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Abstract 
Complex software systems possess concurrent and reactive behaviors requiring 
precise specifications prior to development. Lamport’s transition axiom method is a 
formal specification method which combines axiomatic and operational approaches. 
On the other hand Unified Modeling Language (UML), a de facto industry standard 
visual language, lacks suitable constructs and semantics regarding concurrency 
aspects. Though UML includes action semantics, its higher level constructs and 
object semantics are inconsistent. Motivated by Lamport’s approach, this paper 
proposes a UML based specification framework ‘cmUML’ (‘cm’ for concurrent 
modules) for formal specification of concurrent, reactive systems without object level 
diagrams and OCL. The framework integrates higher level diagrams of UML and 
addresses various concurrency issues including exception handling. It combines 
UML-RT and UML/ SPT profile as the latter defines a core package for concurrency 
and causality. Further the framework includes the characteristic safety and liveness 
aspects of concurrent systems. The proposed framework is in contrast with existing 
approaches based on low level primitives (semaphore, monitors). The paper 
includes several specification examples validating the proposed framework. 

1 INTRODCUTION  

In spite of proliferation of modern technologies, development of complex systems 
with concurrent, reactive behaviors remains a challenging task. The difficulty is 
largely due to the conceptual gap between the complex domains and the 
implementation technologies which requires formal yet intuitive specification 
languages and methodologies. There exists a pragmatic approach in formal 
specification of concurrent systems, for example Lamport’s transition axiom method 
[Lam89, Lam00] which combines axiomatic and operational approaches for arriving 
at intuitive yet formal specification of complex systems. On the other hand, the visual 
specification languages like UML (Unified Modeling Language) and Model Driven 
Architectures (MDA) are emerging as new paradigm for development of complex 



 
     cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF 

CONCURRENT, REACTIVE SYSTEMS 
 
 
 
 

188 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8 

systems. UML has become the de facto industry standard visual specification 
language [OMG02, Selic04]. Current UML methodologies for example COMET, 
CODARTS [Gomaa00], are largely based on informal design heuristics with focus on 
static aspects of the systems. Behavioral specifications of these approaches are largely 
representative lacking completeness and precise semantics. Further, these approaches 
specify concurrency using low level primitives like semaphores, monitors, and 
threads. 

There exist formal approaches in UML with precise semantics, for example RT-
UML [DJPV02], UML-RT [CG01], and UML/SDL [ITU00]. These approaches aim 
at real-time, embedded domains using a subset of UML features. For example, these 
approaches are largely based on statemachine semantics and do not integrate other 
behavioral aspects like data/ control flow, concurrency, synchronization etc. RT-UML 
provides semantical foundation to UML regarding concurrency, and communication. 
UML-RT and SDL/ UML are architectural approaches with focus on control-based 
reactive behaviors. But, none of these approaches handle higher level concurrency 
issues like multiple operation invocations, synchronization semantics. The proposed 
framework (named cmUML where ‘cm’ stands for concurrent modules) provides 
higher level architectural abstractions with precise operational semantics for 
specifying concurrent, reactive behaviors in terms of action, activity executions. As 
UML lacks formal semantics, cmUML provides much required unifying framework 
integrating action semantics, active/ passive objects, and higher level diagrams 
towards precise formal specifications (independent of design or implementation 
aspects).  

To strengthen the emerging paradigm of visual specification languages and 
model driven architectures with the rigor of formal specification approaches, higher 
abstractions with precise semantics are required. It is also necessary that such 
abstractions should be intuitive for the developers of the system. Lamport’s transition 
axiom method [Lam89, Lam00] (henceforth referred as TAM) recommends module 
based specification of systems where the modules (called ‘components’ in cmUML) 
are specified in terms of precise interface, and internal specifications. In this method, 
the internal specification resembles a higher level design of the module as the 
necessary system variables (PC, call stack, etc) can be used to represent the execution 
state. These variables are explicitly updated in response to module actions under 
safety and liveness constraints. The TAM approach is independent of any 
specification language. Its higher level design approach makes it convenient for 
adoption with UML framework. In this paper we extend UML (using its lightweight 
extension mechanisms) to define abstract architectural components with precise 
operational semantics. Further, these components are associated with UML’s higher 
level diagrams retaining the benefits of its multi-view approach. In this regard, the 
main contributions of this paper are listed below. 

1. Architectural abstractions for specification of concurrent, reactive, and flow 
behaviors under multi-view operational semantics (see appendix) 

2. Component specification in terms of interface and internal specifications 
(representing an abstract implementation) 
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3. Semantical integration of higher level UML diagrams with the underlying 
object model 

4. Specification constructs GuardedAction, ServiceHandler for expressiveness 
in concurrency, synchronization and exception handling semantics 

5. Specifying component executions in terms of action and activity executions   
6. Use case based ScenarioContexts representing interaction of internal 

behaviors with liveness semantics and explicit event ordering (forbidding race 
conditions)  

7. Stepwise specification methodology for application of the framework 
To implement TAM approach, the proposed framework combines UML-RT and SDL/ 
UML (for compositionality, formal semantics) and the UML/ SPT profile [OMG02] 
(for basic elements of concurrency and causality). The rest of the paper is organized 
as follows. In section 2, we give a brief overview of UML-RT, SDL/UML and SPT 
Profile. The proposed framework is defined in sections 3. Section 4 discusses a case 
study specification of vending machine, a classical problem in the literature. In 
section 5, we validate the profile through specification of classical concurrency 
patterns. We discuss related works in section 6. An approach for formal semantics 
definition is discussed in the appendix. 

2 OVERVIEW OF UML-RT AND SPT PROFILES  

The conventional UML mechanisms for specification of concurrency are: active/ 
passive objects, concurrency attribute of passive objects, concurrent regions of 
statechart, and concurrent actions. But as UML lacks a formal semantics, these 
mechanisms are not semantically integrated with the underlying object model 
resulting in inconsistent and ambiguous design models [GO01, Ober99]. UML-RT 
(similar to SDL/ UML in many aspects) is an architecture description language in 
UML. UML-RT (based on actor paradigm of ROOM language [SGW94]) defines 
architectural concepts as UML stereotypes. Specifically, it adds following stereotypes 
of standard UML elements (given in parenthesis) for modeling run-time structures.  

• Capsule (Class): a basic building block that represents a complex active object 
with multiple interface points (ports) through which it interacts with its 
external environment. It contains sub capsules compositionally and associated 
with at most one statemachine (analogous to «system», «block» in 
SDL/UML). 

• Connector(AssociationClass): a communication object that handles messages 
between ports attached to its ends (analogous to «channel», «gate» in 
SDL/UML). 

• Port(Class): processes input or output of events  
• Protocol(Collaboration): a specification of a closed group of participants 

(protocol roles) that interact in specific ways to accomplish tasks 
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cmUML adopts the notion of capsules, sub-capsules and ports of UML-RT (for 
compositionality) but not connector as it can be specified as an implicit association or 
as a component itself in case of complex associations (e.g. delaying channels). 

The SPT profile (the standard UML profile for schedulabiloity, performance, and 
time [6]) was defined as a standard way to annotate the UML specification of real 
time systems towards automated quantitative analysis. It defines a generic resource 
modeling framework with abstract concepts allowing further extensions and mappings 
onto UML elements. Our decision to extend SPT is particularly relevant as the profile 
defines a concurrency package with abstract concepts like ‘ConcurrentUnit’, 
‘Scenario’, ‘ActionExecution’ etc. The core ‘CoreResourceModelingFramework’ 
package with the concurrency sub-package can be regarded as the kernel of the profile 
(see fig.1). Some important concepts of SPT profile as relevant here are: Instance and 
Descriptor (a run-time entity and its design time descriptor i.e. type); 
EventOccurence, Scenario, and ActionExecution define causality in the model; 
Scenario represents a sequence of actions (and sub-actions) with associated partial 
ordering representing concurrency. 

cmUML extends the concepts of SPT profile with precise semantics and 
compositionality towards behavioral specification as an abstract architectural 
language (a la UML-RT).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.(a) GeneralResourceModeling package                 Figure 1. (b) Concurrency package 
 

Figure 1. UML/ SPT profile packages at ‘kernel’ level 

3 PROPOSED FRAMEWORK AND THE PROFILE  

We follow SPT profile approach in defining the conceptual framework and the 
corresponding UML mapping. First we introduce conceptual elements of the 
framework in a class diagram notation (not related to UML metamodel) and then map 
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these onto UML metamodel using standard extension mechanisms. The conceptual 
diagram represents the basic abstractions and their relationships (see fig.2). We also 
describe the semantics informally (the formal description approach is outlined in the 
appendix). 

In cmUML, a component is a generic entity (representing the type or descriptor 
of corresponding runtime instances) with specific functionality and behavior specified 
in terms of actions or activities under reactive or flow semantics. A component may 
be concurrent or sequential based on internal concurrency (i.e. concurrency is due to 
interleaved executions or alternating executions in run-to-completion). Depending on 
functionality and behavior the components are further classified as system, state, 
port, service, and resource. System component contains other components and 
responsible for their initialization. Resource component with abstract operations 
‘acquire’, ‘release’, ‘read’ and ‘write’ represent a passive, protected data or hardware 
resource. Resource components with complex behavior may be specified as system 
components. State component represents reactive, synchronization, and exception 
handling aspects of internal executions. Port component represents interface 
specification with concurrency aspects, service access order, and inter component 
communication. Services are dynamic components instantiated in response to external 
requests in contrast to asynchronously executing State, and Port behaviors. An 
instance of a service may execute concurrently with itself and other compatible 
services. Action and activities are simple or guarded (with precise semantics). Guard 
expressions represent local assertions or global invariants representing 
synchronizations and exception handling in concurrent environment. A 
ScenarioContext represents interactions of component executions in response to 
external events with necessary liveness semantics and event ordering constraints.  

In Table. 1 we define the corresponding UML profile using UML extension 
mechanisms stereotypes, tags and constraints (corresponding concepts of SPT profile 
are represented in italics). Also associations are represented via tags in cmUML as the 
profile does not use explicit associations. Stereotype or a UML name as tag type in 
the table indicates reference to the corresponding instance. Also absence of 
multiplicity indicates 0 or 1 where as * indicates 0 or more. The cmUML profile uses 
‘flat’ versions of behavioral specifications i.e. activities, statecharts, and sequence 
diagrams without hierarchy as such features can be syntactically translated into 
equivalent flat versions. Also abstract methods are defined for a few abstractions (e.g. 
state, resource etc) to simplify the semantics description as well as make the 
specifications intuitive to system developers. 
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Figure 2. Conceptual model of the proposed specification framework 

 

Stereotype (UML, 
SPT element)  

Tags[tagtype](multiplicity); Specialization/ Generalization; 
 -- Constraints; (Description) 

Component 
(Class,  
Descriptor, 
ConcurrentUnit) 

(Abstract)  
spec[Behavior](*);  root[«system»]; 
concurrencyKind={concurrent, sequential}; evBuffer[«resource»] 
Specializations : system, port, state, service, resource 

«system» port[«port»]; state[«state»]; service[«service»](*);  
-- port, state are not null 

«port» interface[«serviceType»](*); spec[«AcessOrder»];  
handles[«serviceHandler»](*); policy={FIFO, Priority} 
-- concurrencyKind= ‘sequential’; port, state are null 

«state» spec [«Reactive»]; 
-- concurrencyKind= ‘sequential’;  port, state are null  

«service» 
(Scenario) 
 

spec [«Flow»];  (dynamic component of the system) 
-- concurrencyKind= ‘sequential’; port, state refer to those of its root  
--evBuffer is null 
Generalization: ActivityExecution  

«resource»  
(ProtectedResourc
e) 

(protected entity that need to be (atomically) acquired and released for read or 
write kind of accesses. Resources with complex behavior can be specified as 
«system» components)  

ServiceType or ST 
(Operation) 

max[integer]; serviceKind={read, write};  parService[«serviceType»](*); 
params[string]; (where string can be interpreted using BNF like grammar) 

ServiceHandler or 
SH (Classifier) 

execs[«service»](*);  in(integer); out(integer); 
-- service executions corresponding to a service handler are of same serviceType 

GuardedAction or 
GA (Action) 

guard[bool]; isDelay[bool]; isHot[bool]; exception[«exception»];isAtomic[bool] 
Generalization: GuardedActivity 

ActivityExecution 
or AE 
(Action Execution) 

(Abstract) 
(‘Activity’ is a sequence of atomic actions with possibly partial ordering) 

Exception 
(Stimulus) 
 

(service execution containing exception raising action terminates) 

MessageAction or synchKind={send, accept, return} 
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Table 1. cmUML profile for the proposed framework 

 

cmUML Semantics Description 

In the rest of this section, we informally describe the semantics of the cmUML 
specificaitons (see appendix for formal description approach). One of the main 
constructs defined in the profile is ActivityExecution as a generalization of SPT 
Profile’s ActionExecution (consistent with UML definition of activity as an action). 
Activities are at a higher granularity than actions and represent a service. A service is 
associated with a run-time handler ‘ServiceHandler’ in ‘port’ component with 
information regarding service instances that started and completed (using incarnation 
counters in and out). This information can be used to specify complex 
synchronization patterns in the form of global invariants representing safety 
conditions in a simpler way [JS07, Miz99]. A set of useful global invariants are 
proposed [Miz99] which work as basic patterns to compose appropriate global 
invariants for specifications. Translations exist from global invariant based coarse-
grained specifications to fine-grained synchronization code using semaphore, 
monitors etc. Another important construct defined in the profile with respect to 
concurrent execution characteristics is GuardedAction. This allows specifying 
precise semantics corresponding to the guard evaluation and the execution of the 
corresponding action or activity (see fig.5). The GuardedAction specifies 
synchronization (i.e. wait semantics) and exception handling. The exceptions are 
handled by corresponding ‘state’ component or thrown into higher level ‘state’ 
components (a la java try-catch block). Thus GuardedAction provides much needed 
specification construct for synchronization, exception handling behavior of sequential 
executions in concurrent environment [Lohr92]. Communication aspects of cmUML 
components are externally message based (suitable for distributed environment) and 
internally message, or shared resource based. 

MA (corresponds to asynchronous call, synchronous call till message acceptance, 
syncrhonous till result returned or service completed) 

ScenarioEv 
(EventOccurence) 

eventKind={ start, end} 
(these events represent start and end of a service execution) 

Exception 
(Stimulus) 

(service execution containing exception raising action terminates) 

AccessOrder  or 
AO 
(BehaviorStateMac
hine) 

scope: {local, global} (‘scope’ specifies whether the access order is applicable 
globally or per client)  

Reactive 
(BehaviorStateMac
hine) 

Represents the reactive behavior of «system» component asynchronously 
executing with «service» components 

Flow (Activity) Represents the data and control flow behavior of «service» components 
ScenarioContext or 
SC (Sequence) 

(specification of behavior service interactions in response to external requests with 
liveness semantics) 

Assertion, 
Invariant 
(Constraint) 

(Assertion –a constraint over local data 
Invariant –a constraint over global data e.g. incarnation counters of service 
handlers)  
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• System: the main abstraction which contains other components 
compositionally and associated with its initialization behavior. It has sub 
components of type ‘port’, ‘state’ and ‘service’. The ‘port’ component 
represents its interface specification and ‘state’, ‘service’ components 
represent its internal specification (corresponding to an abstract 
implementation and a higher design specification of the component). The 
‘port’ and ‘state’ are static components where as ‘service’ components are 
dynamic corresponding to external requests. A ‘system’ component may also 
contain ‘resource’ type components to specify protected, shared resources. 

• Resource: represents a ‘simple’ protected shared resource with methods 
‘acquire()’, ‘release()’, ‘read()’, and ‘write()’. A resource instance is explicitly 
‘acquired’ and ‘released’ (atomically). Resources with complex internal 
behaviors can be specified as ‘system’ type components. 

• Service: the dynamic behavior corresponding to an interface ‘ServiceType’ of 
a component invoked through associated port, specified with data and control 
‘flow’ semantics (an activity diagram).  The concurrent nature of a 
ServiceType with itself and other compatible ‘ServiceTypes’ is specified by 
tags ‘ServiceType’, ‘serviceKind’. Events ‘start’ and ‘end’ are generated 
corresponding to a service execution (event ‘end’ not generated if the service 
is terminated due to a raised exception). These events are broadcasted to all 
state components with in the scope of the containing top most ‘system’ 
component.  

• Port: the interface specification of concurrent and reactive behaviors of a 
component as observed externally. As recommended in Lamport’s approach, 
the interface can be specified with precise operational semantics. It exports a 
collection of ‘ServiceTypes’ with concurrency annotations through associated 
tag values for specifying concurrent semantics of invocations. It enforces ‘pre’ 
conditions, if any, for ‘ServiceTypes’ where as internal specification gurantees 
the ‘post’ conditions. It also handles inter-component communication aspects. 
The associated ‘AccessOrder’ behavior (a behavior statemachine) specifies the 
invocation order of the services (i.e. temporal ordering dependencies among 
the specified services) as well as the abstract statespace of the component. The 
‘AccessOrder’ is an important abstraction addressing many issues of 
concurrent systems [JS07]. For a concurrent component, this also aids in 
identifying sub components (see next section). 

• State: specifies the reactive, coordination, exception handling aspects of 
internal behaviors of ‘system’ component. The associated ‘Reactive’ behavior 
(specified using behavior statemachines) executes asynchronously with respect 
to its services. Thus a ‘system’ component associated with a ‘state’ behavior 
represents an abstract monitor with concurrent threads of control (classical 
monitors cause unnecessary mutual exclusion [JS07]). Though it corresponds 
to ‘AccessOrder’ specification of the corresponding ‘port’ component (i.e 
interface specification) it may contain additional abstract states, transitions, 
and activities (a la Lamport’s stuttered transitions corresponding to an 
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implementation specification). Methods wait and notify facilitate service 
synchronization (a la classical monitors). Further a ‘state’ component receives 
events ‘start’, ‘end’ corresponding to service executions. 

• ScenarioContext: corresponding to each use case, ‘ScenarioContexts’ 
represent interaction of internal behaviors with liveness semantics inspired 
from LSCs (Live Sequence Charts) [DH99]. These contexts specify message, 
event exchange, and coordination in response to external stimuli (events or 
invocations). Sequence charts with liveness semantics support the verification 
of component properties [ITCB04]. In cmUML, these contexts essentially 
represent the principle behaviors of the system without error scenarios 
(corresponding to failure of pre conditions or guard expressions) and latter can 
be ‘plugged-in’ to specificaitons through exception handling mechanism 
where activities corresponding to exceptions are invoked by the corresponding 
‘state’ component (or ‘thrown’ into higher level ‘state’ components). 

4 A SPECIFICATION METHODOLOGY 

In this section, we propose a step-wise specification methodology for the application 
of cmUML. The methodology assumes use case based requirement analysis and a 
higher level decomposition strategy for arriving at the initial subsystems [Goma00]. 
For the case study below there is only one subsystem which can be taken as the initial 
«system» component. For a complex system there may exist many subsystems for 
which the methodology can be applied separately. We describe the specification 
approach in terms of the following tasks. 

Task1: Identify the component interface with services offered. The information 
can be obtained from requirement artifacts like problem statement, use cases, and 
context diagrams. 

Task2: Determine the concurrent execution behavior of interface services 
(serviceKind and other tags) and their temporal ordering dependencies as observed 
externally. This information is specified as the ‘AccessOrder’ behavior of the 
corresponding ‘port’ component. AccessOrder is a behavior statemachine and 
transition guards may include expressions over incarnation counters of 
‘ServiceHandlers’ corresponding to interface ‘ServiceTypes’ of the ‘system’ 
component. The AccessOrder specification also aids in component decomposition as 
explained next. 

Task3: Considering the information obtained in above task, perform the 
component (or subsystem) decomposition to find the internal (behavioral) structure by 
dividing the interface services into a set of concurrent groups of services. This 
decomposition can be fine-tuned by applying the general task cohesion principles 
from OOAD approaches (e.g. functional cohesion) [Goma00]. Each of these 
concurrent groups can be specified as a subcomponent. For simple components with 
no internal structure, this step is skipped. 

Task4: Corresponding to each use case, specify one or more ‘ScenarioContext’ 
involving interaction between ‘system’, ‘service’, ‘port’, ‘state’, and ‘service’ 
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components with liveness semantics and explicit event orderings. Also, the control 
and reactive aspects are specified as a ‘state’ component using behavioral 
statemachine and may be represented in ScenarioContexts of the component. 

Task5: Specify services of ‘system’ components as UML activity diagrams 
(flows), identifying the functions to be implemented and specifying ‘Guarded’ actions 
or activities (and associated atomicity) if any. 

Task6: Further refine the ‘service’, ‘state’, ‘ScenarioContext’ specifications by 
identifying synchronization, exception handling aspects among the concurrently 
executing ‘services’ and ‘state’ components. This includes identifying appropriate 
invariants (by identifying ‘guarded’ actions or activities), and exception handling 
activities for the ‘state’ component.. This task also includes identification of external/ 
internal events and component responses. 

Task7: Repeat above tasks for ‘system’ sub components identified in task2. 
We elaborate above tasks with a case study. Consider the UML specification of a 

vending machine, a well known specification example in the literature for example in 
[ITCB04]. A vending machine (VM) accepts coins from users to dispense a drink of 
chosen choice. The user gives coins, one at a time, and when the sum is sufficient 
enough the corresponding choices of available drinks are displayed. The user can 
select any of enabled choices. The drink and the extra coins, if any, are dispensed (for 
simplicity, we assume that the VM doesn’t remember the coins of previous 
transactions). Also the user’s request to cancel the transaction may be considered. 
 

 
 

Figure 3. «port» specification of temporal dependencies among the interface service invocations for 
VM  

 

Task1: Interactions of the system with its environment (i.e. user) is considered. The 
user ‘gives’ sufficiently more coins and when prompted by the VM ‘selects’ his 
choice of the drink. The VM, after ‘validating’ the choice and the received coins, 
‘dispenses’ the ‘drink’ as well as the ‘balance’ coins if any. From the first analysis of 
external interaction we can observe four main services of the VM, involving its 
environment (user): ReceiveCoins, ReceiveChoice, DispenseDrink, and 
DispenseCoins (denoted concisely as R-Coins, R-Choice, D-Drink, D-Coins) (see fig. 
3). 
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Data 
«Resource» 

CE 
«System» 

DD 
«System» 

VM «System» 

«End» R-Coins 

«End» D-Coins  
&& «End» D-Drink  

S2 Entry: init 
S1 

«Exception» noDrink/ 
trigger(noDrinkHandle)     In S1or S2: Cancel / trigger(VM-Cancel) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Structure and «state» specification of «system» Component VM 
 

Task2: During this task, we determine the possible concurrency and temporal 
dependency between the component services as observed externally. This is specified 
as ‘AccessOrder’ in figure 3. The specified tag value ‘scope’ is redundant in this 
example as only a single user is involved at a given time. The complete interface 
specification («port») includes concurrency aspects of all ServiceTypes of the 
component (as observed externally). For VM, all service types have similar tag values 
{isAtomic=false; serviceKind=write; max=1} with additional information that D-
Drink, D-Coins may execute in parallel. The semantics of these tags is also 
operationally specified in the corresponding ‘AccessOrder’ specification. 

Task3: From figure3 we observe a concurrent region and a sequential region in 
dashed border. Now following task cohesion principles of OOAD approaches 
[Goma00], we can identify two concurrent components with functionally related 
services; a ‘Cash Exchanger’ component (CE) (that handle interface services R-Coins, 
D-Coins) and a ‘Drink Dispenser’ component (DD) (that handle interface services R-
Choice, D-Drink). The temporal dependencies specified as part of interface 
specification need to be preserved in the internal specification. This is done through 
the specification of «state» component of VM in figure 4.  

Task4: For simplicity we assume ‘Env’ represents the ‘port’ component and 
includes the hardware interfaces through which user interacts with VM (e.g. 
choicePanel, coinSlot, etc). Now, we can specify the ScenarioContexts of VM (see 
fig.6 which includes all the contexts for brevity). Only specified events under given 
liveness constraints are of interest to the context with respect to system behaviors 
which may include other ‘unspecified’ internal events, actions etc (a la Lamport’s 
‘stuttered’ transitions). In this specification, all solid notations, for example life-lines 
or segments there of (representing executions) and message actions, represent 
compulsory or liveness notion of mandatory behavior while dashed ones represent 
optional behaviors [14].  



 
     cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF 

CONCURRENT, REACTIVE SYSTEMS 
 
 
 
 

198 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8 

«ScenarioContext»              
Sd    VM-main-1 

Cancel  

VM-Cancel 
«Scenario 
Context» 

Env
«Port» 

R-Choice 

 D_Drink 

write *

read 

read 

wait(«End»  R-coin) 

write 

Update 
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DD {seq} 
«System» 
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 D_Coins 
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R-Coins 

wait(«End» 
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CE {seq} 
«System» 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. A «scenarioContext» specifies primary behavior of VM component with liveness semantics 
 

Task5: The computational aspects of component services are specified in terms of the 
implementation level activities using activity diagram (with data and control flow 
semantics). Fig.5 specifies the ‘flow’ behavior of the ‘service’ R-Coins with necessary 
guarded semantics. The associated tag values specify that the service execution does 
not wait for guard value to become true and terminate by raising an exception. 
‘GuardedActions’ are useful to specify atomic update of shared data values 
(isAtomic=true) or synchronization semantics regarding guard evalution. In this 
context atomicity indicates that the guard value can not change during execution of 
the action(s) (in fig.5 the outer guard corresponding to drinks availability cannot 
change during execution of R-Coins behavior). Also a guard expression may 
declaratively specify a condition referring to old and new values of shared data using 
notation e.g. x@preAU and x@postAU enhancing expressiveness of specifications 
[Lam00]. 

Task6: Now we can further refine the various specifications. We can identify 
‘guardedActions’ with guards as invariants over incarnation counters in, out of 
serviceHandlers of component ServiceTypes specifying service synchronizations if 
any (This is required while compiling higher level specifications with internal 
activities that need to be synchronized. These activities can be specified as separate 
‘internal’ services). We can also specify exception handling activities by extending 
«state» specification. We can also identify external, and internal events and specify 
corresponding event handling activities. In fig.6 we identified possible external event 
‘Cancel’ due to user’s interaction with VM. A new ScenarioContext VM-Cancel is 
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specified. Multiple contexts may be ‘enforced’ in parallel i.e. in ‘interleaved’ fashion, 
over system behaviors (this is possible as ‘system’ components do not discard events 
implicitly). 
 

 
 

Figure 5. Activity specification of a service with guarded semantics 
 

Task7: We can complete the specification of VM by specifying each «system» sub 
component (i.e. CE, DD) following previous tasks. We skip these steps here. 

5 FRAMEWORK VALIDATION: SPECIFICATION OF 
CLASSICAL CONCURRENCY PATTERNS 

In this section we specify classical concurrency patterns to show merits of cmUML 
approach over current UML approaches (using low level constructs for e.g. [GE04]). 
These approaches use low-level primitives like locks, semaphore, monitors etc to 
describe concurrent behavior where the semantics of these constructs are either not 
specified or specified in complicated OCL statements. Also in these approaches, 
though higher level diagrams are used, no precise semantics can be inferred about 
behaviors of the system specified. In contrast, cmUML specifications are precise 
without using low level primitives. 

Readers-Writers Synchronization Pattern 

In fig.7 we have shown the specification of the pattern in current UML practices 
(without OCL statements) and in fig.8 using cmUML approach. The proposed 
approach retains the abstractness of specifications yet providing precise operational 
behavior. The specification in fig.8 does not use many proposed abstractions (i.e. 
state, service, scenarioContext) as the pattern is simple and services are primitive. 
Also the pattern does not possess any reactive or state-based behavior. Hence the 
interface specification (i.e. ‘Port’, ‘AcessOrder’) it self is sufficient. From the 
specification it is precise that multiple readers are allowed where as a single writer 
executes in mutual exclusion. Also by ‘policy’ tag value i.e. as ‘FIFO’ with «Port», 
there is no starvation of ‘writers’.  
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«Port» {policy=FIFO}
 

«ServiceType»   +  read() : {serviceKind=read;}  
«ServiceType»   +  write() :{serviceKind=write;}  

 

Buffer  

 «System» 

read

«End» write/ 
«SH» write.out++ 

WriterIn
 

Entry:   Start(write) 
«SH» write.in ++; 

«AcessOrder» 
Scope={global} 

read 

Write

«SH» read.in = «SH» read.outIdle 

«End» read/ 
«SH» read.out++; 

ReadersIn
 

Entry:    Start(read) 
«SH» read.in ++; 

 

 
 

Figure 7. Specification of Readers-Writers synchronization pattern in UML approaches 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Specification of Readers-Writers synchronization pattern in cmUML 

 
For ‘ServiceTypes’ parameters can be specified using tag ‘param’( a string defined in 
BNF form: {in | out: variableName(variableType)}). 

Producer–Consumer Synchronization Pattern 

The pattern has state based behaviors. Fig.9 specifies the pattern (invocation behavior 
of get() vomited) in current UML approaches where as fig.10 is the corresponding 
cmUML specification. Though fig.9 includes behavior specification using UML 
sequence diagram, it is not formally precise.  
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«State» 
{policy=FIFO} 

Buffer 
 «System» 

«Port» {policy=FIFO} 
 

«ServiceType» 
Put() {serviceKind=write; parService=(Get); 
params(‘in:item(data)’; pre= ‘in!=null’}  
Get() {serviceKind=write; parService=(Put); 
params=‘out:item(data)’ } 

«AcessOrder»  Scope={global} 

«End» Put /   
 «SH» Put.out++      

Put / start(Put); 
«SH» Put.in++ 

«End» Get/
«SH» Get.out++; 

Get /start(Get); 
«SH» Get.in++ 

«invariant»   («SH» Put.in -«SH» Put.out ≤1) && 
(«SH» Get.in - «SH» Get.out ≤1) 

PortActive 

[notEmpty] [notFull]

[empty] [full]Full OK Empty

«Reactive»
      
 
 
  

Put  «Flow»           

Update {guarded}{atomic} 
{guard= notFULL;  
  isHot=false; Delay=true;} 

 
Figure 9. Specification of Producer-Consumer synchronization in UML approaches 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Specification of Producer-Consumer synchronization pattern in cmUML 
 

The cmUML specification of the pattern (fig.10) uses many abstractions of the 
proposed framework. «Port» and «AcessOrder» specify invocation behavior of 
interface services. «Reactive» part specifies the state based behavior. «Flow» 
specifies the important part of the specification i.e. sequential behavior of the 
«service» Put. It contains the guarded activity ‘update’ under guard ‘notFull’ with the 
specified atomicity indicating that the guard value can not change during execution of 
the activity. Also the tag values isHot=false and isDelay=true specify that the service 
execution waits till the guard is satisfied (possibly forever!). The new specification 
does not use ScenarioContexts as they are not required in this example. 



 
     cmUML – A UML BASED FRAMEWORK FOR FORMAL SPECIFICATION OF 

CONCURRENT, REACTIVE SYSTEMS 
 
 
 
 

202 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8 

6 RELATED WORKS 

There exist several works involving concurrency in UML. We have already discussed 
UML-RT and UML/SPT Profile. In this section, we briefly look at other works 
[Ober99, CDC02, DM99, Omar03, DJPV02]. None of these works comprehensively 
address the issues of concurrency specification from formal specification perspective. 

Charles Chrichton et.al. proposed a pattern for concurrency specification in UML 
[CDC02]. This pattern addresses specification of multiple instantiations of operations 
on an object. The specification approach separates (non-atomic) operation 
specifications from statemodel specification of an object using different diagrams (i.e. 
activity and statmachine). This is a formal approach where the operation, and 
statemodel specifications are converted to CSP process specifications and effects of 
concurrent executions of operations on the object are examined using FDR model 
checking tool. But, the approaches based on translation into formalisms fall short of 
covering the rich range of features in UML.  

Iulian Ober and Ileana Stan proposed a quasi-concurrent object model for UML’s 
active objects by integrating an existing concurrent object model, namely ATOM, 
with UML [Ober99]. The proposed extension redefines active/ passive semantics to 
eliminate involved inconsistencies. Passive objects can not have statemachines. 
Active objects are quasi-concurrent; an executing method can explicitly yield the 
control, for example, while waiting for an event. Method invocation is de-linked from 
the associated statemachine and only signals are processed by the statemachine. The 
statemachine runs quasi-concurrently with the methods and is notified of method start 
and end events. Some aspects of the approach are related to cmUML. 

A UML package for specifying Real-Time objects was proposed [DM99]. The 
constructs of the approach are based on the objects of the RTSORAC (Real-Time 
Semantic Objects Relationships and Constraints) model. Concurrency in an object is 
determined by the Compatibility function (represented as a matrix). Each function 
parameter is specified as ‘read’ or ‘write’ type and compatible functions (i.e. those 
functions which can execute concurrently) are determined based on their parameter 
values. The approach causes more overhead but can increase the potential parallelism 
and thus may be helpful on certain parallel architectures. The aspects of the 
compatibility function can be found in cmUML.  

Aspect oriented approaches are being proposed for modeling as well. For 
example, Omar Aldawaud et.al. proposed a UML profile for aspect oriented software 
development in UML [Omar03]. The profile defines stereotypes «aspect», «crosscut» 
etc. Various execution aspects of an object, for example synchronization and 
exception handling, can be specified as separate «aspect» objects which can ‘crosscut’ 
into functionality of the main object in synchronous or asynchronous manner. 

Werner Damm et.al. defined a subset of UML, krtUML [DJPV02], which is rich 
enough to express all behavioral modeling entities of UML for real-time systems with 
formal interleaving semantics using symbolic transition systems (STS) providing the 
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much needed semantical foundation for formal verification of real-time UML models. 
This work addresses wide range of language issues of UML as well as critical issues 
of concurrency, and communication. While krtUML is concerened with the complete 
specification of systems at lower granularity (with concurrency due to concurrently 
executing sequential objects), cmUML addresses similar issues at higher granularity of 
specifications (i.e. abstract architectural components) with intra component 
concurrency. 

7 CONCLUSION AND FUTURE WORK  

In this paper we have proposed cmUML, a behavior specification framework in UML, 
by combining and extending the concepts of UML-RT and UML/SPT profile. UML-
RT is an architectural description language with focus on real-time embedded 
systems. The SPT profile defines abstract concepts to annotate models for real time 
systems towards quantitative analysis. cmUML adds compositionality, and precise 
semantics over SPT profile to define a behavior specification language. The 
framework covers wide range of concurrency issues including exception handling. It 
further adds the safety, liveness aspects of concurrent computations. It also retains the 
multi-view approach of UML by integrating behavioral diagrams (statecharts, activity, 
and sequence diagrams) in underlying semantic framework. The proposed framework 
is independent of class diagrams and OCL (UML’s object constraint language). Also 
cmUML is independent of design aspects like active, passive objects to specify 
concurrency. 

The proposed framework is motivated by Lamport’s transition axiom method for 
formal specification of concurrent systems and shows the formal rigor of the method 
can be followed with UML. As cmUML is based on formal semantics (see appendix 
and [JS06]) the formal verification techniques can be supported [WMC01, ITCB04]. 
We intend to further refine the elements of cmUML to make it a formal specification 
language for Lamport’s transition axiom method to obtain the benefits of Lamport’s 
verification techniques in industry standard specificaiton enviroments like UML. 
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APPENDIX: Formal Description of cmUML Semantics 
In this section, we briefly outline the semantics definition approach for cmUML (as 
given in [1]). In general, defining the semantics of a language L (here cmUML) 
involves defining a mapping M between elements of L and concepts of chosen 
semantic domain S (here symbolic transition systems [11]). For this, a formal notation 
for cmUML specifications is required. The formal notation, a 10-tuple, defines the 
elements of cmUML as a type structure defining various primitive and complex types. 
 

M = (T, Act, Att, Expr, F, E, P, S, C, I) where 
T: A set of basic types and types for STATE, PORT, ENV and SERVICE classes (i.e. 
for ‘Services’)   
Act: A finite set of UML actions 
Att: A finite set of typed attributes of M 
Expr: A finite set of expressions expr over Att  
F: Ft∪Fp predefined operation types  
E: A class of the type TENV, E = (e.Attr, e.Seq)  
P: A class of the type TPORT, P=(p.Attr, p.Seq, p.Acq) 
S: A class of the type TSTATE, S= (s.Att, s.Expr, s.Act, s.Ops, Assign, Q, Tr) 
C: A finite, non-empty set of classes c, of the common super-type TOP c = (c.Att, 
c.Param, c.Ret, c.Tf, Pre, Post, L) 
I: A finite {<C, Li, m!/m?/c, temp>} representing events to be sent/ received or 
condition to be met corresponding to each component C of type tC ∈{TPORT, TOP, 
TSTATE} 
 

A symbolic transition system, say S, represents a type system of the necessary system 
variables subsuming the type system of cmUML. The behavioral semantics of a 
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cmUML specification M is defined in terms of elementary transitions (or axioms) of 
the corresponding symbolic transition system (STS) SM ≡ (VM, θM, ρM , LM) where V, 
the set of system variables, capture a dynamic execution of M, θ is initialization 
predicates, ρ the transition predicates, and L set of liveness axioms. A snapshot s of 
SM(V,θ,ρ,L) represents the evaluation of the variables V by the underlying 
computational model with a synchronous global clock (where relevant variables are 
atomically updated by the end of discrete time intervals). The semantic description 
itself is divided in terms of various semantic modules corresponding to the main 
abstractions of cmUML framework (i.e. STATE, PORT, SERVICE). The module 
ENV represents an external environment scenario (useful for verification purpose). 
These modules define the operational semantics of objects of type TENV, TPORT, 
TSTATE, TSERVICE. Objects of type TRESOURCE are considered as passive objects which 
execute in caller’s thread of control. The operational semantics of M is described in 
terms of execution of these semantic modules in terms of elementary atomic 
transitions specified intuitively in first order logic combined in imperative fashion. 
Concurrency semantics is captured by the system method ‘fork’ as well as non-
deterministic choices of the underlying computational model. We reproduce below the 
description of the semantic module representing dynamic configuration of an 
environment type. 

Semantic Module ENV-conf : 
 
ENV-status:  nowait, synch-wait 
ENV-variables: status(ENV-status), in-queue(Queue),     
  out-queue(Queue),msg(Msg-type),  
  synch-msg(Msg-type); 
ENVinit: status:=nowait, in-queue, out-queue, msg:= ε;  
ENVasynch-send:msg=create(Msg-type: msg.type=call  
    ∧ msg.mode=asynch ∧………..);  
    msg.dest.in-queue.enqueue(msg); 
ENVsynch-send: status := synch-wait; 
    msg := create(Msg-type: msg.type=call ∧ 
             msg.mode=synch ∧……….); 
    msg.dest.in-queue.enqueue(msg); 
ENVasynch-receive: 
    msg := choose(Msg-type ∈out-queue); 

   if(msg != ε)   ENVlocal ∨ ENVnull; 
ENVsynch-receive:  while (synch-msg = ε) wait;  
          ENVlocal ∨ ENVnull; --do local actions/ 
nothing 
 
ENVprocess:  while(true) {if status=synch-wait then  
   ENVsynch-receive else ENVsynch-send ∨  
   ENVasynch-send ∨ ENVasynch-receive ∨  
   ENVlocal ∨ ENVnull; } 
 

Detailed description of other semantic modules can be found in [JS06]. 
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