
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 8, Novmeber-December 2008

Jagadish Suryadevara, Lawrence Chung, Shyamasundar R.K: “cmUML – A UML based
Framework for Formal Specification of Concurrent, Reactive Systems”, in Journal of Object
Technology, vol. 7, no. 8, November - December 2008, pp. 187 - 207
http://www.jot.fm/issues/issue_2008_11/article7/

cmUML - A UML based Framework for
Formal Specification of Concurrent,
Reactive Systems

Jagadish Suryadevara, Birla Insitute of Technology and Science, INDIA
Lawrence Chung, University of Texas, Dallas, USA
Shyamasundar R.K., Tata Insitute of Fundamental Reseach, INDIA

Abstract
Complex software systems possess concurrent and reactive behaviors requiring
precise specifications prior to development. Lamport’s transition axiom method is a
formal specification method which combines axiomatic and operational approaches.
On the other hand Unified Modeling Language (UML), a de facto industry standard
visual language, lacks suitable constructs and semantics regarding concurrency
aspects. Though UML includes action semantics, its higher level constructs and
object semantics are inconsistent. Motivated by Lamport’s approach, this paper
proposes a UML based specification framework ‘cmUML’ (‘cm’ for concurrent
modules) for formal specification of concurrent, reactive systems without object level
diagrams and OCL. The framework integrates higher level diagrams of UML and
addresses various concurrency issues including exception handling. It combines
UML-RT and UML/ SPT profile as the latter defines a core package for concurrency
and causality. Further the framework includes the characteristic safety and liveness
aspects of concurrent systems. The proposed framework is in contrast with existing
approaches based on low level primitives (semaphore, monitors). The paper
includes several specification examples validating the proposed framework.

1 INTRODCUTION

In spite of proliferation of modern technologies, development of complex systems
with concurrent, reactive behaviors remains a challenging task. The difficulty is
largely due to the conceptual gap between the complex domains and the
implementation technologies which requires formal yet intuitive specification
languages and methodologies. There exists a pragmatic approach in formal
specification of concurrent systems, for example Lamport’s transition axiom method
[Lam89, Lam00] which combines axiomatic and operational approaches for arriving
at intuitive yet formal specification of complex systems. On the other hand, the visual
specification languages like UML (Unified Modeling Language) and Model Driven
Architectures (MDA) are emerging as new paradigm for development of complex

 cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF

CONCURRENT, REACTIVE SYSTEMS

188 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

systems. UML has become the de facto industry standard visual specification
language [OMG02, Selic04]. Current UML methodologies for example COMET,
CODARTS [Gomaa00], are largely based on informal design heuristics with focus on
static aspects of the systems. Behavioral specifications of these approaches are largely
representative lacking completeness and precise semantics. Further, these approaches
specify concurrency using low level primitives like semaphores, monitors, and
threads.

There exist formal approaches in UML with precise semantics, for example RT-
UML [DJPV02], UML-RT [CG01], and UML/SDL [ITU00]. These approaches aim
at real-time, embedded domains using a subset of UML features. For example, these
approaches are largely based on statemachine semantics and do not integrate other
behavioral aspects like data/ control flow, concurrency, synchronization etc. RT-UML
provides semantical foundation to UML regarding concurrency, and communication.
UML-RT and SDL/ UML are architectural approaches with focus on control-based
reactive behaviors. But, none of these approaches handle higher level concurrency
issues like multiple operation invocations, synchronization semantics. The proposed
framework (named cmUML where ‘cm’ stands for concurrent modules) provides
higher level architectural abstractions with precise operational semantics for
specifying concurrent, reactive behaviors in terms of action, activity executions. As
UML lacks formal semantics, cmUML provides much required unifying framework
integrating action semantics, active/ passive objects, and higher level diagrams
towards precise formal specifications (independent of design or implementation
aspects).

To strengthen the emerging paradigm of visual specification languages and
model driven architectures with the rigor of formal specification approaches, higher
abstractions with precise semantics are required. It is also necessary that such
abstractions should be intuitive for the developers of the system. Lamport’s transition
axiom method [Lam89, Lam00] (henceforth referred as TAM) recommends module
based specification of systems where the modules (called ‘components’ in cmUML)
are specified in terms of precise interface, and internal specifications. In this method,
the internal specification resembles a higher level design of the module as the
necessary system variables (PC, call stack, etc) can be used to represent the execution
state. These variables are explicitly updated in response to module actions under
safety and liveness constraints. The TAM approach is independent of any
specification language. Its higher level design approach makes it convenient for
adoption with UML framework. In this paper we extend UML (using its lightweight
extension mechanisms) to define abstract architectural components with precise
operational semantics. Further, these components are associated with UML’s higher
level diagrams retaining the benefits of its multi-view approach. In this regard, the
main contributions of this paper are listed below.

1. Architectural abstractions for specification of concurrent, reactive, and flow
behaviors under multi-view operational semantics (see appendix)

2. Component specification in terms of interface and internal specifications
(representing an abstract implementation)

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 189

3. Semantical integration of higher level UML diagrams with the underlying
object model

4. Specification constructs GuardedAction, ServiceHandler for expressiveness
in concurrency, synchronization and exception handling semantics

5. Specifying component executions in terms of action and activity executions
6. Use case based ScenarioContexts representing interaction of internal

behaviors with liveness semantics and explicit event ordering (forbidding race
conditions)

7. Stepwise specification methodology for application of the framework
To implement TAM approach, the proposed framework combines UML-RT and SDL/
UML (for compositionality, formal semantics) and the UML/ SPT profile [OMG02]
(for basic elements of concurrency and causality). The rest of the paper is organized
as follows. In section 2, we give a brief overview of UML-RT, SDL/UML and SPT
Profile. The proposed framework is defined in sections 3. Section 4 discusses a case
study specification of vending machine, a classical problem in the literature. In
section 5, we validate the profile through specification of classical concurrency
patterns. We discuss related works in section 6. An approach for formal semantics
definition is discussed in the appendix.

2 OVERVIEW OF UML-RT AND SPT PROFILES

The conventional UML mechanisms for specification of concurrency are: active/
passive objects, concurrency attribute of passive objects, concurrent regions of
statechart, and concurrent actions. But as UML lacks a formal semantics, these
mechanisms are not semantically integrated with the underlying object model
resulting in inconsistent and ambiguous design models [GO01, Ober99]. UML-RT
(similar to SDL/ UML in many aspects) is an architecture description language in
UML. UML-RT (based on actor paradigm of ROOM language [SGW94]) defines
architectural concepts as UML stereotypes. Specifically, it adds following stereotypes
of standard UML elements (given in parenthesis) for modeling run-time structures.

• Capsule (Class): a basic building block that represents a complex active object
with multiple interface points (ports) through which it interacts with its
external environment. It contains sub capsules compositionally and associated
with at most one statemachine (analogous to «system», «block» in
SDL/UML).

• Connector(AssociationClass): a communication object that handles messages
between ports attached to its ends (analogous to «channel», «gate» in
SDL/UML).

• Port(Class): processes input or output of events
• Protocol(Collaboration): a specification of a closed group of participants

(protocol roles) that interact in specific ways to accomplish tasks

 cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF

CONCURRENT, REACTIVE SYSTEMS

190 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

cmUML adopts the notion of capsules, sub-capsules and ports of UML-RT (for
compositionality) but not connector as it can be specified as an implicit association or
as a component itself in case of complex associations (e.g. delaying channels).

The SPT profile (the standard UML profile for schedulabiloity, performance, and
time [6]) was defined as a standard way to annotate the UML specification of real
time systems towards automated quantitative analysis. It defines a generic resource
modeling framework with abstract concepts allowing further extensions and mappings
onto UML elements. Our decision to extend SPT is particularly relevant as the profile
defines a concurrency package with abstract concepts like ‘ConcurrentUnit’,
‘Scenario’, ‘ActionExecution’ etc. The core ‘CoreResourceModelingFramework’
package with the concurrency sub-package can be regarded as the kernel of the profile
(see fig.1). Some important concepts of SPT profile as relevant here are: Instance and
Descriptor (a run-time entity and its design time descriptor i.e. type);
EventOccurence, Scenario, and ActionExecution define causality in the model;
Scenario represents a sequence of actions (and sub-actions) with associated partial
ordering representing concurrency.

cmUML extends the concepts of SPT profile with precise semantics and
compositionality towards behavioral specification as an abstract architectural
language (a la UML-RT).

Figure 1.(a) GeneralResourceModeling package Figure 1. (b) Concurrency package

Figure 1. UML/ SPT profile packages at ‘kernel’ level

3 PROPOSED FRAMEWORK AND THE PROFILE

We follow SPT profile approach in defining the conceptual framework and the
corresponding UML mapping. First we introduce conceptual elements of the
framework in a class diagram notation (not related to UML metamodel) and then map

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 191

these onto UML metamodel using standard extension mechanisms. The conceptual
diagram represents the basic abstractions and their relationships (see fig.2). We also
describe the semantics informally (the formal description approach is outlined in the
appendix).

In cmUML, a component is a generic entity (representing the type or descriptor
of corresponding runtime instances) with specific functionality and behavior specified
in terms of actions or activities under reactive or flow semantics. A component may
be concurrent or sequential based on internal concurrency (i.e. concurrency is due to
interleaved executions or alternating executions in run-to-completion). Depending on
functionality and behavior the components are further classified as system, state,
port, service, and resource. System component contains other components and
responsible for their initialization. Resource component with abstract operations
‘acquire’, ‘release’, ‘read’ and ‘write’ represent a passive, protected data or hardware
resource. Resource components with complex behavior may be specified as system
components. State component represents reactive, synchronization, and exception
handling aspects of internal executions. Port component represents interface
specification with concurrency aspects, service access order, and inter component
communication. Services are dynamic components instantiated in response to external
requests in contrast to asynchronously executing State, and Port behaviors. An
instance of a service may execute concurrently with itself and other compatible
services. Action and activities are simple or guarded (with precise semantics). Guard
expressions represent local assertions or global invariants representing
synchronizations and exception handling in concurrent environment. A
ScenarioContext represents interactions of component executions in response to
external events with necessary liveness semantics and event ordering constraints.

In Table. 1 we define the corresponding UML profile using UML extension
mechanisms stereotypes, tags and constraints (corresponding concepts of SPT profile
are represented in italics). Also associations are represented via tags in cmUML as the
profile does not use explicit associations. Stereotype or a UML name as tag type in
the table indicates reference to the corresponding instance. Also absence of
multiplicity indicates 0 or 1 where as * indicates 0 or more. The cmUML profile uses
‘flat’ versions of behavioral specifications i.e. activities, statecharts, and sequence
diagrams without hierarchy as such features can be syntactically translated into
equivalent flat versions. Also abstract methods are defined for a few abstractions (e.g.
state, resource etc) to simplify the semantics description as well as make the
specifications intuitive to system developers.

 cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF

CONCURRENT, REACTIVE SYSTEMS

192 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

Exception GuardedAction

guard; isDelay; isHot

MessageAction
callKind:{send,
accept, return}

Resource

acquire()
release()
read()
write()

Component

Sequential

Concurrent

EventOccurence ExceptionEvScenarioEv

Constraint InvariantAssertion

Constraint

start

end

ExceptionScenarioContext

ScenarioEv Component

Component

Port State Resource Service

spec
0,,*

Behavior

System

interface

type

1..*

1

1 AccessOrder
scope*

servicHandler
execs, in, out

1

State

wait(),
notify()
trigger(),
throw()

method 0..*

Service

start(); end()

 System

Port

ServiceType

signature
serviceKind
parService
max
pre, post

Figure 2. Conceptual model of the proposed specification framework

Stereotype (UML,
SPT element)

Tags[tagtype](multiplicity); Specialization/ Generalization;
 -- Constraints; (Description)

Component
(Class,
Descriptor,
ConcurrentUnit)

(Abstract)
spec[Behavior](*); root[«system»];
concurrencyKind={concurrent, sequential}; evBuffer[«resource»]
Specializations : system, port, state, service, resource

«system» port[«port»]; state[«state»]; service[«service»](*);
-- port, state are not null

«port» interface[«serviceType»](*); spec[«AcessOrder»];
handles[«serviceHandler»](*); policy={FIFO, Priority}
-- concurrencyKind= ‘sequential’; port, state are null

«state» spec [«Reactive»];
-- concurrencyKind= ‘sequential’; port, state are null

«service»
(Scenario)

spec [«Flow»]; (dynamic component of the system)
-- concurrencyKind= ‘sequential’; port, state refer to those of its root
--evBuffer is null
Generalization: ActivityExecution

«resource»
(ProtectedResourc
e)

(protected entity that need to be (atomically) acquired and released for read or
write kind of accesses. Resources with complex behavior can be specified as
«system» components)

ServiceType or ST
(Operation)

max[integer]; serviceKind={read, write}; parService[«serviceType»](*);
params[string]; (where string can be interpreted using BNF like grammar)

ServiceHandler or
SH (Classifier)

execs[«service»](*); in(integer); out(integer);
-- service executions corresponding to a service handler are of same serviceType

GuardedAction or
GA (Action)

guard[bool]; isDelay[bool]; isHot[bool]; exception[«exception»];isAtomic[bool]
Generalization: GuardedActivity

ActivityExecution
or AE
(Action Execution)

(Abstract)
(‘Activity’ is a sequence of atomic actions with possibly partial ordering)

Exception
(Stimulus)

(service execution containing exception raising action terminates)

MessageAction or synchKind={send, accept, return}

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 193

Table 1. cmUML profile for the proposed framework

cmUML Semantics Description

In the rest of this section, we informally describe the semantics of the cmUML
specificaitons (see appendix for formal description approach). One of the main
constructs defined in the profile is ActivityExecution as a generalization of SPT
Profile’s ActionExecution (consistent with UML definition of activity as an action).
Activities are at a higher granularity than actions and represent a service. A service is
associated with a run-time handler ‘ServiceHandler’ in ‘port’ component with
information regarding service instances that started and completed (using incarnation
counters in and out). This information can be used to specify complex
synchronization patterns in the form of global invariants representing safety
conditions in a simpler way [JS07, Miz99]. A set of useful global invariants are
proposed [Miz99] which work as basic patterns to compose appropriate global
invariants for specifications. Translations exist from global invariant based coarse-
grained specifications to fine-grained synchronization code using semaphore,
monitors etc. Another important construct defined in the profile with respect to
concurrent execution characteristics is GuardedAction. This allows specifying
precise semantics corresponding to the guard evaluation and the execution of the
corresponding action or activity (see fig.5). The GuardedAction specifies
synchronization (i.e. wait semantics) and exception handling. The exceptions are
handled by corresponding ‘state’ component or thrown into higher level ‘state’
components (a la java try-catch block). Thus GuardedAction provides much needed
specification construct for synchronization, exception handling behavior of sequential
executions in concurrent environment [Lohr92]. Communication aspects of cmUML
components are externally message based (suitable for distributed environment) and
internally message, or shared resource based.

MA (corresponds to asynchronous call, synchronous call till message acceptance,
syncrhonous till result returned or service completed)

ScenarioEv
(EventOccurence)

eventKind={ start, end}
(these events represent start and end of a service execution)

Exception
(Stimulus)

(service execution containing exception raising action terminates)

AccessOrder or
AO
(BehaviorStateMac
hine)

scope: {local, global} (‘scope’ specifies whether the access order is applicable
globally or per client)

Reactive
(BehaviorStateMac
hine)

Represents the reactive behavior of «system» component asynchronously
executing with «service» components

Flow (Activity) Represents the data and control flow behavior of «service» components
ScenarioContext or
SC (Sequence)

(specification of behavior service interactions in response to external requests with
liveness semantics)

Assertion,
Invariant
(Constraint)

(Assertion –a constraint over local data
Invariant –a constraint over global data e.g. incarnation counters of service
handlers)

 cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF

CONCURRENT, REACTIVE SYSTEMS

194 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

• System: the main abstraction which contains other components
compositionally and associated with its initialization behavior. It has sub
components of type ‘port’, ‘state’ and ‘service’. The ‘port’ component
represents its interface specification and ‘state’, ‘service’ components
represent its internal specification (corresponding to an abstract
implementation and a higher design specification of the component). The
‘port’ and ‘state’ are static components where as ‘service’ components are
dynamic corresponding to external requests. A ‘system’ component may also
contain ‘resource’ type components to specify protected, shared resources.

• Resource: represents a ‘simple’ protected shared resource with methods
‘acquire()’, ‘release()’, ‘read()’, and ‘write()’. A resource instance is explicitly
‘acquired’ and ‘released’ (atomically). Resources with complex internal
behaviors can be specified as ‘system’ type components.

• Service: the dynamic behavior corresponding to an interface ‘ServiceType’ of
a component invoked through associated port, specified with data and control
‘flow’ semantics (an activity diagram). The concurrent nature of a
ServiceType with itself and other compatible ‘ServiceTypes’ is specified by
tags ‘ServiceType’, ‘serviceKind’. Events ‘start’ and ‘end’ are generated
corresponding to a service execution (event ‘end’ not generated if the service
is terminated due to a raised exception). These events are broadcasted to all
state components with in the scope of the containing top most ‘system’
component.

• Port: the interface specification of concurrent and reactive behaviors of a
component as observed externally. As recommended in Lamport’s approach,
the interface can be specified with precise operational semantics. It exports a
collection of ‘ServiceTypes’ with concurrency annotations through associated
tag values for specifying concurrent semantics of invocations. It enforces ‘pre’
conditions, if any, for ‘ServiceTypes’ where as internal specification gurantees
the ‘post’ conditions. It also handles inter-component communication aspects.
The associated ‘AccessOrder’ behavior (a behavior statemachine) specifies the
invocation order of the services (i.e. temporal ordering dependencies among
the specified services) as well as the abstract statespace of the component. The
‘AccessOrder’ is an important abstraction addressing many issues of
concurrent systems [JS07]. For a concurrent component, this also aids in
identifying sub components (see next section).

• State: specifies the reactive, coordination, exception handling aspects of
internal behaviors of ‘system’ component. The associated ‘Reactive’ behavior
(specified using behavior statemachines) executes asynchronously with respect
to its services. Thus a ‘system’ component associated with a ‘state’ behavior
represents an abstract monitor with concurrent threads of control (classical
monitors cause unnecessary mutual exclusion [JS07]). Though it corresponds
to ‘AccessOrder’ specification of the corresponding ‘port’ component (i.e
interface specification) it may contain additional abstract states, transitions,
and activities (a la Lamport’s stuttered transitions corresponding to an

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 195

implementation specification). Methods wait and notify facilitate service
synchronization (a la classical monitors). Further a ‘state’ component receives
events ‘start’, ‘end’ corresponding to service executions.

• ScenarioContext: corresponding to each use case, ‘ScenarioContexts’
represent interaction of internal behaviors with liveness semantics inspired
from LSCs (Live Sequence Charts) [DH99]. These contexts specify message,
event exchange, and coordination in response to external stimuli (events or
invocations). Sequence charts with liveness semantics support the verification
of component properties [ITCB04]. In cmUML, these contexts essentially
represent the principle behaviors of the system without error scenarios
(corresponding to failure of pre conditions or guard expressions) and latter can
be ‘plugged-in’ to specificaitons through exception handling mechanism
where activities corresponding to exceptions are invoked by the corresponding
‘state’ component (or ‘thrown’ into higher level ‘state’ components).

4 A SPECIFICATION METHODOLOGY

In this section, we propose a step-wise specification methodology for the application
of cmUML. The methodology assumes use case based requirement analysis and a
higher level decomposition strategy for arriving at the initial subsystems [Goma00].
For the case study below there is only one subsystem which can be taken as the initial
«system» component. For a complex system there may exist many subsystems for
which the methodology can be applied separately. We describe the specification
approach in terms of the following tasks.

Task1: Identify the component interface with services offered. The information
can be obtained from requirement artifacts like problem statement, use cases, and
context diagrams.

Task2: Determine the concurrent execution behavior of interface services
(serviceKind and other tags) and their temporal ordering dependencies as observed
externally. This information is specified as the ‘AccessOrder’ behavior of the
corresponding ‘port’ component. AccessOrder is a behavior statemachine and
transition guards may include expressions over incarnation counters of
‘ServiceHandlers’ corresponding to interface ‘ServiceTypes’ of the ‘system’
component. The AccessOrder specification also aids in component decomposition as
explained next.

Task3: Considering the information obtained in above task, perform the
component (or subsystem) decomposition to find the internal (behavioral) structure by
dividing the interface services into a set of concurrent groups of services. This
decomposition can be fine-tuned by applying the general task cohesion principles
from OOAD approaches (e.g. functional cohesion) [Goma00]. Each of these
concurrent groups can be specified as a subcomponent. For simple components with
no internal structure, this step is skipped.

Task4: Corresponding to each use case, specify one or more ‘ScenarioContext’
involving interaction between ‘system’, ‘service’, ‘port’, ‘state’, and ‘service’

 cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF

CONCURRENT, REACTIVE SYSTEMS

196 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

components with liveness semantics and explicit event orderings. Also, the control
and reactive aspects are specified as a ‘state’ component using behavioral
statemachine and may be represented in ScenarioContexts of the component.

Task5: Specify services of ‘system’ components as UML activity diagrams
(flows), identifying the functions to be implemented and specifying ‘Guarded’ actions
or activities (and associated atomicity) if any.

Task6: Further refine the ‘service’, ‘state’, ‘ScenarioContext’ specifications by
identifying synchronization, exception handling aspects among the concurrently
executing ‘services’ and ‘state’ components. This includes identifying appropriate
invariants (by identifying ‘guarded’ actions or activities), and exception handling
activities for the ‘state’ component.. This task also includes identification of external/
internal events and component responses.

Task7: Repeat above tasks for ‘system’ sub components identified in task2.
We elaborate above tasks with a case study. Consider the UML specification of a

vending machine, a well known specification example in the literature for example in
[ITCB04]. A vending machine (VM) accepts coins from users to dispense a drink of
chosen choice. The user gives coins, one at a time, and when the sum is sufficient
enough the corresponding choices of available drinks are displayed. The user can
select any of enabled choices. The drink and the extra coins, if any, are dispensed (for
simplicity, we assume that the VM doesn’t remember the coins of previous
transactions). Also the user’s request to cancel the transaction may be considered.

Figure 3. «port» specification of temporal dependencies among the interface service invocations for
VM

Task1: Interactions of the system with its environment (i.e. user) is considered. The
user ‘gives’ sufficiently more coins and when prompted by the VM ‘selects’ his
choice of the drink. The VM, after ‘validating’ the choice and the received coins,
‘dispenses’ the ‘drink’ as well as the ‘balance’ coins if any. From the first analysis of
external interaction we can observe four main services of the VM, involving its
environment (user): ReceiveCoins, ReceiveChoice, DispenseDrink, and
DispenseCoins (denoted concisely as R-Coins, R-Choice, D-Drink, D-Coins) (see fig.
3).

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 197

Data
«Resource»

CE
«System»

DD
«System»

VM «System»

«End» R-Coins

«End» D-Coins
&& «End» D-Drink

S2 Entry: init
S1

«Exception» noDrink/
trigger(noDrinkHandle) In S1or S2: Cancel / trigger(VM-Cancel)

Figure 4. Structure and «state» specification of «system» Component VM

Task2: During this task, we determine the possible concurrency and temporal
dependency between the component services as observed externally. This is specified
as ‘AccessOrder’ in figure 3. The specified tag value ‘scope’ is redundant in this
example as only a single user is involved at a given time. The complete interface
specification («port») includes concurrency aspects of all ServiceTypes of the
component (as observed externally). For VM, all service types have similar tag values
{isAtomic=false; serviceKind=write; max=1} with additional information that D-
Drink, D-Coins may execute in parallel. The semantics of these tags is also
operationally specified in the corresponding ‘AccessOrder’ specification.

Task3: From figure3 we observe a concurrent region and a sequential region in
dashed border. Now following task cohesion principles of OOAD approaches
[Goma00], we can identify two concurrent components with functionally related
services; a ‘Cash Exchanger’ component (CE) (that handle interface services R-Coins,
D-Coins) and a ‘Drink Dispenser’ component (DD) (that handle interface services R-
Choice, D-Drink). The temporal dependencies specified as part of interface
specification need to be preserved in the internal specification. This is done through
the specification of «state» component of VM in figure 4.

Task4: For simplicity we assume ‘Env’ represents the ‘port’ component and
includes the hardware interfaces through which user interacts with VM (e.g.
choicePanel, coinSlot, etc). Now, we can specify the ScenarioContexts of VM (see
fig.6 which includes all the contexts for brevity). Only specified events under given
liveness constraints are of interest to the context with respect to system behaviors
which may include other ‘unspecified’ internal events, actions etc (a la Lamport’s
‘stuttered’ transitions). In this specification, all solid notations, for example life-lines
or segments there of (representing executions) and message actions, represent
compulsory or liveness notion of mandatory behavior while dashed ones represent
optional behaviors [14].

 cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF

CONCURRENT, REACTIVE SYSTEMS

198 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

«ScenarioContext»
Sd VM-main-1

Cancel

VM-Cancel
«Scenario
Context»

Env
«Port»

R-Choice

 D_Drink

write *

read

read

wait(«End» R-coin)

write

Update
Panel

DD {seq}
«System»

Data
«Resource»

 D_Coins

Control
«State»

R-Coins

wait(«End»
R-choice)

CE {seq}
«System»

Figure 6. A «scenarioContext» specifies primary behavior of VM component with liveness semantics

Task5: The computational aspects of component services are specified in terms of the
implementation level activities using activity diagram (with data and control flow
semantics). Fig.5 specifies the ‘flow’ behavior of the ‘service’ R-Coins with necessary
guarded semantics. The associated tag values specify that the service execution does
not wait for guard value to become true and terminate by raising an exception.
‘GuardedActions’ are useful to specify atomic update of shared data values
(isAtomic=true) or synchronization semantics regarding guard evalution. In this
context atomicity indicates that the guard value can not change during execution of
the action(s) (in fig.5 the outer guard corresponding to drinks availability cannot
change during execution of R-Coins behavior). Also a guard expression may
declaratively specify a condition referring to old and new values of shared data using
notation e.g. x@preAU and x@postAU enhancing expressiveness of specifications
[Lam00].

Task6: Now we can further refine the various specifications. We can identify
‘guardedActions’ with guards as invariants over incarnation counters in, out of
serviceHandlers of component ServiceTypes specifying service synchronizations if
any (This is required while compiling higher level specifications with internal
activities that need to be synchronized. These activities can be specified as separate
‘internal’ services). We can also specify exception handling activities by extending
«state» specification. We can also identify external, and internal events and specify
corresponding event handling activities. In fig.6 we identified possible external event
‘Cancel’ due to user’s interaction with VM. A new ScenarioContext VM-Cancel is

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 199

specified. Multiple contexts may be ‘enforced’ in parallel i.e. in ‘interleaved’ fashion,
over system behaviors (this is possible as ‘system’ components do not discard events
implicitly).

Figure 5. Activity specification of a service with guarded semantics

Task7: We can complete the specification of VM by specifying each «system» sub
component (i.e. CE, DD) following previous tasks. We skip these steps here.

5 FRAMEWORK VALIDATION: SPECIFICATION OF
CLASSICAL CONCURRENCY PATTERNS

In this section we specify classical concurrency patterns to show merits of cmUML
approach over current UML approaches (using low level constructs for e.g. [GE04]).
These approaches use low-level primitives like locks, semaphore, monitors etc to
describe concurrent behavior where the semantics of these constructs are either not
specified or specified in complicated OCL statements. Also in these approaches,
though higher level diagrams are used, no precise semantics can be inferred about
behaviors of the system specified. In contrast, cmUML specifications are precise
without using low level primitives.

Readers-Writers Synchronization Pattern

In fig.7 we have shown the specification of the pattern in current UML practices
(without OCL statements) and in fig.8 using cmUML approach. The proposed
approach retains the abstractness of specifications yet providing precise operational
behavior. The specification in fig.8 does not use many proposed abstractions (i.e.
state, service, scenarioContext) as the pattern is simple and services are primitive.
Also the pattern does not possess any reactive or state-based behavior. Hence the
interface specification (i.e. ‘Port’, ‘AcessOrder’) it self is sufficient. From the
specification it is precise that multiple readers are allowed where as a single writer
executes in mutual exclusion. Also by ‘policy’ tag value i.e. as ‘FIFO’ with «Port»,
there is no starvation of ‘writers’.

 cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF

CONCURRENT, REACTIVE SYSTEMS

200 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

«Port» {policy=FIFO}

«ServiceType» + read() : {serviceKind=read;}
«ServiceType» + write() :{serviceKind=write;}

Buffer

 «System»

read

«End» write/
«SH» write.out++

WriterIn

Entry: Start(write)
«SH» write.in ++;

«AcessOrder»
Scope={global}

read

Write

«SH» read.in = «SH» read.outIdle

«End» read/
«SH» read.out++;

ReadersIn

Entry: Start(read)
«SH» read.in ++;

Figure 7. Specification of Readers-Writers synchronization pattern in UML approaches

Figure 8. Specification of Readers-Writers synchronization pattern in cmUML

For ‘ServiceTypes’ parameters can be specified using tag ‘param’(a string defined in
BNF form: {in | out: variableName(variableType)}).

Producer–Consumer Synchronization Pattern

The pattern has state based behaviors. Fig.9 specifies the pattern (invocation behavior
of get() vomited) in current UML approaches where as fig.10 is the corresponding
cmUML specification. Though fig.9 includes behavior specification using UML
sequence diagram, it is not formally precise.

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 201

«State»
{policy=FIFO}

Buffer
 «System»

«Port» {policy=FIFO}

«ServiceType»
Put() {serviceKind=write; parService=(Get);
params(‘in:item(data)’; pre= ‘in!=null’}
Get() {serviceKind=write; parService=(Put);
params=‘out:item(data)’ }

«AcessOrder» Scope={global}

«End» Put /
 «SH» Put.out++

Put / start(Put);
«SH» Put.in++

«End» Get/
«SH» Get.out++;

Get /start(Get);
«SH» Get.in++

«invariant» («SH» Put.in -«SH» Put.out ≤1) &&
(«SH» Get.in - «SH» Get.out ≤1)

PortActive

[notEmpty] [notFull]

[empty] [full]Full OK Empty

«Reactive»

Put «Flow»

Update {guarded}{atomic}
{guard= notFULL;
 isHot=false; Delay=true;}

Figure 9. Specification of Producer-Consumer synchronization in UML approaches

Figure 10. Specification of Producer-Consumer synchronization pattern in cmUML

The cmUML specification of the pattern (fig.10) uses many abstractions of the
proposed framework. «Port» and «AcessOrder» specify invocation behavior of
interface services. «Reactive» part specifies the state based behavior. «Flow»
specifies the important part of the specification i.e. sequential behavior of the
«service» Put. It contains the guarded activity ‘update’ under guard ‘notFull’ with the
specified atomicity indicating that the guard value can not change during execution of
the activity. Also the tag values isHot=false and isDelay=true specify that the service
execution waits till the guard is satisfied (possibly forever!). The new specification
does not use ScenarioContexts as they are not required in this example.

 cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF

CONCURRENT, REACTIVE SYSTEMS

202 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

6 RELATED WORKS

There exist several works involving concurrency in UML. We have already discussed
UML-RT and UML/SPT Profile. In this section, we briefly look at other works
[Ober99, CDC02, DM99, Omar03, DJPV02]. None of these works comprehensively
address the issues of concurrency specification from formal specification perspective.

Charles Chrichton et.al. proposed a pattern for concurrency specification in UML
[CDC02]. This pattern addresses specification of multiple instantiations of operations
on an object. The specification approach separates (non-atomic) operation
specifications from statemodel specification of an object using different diagrams (i.e.
activity and statmachine). This is a formal approach where the operation, and
statemodel specifications are converted to CSP process specifications and effects of
concurrent executions of operations on the object are examined using FDR model
checking tool. But, the approaches based on translation into formalisms fall short of
covering the rich range of features in UML.

Iulian Ober and Ileana Stan proposed a quasi-concurrent object model for UML’s
active objects by integrating an existing concurrent object model, namely ATOM,
with UML [Ober99]. The proposed extension redefines active/ passive semantics to
eliminate involved inconsistencies. Passive objects can not have statemachines.
Active objects are quasi-concurrent; an executing method can explicitly yield the
control, for example, while waiting for an event. Method invocation is de-linked from
the associated statemachine and only signals are processed by the statemachine. The
statemachine runs quasi-concurrently with the methods and is notified of method start
and end events. Some aspects of the approach are related to cmUML.

A UML package for specifying Real-Time objects was proposed [DM99]. The
constructs of the approach are based on the objects of the RTSORAC (Real-Time
Semantic Objects Relationships and Constraints) model. Concurrency in an object is
determined by the Compatibility function (represented as a matrix). Each function
parameter is specified as ‘read’ or ‘write’ type and compatible functions (i.e. those
functions which can execute concurrently) are determined based on their parameter
values. The approach causes more overhead but can increase the potential parallelism
and thus may be helpful on certain parallel architectures. The aspects of the
compatibility function can be found in cmUML.

Aspect oriented approaches are being proposed for modeling as well. For
example, Omar Aldawaud et.al. proposed a UML profile for aspect oriented software
development in UML [Omar03]. The profile defines stereotypes «aspect», «crosscut»
etc. Various execution aspects of an object, for example synchronization and
exception handling, can be specified as separate «aspect» objects which can ‘crosscut’
into functionality of the main object in synchronous or asynchronous manner.

Werner Damm et.al. defined a subset of UML, krtUML [DJPV02], which is rich
enough to express all behavioral modeling entities of UML for real-time systems with
formal interleaving semantics using symbolic transition systems (STS) providing the

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 203

much needed semantical foundation for formal verification of real-time UML models.
This work addresses wide range of language issues of UML as well as critical issues
of concurrency, and communication. While krtUML is concerened with the complete
specification of systems at lower granularity (with concurrency due to concurrently
executing sequential objects), cmUML addresses similar issues at higher granularity of
specifications (i.e. abstract architectural components) with intra component
concurrency.

7 CONCLUSION AND FUTURE WORK

In this paper we have proposed cmUML, a behavior specification framework in UML,
by combining and extending the concepts of UML-RT and UML/SPT profile. UML-
RT is an architectural description language with focus on real-time embedded
systems. The SPT profile defines abstract concepts to annotate models for real time
systems towards quantitative analysis. cmUML adds compositionality, and precise
semantics over SPT profile to define a behavior specification language. The
framework covers wide range of concurrency issues including exception handling. It
further adds the safety, liveness aspects of concurrent computations. It also retains the
multi-view approach of UML by integrating behavioral diagrams (statecharts, activity,
and sequence diagrams) in underlying semantic framework. The proposed framework
is independent of class diagrams and OCL (UML’s object constraint language). Also
cmUML is independent of design aspects like active, passive objects to specify
concurrency.

The proposed framework is motivated by Lamport’s transition axiom method for
formal specification of concurrent systems and shows the formal rigor of the method
can be followed with UML. As cmUML is based on formal semantics (see appendix
and [JS06]) the formal verification techniques can be supported [WMC01, ITCB04].
We intend to further refine the elements of cmUML to make it a formal specification
language for Lamport’s transition axiom method to obtain the benefits of Lamport’s
verification techniques in industry standard specificaiton enviroments like UML.

REFERENCES

[CDC02] Crichton C., Davies J., and Cavarra A., “A Pattern for Concurrency in
UML”, Oxford Computing Lab, submitted in FASE 2002

[CG01] Shang-Wen Cheng, and David Garlan, “Mapping Architectural Concepts
to UML-RT”, International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'2001), Las Vegas,
USA, June, 2001.

[DH99] Werner Damm, David Harel, “LSCs: Breathing life in to Message
Sequence Charts”, In Porc. 3rd IFIP International Conference on Formal
Methods for Open Object-based Distributed System, 1999

 cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF

CONCURRENT, REACTIVE SYSTEMS

204 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

[DJPV02] W. Damm, B. Josko, A. Pnueli, and A. Votintseva., “Understanding
UML: A formal semantics of concurrency and communication in real-time
UML”, In Proceedings of FMCO’02, LNCS. Springer Verlag, November
2002

[DM99] L. DiPippo and L. Ma, “A UML Package for Specifying Real-Time
Objects”, University of Rhode Island, Technical Report, TR99-274, Nov.
1999

[GE04] A. Goni, Y.Eterovic, “Building Precise UML Constructs to Model
Concurrency Using OCL”, Proc. UML 2004 Conference, LNCS Vol
3273, pp 212-225, 2004

[GO01] Gerard. S., Ober. I., “Parallelism/ Concurrency Specification in UML“,
white paper, UML Conference, Toronto, Canada, 2001

[Goma00] H. Gomaa, “Designing Concurrent, Distributed, and Real-Time
Applications with UML”, Addison-Wesley, USA 2000

[ITCB04] Ingo Schinz, Tobe Toben, Christian Mrugalla, Bernd Westphal, “The
Rhapsody UML Verification Environment”, Proc. of 2nd Int. Conf. on
Software Engineering and Formal Methods (SEFM’04), Beijing, China,
pp 174-183, 2004

[ITU00] ITU-T, “SDL combined with UML”, ITU-T recommendation Z.109, 2000

[JS06] Jagadish. S., Shayamasundar R.K: “cmUML- A Precise UML for Abstract
Specification of Concurrent Components”, Proceedings of 18th
International Conference on Parallel and Distributed Computing and
Systems (PDCS), Dallas, USA, Acta press, November 2006, pp 141-146.

[JS07] Jagadish. S., Shyamasunder R.K: “An UML-based approach to Specify
Secured, Fine-grained, Concurrent Access to Shared Resources” Journal
of Object Technology (JOT), vol.6 no.1, Jan-Feb, 2007, pp 107-119.
http://www.jot.fm/issues/issue_2007_01/article3/

[Lam00] Leslie Lamport, “A Formal Basis for the Specification of Concurrent.
Systems”, Notes for the NATO Advanced Study Institute, Izmir, Turkey.
June 26, 2000

[Lam89] Leslie Lamport, “A Simple Approach to Specifying Concurrent Systems”,
Communications of ACM, vol.32 no.1, pp32-45, January 1989

[Lohr92] Klaus-Peter Lohr, “Concurrency Annotations”, Proc. on Object-oriented
programming systems, languages, and applications, Canada, pp 327-340,
1992

[Miz99] M. Mizuno, "A structured approach for developing concurrent programs
in Java", Information Processing Letters, Vol 69, No 5, pp232-238, 1999.

[Ober99] Ober. I., Stan. I “On the Concurrent Object Model of UML”, Proceedings
of EUROPAR’ 99

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 205

[Omar03] Aldawud et.al., “UML Profile for Aspect-Oriented Software
Development” Proc. 3rd Int. workshop on aspect oriented modeling,
March, 2003

[OMG02] Object Management Group, “UML Profile for Schedulability,
Performance, and Time Specification”, OMG Adopted Specification
ptc/02-03-02, July 1, 2002 (www.omg.org)

[Selic04] Selic, B., “On the Semantic Foundations of Standard UML 2.0”, Lecture
Notes in Computer Science vol. 3185, Springer-Verlag, 2004.

[SGW94] B. Selic, G. Gullekson, and P.Ward, “Real-Time Object-Oriented
Modeling”, John Wiley, New York, 1994

[WMC01] William E. McUmber, Betty H.C. Cheng, “A general framework for
formalizing UML with formal languages”, Proceedings of the 23rd
International Conference on Software Engineering, Toronto, Canada, pp
433 – 442, 2001

APPENDIX: Formal Description of cmUML Semantics
In this section, we briefly outline the semantics definition approach for cmUML (as
given in [1]). In general, defining the semantics of a language L (here cmUML)
involves defining a mapping M between elements of L and concepts of chosen
semantic domain S (here symbolic transition systems [11]). For this, a formal notation
for cmUML specifications is required. The formal notation, a 10-tuple, defines the
elements of cmUML as a type structure defining various primitive and complex types.

M = (T, Act, Att, Expr, F, E, P, S, C, I) where
T: A set of basic types and types for STATE, PORT, ENV and SERVICE classes (i.e.
for ‘Services’)
Act: A finite set of UML actions
Att: A finite set of typed attributes of M
Expr: A finite set of expressions expr over Att
F: Ft∪Fp predefined operation types
E: A class of the type TENV, E = (e.Attr, e.Seq)
P: A class of the type TPORT, P=(p.Attr, p.Seq, p.Acq)
S: A class of the type TSTATE, S= (s.Att, s.Expr, s.Act, s.Ops, Assign, Q, Tr)
C: A finite, non-empty set of classes c, of the common super-type TOP c = (c.Att,
c.Param, c.Ret, c.Tf, Pre, Post, L)
I: A finite {<C, Li, m!/m?/c, temp>} representing events to be sent/ received or
condition to be met corresponding to each component C of type tC ∈{TPORT, TOP,
TSTATE}

A symbolic transition system, say S, represents a type system of the necessary system
variables subsuming the type system of cmUML. The behavioral semantics of a

 cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF

CONCURRENT, REACTIVE SYSTEMS

206 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

cmUML specification M is defined in terms of elementary transitions (or axioms) of
the corresponding symbolic transition system (STS) SM ≡ (VM, θM, ρM , LM) where V,
the set of system variables, capture a dynamic execution of M, θ is initialization
predicates, ρ the transition predicates, and L set of liveness axioms. A snapshot s of
SM(V,θ,ρ,L) represents the evaluation of the variables V by the underlying
computational model with a synchronous global clock (where relevant variables are
atomically updated by the end of discrete time intervals). The semantic description
itself is divided in terms of various semantic modules corresponding to the main
abstractions of cmUML framework (i.e. STATE, PORT, SERVICE). The module
ENV represents an external environment scenario (useful for verification purpose).
These modules define the operational semantics of objects of type TENV, TPORT,
TSTATE, TSERVICE. Objects of type TRESOURCE are considered as passive objects which
execute in caller’s thread of control. The operational semantics of M is described in
terms of execution of these semantic modules in terms of elementary atomic
transitions specified intuitively in first order logic combined in imperative fashion.
Concurrency semantics is captured by the system method ‘fork’ as well as non-
deterministic choices of the underlying computational model. We reproduce below the
description of the semantic module representing dynamic configuration of an
environment type.

Semantic Module ENV-conf :

ENV-status: nowait, synch-wait
ENV-variables: status(ENV-status), in-queue(Queue),
 out-queue(Queue),msg(Msg-type),
 synch-msg(Msg-type);
ENVinit: status:=nowait, in-queue, out-queue, msg:= ε;
ENVasynch-send:msg=create(Msg-type: msg.type=call
 ∧ msg.mode=asynch ∧………..);
 msg.dest.in-queue.enqueue(msg);
ENVsynch-send: status := synch-wait;
 msg := create(Msg-type: msg.type=call ∧
 msg.mode=synch ∧……….);
 msg.dest.in-queue.enqueue(msg);
ENVasynch-receive:
 msg := choose(Msg-type ∈out-queue);

 if(msg != ε) ENVlocal ∨ ENVnull;
ENVsynch-receive: while (synch-msg = ε) wait;
 ENVlocal ∨ ENVnull; --do local actions/
nothing

ENVprocess: while(true) {if status=synch-wait then
 ENVsynch-receive else ENVsynch-send ∨
 ENVasynch-send ∨ ENVasynch-receive ∨
 ENVlocal ∨ ENVnull; }

Detailed description of other semantic modules can be found in [JS06].

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 207

About the authors
Jagadish Suryadevara is a lecturer and a research scholar at Birla
Institute of Technology and Science (BITS), Pilani, India. His areas
of research interests are in UML based specification and analysis of
concurrent systems, and real-time systems. He can be reached at
jagadish@bits-pilani.ac.in.

Lawrence Chung is an associate professor in Erik Jonsson School of
Engineering and Computer Science, University of Texas at Dallas,
USA. Dr. Chung's research efforts are in the areas of Software
Engineering, Requirements Engineering, Non-Functional
Requirements, Software Architecture, Electronic
Commerce/Business, Information Systems (Re-) Engineering.

Shyamsundar R.K. is a senior professor and Dean, School of
Technology and Computer Science at Tata Institute of Fundamental
Research (TIFR), Mumbai, INDIA. He is a senior researcher whose
areas of research interests include specification and verification of
real-time distributed programs, semantics of concurrency, and logic
programming.

