
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008 

 
Vol. 7, No. 8, November-December 2008 

 
 
 
 

Fathi Taibi, Fouad Mohammed Abbou, Md Jahangir Alam: “A Matching Approach for Object-
Oriented Formal Specifications”, in Journal of Object Technology, vol. 7, no. 8, November-
December 2008, pp. 139-153 http://www.jot.fm/issues/issue_2008_11/article3/ 

A Matching Approach for Object-
Oriented Formal Specifications 

Fathi Taibi, University of Tun Abdul Razak, Selangor, Malaysia 
Fouad Mohammed Abbou, Multimedia University, Selangor, Malaysia 
Md Jahangir Alam, Multimedia University, Selangor, Malaysia 

Abstract 
Software merging is needed at different stages of software development to combine the 
artifacts created or modified by the parallel work of the different developers involved in 
the project. An accurate matching approach is the key to successful software merging 
as well as to conflicts identification. In this paper, a new matching approach for Object-
Oriented formal specifications is proposed. Object-Z is used as a specification 
language. However, the proposed approach is meant to be applicable to a wide range 
of Object-Oriented software artifacts. Merging formal requirements specifications is 
motivated by the fact that it could help in identifying (and resolving) conflicts that will 
cost higher to identify (and resolve) at later stages of software development. The 
proposed approach incorporates heuristics for both syntactic and structural similarity. 
The empirical results obtained through a prototype implementation of the proposed 
approach were very encouraging. 

1 INTRODUCTION 

Software artifacts incorporate the views of several developers working on a software 
project, which makes software merging essential for successful large-scale software 
development. Merging [Mens02] is needed at different development phases to combine 
the partial artifacts created or modified by the parallel work of the different developers 
involved in the project. For example, during integration, source code merging happens at 
regular intervals to combine the work carried out by different programmers. The same 
thing could be said about requirements specifications and design models. Merging 
software artifacts manually is tremendously difficult, time consuming, error prone, and 
very expensive. Thus, it must be automated. 

In addition to promoting collaboration and distributed development, when used at an 
early stage of the software development such as during requirements specification, the 
merging process helps in identifying and resolving conflicts that will cost higher to 
identify and resolve during later stages of development such as during testing or 
integration. 
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Merging requirements specified informally (by textual or graphical means) is 
difficult and time consuming because of the ambiguous nature of natural languages and 
the notations used. Moreover, informal specifications are sometimes misleading. Formal 
methods offer a better alternative because of their precise and accurate nature. One of 
these methods is Object-Z [Smith00] that combines the strengths of two worlds: the 
world of formal languages and the world of Object-Oriented (OO) methods. When used 
to specify systems’ requirements, Object-Z produces specifications that are clear, precise, 
and object-oriented.  

Matching [Nejat07] the elements of the software artifacts to be combined is required 
before merging. Matching is based around the concept of similarity. An accurate 
matching approach is the foundation of any successful merging mechanism. Matching 
allows identifying the correspondences between the artifacts, which helps in discovering 
the inconsistencies [Nusei01] between them. This makes it possible to deal with those 
conflicts so that the output from the merge process is consistent. In addition, other than 
software merging and consistency checking, an accurate matching approach has several 
other applications such as information retrieval, software reuse and evolution, etc. 

In the following sections, first we introduce formal specification using Object-Z. 
This is followed by discussing matching software artifacts by highlighting the means 
needed to achieve it and the issues related to those means. After that, we proposed a new 
matching approach for Object-Oriented formal specifications. The approach is then 
empirically evaluated. This is followed by discussing related work, and the last section 
concludes the paper and discusses future work.  

2 FORMAL SPECIFICATION USING OBJECT-Z 

Object-Z is an OO extension of the well-established formal specification language Z 
[Spive92]. It is a state-based formal specification language in which system states, initial 
states, and operations are modeled by schemas comprising a set of variable declarations 
constrained by predicates. Figure 1 shows the components of an Object-Z class. 

 

 
Figure 1: An Object-Z class 
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The Visibility-List states the class members that are visible outside the class (same as 
public in Java). If the visibility list is omitted then all the class’ features are visible. 
Visibility lists are not inherited, i.e. the derived class may nominate any inherited feature 
in its own visibility list. Parent-Class is a list of all the parent (base) classes. Local-
Declarations contains the class attributes, and constants declarations with their 
restrictions in some cases. An invariant is a property that must be satisfied by the class 
objects all the time. The value of a class attribute must be compatible with the class 
invariant and the invariants of all its parent classes. The state schema comprises two 
parts, State-variable declarations, and a predicate section (State-Invariant) defining the 
invariant of the class. State-Invariant places restrictions on State-Variable, and may make 
use of the Local-Declarations as well. The Init schema is used to specify the initial values 
of the state variables. An operation schema comprises four sections. Operation-name is a 
String representing the operation’s name. Operation-variable contains the declaration of 
the inputs and the outputs of the operation. -List contains a list of the state variables that 
will be changed by the operation, i.e. the state variables that are not listed in the -List 
are unchanged. The predicate section of an operation contains a pre-condition that must 
be satisfied in order to execute a post-condition.  

The following figure shows an example of two different views of an Object-Z class. 
 

 
(a) (b) 

 

Figure 2: Two views of an Object-Z class 
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The classes roomsInfo and HtlRooms represent two views of the same class taken from 
two specifications of a simple hotel management system. In the class roomsInfo (figure 
2a), all the elements are visible outside the class as there is no visibility list. status is a 
state variable declared as a partial function from ROOM to GUEST. Initially, all the 
rooms are vacant (status=∅). The operation Check-in and Check-out are used to add or 
remove elements from status thus changing it value (Δ status). Checking in a guest g? 
into a room r? requires verifying that the room is not occupied (r? ∉ dom status). A guest 
g! occupying a room r! (r! ∈ dom status ∧ g! ∈ ran status) checks out at the end of his 
stay at the hotel, and his association with the room is then removed from status. The 
symbols ‘?’ and ‘!’ are used to highlight inputs and outputs respectively while ‘’’ is used 
to highlight the new value of an attribute. 

An accurate matching approach should identify roomsInfo and HtlRooms as a 
positive match. However, relying on name similarity between them (or their elements) 
will not provide an accurate answer. The following sections discuss the matching process 
and how to compute all kind of similarity metrics between two OO formal specifications 
based on a new proposed approach. 

3 MATCHING 

Matching is based around the concept of similarity. Syntactic (name) similarity could be 
verified by comparing strings, such as class names, operation names, attributes, 
signatures, etc. The Longest Common Substring (LCS) algorithm [Gusfi99] could be 
used to compute a similarity metric between two strings. Its overall performance is 
acceptable. However, it does not give accurate results in case of a change of word order, 
which often happens when dealing with software artifacts created by different developers. 
For example, a developer could name an attribute emptyrooms while another one could 
use roomsempty for the same purpose. In this case, the two attributes should be identified 
as a match. However, based on the LCS algorithm, their similarity is only 0.5. 

The N-gram algorithm [Manni99] caters for this kind of limitations as it considers 
the number of identical substrings of length N. Hence, the similarity between emptyrooms 
and roomsempty based on the 2-gram algorithm is 0.8. However, intensive random 
experiments have shown that the 2-gram algorithm does not provide accurate results in 
case of short strings. For example, rm and rms are 0.66 similar based on 2-gram while 
they are 0.8 similar based on LCS. In addition, the 2-gram algorithm does not provide 
good matching results in case of long strings where a substring has been replaced by a 
different word. For example, the similarity between emptyrooms and roomsunoccupied is 
0.27 while it is 0.4 based on LCS. 

For a matching approach to provide accurate results, it cannot rely solely on 
syntactic similarity to find correspondences between the artifacts to be merged. For 
example, the syntactic similarity between the classes roomsInfo and HtlRooms of figure 2 
is 0.588 and 0.533 according to the LCS and 2-gram algorithms respectively. Syntactic 
similarity should be merely used as starting point for the matching approach. Taking the 
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maximum returned value from LCS and 2-gram will be sufficient to start a structural 
similarity algorithm. The initial syntactic matches will form the early landmarks based on 
which the structural matching process operates.  

Structural similarity incorporates several aspects of OO artifacts. It could be 
computed by checking the ancestors, the descendants, the relationships, the structure 
(elements), and the parameters (signatures) of the items to be matched. In the case of 
formal specifications, predicates such as invariants, preconditions, and postconditions 
could be used in the process. More elements used in the matching process will likely have 
a positive effect on the accuracy of the matching process. Thus, combining syntactic with 
structural similarity could help precisely indicating whether there is a match or not. 

4 A MATCHING APPROACH FOR OBJECT-ORIENTED FORMAL 
SPECIFICATIONS 

The approach 

Given two specifications S1 and S2, the matching approach computes an overall similarity 
metric between all the classes of S1 and those of S2. The matches are identified based on a 
chosen threshold. Figure 3 shows the matching algorithm. 

 

 
 

Figure 3: The matching algorithm 
 

Match makes a call to an overall similarity algorithm (overallSimilarity) that return a 
value between 0 and 1 that combines both syntactic and structural similarity. The call is 
made between all the classes of the two specifications (line 4), which results in an O(nm) 
complexity. The classes whose overall similarity is bigger or equal to a chosen threshold 
(line 5) are added to the correspondence relation (line 6). The latter will be an input to the 
merging process. The higher the threshold is, the stricter the similarity requirement is. 
After a match is identified and added to the correspondence relation R, the class Bj is not 
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discarded from the next round of comparison. Non-removal of a class Bj with a confirmed 
match in S1 is motivated by the fact that it is up to the merging process (or a domain 
expert) to normalize the correspondence relation by choosing the best possible match 
among the correspondences available in case of multiple matches for a given class.  

In addition to the matched classes, the correspondence relation R stores the 
correspondences between the elements of the matched classes during the computation of 
the overall similarity. In case the overall similarity between two classes is below the 
threshold, all the elements added to R during the computation of the overall similarity 
(i.e. associated with the current classes (Ai, Bj)) are removed (line 7). Typically, an OO 
artifact is also a set of inter-related classes, which makes proposed matching approach 
useful for wide range of OO artifacts. 

The similarity algorithms 

The proposed matching approach combines the LCS and 2-gram algorithms to compute a 
syntactic similarity metric between the to-be-matched elements or their items. Given two 
strings X and Y, the algorithm returns a value between 0 and 1 corresponding to the 
syntactic similarity between them. The computation is case-insensitive and all the non-
relevant characters such as space are not taken into account. The following figure shows 
the proposed algorithm. 

 

 
 

Figure 4: Syntactic similarity algorithm 
 

As discussed previously, both the LCS and 2-gram algorithms have their own limitations. 
However, the experimental results obtained have shown that when the LCS algorithm 
provides a low similarity value for a known positive match then the 2-gram algorithm 
provides a better result and vise versa. Thus, we compute two similarity values (lines 9 
and 10) based on the 2-gram and LCS algorithms respectively and return the maximum 
value (line 11) among them. LCS(X, Y) returns the length of the longest common 
substring between the parameters X and Y. For the 2-gram algorithm, we first need to 
generate a list of substrings of size 2 for all the adjacent characters of each string (lines 5 
and 6). Then we compute their intersection and disjoint union (lines 7 and 8) that are used 
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to compute the intended metric. For example, synSimilarity between Check-in and CkIn 
returns 0.4 (i.e. Max(0.4, 0.33)).  

The structural similarity is computed based on the structural sameness between two 
classes (or two class’ elements such as operations). The following table summarizes all 
the aspects that are taken into account. 

 
Table 1: The elements used to compute structural similarity 

 

Item Description 
Class_name The name of the class 
Visibility_list The public attributes and operations of the class 
Inheritance_list The ancestor(s) of the class 
Relationship_list The aggregated/composed class(es) 
Attributes Local and state declarations 
Invariant Local declaration predicate combined with state invariant. 
INIT The predicate of the INIT schema. 
Operation_list The operations of the class 
Inputs / Outputs The inputs/outputs of an operation 
pre/post conditions The pre/post conditions of an operation 

 

The above list corresponds to the elements of an Object-Z class based on which a 
structural similarity is computed. Most of the elements used have equivalences in other 
OO artifacts. For example, the INIT schema corresponds to a constructor of a class, a list 
of operations corresponds to a list a methods of a class in a program or a class diagram, 
the inputs / outputs of an operation correspond to the arguments of a method, etc. The 
predicates (invariants, pre-conditions, and post-conditions), which are not available in 
other OO artifacts such as class diagrams; provide a positive added advantage to the 
matching process for both classes and operations.  

When computing structural similarity, we propose the use of the following rules: 
• A class name contributes to the structure similarity of all its elements when 

compared with the elements of other classes. 
• For attributes and invariants, each attribute name is replaced by its respective 

type. 
• For inputs/outputs and pre-conditions/post-conditions, each argument (and 

attribute) name is replaced by its respective type. 
• When an element is missing from one (or both) class (es) of interest, the default 

value taken is the syntactic similarity between the classes (i.e. their root). 
The above rules are motivated by the fact that when comparing two set of attributes or 
arguments, the type is the most important factor. Names as well as their order of 
appearance could be ignored. In addition, for invariants, pre-conditions and post-
conditions we apply the same technique as what matters when comparing two sets of 
predicates is to see how similar they are regardless to the identifiers used. Finally, the 
class name, should contribute to the structural similarity of all its elements.  
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The following figure shows the complete structural similarity algorithm divided into two 
sections, one for classes and second for class’ elements such as attributes, operations, 
visibility lists, etc. 

 
 

Figure 5: Structural similarity algorithm 

The first part of the algorithm describes how structural similarity is computed for two 
classes. If one of the classes (or both) are empty, then the algorithm returns their syntactic 
similarity (line 5). Otherwise, it processes all the elements of the first class by comparing 
them with their compatible equivalent elements of the second class using strSimilarity. In 
each round, the computed metric is added along with the elements to the correspondence 
relation R (line 9), and it is accumulated into sum (line 11) that will be used (along with 
the number of correspondences count) to return the result at the end of the process (line 
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17). Once a class’ element is processed, it is discarded from the next round of 
comparisons (line 13) to speed up the process.  

The second part of the algorithm describes how to compute a structural similarity 
between the elements of two classes. In case one of the elements (or both) is not 
available, the algorithm returns the syntactic similarity between the names of the two 
classes (line 5). For example, when one of the classes does not have a visibility list, the 
algorithm returns the syntactic similarity of their classes, etc. The algorithm checks the 
correspondences between the items of the elements to be matched and computes a 
normalized value ((2*s)/(s+c)) using synSimilarity (accumulated into s) as well as the 
number of correspondences (c). Once a correspondence between two elements is 
established, the element is discarded from the next round of comparisons (line 11) to 
increase the efficiency of the algorithm. 

The overall similarity between two given classes is calculated using a normalized 
value based on both syntactic and structural similarity. Figure 6 shows the overall 
similarity algorithm. 

 

 
 

Figure 6: Overall similarity algorithm 
 

The normalized value (m1+ m2)/(m1+1) is always between 0 and 1. It reflects a higher 
similarity metric compared to the average. For example if m1=0 (i.e. there is no syntactic 
similarity between the two classes) and m2=0.7, the above algorithm return 0.7. Finally, 
the chosen threshold will decide whether two classes represent a positive match or not. 
The following section analyzes the empirical results obtained through a prototype 
implementation of the approach. 

Empirical evaluation 

The objective from evaluating the proposed approach is to find out its usefulness for 
developers facing a matching problem. In case of small models, developers may find it 
easy to identify the matches manually. The proposed approach is intended to provide a 
quick and accurate way to identify matches when matching by hand is not possible (or 
hard to achieve). This is true for a wide range of OO specifications intended for medium 
or large-scale software. Moreover, even for small specifications with complex internal 
relationships between its components, matching by hand is a tremendous task.  

The result from the match process will be used for merging as well as for 
consistency checking of the OO formal specifications of interest. If done manually, this is 
always going to be tremendously difficult. Hence, the proposed matching approach is 
useful if it produces accurate results with cheap processing means (i.e. time & space). 
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The complexity of the proposed matching approach is O(mn) where m and n 
represent the number of classes in the two specifications. This complexity could be 
reduced if we discard the matched class of the second specification (or the matched 
classes of both specifications) from the next round of comparison. However, we chose to 
leave both matched classes, as it is possible to find better matches during the next rounds. 
In addition, we propose to normalize (automatically or by a domain expert) the 
correspondence relation R before the start of the merging process. 

The matching approach is effective if it does not produce too many incorrect 
matches (false positives) and does not produce too many missed matches (false 
negatives). We employ precision and recall metrics in our evaluation. Precision is the 
ratio of correct matches found to the total number of matches found. It measures quality. 
Recall, which measures coverage (low number of false negatives), is the ratio of the 
correct matches found to the total number of all correct matches. A good matching 
technique should produce high precision and high recall. However, it is generally agreed 
in this field that the latter is hard to achieve but it is possible to obtain good balanced 
results. 

We have evaluated our approach based on several small/medium size case studies. 
One of them includes the classes of figure 2, and includes four other classes namely 
staffInfo and transactionInfo for the first view and HtlTransactions for the second view. 
The following table summarizes some characteristics of the two views studied for the 
hotel management system. 

 
Table 2: Characteristics of the studied specifications 

 

 #Classes #Operations #Relationships Total number of matches 
View 1 3 6 2 
View 2 2 5 1 

 
7 

 

We computed the precision and recall for a threshold ranging from 0.5 up to 0.9. Figure 7 
shows the results obtained using overallSimilarity. 
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Figure 7: Overall matching results for the hotel management system 
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The results obtained confirmed our initial assumptions that elements with strong syntactic 
similarity are more likely to be confirmed as matches. In addition, the elements with low 
syntactic similarity such as roomsInfo and HtlRooms (0.588) where confirmed as match 
through structural similarity (for roomsInfo and HtlRooms, it was 0.72). The overall 
similarity between roomsInfo and HtlRooms was 0.82. Low threshold (0.5 up to 0.55) has 
resulted in perfect recall (100%) and low precision (33%-47%). Medium threshold (0.6 
up to 0.7) has resulted in acceptable recall (57%-71%) and acceptable precision (56%-
80%). Finally, high threshold (0.75 up to 0.9) has resulted in low recall (14%-43%) and 
perfect precision (100%). 

A threshold of 0.7 (that is not too low or too high) has given the best-balanced 
results as four out of the five matches confirmed where correct (precision is 80%) 
knowing that the model contains seven matches (recall is 57%). With the same threshold, 
we have obtained results that were consistent with the latter using different (but similar-
sized) case studies. 

It is important to compare the results obtained with the overall similarity to those 
obtained using syntactic similarity only. The following figure highlights the results 
obtained. 
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Figure 8: Syntactic matching results for the hotel management system 

Recall was very low (43% down to 14%), which is in agreement with our initial 
hypotheses as syntactic similarity can only be used as a starting point for the matching 
process and cannot identify all the possible matches. Recall was 0% for high threshold 
(0.8 up to 0.9). On the other hand, for low threshold (0.5), precision was low (27%) as 
only three matches where correct out the eleven identified. For threshold between 0.55 up 
to 0.75, syntactic matching showed a perfect (100%) precision. Precision could not be 
computed for high threshold (0.8 up to 0.9) as no matches were identified. 

The overall performance of the proposed approach was good from a precision and 
efficiency perspectives. In addition, the number of false negatives was acceptable, which 
provides a good platform for the merging and consistency checking processes. 
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5 RELATED WORK 

In [Xing05], an algorithm is proposed to automatically detect structural changes between 
the designs of subsequent versions of an object-oriented software. It uses class diagrams 
obtained by reverse-engineering from a java software system. It reports the differences 
between the models in terms of additions, removals, changes, and renamings. In 
[Apiwa04] and [Forts07], similar differencing methods were proposed for object-oriented 
programs and software diagrams respectively. 

In [Nejat07], two operators (match and merge) for model management were 
proposed. The proposed operators manipulate hierarchical Statecharts. The proposed 
match operator makes use of static and behavioral properties. It proposes the use of sanity 
checks for the match results obtained before applying the merge operator. Thus, it argued 
that the merging process should be made semi-automated. Indeed, it might be reasonable 
to make the matching process interactive where user seeds are used to confirm the most 
obvious relations as well as to rectify incorrect relations. This will likely to improve the 
precision of the approach. 

In [Sabet07], model merging was used to check the consistency of conceptual 
models. The proposed approach constructs a merge model then verifies it against some 
consistency constraints of interest. The consistency diagnostics obtained over the merge 
are projected back to the original models and their relationships. The approach focused 
on conceptual modeling formalisms with graphical notations, and the consistency 
checking rules were described using the Relational Manipulation Language (RML). 

In [Kelte05], a generic algorithm was for differencing between UML models was 
proposed. The proposed algorithm computes differences between UML models encoded 
as XMI files. The approach is generic in the sense it covers a broad range of UML 
diagrams. The results obtained on small documents showed good runtimes. The approach 
was tested mainly on class diagrams and Statecharts. The proposed approach suffers from 
the lack of accuracy of XMI specifications. Finally, [Mens02] has provided an intensive, 
critical, and throughout review of software merging. It provided recommendations on 
merging approaches and tools. They include precision, efficiency, easy implementation, 
conflicts detection, and the use of three-way merging as it provides better results 
compared to two-way merging. However, it is not always possible to use three-way 
merging, such as during the specification of the requirements of a new system. Here 
developers create different views of the requirements but no common ancestor between 
them is available. 

Our proposed approach is inspired from both [Xing05] and [Nejat07]. However, we 
chose to focus on requirements specification rather than design artifacts or source code 
because it allows the detection of conflicts at an early stage, which improves the quality 
of the developed software. We employ formal OO specifications as they help capturing 
precisely (and in an OO style) the software requirements. We combined the strength of 
both LCS and 2-gram algorithms to compute syntactic similarity. The latter is combined 
with a structural similarity metric computed using a generic algorithm to produce an 
overall similarity metric that is used in matching process. Finally, we have included all 
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the generic aspects of OO software artifacts to make the proposed approach useful for a 
wide range of applications. 

6 CONCLUSION AND FUTURE WORK 

In this paper, a new generic approach for matching the elements of OO formal 
specifications was proposed. The approach is intended to be used for software merging 
and consistency checking. Merging formal OO specifications was motivated by the fact 
that it would help identifying conflicts at an early stage of development and promote 
collaborative development. The approach combines syntactic and structural similarity 
algorithm to perform matching. The results obtained through intensive testing of a 
prototype implementation of the approach were encouraging as they incorporated good 
precision (for reasonable threshold) combined with cheap processing time (complexity). 

Object-Z was used to specify the different views. However, the proposed approach 
could be used to match any other OO software artifacts due to the generic properties 
based on which the similarity algorithms are founded. Furthermore, the matching results 
between the specifications of interest are stored in a correspondence relation that could be 
reviewed and adjusted by a domain expert before the start of the merging and consistency 
checking processes.  

Because the proposed approach was mainly tested using small/medium sized 
specifications, the next step would be to study its performance for industry-sized 
specifications with hundreds of classes and elements. Finally, it would be interesting also, 
to use the proposed approach for matching elements between OO programs.  
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