
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 8, November-December 2008

Cite this column as follows: John Mc Gregor: “Agile Software Product Lines, Deconstructed”, in
Journal of Object Technology, vol. 7, no. 8, November - December, pp. 7-19
http://www.jot.fm/issues/issue_2008_11/column1/

Agile Software Product Lines,
Deconstructed

John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
There was much interest at this year’s Software Product Line Conference in how to
combine agile and product line techniques. Agile teams seek to address change one
product at a time while product line organizations take an investment view by
addressing change among a set of products. On the surface there are some seeming
contradictions between the methods, but they may not be as different as they are
sometimes portrayed. In this issue of Strategic Software Engineering I want to
deconstruct product line and agile practices, compare the pieces, and make some
suggestions about how to re-construct a hybrid method. I will do this in part by treating
agility as a quality attribute of processes.

1 INTRODUCTION

Recently my wife and I went to a restaurant for dinner. On the dessert menu, among other
goodies, was a “deconstructed” chocolate cake. The chef had four separate elements that
were, to her, the essence of the chocolate cake. Each element was more elaborately
prepared than it would have been in the cake but provided the flavors and textures that
one would experience. A chef does this to let the diner focus on the “essence” of each
element. The diner can choose to eat the elements individually or combine a little of
several of the elements in one bite if they wish. I want to do the same with the agile and
product line methods with the intention of investigating new combinations of practices
that provide new benefits.

Many of the discussions about combining these two have taken both agile and
software product lines as monolithic methods and attempted to glue them together. My
purpose in deconstructing is to see if there are pieces of each that might work well
together and whether other pieces might be dropped while still retaining the essence of
each method. To do this I will consider the specified characteristics of each but I will also
dig into a few implicit assumptions that lurk behind each approach.

There was much interest at the Software Product Line Conference (SPLC) 2008 in
the relationships between agile and product line methods. Agility played a role in the
practices of Philips HealthCare as described in Luc Koch’s keynote address [Koch 08]. A

AGILE SOFTWARE PRODUCT LINES, DECONSTRUCTED

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

large group participated in a working session, which I chaired, that brainstormed ideas
regarding agile and product lines. In that session we raised many questions and started
several conversations that I hope will carry on to next year’s conference. I will rely on
these and other sources as I consider how these techniques could be blended.

Let me start right away by making explicit a few of my personal assumptions about
this topic. First, I could not care less about creating an agile software product line method
if it does not improve how we are developing software intensive products. The cachet of
a particular name is irrelevant. Note that when I say “improve” that can mean many
things. I am willing to create more waste and scrap if my goal is quicker time to market
and creating the waste gets me there.

My second assumption is one that I believe we all hold in common: “No one wants
to do extra work,” but what “extra” means is part of what separates us. I believe it is a
matter of perspective and context. A product line perspective encompasses a set of
products built over a period of time while the agile perspective is more focused on single
product development. Doing work on a component that is scheduled to be used in a
product even though we have not started assembling yet is reasonable and essential to
both the agile and the product line staff. Working on a component that is anticipated to
be used in a product is essential work to a product line person but extra work to the agile
person. A product line organization operates in a context of sufficient stability that
planning the development of several products is not an exercise in futility.

My third and, so far, final assumption is that the strategic levels of reuse is what
provides the productivity and time improvements that make the software product line
approach useful. Any new method that reduces the amount of existing assets used in
products will reduce the benefits of developing a product line.

In a previous column, Mix and Match, I explored techniques for combining
processes, models, and tools into a coherent development method [McGregor 08]. I used
agile and product line practices as an example as I described the mechanics of method
engineering. In this column I will dig deeper into the conceptual content of each method
and focus on the issues related to the development activities rather than the issues
regarding combining practices.

Neither “agile” nor “product line” refers to a single universally accepted definition.
Rather each refers to a class of methods that share certain characteristics. I will briefly
characterize each class of methods trying not to alienate too many people along the way.
Then I will describe some combinations of pieces that might prove strategically
significant.

2 AGILE MANIFESTO

As the name implies, “agile” techniques exist in a development environment that is tuned
to respond rapidly to changes in product requirements. The agile community is a diverse
group but some of them have collaborated on an “agile manifesto” [Agile 08]. This
manifesto consists of twelve principles listed in Table 1, in accordance with the copyright

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 9

notice the entire description is listed in the table. These principles seem quite
straightforward and self-explanatory to me and serve as a useful deconstruction of the
agile approach.

Table 1 Agile Principles
Our highest priority is to satisfy the customer

through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for

the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a

preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,

and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development

team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts

its behavior accordingly.

AGILE SOFTWARE PRODUCT LINES, DECONSTRUCTED

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

From a software engineering perspective I can’t disagree with any of those statements. I
would say that for me “best” is a relative term driven by the business goals. From my
personal product line perspective, I am willing to tradeoff absolute adherence to any one
of these principles in order to achieve an important business goal. For example, face-to-
face communication may be best for clarity but there are times when budgets stretched by
rising airfares constrain us to either an internet meeting/teleconference or no meeting at
all. Insisting on working daily with a business person may result in an inexperienced,
read that as cheap, person being assigned. I would prefer the experienced person
occasionally to the newbie continuously.

In the title of this column, “Agile Software Product Line,” agile is used as an
adjective. It is an attribute of the product line. A quality attribute, sometimes referred to
as a non-functional requirement, is difficult to characterize as concisely as a functional
requirement. Quality attribute scenarios provide a means of describing an attribute by
means of multiple examples. In Table 2 I show a quality attribute scenario for agility
using the style from [Bass 98]. I have given this one a product line flavor by talking about
carryover from existing to new features. Time did not allow me to develop a large set of
scenarios, which is what would be needed to fully define agility, but hopefully this one
will trigger thoughts of other scenarios.

Table 2 An Agility Scenario

Agility: A user, after working with the product for a while, suggests a new feature that is
similar to one of the features she used in the product.

Stimulus A new feature request

Source of stimulus A user of the prototype

Environment A new product sandbox

Artifact The prototype

Response The new feature is added

Response measure The feature is added in time for the next release, faster than if the
feature were unrelated to any other features in the previous or
current products.

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 11

3 PRODUCT LINE APPROACHES

The early literature contained two different terms: “product family” and “product line.”
There was even a series of workshops on product families and a series of conferences on
product lines. Recently the workshop series and the conference series merged into SPLC,
the Software Product Line Conference. This merger was in recognition that the term
“software product line” subsumed product families.

In short, the concept of a product family recognizes the commonalities and
variabilities among a set of potential products. A software product line places those
commonalities and variabilities into an organizational context and considers what actions
and resources are needed to actually be able to produce those similar products.

Strategic reuse is a key concept. The software that implements the common features
is obviously shared by all. The variations will usually be shared by several products. This
is the blessing and curse of reuse. Variability management and the management of assets
across multiple products is much of what product line research is about. Avoiding “clone
and own” is critical for the long term health of the assets and yet it is difficult to do well.

There are three widely recognized approaches that a software product line
organization can pursue with respect to investment in core assets. No one of them is the
best approach in all cases, it depends on the context in which the product line
organization operates. The three are:

• Proactive – In the proactive approach the reusable assets are developed prior to
any product development. A product line requirements model and an architecture
are created and from these assets code assets are derived. This approach is
efficient in a very stable domain where the organization has lots of experience.
The biggest risk is that over time, before some products in the product line can be
built, changes in the business climate or in the domain and product definitions
will render useless some of the assets already created.

• Reactive – In the reactive approach the reusable assets are harvested from
products after they are built and deployed. Initially the product is built like any
single-product development effort. As other products are built they use assets
harvested from the products that have been built so far. The set of reusable assets
evolves into a more useful collection over time. This approach reduces the risk
that assets will become obsolete. Every asset is used at least once. The risk is that
some short fuse business opportunities will be missed because product production
is not as fast as it could be. There is also the risk that lack of a product line
architecture will result in lots of reworking of assets to make them suitable for
future products. Note that this is not the reactive approach described by some
agile methodists in which they “react” to each product as a new, and relatively
unique, undertaking.

• Incremental – The incremental approach is a compromise between the two
extremes. The set of assets is built in scheduled increments. The increments are

AGILE SOFTWARE PRODUCT LINES, DECONSTRUCTED

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

usually defined to provide assets needed for a set of products scheduled to be
produced in the near future. The risks of the other two approaches are present here
in reduced form but still present.

Finally, let me give a bit more detail about the product line approach. The Software
Engineering Institute (SEI) has developed a Framework for Product Line Practice [SEI
08]. This framework describes 29 practices, shown in Table 3, that affect the success of a
software product line organization. This would be a very good deconstruction of product
line practice but it is a few more pieces than I want to work with. Rather, I will use two
different decompositions of the practices areas as my basis for discussion.

One way of slicing the method is to group the practice areas into three categories:
Software engineering – The practices in this category relate to technical issues about

identifying variability and building products.
Technical management – The practices in this category relate to managing a

development environment in which multiple products may be in progress at the same
time and variants within a single variation point may contradict each other.

Organizational management – The practices in this category relate to managing a
diverse organization with a single set of goals but with a variety of perspectives on those
goals.

Table 3 Practice Areas

Software engineering Technical management Organizational management

Architecture Definition
Architecture Evaluation
Component
Development
Using Externally
Available Software
Mining Existing Assets
Requirements
Engineering
Software System
Integration
Testing
Understanding Relevant
Domains

Configuration Management
Measurement and Tracking
Make/Buy/Mine/
Commission Analysis
Process Discipline
Scoping
Technical Planning
Technical Risk Management
Tool Support

Building a Business Case
Customer Interface
Management
Developing an Acquisition
Strategy
Funding
Launching and
Institutionalizing
Market Analysis
Operations
Organizational Planning
Organizational Risk
Management
Structuring the Organization
Technology Forecasting
Training

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 13

Another possible deconstruction of the product line approach is three pieces that slice
across what we have already sliced. Think for a few minutes about product line
development as asset building, product building, and management.

Asset building – This role is the “long” view. What are the pieces that can be reused?
Product building – This role is the short-term, get-it-out-the-door view. What is the

least work I can do and get this product to work?
Management – This is the investment view. How can we track the resources invested

in the assets and determine their ROI?

Table 4 provides a view of the dice that results from all this slicing.

Table 4 Deconstruction of the product line approach

 Software
Engineering

Technical
Management

Organizational
Management

Asset
building

Technical asset
building such as
code modules

Creating templates
for plans, reports,
and other technical
assets.

Developing processes
for identifying and
initiating product
lines

Product
building

Assembling modules
and writing code
necessary for the
unqiue behavior of a
product

Scheduling of
products to
maximize market
impact and
effectively use
staff

Establishing product
roadmaps that utilize
the time-to-market
advantage of the
product line approach

Management Continual evaluation
of the return on
investment (ROI) of
the technical
activities,
particularly whether
the assets are useful
to the product
builders

Evaluating the
ROI for the
management
assets, particularly
whether the assets
provide technical
managers with the
tools to manage
engineering
activities

Determines whether
asset and product
building
organizations are
effective in their roles

4 AGILE PRODUCT LINE METHODS

I will assume that the reader is familiar with method engineering and, if you are not, I
suggest reading Mix and Match where I talked some about using the Eclipse Process
Framework to compose methods and to [McGregor 04] where I discussed goal-driven

AGILE SOFTWARE PRODUCT LINES, DECONSTRUCTED

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

method engineering. In this section I will focus on characteristics, common goals, and
common tasks that will serve as points at which method fragments could be blended.

Dimensions

I disagree with those who define a dimension from “agile” to “plan-driven” and place
product line methods at the plan-driven end of the spectrum. I disagree because I do not
think that agile is the absence of plans anymore than I think a product line organization
would drive off a cliff because a plan said to. Besides, to determine the correct method to
use it is important to first understand the business context of the products not the content
of the methods.

Three dimensions are of interest in characterizing the business environment with
regard to the suitability of an agile product line approach. The degree of commonality
among the products determines the percentage of the product that could come from reuse.
The higher the commonality, the more potential benefit there is from an asset-based
approach and the less benefit from custom building each product. Depending upon the
method chosen, the organization may reach its full potential for reuse faster than with
other methods. Some reuse is commodity reuse, graphical user interface controls for
example which can be realized very quickly. For this dimension I am more interested in
feature reuse. A reactive approach will reach full reuse potential much more slowly than a
proactive approach, but before you jump to conclusions, you never get something without
giving up something.

The second dimension is the volatility of the relevant domains. The more rapidly a
domain changes the less value there is in an asset-based approach is and the more value
there is in a custom built approach. The multiple domains relevant to a product line have
differing levels of volatility. Commodity domains such as user interfaces have little
volatility. The volatility of domains relevant to the content of the products is the main
issue.

The third dimension is magnitude. The size of products, teams, and the organization
are all factors. Agile techniques have proven successful on small projects but have often
encountered problems on large projects. This is often considered a negative for
application to product lines. However, the products in a product line may be small and the
development of each well within the reach of an agile method. There have been numerous
efforts to scale up agile methods, but at this point, this is a significant characteristic in
building a method.

Locating the points along these dimensions where an organization is located helps
determine the method that should be fabricated. For example, building a set of products
related to “green” technologies will require a more agile scoping activity than one for
mp3 players. New product ideas will come rapidly early in the life of a domain such as
“being green” and some of them will be sufficiently unique to be disruptive and
invalidate the assets built previously.

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 15

Characteristics

Lets explore some ideas that are useful in defining a method.
Both agile and product line methods are collaborative. Agile methods are based on

collaboration between product users and the developers. Product line methods expect
collaboration between the asset builders and product builders. These collaborations serve
the purpose of a feedback circuit. It provides the opportunity for continual, hopefully
minimal, redirection.

Agile methods accept changing requirements, in fact they are formulated to
encourage change, and handle it when it happens by renovating code. Product line
methods accept variable requirements by anticipating them and planning for them by
including variation points in the design of each asset. Not only does this handle
anticipated change, it positions the product line to accept unanticipated changes, better
than traditional approaches, since some of those changes will coincide with variation
points. It is easier to make changes by adding new variants than to introduce changes in
code in which no provision for change has been made. It is the amount of volatility,
unanticipated change, that can keep a product line organization from achieving its goals.

Both agile and product line methods operate within a scope. Scoping is an explicit
activity of a product line organization. The scope describes the products that are part of
the product line. An agile project works within an implicit scope defined by the domains
represented by the customers that are the source of requirements. When recognized, the
limitation imposed by the scope constrains the changes that are likely and in turn this can
be used to focus the reaction to those changes.

Both agile and product line methods “maximize the amount of work not done.” Agile
methods do it by postponing work until it is needed while product line people do it by
systematically anticipating what will be needed and then creating assets for specific
purposes within the specific scope. When a test plan is made into a core asset by adding
variation points, it is because of the products within the scope and in anticipation of
saving work on other test plans later.

Agile methods produce working software early in the development of a product.
Product building teams in a product line do so as well, by assembling and configuring
core assets. In fact the reason for producing working software early is so that users can
get direct experience with a product and give feedback sooner than later. Product line
organizations often have complete example products very early in the life of the product
line, before some specific products are even started.

Engineering a method

Based on what I have said so far it should be clear that no single method can be defined
that is “the” agile product line method; rather, we can describe some method fragments
that could be used in the correct situations. Both methods will have to be tailored to
support the integration. Several industrial examples of tailoring agile practices have been
published. For example Motorola found it useful to create a baseline architecture to guide

AGILE SOFTWARE PRODUCT LINES, DECONSTRUCTED

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

their tailored version of XP. This may be a less detailed architecture than typical for a
product line, but it could provide sufficient guidance to support the creation of core assets
[Lindvall 04]. Nokia found that minimizing the interface between agile and non-agile
teams improved communication [Lindvall 04]. Trinidad et al describe a tailoring of
feature modeling to make it more agile [Trinidad 08].

I want to make an initial proposal for defining an agile software product line method
by starting with the software product line method and adding the quality of agility where
appropriate and possible. I propose to start with a skeletal framework. I will start with the
SEI’s framework. This is a natural starting point since the framework covers both the
business and technical perspectives; however, an organization already using agile
methods would probably find it more natural to start from their base and add product line
qualities and concepts.

The SEI’s framework specifies practice areas and then defines specific practices
within each practice area. Within that framework several approaches are possible. I will
consider two main approaches.

Micro approach
First we could examine each of the 29 practice areas and apply tactics to make some

of the specific practices more agile. Agility is enhanced in a number of places although
there may be no identifiable process that is agile. In Mix and Match I addressed several
specific practices that are compatible with an agile approach. These could be the starting
point for making several specific agile practices.

I will take one practice area, testing, as an example. Some time ago we published a
technique we named the Parallel Architecture for Component Testing [McGregor 96]. In
this technique the test assets are built using the same architecture as the component under
test. Our research has shown that this is a cost-effective technique that supports evolution
of the asset. The common architecture provides a traceability that allows the developer to
more rapidly refactor and revise the asset and the associated tests.

Macro approach
A second approach would learn from the Nokia experience and identify the place

where a narrow interface is possible and allow tasks on one side of the interface to use an
agile approach. In a product line organization, the most narrow interface is that between
the core asset team and the product building teams. It is narrow in the sense that many
product lines deliver the core assets as binary components that can only be used as
implemented. Many product line organizations also deliver the core asset base as a single
package. Product line organizations provide a feedback mechanism between the teams
that provides for error reporting and new feature requests. Feedback mechanisms are also
a standard design for governing the speed with which two processes communicate.
Making the feedback mechanism more agile would allow the core asset development
process to become more agile.

Following this approach raises the question of whether the core asset team or the
product building teams use an agile approach? Each product team has its own interface

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 17

with the core asset team and could use an agile process independent of the other product
teams. The size of the product might be a determining factor in that case. A factor in
favor of the product team using an agile approach is that the product team has the most
direct interface with the customer for a specific product. A factor against using an agile
approach is that product line organizations in a very stable, well-understood domain
should be able to use a highly automated, perhaps even waterfall, approach to product
building which does not require the highly-motivated personnel used in an agile project.

The core asset team might use an agile approach since, especially early in the
lifetime of the product line, developing a core asset is an exploratory process that could
benefit from those highly-motivated people. There has been success with evolving the
core assets to full functionality. The interface between the two types of teams might also
be a target for being made more agile. I know of several core asset teams that provide a
help desk for product developers to call for help in using the core assets. In many cases
though any defects reported can still take a long time to repair and the help desk is
viewed mainly as a flow of information out to product teams rather than a collaboration.
Changing the way core assets are delivered to release fixes as soon as each is ready could
speed up product development, but broadens the interface between the teams making it
more difficult to manage effectively.

Frameworks other than the SEI’s could be used as the basis for an integrated method
as long as there are clear interfaces to each of the variation points in the framework.
Qumer and Henderson-Sellers provide a framework for agile development that defines
several facets that could be used as a basis for supplementing the product line framework
with agile practices [Qumer 08].

5 SUMMARY

There are evident synergies between the agile and software product line methods, but
competing philosophies make their integrated use difficult. A number of experiments
have been, and are being, conducted with various combinations of these methods [Koch
08] [Wessilius 08]. Although no single method has emerged, the tailored instantiations of
these methods are able, in many cases, to retain the advantages of each separate method
and enhance the practices of the organization.

The tailoring of each method must ensure that the basic characteristics of each
method are retained. Considering the goals of each task and the differing perspectives of
each method when blending tasks has allowed organizations to effectively deploy hybrid
methods that are agile and yet asset-based at the same time. By engineering these hybrid
methods specifically to meet the business goals of the organization, the development
teams can make a strategically significant contribution to the organization.

AGILE SOFTWARE PRODUCT LINES, DECONSTRUCTED

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

ACKNOWLEDGEMENTS

I want to thank Mark Dalgarno of Software Acumen and Yaser Ghanam of the University
of Calgary for their insightful comments and helpful suggestions, especially in such a
short time frame.

REFERENCES

[Agile 08] http://agilemanifesto.org/, 2008.

[Bass 98] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice, Addison-Wesley, 1998.

[Carbon 06] Ralf Carbon, Mikael Lindvall, Dirk Muthig, Patricia Costa. Integrating
Product Line Engineering and Agile Methods: Flexible Design Up-front vs.
Incremental Design, First International Workshop on Agile Product Line
Engineering, 2006.

[Clements 05] Paul Clements, John D. McGregor, and Sholom G. Cohen. The Structured
Intuitive Model for Product Line Economics (SIMPLE), Software
Engineering Institute, CMU/SEI-2005-TR-003.

[Hanssen 08] Geir K. Hanssen and Tor E. Fægri. Process fusion: An industrial case
study on agile software product line engineering, The Journal of Systems and
Software 81 (2008) 843–854.

[Koch 08] Luc Koch. Keynote address at SPLC 2008.

[Lindval 04] Mikael Lindvall, Dirk Muthig, Aldo Dagnino, Christina Wallin, Michael
Stupperich, David Kiefer, John May, Tuomo Kähkönen. Agile Software
Development in Large Organizations, IEEE Computer, December 2004.

[McGregor 08] John D. McGregor. Mix and Match, Vol. 7, No. 6, July-August
2008. http://www.jot.fm/issues/issue_2008_07/column1/index.html

[McGregor 04] John D. McGregor. Factors in Engineering Strategically
Significant Software Development Methods, OOPSLA Workshop on Method
Engineering, 2004.

[McGregor 96] John D. McGregor and Anu Kare. "Testing Object-Oriented
Components,” Proceedings of the 17th International Conference on Testing
Computer Software, June 1996.

[Noor 08] Muhammad A. Noor, Rick Rabiser, and Paul Grunbacher. Agile product line
planning: A collaborative approach and a case study, The Journal of Systems
and Software, 81 (2008), pp. 868 – 882.

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 19

[Qumer 08] A. Qumer, B. Henderson-Sellers. A framework to support the evaluation,
adoption and improvement of agile methods in practice, The Journal of
Systems and Software 81 (2008) 1899–1919.

[SEI 08] Software Engineering Institute, www.sei.cmu.edu/productlines, 2008.

[Tian 06] Kun Tian and Kendra Cooper. Agile and Software Product Line Methods:
Are They So Different? In: 1st International Workshop on Agile Product Line
Engineering (APLE’06). IEEE Computer Society: Baltimore, Maryland,
USA, 2006.

[Tinidad 08] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Corte´s, M. Toro.
Automated error analysis for the agilization of feature modeling, The Journal
of Systems and Software 81 (2008) 883–896.

[Wessilius 08] Jacco Wessilius. The Bazaar inside the Cathedral: Business Models for
Internal Markets, (2008) 60 – 66.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University and a partner in Luminary Software, a software engineering consulting firm.
His research interests include software product lines and component-base software
engineering. His latest book is A Practical Guide to Testing Object-Oriented Software
(Addison-Wesley 2001). Contact him at johnmc@lumsoft.com.

