them with their compatible equivalent elements of the second class using strSimilarity. In
each round, the computed metric is added along with the elements to the correspondence
relation R (line 9), and it is accumulated into sum (line 11) that will be used (along with
the number of correspondences count) to return the result at the end of the process (line

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 147

17). Once a class’ element is processed, it is discarded from the next round of
comparisons (line 13) to speed up the process.

The second part of the algorithm describes how to compute a structural similarity
between the elements of two classes. In case one of the elements (or both) is not
available, the algorithm returns the syntactic similarity between the names of the two
classes (line 5). For example, when one of the classes does not have a visibility list, the
algorithm returns the syntactic similarity of their classes, etc. The algorithm checks the
correspondences between the items of the elements to be matched and computes a
normalized value ((2*s)/(s+c)) using synSimilarity (accumulated into s) as well as the
number of correspondences (c). Once a correspondence between two elements is
established, the element is discarded from the next round of comparisons (line 11) to
increase the efficiency of the algorithm.

The overall similarity between two given classes is calculated using a normalized
value based on both syntactic and structural similarity. Figure 6 shows the overall
similarity algorithm.

Figure 6: Overall similarity algorithm

The normalized value (m1+ m2)/(m1+1) is always between 0 and 1. It reflects a higher
similarity metric compared to the average. For example if m1=0 (i.e. there is no syntactic
similarity between the two classes) and m2=0.7, the above algorithm return 0.7. Finally,
the chosen threshold will decide whether two classes represent a positive match or not.
The following section analyzes the empirical results obtained through a prototype
implementation of the approach.

Empirical evaluation

The objective from evaluating the proposed approach is to find out its usefulness for
developers facing a matching problem. In case of small models, developers may find it
easy to identify the matches manually. The proposed approach is intended to provide a
quick and accurate way to identify matches when matching by hand is not possible (or
hard to achieve). This is true for a wide range of OO specifications intended for medium
or large-scale software. Moreover, even for small specifications with complex internal
relationships between its components, matching by hand is a tremendous task.

The result from the match process will be used for merging as well as for
consistency checking of the OO formal specifications of interest. If done manually, this is
always going to be tremendously difficult. Hence, the proposed matching approach is
useful if it produces accurate results with cheap processing means (i.e. time & space).

A MATCHING APPROACH FOR OBJECT-ORIENTED FORMAL SPECIFICATIONS

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

The complexity of the proposed matching approach is O(mn) where m and n
represent the number of classes in the two specifications. This complexity could be
reduced if we discard the matched class of the second specification (or the matched
classes of both specifications) from the next round of comparison. However, we chose to
leave both matched classes, as it is possible to find better matches during the next rounds.
In addition, we propose to normalize (automatically or by a domain expert) the
correspondence relation R before the start of the merging process.

The matching approach is effective if it does not produce too many incorrect
matches (false positives) and does not produce too many missed matches (false
negatives). We employ precision and recall metrics in our evaluation. Precision is the
ratio of correct matches found to the total number of matches found. It measures quality.
Recall, which measures coverage (low number of false negatives), is the ratio of the
correct matches found to the total number of all correct matches. A good matching
technique should produce high precision and high recall. However, it is generally agreed
in this field that the latter is hard to achieve but it is possible to obtain good balanced
results.

We have evaluated our approach based on several small/medium size case studies.
One of them includes the classes of figure 2, and includes four other classes namely
staffInfo and transactionInfo for the first view and HtlTransactions for the second view.
The following table summarizes some characteristics of the two views studied for the
hotel management system.

Table 2: Characteristics of the studied specifications

 #Classes #Operations #Relationships Total number of matches
View 1 3 6 2
View 2 2 5 1

7

We computed the precision and recall for a threshold ranging from 0.5 up to 0.9. Figure 7
shows the results obtained using overallSimilarity.

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Threshold

Recall
Precision

Figure 7: Overall matching results for the hotel management system

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 149

The results obtained confirmed our initial assumptions that elements with strong syntactic
similarity are more likely to be confirmed as matches. In addition, the elements with low
syntactic similarity such as roomsInfo and HtlRooms (0.588) where confirmed as match
through structural similarity (for roomsInfo and HtlRooms, it was 0.72). The overall
similarity between roomsInfo and HtlRooms was 0.82. Low threshold (0.5 up to 0.55) has
resulted in perfect recall (100%) and low precision (33%-47%). Medium threshold (0.6
up to 0.7) has resulted in acceptable recall (57%-71%) and acceptable precision (56%-
80%). Finally, high threshold (0.75 up to 0.9) has resulted in low recall (14%-43%) and
perfect precision (100%).

A threshold of 0.7 (that is not too low or too high) has given the best-balanced
results as four out of the five matches confirmed where correct (precision is 80%)
knowing that the model contains seven matches (recall is 57%). With the same threshold,
we have obtained results that were consistent with the latter using different (but similar-
sized) case studies.

It is important to compare the results obtained with the overall similarity to those
obtained using syntactic similarity only. The following figure highlights the results
obtained.

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

0.5 0.55 0.6 0.65 0.7 0.75

Threshold

Recall
Precision

Figure 8: Syntactic matching results for the hotel management system

Recall was very low (43% down to 14%), which is in agreement with our initial
hypotheses as syntactic similarity can only be used as a starting point for the matching
process and cannot identify all the possible matches. Recall was 0% for high threshold
(0.8 up to 0.9). On the other hand, for low threshold (0.5), precision was low (27%) as
only three matches where correct out the eleven identified. For threshold between 0.55 up
to 0.75, syntactic matching showed a perfect (100%) precision. Precision could not be
computed for high threshold (0.8 up to 0.9) as no matches were identified.

The overall performance of the proposed approach was good from a precision and
efficiency perspectives. In addition, the number of false negatives was acceptable, which
provides a good platform for the merging and consistency checking processes.

A MATCHING APPROACH FOR OBJECT-ORIENTED FORMAL SPECIFICATIONS

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

5 RELATED WORK

In [Xing05], an algorithm is proposed to automatically detect structural changes between
the designs of subsequent versions of an object-oriented software. It uses class diagrams
obtained by reverse-engineering from a java software system. It reports the differences
between the models in terms of additions, removals, changes, and renamings. In
[Apiwa04] and [Forts07], similar differencing methods were proposed for object-oriented
programs and software diagrams respectively.

In [Nejat07], two operators (match and merge) for model management were
proposed. The proposed operators manipulate hierarchical Statecharts. The proposed
match operator makes use of static and behavioral properties. It proposes the use of sanity
checks for the match results obtained before applying the merge operator. Thus, it argued
that the merging process should be made semi-automated. Indeed, it might be reasonable
to make the matching process interactive where user seeds are used to confirm the most
obvious relations as well as to rectify incorrect relations. This will likely to improve the
precision of the approach.

In [Sabet07], model merging was used to check the consistency of conceptual
models. The proposed approach constructs a merge model then verifies it against some
consistency constraints of interest. The consistency diagnostics obtained over the merge
are projected back to the original models and their relationships. The approach focused
on conceptual modeling formalisms with graphical notations, and the consistency
checking rules were described using the Relational Manipulation Language (RML).

In [Kelte05], a generic algorithm was for differencing between UML models was
proposed. The proposed algorithm computes differences between UML models encoded
as XMI files. The approach is generic in the sense it covers a broad range of UML
diagrams. The results obtained on small documents showed good runtimes. The approach
was tested mainly on class diagrams and Statecharts. The proposed approach suffers from
the lack of accuracy of XMI specifications. Finally, [Mens02] has provided an intensive,
critical, and throughout review of software merging. It provided recommendations on
merging approaches and tools. They include precision, efficiency, easy implementation,
conflicts detection, and the use of three-way merging as it provides better results
compared to two-way merging. However, it is not always possible to use three-way
merging, such as during the specification of the requirements of a new system. Here
developers create different views of the requirements but no common ancestor between
them is available.

Our proposed approach is inspired from both [Xing05] and [Nejat07]. However, we
chose to focus on requirements specification rather than design artifacts or source code
because it allows the detection of conflicts at an early stage, which improves the quality
of the developed software. We employ formal OO specifications as they help capturing
precisely (and in an OO style) the software requirements. We combined the strength of
both LCS and 2-gram algorithms to compute syntactic similarity. The latter is combined
with a structural similarity metric computed using a generic algorithm to produce an
overall similarity metric that is used in matching process. Finally, we have included all

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 151

the generic aspects of OO software artifacts to make the proposed approach useful for a
wide range of applications.

6 CONCLUSION AND FUTURE WORK

In this paper, a new generic approach for matching the elements of OO formal
specifications was proposed. The approach is intended to be used for software merging
and consistency checking. Merging formal OO specifications was motivated by the fact
that it would help identifying conflicts at an early stage of development and promote
collaborative development. The approach combines syntactic and structural similarity
algorithm to perform matching. The results obtained through intensive testing of a
prototype implementation of the approach were encouraging as they incorporated good
precision (for reasonable threshold) combined with cheap processing time (complexity).

Object-Z was used to specify the different views. However, the proposed approach
could be used to match any other OO software artifacts due to the generic properties
based on which the similarity algorithms are founded. Furthermore, the matching results
between the specifications of interest are stored in a correspondence relation that could be
reviewed and adjusted by a domain expert before the start of the merging and consistency
checking processes.

Because the proposed approach was mainly tested using small/medium sized
specifications, the next step would be to study its performance for industry-sized
specifications with hundreds of classes and elements. Finally, it would be interesting also,
to use the proposed approach for matching elements between OO programs.

REFERENCES

[Apiwa04] T. Apiwattanapong et al, A Differencing Algorithm for Object-Oriented
Programs, Proceedings of the 19th International Conference on Automated
Software Engineering, pp. 2-13, 2004.

[Forts07] S. Fortsch et al., Differencing and Merging of Software Diagrams: State of the
Art and Challenges, Second International Conference on Software and Data
Technologies, INSTICC, 2007.

[Gusfi99] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1999.

[Kelte05] U. Kelter et al., A Generic Difference Algorithm for UML Models; In
Proceedings of the SE 2005, 2005.

[Manni99] C. Manning et al., Foundations of Statistical Natural Language Processing,
MIT Press, 1999.

A MATCHING APPROACH FOR OBJECT-ORIENTED FORMAL SPECIFICATIONS

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

[Mehra05] A. Mehra et al., A Generic Approach to Supporting Diagram Differencing and
Merging for Collaborative Design, In Proceedings of the 2005 ACM/IEEE
International Conference on Automated Software Engineering, pp 204-213,
2005.

[Mens02] T. Mens, A State-of-the-Art Survey on Software Merging, IEEE Transactions
on Software Engineering, Vol. 28, No. 5, pp. 449-462, 2002.

[Nejat07] S. Nejati et al., Matching and Merging of Statecharts Specifications, 29th
International Conference on Software Engineering (ICSE'07), 2007.

[Noron07] A. Boronat et al., Formal Model Merging Applied to Class Diagram
Integration, Electronic Notes in Theoretical Computer Science, Vol. 166, pp.
5–26, 2007.

[Nusei01] B. Nuseibeh et al., Making Consistency Respectable in Software Development.
Journal of Systems and Software, Vol. 58, pp. 171-180, 2001.

[Potti03] R. Pottinger et al., Merging Models Based on Given Correspondences, In
Proceedings of the 29th international conference on VLBD, 2003.

[Sabet07] M. Sabetzadeh et al., Consistency Checking of Conceptual Models via Model
Merging. 15th IEEE International Requirements Engineering Conference
(RE'07), 2007.

[Smith00] G. Smith, The Object-Z Specification Language, Kluwer Academic Publishers,
2000.

[Spive92] J. Spivey, The Z notation – A Reference Manual, Prentice Hall, 2nd Edition,
1992

[Xing05] Z. Xing et al, UMLDiff: An Algorithm for Object-Oriented Design
Differencing, In Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, pp. 54-65, 2005.

[Zarem97] A. Zaremski et al., Specification Matching of Software Components, ACM
Transactions on Software Engineering and Methodology, Vol. 6, No. 4, pp.
333-369, 1997.

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 153

About the authors

Fathi Taibi is a lecturer at the Faculty of Information Technology of the University of
Tun Abdul Razak. His research interests include formal specification, Object-Oriented
methods, distributed development, and software verification. He can be reached at
taibi@unitar.edu.my.
Dr. Fouad Mohammed Abbou is an associate professor (Alcatel-Lucent) attached to the
Faculty of Engineering of Multimedia University. His research interests include optical
systems, optical networks, and quantum communications. He can be reached at
fouad@mmu.edu.my.
Dr. Md Jahangir Alam is a lecturer at the Faculty of Information Technology of
Multimedia University. His research interests include image processing, pattern
recognition, and artificial intelligence. He can be reached at
md.jahangir.alam@mmu.edu.my.

