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The µ-law CODEC 

Douglas Lyon, Ph.D. 

Abstract 
This paper describes how to use a CODEC (COder-DECoder) to encode, decode, 
synthesize and play AU-format audio data. The AU format use a μ -law 
(pronounced mu-law) compression technique improving dynamic range over the 
linear encoding of audio. The μ -law CODEC dates from 1965, yet is still in common 
use today. 

1 BACKGROUND 

The standard μ -law format consists of logarithmically companded, 8 kHz sample rate, 
byte-quantized, voice-grade audio. The word compandor is a contraction of 
“compressor” and “expander” [BTL]. The sample time for an 8000 samples per 
second system is 1/8000 = 0.000125 second = 125 μs . Such a format generates an 
8000 sample/second * 8 bits / sample = 64 kbps data stream and is common in 
telephony. Also, the peak bandwidth of such a compression format is 

 Bandwidth =
Sampling Rate

2
= 4khz . (0.1) 

The International Telecommunication Union (ITU) formerly CCITT, has created a 
specification called G.711. There are two PCM (Pulse Code Modulation) algorithms 
defined within the G.711 standard, “A-Law” and μ -law;. In both the “A-Law” and 
μ -law format, the sample rate is 8 kHz. In a linear PCM system there are uniform 
voltage quantization steps [Bates]. 

A copy of the G.711 specification is available at http://www.itu.int/rec/T-REC-
G.711/en. The μ -law encoding formula is given by: 

 

y = F x( )= sign(x)Vmax

ln 1+
μx

Vmax

⎛
⎝⎜

⎞
⎠⎟

ln 1+ μ( )
where
−Vmax ≤ x ≤ Vmax

 (0.2) 



 
THE µ-LAW CODEC 

 
 
 
 

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8 

The “A-law formula is given by: 
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 (0.3). 

Typical values of the compression parameters used in (0.2) and (0.3) are: 

 
μ = 100 and 255
A = 87.6

  (0.4) 

A graph of (0.3), with Vmax = 1,  and μ = 255  is shown in Figure 1. The value of 
μ =255 is used for North American telephone transmission. The value of A=87.6 is 
used for European telephone transmission. The rationale for companding is that the 
human ear has an inability to differentiate between amplitudes of sound waves as the 
amplitude increases [Embree]. 

 
Figure 1. Graph of the μ-law transfer function, with μ=255. 

2 SNR 

One metric of PCM performance is the ratio of the signal power to quantization noise 
power (signal-to-quantizing distortion ratio). The basic idea behind “A-law” and μ -
law companding is that a logarithmic curve may be used to improve the signal-to-
quantizing distortion ratio at low signal levels.  
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Binary PCM has a number of quantization levels given by: 

 Nq = 2Nb  (0.5) 

where 

 
Nq =  the number of quantization levels
Nb =  the number of bits per sample

. 

The signal power varies from 0 to 1, inclusive, and is given by: 

 S ∈ 0...1[ ] 

The signal voltage, x, varies from: 

 −Vmax ≤ x ≤ Vmax  (0.6). 

For simplicity we assume that 

 Vmax = 1  (0.7) 

The uniform quantizer divides the signal voltage evenly among the number of 
quantization levels. The uniform quantizers’ quantization error voltage is given by: 

 

−
1

2Nb
≤ ε ≤

1
2Nb

where
ε =  quantization error voltage

 (0.8) 

The average quantization error is 0, but the root-mean-square (RMS) value of the 
quantization error is the mean square quantization noise power. The term “root-mean-
square” refers to the square root of the mean of error voltage squared [Carlson and 
Gisser]. For a continuous probability distribution function, the expectation is taken by 
E X[ ]= xfX (x)dx

−∞

∞

∫  and the variance is taken by σ X
2 (t) = E X(t) 2⎡⎣ ⎤⎦ . The variance 

expands to σ X
2 (t) = x2 fX (x)dx

−∞

∞

∫ . For a discrete random variable, 

E[X] = mean =
1
N

xi
i=1

N

∑  and  

σ X
2 (t) = var iance = E X(t) 2⎡⎣ ⎤⎦ =

1
N

xi − E[X]( )2

i=1

N

∑ . 

Thus, we compute the RMS error by integrating the square of the quantization error 
voltage over the range in (0.8) assuming a zero mean:  

 σ 2 =
1

2 / Nq( ) ε
−1/ Nq

1/ Nq

∫
2

dε =
1

3Nq
2  (0.9). 

When the maximum signal voltage is constrained, as in (0.6) and (0.7) we compute 
the signal-to-quantization noise power as: 
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SNRD = 10 log10 3 × 22 Nb Sx( )
SNRD = 10 log10 3 + 20Nb log10 2Sx

 (0.10) 

Where the signal power is given by Sx . If the signal power is equal to 1, then the 
range on the upper bound for the signal-to-quantization noise power is: 

 SNRD ≤ 4.8 + 6Nb  (0.11). 

With the 8-bit PCM system and uniform quantization, the best we can hope for is a 
SNR of 52.8 dB. Note that the SNR (in dB) falls off linearly as a function of the 
power in (0.10). It can be shown that the companding equations of (0.2) and (0.3) will 
provide an improvement in the SNR when the signal power falls below -20 dB.  

It must also be mentioned that for signal powers above -20 dB, companding 
degrades performance, relative to uniform quantization, assuming that the PDF 
(Probability Distribution Function) of a voice signal has a Laplace distribution of the 
form 

 
 = ( )p x

1
2 α e

( )−α x

 

[Carlson].  
The compression parameter values given in (0.10) are based on an assumed PDF of an 
input signal. The PDF assumption is required for telephony applications. However, in 
the instance of audio files that are stored on static media (such as CD ROM, or web 
server hard drive) the computation of the PDF can be performed off-line. For such a 
system, the SNR is 

 

SNRD =
Sx

σ 2 =
3Nq

2Sx

Kz

where

Kz = 2
p(x)

y'⎡⎣ ⎤⎦
20

1

∫

 (0.12) 

computing the derivative of  (0.2) with respect to x, and substituting into (0.12) yields 

 

 = Kz 2 d

⌠

⌡

⎮⎮⎮⎮⎮⎮⎮
0

1

( )p x ( ) + Vmax μ x 4 ( )ln  + 1 μ 4

μ4 Vmax4
x

 (0.13) 
Once the PDF, p(x), is computed, the companding parameter can be precomputed 
using a criterion of optimality based on the bit rate budget. For example, a bit rate 
budget of 16 kbps might require a 4 bit sample with a 4 kHz sampling rate. Such a 
system can be used to stream audio via a low data-rate phone connection.  
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3 THE ULAWCODEC CLASS 

The UlawCodec class performs the μ -law CODEC function, in addition to providing 
file save and open services. Java can, in principle, process any file format. 

Class Summary 

public class UlawCodec implements Runnable { 

public UlawCodec()  

public UlawCodec(String name) 

public UlawCodec(short linearArrayOfShort[]) 

public UlawCodec(double linearArrayOfDouble[]) 

public UlawCodec(byte ulawArrayOfByte[]) 

public void readAUFile(String fileName) 

public void readAUFile() 

public void writeAUFileString fileName) 

public void writeAUFile()  

public void playSync 

public void playAsync 

public byte [] getUlawData()  

public void setUlawData(byte ulawArrayOfByte[]) 

public double[] getDoubleArray()  

public int getLength() 

public double getDuration() 

public void reverseUlaw()  

public static void main(String argc[]) 

} 

4 CLASS USAGE 

The UlawCodec has several constructors, each has, as it main goal, to construct a μ -
law encoded byte array in a private storage area. The only way to obtain access to this 
storage area is via the getUlawData and setUlawData methods. This is due, in part, to 
a series of parallel data structures that must maintain their consistency. For example, 
when you invoke the getDoubleArray method, a check is performed to see if the 
internal DoubleArray is null. If the array is null, it is set using computations involving 
the ulawData. The consistency maintenance mechanism is invisible to the 
programmer. 
Suppose the following variables are pre-defined: 
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UlawCodec ulc; 

String fileName; 

byte ulawArrayOfByte[]; 

short linearArrayOfShort[]; 

Double linearArrayOfDouble[]; 

int length; 

double timeInSeconds; 

String args[]; 

To read in a Sun AU file, using a standard file open dialog box: 
ulc = new UlawCodec(); 

To read in a Sun AU file, using a file name: 
ulc = new UlawCodec(fileName); 

To construct a UlawCodec instance from a 16 bit linear data array: 
ulc = new UlawCodec(linearArrayOfShort); 

To construct a UlawCodec instance from a linear double array: 
ulc = new UlawCodec(linearArrayOfDouble); 

To overwrite the internal data and read in a new AU file, given a file name: 
ulc.readAUFile(fileName); 

To prompt the user for a read file name and overwrite the internal data: 
ulc.readAUFile(); 

To write the internal data as new AU file, given a file name: 
ulc.writeAUFile(fileName); 

To prompt the user for a file name, then write a Sun AU file: 
ulc.writeAUFile(); 

To play synchronously, returning only after the sound is played: 
ulc.playSync(); 

To play asynchronously, returning right away and playing the sound in the 
background: 

ulc.playAsync(); 

To get the raw companded byte data: 
ulawArrayOfByte = ulc.getUlawData(); 

To set the raw companded byte data: 
ulc.setUlawData(ulawArrayOfByte); 

To get the data as an array of linear doubles: 
linearArrayOfDouble = ulc.getDoubleArray(); 

To get the number of samples: 
length = ulc.getLength(); 
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To get the play time in seconds: 
timeInSeconds = ulc.getDuration(); 

To reverse the U-law data, forcing recomputation of the DoubleArray: 
ulc.reverseUlaw();  

To test the read play and write methods: 
UlawCODEC.main(args); 

 

5 READING AND WRITING μ -LAW 

The following example, excerpted from the UlawCodec.java file, shows how the main 
method is implemented: 

1. public static void main(String argc[]){ 

2.  UlawCodec ulc = new UlawCodec(); 

3.  ulc.playSync(); 

4.  ulc.writeAUFile(); 

5. } 

Line 2 shows the default constructor for the CODEC. The default constructor opens 
the standard file dialog box in order for the user to select a AU file. Line 3 plays the 
sound and does not return until the sound has completed playing. The writeAUFile 
opens a dialog box and the user must type in a file name to save the AU file. 

6 THE OSCILLATOR CLASS 

Several instances of the Oscillator class may be made to create banks of Oscillators. The Oscillator 
class makes use of double precision data arrays and can make very low-distortion waveforms.  

7 CLASS SUMMARY 

public class Oscillator { 

public Oscillator(double frequency, int length)  

public double[] getSineWave()  

public double[] getSquareWave()  

public double[] getSawWave()  

public double[] getTriangleWave() 

public double getDuration()  

public int getSampleRate()  

public double getFrequency()  

public void setModulationIndex(double I)  

public void setModulationFrequency(double fm)  
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public double[] getFM()  

public double[] getAM()  

} 

Class Usage 

The Oscillator class has a number of private properties that are accessed via get and 
set methods. An Oscillator instance is created for a fixed carrier frequency and 
number of samples. All waveforms vary from -1 to 1. Suppose the following variables 
are predefined: 

double frequency = 440; 

double length = 2000; // the total number of samples 

Oscillator osc; 

double audioData[]; 

double timeInSeconds; 

int sampleRate; 

double indexOfModulation; 

Then to make an instance of an Oscillator: 
osc = new Oscillator(frequency, length); 

To get  sine, square, saw tooth and triangle waves:  
audioData = osc.getSineWave(); 

audioData = osc.getSquareWave(); 

audioData = osc.getSawWave(); 

audioData = osc.getTriangleWave(); 

To get the time the wave form will last, in seconds: 
timeInSeconds = osc.getDuration(); 

To get the sample rate, in Hz: 
sampleRate = osc.getSampleRate()  

To get the frequency, in Hz: 
frequency = osc.getFrequency() 

To set the index of modulation of the FM oscillator: 
osc.setModulationIndex(indexOfModulation); 

To set the modulation frequency of both the AM and FM oscillators:  
osc.setModulationFrequency(frequency); 

audioData = osc.getFM()  

audioData = osc.getAM()  
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8 CLASS EXAMPLES 

The AudioFrame class is able to generate a series of waveforms using the Oscillator 
class and the UlawCodec class. 

public class AudioFrame extends ClosableFrame { 

 private UlawCodec ulc; 

 private Oscillator osc =  

  new Oscillator(440,4000); 

... 

public class AudioFrame extends ClosableFrame { 

 private UlawCodec ulc; 

 private Oscillator osc =  

  new Oscillator(440,4000); 

... 

public void play() { 

  ulc.playSync(); 

} 

public void sineWave() { 

 ulc = new UlawCodec( 

  osc.getSineWave()); 

 play(); 

} 

public void squareWave() { 

 ulc = new UlawCodec( 

  osc.getSquareWave()); 

 play(); 

} 

public void sawWave() { 

 ulc = new UlawCodec( 

  osc.getSawWave()); 

 play(); 

} 

public void triangleWave() { 

 ulc = new UlawCodec( 

  osc.getTriangleWave()); 

 play(); 

} 

public void am() { 
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 osc.setModulationIndex(0.5d); 

 osc.setModulationFrequency(200d); 

 ulc = new UlawCodec( 

  osc.getAM()); 

 play(); 

} 

 

public void fm() { 

 osc.setModulationIndex(0.5d); 

 osc.setModulationFrequency(200d); 

 ulc = new UlawCodec( 

  osc.getFM()); 

 play(); 

} 

 

9 CLASS IMPLEMENTATION 

An Oscillator is able to generate repeated waveforms by constructing a single cycle of 
the waveform into a wavetable. The wavetable is copied repeatedly into an array of 
double data known, internally as audioData. 

The Oscillator class is implemented with a series of private class variables: 
1. 

2. import futils.utils.Computation; 

 

3. public class Oscillator { 

4. private double audioData[]; 

5. private double waveTable[]; 

Lines 4 and 5 show that the audioData waveTables are unallocated until the 
constructor is invoked. Line 6 shows the sampleRate. The constructor could be 
overloaded to take other sample rates [Lyon]. 

6. private int sampleRate = 8000; 

Line 7 shows the frequency, in Hz. For a sine wave, this is the number of wave table 
cycles that must be clocked out, per second. Lambda is the number of seconds in the 
period of one cycle. Line 9 shows the number of samples in a single cycle of the wave 
table, if this were computed with precision. Keep in mind that the length of a wave 
table is always an integer and the samplesPerCycle must be converted as a result.  

7. private double frequency; 

8. private double lambda; 

9. private double samplesPerCycle; 
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Oscillator construction requires that the carrier frequency and number of cycles be 
known. Line 3 show the memory allocation for the audioData.  

1. public Oscillator(double frequency_, int length) { 

2. frequency = frequency_; 

3. audioData = new double[length]; 

Once the period of the waveform is computed, on line 5, we are able to compute the 
number of samples in a cycle of the wave table. This is the samplesPerCycle variable, 
cast into an integer. Given the integral approximation, the computation for the actual 
frequency at which the wave table is clocked out is: 

 factual = sampleRate / waveTable.length  (0.14) 

With the wave table length being: 

 waveTable.length = round(sampleRate / f )  (0.15) 

To compute the error in the digital oscillator instance, we subtract the frequency that 
we wanted from the rate cycles are clocked out of the wave table. 

 fe = f − factual  

For example, for a frequency of 440 Hz, waveTable.length = 18 sampleRate = 8000 
audioData.length = 4000 and the actual frequency = 444.444 Hz. Exact frequencies 
may be had when the frequency desired is an exact multiple of the sampleRate. For 
example, 400 will be reproduced with precision because 8000/400 = a 
waveTable.length of 20.  

 
4. //the period of the wave form is 

5. lambda = 1/frequency; 

6. //The number of samples per period is 

7. samplesPerCycle = sampleRate * lambda; 

 

8.  delta_freq = 1/samplesPerCycle; 

9.  waveTable =  

10.  new double[(int) samplesPerCycle]; 

  

11. } 

 

Building the WaveTable 

The AudioDataFromTable method in the Oscillator class is used to turn a single cycle 
of the WaveTable into a long array of audio data. A constraint on the audioData array 
is that it must have an absolute value that is strictly less than 1 (due to the companding 
formulas). 
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1. private double[] AudioDataFromTable() { 

2. int k = 0; 

3. for (int i = 0; i < audioData.length; i++) { 

Line 4 builds the audioData from the waveTable. While the indexes, i and  k both 
begin at 0, lines 6 and 7 reset k, while index i increments on. 

4.  audioData[i] = waveTable[k]; 

5.  k++; 

6.  if (k >= waveTable.length)  

7.   k = 0;  

8. } 

9. System.out.println("\nlambda="+lambda+ 

10.  "\nfrequency = "+frequency+ 

11.  "\nwaveTable.length = "+waveTable.length+ 

12.  "\nsampleRate = "+sampleRate+ 

13.  "\naudioData.length = "+audioData.length+ 

14.  "\nactual frequency = "+actualFrequency()); 

15. return audioData; 

16. } 

In the getSineWave method, the waveTable is computed for a single cycle. To make 
sure that the absolute value of the amplitude of the sine wave is always less than 1, 
0.98, on line 20, first multiplies it. 

17. public double[] getSineWave() { 

18. for (int i=0; i<waveTable.length; i++) 

19.  waveTable[i] =  

20.   0.98*Math.sin(twopi * i/waveTable.length); 

21. return AudioDataFromTable(); 

22. } 

To build a wave table for a saw wave, we set the initial voltage to -1, then compute a 

change in voltage, dv using the length of the wave table, L so that V0 = −1,dv =
2
L

. 

then, after L-1 intervals, the final voltage will reach a value of 1-dv. The following 
code implements the getSawWave method: 

1. public double[] getSawWave() { 

In line 2, the initial voltage is set to a value that is a little higher than 1.0. This is due 
to the constraint on the CODEC’s input. Also, in line 4, the check is  
i<waveTable.length rather than i <= waveTable.length. Thus the saw wave will end at 
(v-dv), rather than at 1.0 volts. 

2. double v = -0.99; 

3. double dv = 2.0 / (double) waveTable.length; 

4. for (int i=0; i<waveTable.length; i++){ 

5.  waveTable[i] = v; 
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6.  v += dv; 

7. } 

8. System.out.println("Sawwave ends at:"+(double)(v-dv)); 

9. return  AudioDataFromTable(); 

10. }  

The saw wave output is shown in Figure 2. 

 
Figure 2. The saw wave output 

Examples 

To play a tone, use: 
private static void playTone(int f, int dur) { 

        Oscillator osc = new Oscillator(f, dur); 

        UlawCodec ulc = new UlawCodec(osc.getSineWave()); 

        ulc.play(); 

    } 

The ULaw class contains a play method that enables the playing of u-law compressed 
audio directly to an output stream: 

public void play() { 

        stop(); 

 if (ulawData == null) return; 

        AudioData audioData = 

                new AudioData(ulawData); 

        audioDataStream = new AudioDataStream(audioData); 

 AudioPlayer.player.start(audioDataStream); 

    } 
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10 CONCLUSION 

CODECs play a central role in multi-media programming. The Internet has become a 
hotbed of voice over IP activity.  Isn’t it fascinating that a 1965 standard for voice 
CODECs is still in common use today [BTL] 
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