
Vol. 7, No. 9, Special Issue: SPLAT, December 2008

User-Defined Join Point Selectors
An Extension Mechanism for Pointcut Languages

Cristiano Breuel, CS Department, University of São Paulo, Brazil
Francisco Reverbel, CS Department, University of São Paulo, Brazil

One of the main issues in contemporary AOP languages and frameworks is the ex-
pressiveness of the pointcut language. This paper proposes an extension mechanism
for enriching pointcut languages with constructs that play the role of “new primitive
pointcuts” and allow the creation of pointcuts with greater semantic value. Join point
selectors are a generalization of the primitive pointcuts of current pointcut languages.
Existing languages, however, do not allow users to create new join point selectors.
We present a simple architecture for supporting user-defined join-point selectors as
an extension mechanism implemented atop an existing AOP framework. We show
examples of user-defined selectors that enhance the quality of pointcuts and make
aspect development easier. Moreover, we show that our extension mechanism sup-
ports framework-specific selectors, which let aspects cross the boundary of a given
framework while still respecting the modularity of that framework.

1 INTRODUCTION

As programming languages and paradigms evolve, they tend to provide better sup-
port for modularity and to let programmers work at higher levels of abstraction.
By affording the separation of crosscutting concerns, aspect-oriented programming
(AOP) increases modularity. Nevertheless, programmers still need to deal with
lower-level concepts in order to specify the so-called pointcuts — the sets of points
at which those concerns crosscut the basic functionality of a program. This work
aims at raising the level of abstraction of pointcut specifications. Our proposal
allows programmers to define pointcuts in terms of higher-level concepts. It also
improves the resiliency of pointcut definitions against changes in the base program.
The present text is an updated and extended version of our previous paper [5].

Motivation

The AspectJ language [15] introduced a model for AOP that has been widely ac-
cepted and adopted by other aspect-oriented languages and frameworks, including
open-source projects such as JBoss AOP [12], Spring AOP [13], and AspectWerkz [2].
In spite of differences in syntax and in implementation approach, all such tools have
similar capabilities and semantics [14] and offer similar pointcut languages.

Cite this article as follows: Cristiano Breuel, Francisco Reverbel: User-Defined Join Point Se-
lectors, in Journal of Object Technology, vol. 7, no. 9, Special Issue: SPLAT, December 2008,
pages 5–24,
http://www.jot.fm/issues/issues 2008 12/article1

http://www.jot.fm/issues/issues_2008_12/article1

USER-DEFINED JOIN POINT SELECTORS

Two significant limitations have been identified in current pointcut languages.
The most frequent concern is that a pointcut may be “broken” by changes to the base
program [10, 7, 19]. This limitation is known as the fragile pointcut problem [18].
Another issue is the difficulty or impossibility of expressing some pointcuts clearly
and accurately [16].

Pointcut Quality

It is useful to set forth a criterion for comparing pointcut definitions. We define
pointcut quality as the extent to which a given pointcut meets the following require-
ments:

• Resilience: Changes in the base program should not affect the pointcut neg-
atively. More specifically, when a new join point is added to the program or
an existing one is modified, the join point should be included in the set se-
lected by the pointcut if and only if it matches the conditions intended by the
pointcut author.

• Clarity of purpose: A pointcut definition should make its intent clear to
whoever reads it, and should be expressed in terms that are as close as possible
to the problem at hand. In other words, it should be easy to understand and
to modify a pointcut definition.

Example. One of the most frequent examples of AspectJ usage, the figure editor
[15], has also been commonly used for exposing the shortcomings of that language [7,
8, 17]. It consists of a graphical editor, with several types of elements (squares, circles
etc.), whose display must be updated whenever the state of some element changes.
The program manages elements in the display as instances of class FigureElement

and its subclasses (Figure 1). We want to create a “display updating” aspect that
calls the Display.redraw() method in response to element modifications.

Figure 1: UML diagram for the figure editor example

The classic solution is an aspect that selects methods based on a naming con-
vention, e.g. picking all methods whose names start with “set” defined in class
FigureElement and its subclasses. A pointcut based on such a naming convention

6 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

2 JOIN POINT SELECTORS

is a low-quality one, because it is not quite resilient (if someone implements a new
method that alters some element but does not start with “set”, the new method
will not be selected) and does not clearly express its intent (which the reader must
guess from the method prefix).

Another solution is to create an annotation that must be associated with updater
methods, for example, @FigureUpdater. This solution improves the clarity of the
pointcut, but still does not meet the resilience requirement (one can forget to use
the annotation or accidentally remove it). Therefore, the quality of this pointcut is
intermediary.

If we could specify a pointcut that explicitly selected all methods that alter fields
read by the Display.redraw() method, then such pointcut would be of high quality.
First, because it would state exactly what we intend to capture, and second, because
it would be fully tolerant to changes in the base program. This kind of pointcut is
what we wish to support.

Problem Statement

Our goal is to provide programmers with the means for defining pointcuts that have
high quality, according to the definition in section 1. We want to allow pointcuts
that are defined at a higher level of abstraction (closer to the problem at hand) and
have greater semantic value (in the sense that they reflect their authors’ intents in
a more precise way).

Proposed Solution

Since the expressiveness of the pointcut language limits the ability of creating high
quality pointcuts, an enrichment to pointcut languages is needed. We propose user-
defined join point selectors as a simple extension mechanism for enhancing pointcut
languages with constructs that play the role of “new primitive pointcuts”.

Contributions of this Work

The major contributions of this work are the concept of user-definable join point
selector (section 2), a prototype implementation of that concept on an existing AOP
framework (section 3), and a set of examples of selector usage (section 4). These
examples show that user-defined join point selectors allow aspect programmers to
create high-quality pointcuts that were not previously possible. The paper also
contains a discussion of related work (section 5) and our concluding remarks and
future work ideas (section 6).

2 JOIN POINT SELECTORS

A join point selector is a function that, for a given set of arguments and a join
point, determines whether the join point should be part of a pointcut. Selectors are

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 7

USER-DEFINED JOIN POINT SELECTORS

intended to be used as boolean elements of pointcut expressions. Their evaluation
starts at weave time and may proceed at run time. Accordingly, a join point selector
has a weave-time part, which is activated by the weaver, and a run-time part, which
may or may not act (at the discretion of the weave-time part) when the execution
of the aspectized program reaches every candidate join point. Figure 2 shows the
operation of a selector. If the weave-time part is unable to reach either a positive
decision (the join point should be included in the pointcut) or a negative one (the
join point should be excluded from the pointcut), then it specifies that the run-time
part should be activated at the appropriate occasions. In other words, the run-time
part acts if the information available at weave time is not enough to complete the
decision.

Figure 2: The operation of a selector

In current aspect-oriented languages and frameworks, the concept of selector is
represented by the so-called primitive pointcuts : “call”, “execution”, etc. Never-
theless, the programmer cannot define new selectors, as the algorithms that select
join points are hard coded into the weaver. We consider that our proposed naming is
important because it makes clear the distinction between a selection algorithm and
its usage in pointcut expressions. The examples below illustrate that distinction:

• call and within are selectors.

• call(void *->setSize(..)) AND within(com.acme.*) is a pointcut expression.

In a pointcut language, join point selectors play a role similar to the one of
procedures in a procedural language, methods in an object-oriented language and
advice in an aspect-oriented language. The core characteristics that define join point
selectors, and distinguish them from other extension mechanisms, are the following:

1. They can receive arguments. When used in pointcut expressions, a selector
can receive arguments that are taken into account by its algorithm to make a
decision.

2. They can form composite expressions. Boolean operators can be used to
combine multiple selector occurrences within a pointcut expression.

8 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

3 AN IMPLEMENTATION OF USER-DEFINABLE SELECTORS

3. They operate both at weave time and at run time. A simple and
uniform scheme allows selectors to use weave-time information, run-time in-
formation, or both, and to complete the selection decision as early as possible.

These features make selectors a basic unit of functionality. Some of them are
found in previous proposals (such as the proposals that we will discuss in section 5),
but the combination of all three features makes join point selectors more expressive
and easy to use.

3 AN IMPLEMENTATION OF USER-DEFINABLE SELECTORS

As a proof of concept, we have implemented support to user-defined join point
selectors as an extension to the JBoss AOP [12] framework. The choice of JBoss
AOP as a basis for the implementation was due to practical factors only. Since we
had no conceptual reason to employ that specific framework, our approach is not
limited to JBoss AOP and could be implemented in other aspect-oriented languages
or frameworks that have similar concepts.

Selector Programmer’s View

Users of join point selectors (pointcut programmers) view selectors as boolean func-
tions that are applied to candidate join points and take such a join point as an im-
plicit argument. From the viewpoint of a selector programmer, however, the selector
is a Java class that implements the interface org.jboss.aop.selector.Selector

shown in Listing 1. We defined that interface after an existing JBoss AOP inter-
face: org.jboss.aop.pointcut.Pointcut, implemented by objects that internally
represent pointcuts in that framework. Thanks to the similarity between both inter-
faces, we were able to consistently integrate selector functionality into the framework
without changing a lot of JBoss AOP code.

There are two groups of methods in the Selector interface. Each of these groups
has a method for every kind of primitive join point supported by the framework1:
method calls, attribute reads and writes, etc. Therefore, a single selector can be
applied to different kinds of join points. One may create a selector that picks
heterogeneous join points, in case such a selector is needed.

Weave-time and run-time selector methods. The first group of methods is
called by the weaver and corresponds to the weave-time part of the selector. Each of
those methods performs selector evaluation at weave time, for a specific kind of join
point. It returns a value of the enumeration type SelectionValue, which defines
three constants: TRUE (the join point matches the selector criteria and should be

1Even though the Selector interface has methods for all kinds of join points, the vast majority
of selectors implements just a few of these methods (typically one or two) in a non-trivial way.
There are pros and cons to this approach, but its main motivation was coherence with the internal
structure of JBoss AOP.

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 9

org.jboss.aop.selector.Selector
org.jboss.aop.pointcut.Pointcut

USER-DEFINED JOIN POINT SELECTORS

interface Selector {
// Weave-time selector methods:
SelectionValue matchesExecution(Advisor adv, CtMethod m,

List<SelectorParam> selectorParams);
SelectionValue matchesExecution(Advisor adv, CtConstructor c,

List<SelectorParam> selectorParams);
SelectionValue matchesConstruction(Advisor adv,CtConstructor c,

List<SelectorParam> selectorParams);
SelectionValue matchesCall(Advisor callingAdv, MethodCall mc,

List<SelectorParam> selectorParams);
SelectionValue matchesCall(Advisor callingAdv, NewExpr mc,

List<SelectorParam> selectorParams);
SelectionValue matchesGet(Advisor adv, CtField f,

List<SelectorParam> selectorParams);
SelectionValue matchesSet(Advisor adv, CtField f,

List<SelectorParam> selectorParams);
// Run-time selector methods:
boolean matchesExecution(Advisor adv, Method m,

Object target, Object[] args,
List<SelectorParam> selectorParams);

boolean matchesExecution(Advisor adv, Constructor c,
Object target, Object[] args,
List<SelectorParam> selectorParams);

boolean matchesConstruction(Advisor adv, Constructor c,
List<SelectorParam> selectorParams);

boolean matchesCall(Advisor adv, AccessibleObject within,
Class calledClass, Method calledMethod,
Object target, Object[] args,
List<SelectorParam> selectorParams);

boolean matchesCall(Advisor adv, AccessibleObject within,
Class calledClass, Constructor calledCon,
Object[] args, List<SelectorParam> selectorParams);

boolean matchesGet(Advisor adv, Field f, Object target,
List<SelectorParam> selectorParams);

boolean matchesSet(Advisor adv, Field f, Object target, Object value,
List<SelectorParam> selectorParams);

}

Listing 1: The Selector Interface

included in the pointcut), FALSE (the join point does not match the selector criteria
and should be excluded from the pointcut) and CHECK AT RUNTIME (a decision is not
possible without run-time information). If a weave-time method returns this last
constant, the weaver instruments the join point shadow [11] by inserting into the
base code a call to the corresponding run-time method.

The second group of methods is the run-time part of the selector. If a call
to a method of the first group determines that the selection decision can only be
reached with run-time information, then the corresponding method of the second
group will be called at run-time. The run-time calls happen as a result of the code
instrumentation performed at weave time.

10 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

3 AN IMPLEMENTATION OF USER-DEFINABLE SELECTORS

All selector methods receive a set of parameters that represent the join point upon
which the selector is being evaluated. In the weave-time methods, that set contains a
single parameter, which reifies the corresponding joint point shadow in the base code.
The types of the weave-time parameters that reify join point shadows (CtMethod,
CtConstructor, MethodCall, NewExpr, and CtField) are part of the Javassist API.
Javassist [6] is a framework for structural reflection that reads and manipulates
Java bytecode, but provides a high-level API that allows programmers to deal with
elements of the Java language rather than with bytecode details. Javassist is the
basis for all the bytecode manipulation in JBoss AOP. Through its API, selector
developers have access to the program structure in a way that is much more effective
than standard Java reflection. The power of Javassist makes it possible to create
selectors with weave-time methods that examine the internal structure of constructs
such as classes or methods. An example of such a selector will be presented in
section 4.

Run-time selector methods do not see Javassist types. In those methods, the
set of parameters that represent the current join point comprises an instance of
a class in java.lang.reflect (a Method, Constructor, or Field) that reifies the
corresponding join point shadow in the base code, plus additional objects associated
with the joint point at run-time (e.g., the target and the arguments of a method
call).

Base class for selectors. To avoid the need for implementing all methods of the
Selector interface when only some of them will be actually used, the convenience
class SelectorBase implements that interface in a default (and trivial) way. Each
selector method has in SelectorBase a default implementation that simply returns
a constant value, which is either SelectionValue.FALSE (in the case of a weave-
time method) or false (in the case of a run-time method). Selector programmers
will typically create classes derived from SelectorBase, instead of writing classes
that directly implement the Selector interface.

Selector declarations. Selectors must be declared in order to be recognized by
the weaver. A selector declaration consists of metadata and takes one of the following
forms: (i) an annotation in the selector class itself, or (ii) an XML element in a
descriptor file. JBoss AOP already supported both declaration styles for all of its
features, so we followed the same design choice. Listings 2 and 3 exemplify the two
declaration styles by showing alternative declarations for the same selector.

@SelectorDef(name="parameterTypeIs")
public class ParameterTypeSelector extends SelectorBase {

...
}

Listing 2: A selector declaration through a Java annotation

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 11

USER-DEFINED JOIN POINT SELECTORS

<selector name="parameterTypeIs"
class="org.jboss.test.aop.ParameterTypeSelector"/>

Listing 3: A selector declaration through an XML element

In both declaration styles there is a name attribute, which specifies the selec-
tor name to be used in pointcut expressions. The XML version also has a class

attribute, which specifies the fully qualified name of the selector class.

Pointcut Programmer’s View

Selectors are used as boolean clauses in pointcut expressions. A selector clause
has the same syntax as a method call: the selector name, followed by a comma-
separated list of arguments, which is enclosed by parentheses. Selector clauses may
be combined via boolean operators.

Listings 4 and 5 exemplify the usage of the selector named parameterTypeIs

declared in the previous section. Listing 4 shows a pointcut expression defined in
a Java annotation; Listing 5 shows an XML element that defines the same expres-
sion. These examples intend to select all executions of methods in class MyPOJO

(execution clause) whose first parameter is an Integer (clause that starts with
parameterTypeIs).

@Bind(pointcut="execution(org.jboss.test.aop.selector.MyPOJO->*(..)) AND " +
"parameterTypeIs(\"0\", \"java.lang.Integer\")")

public Object advice(Invocation invocation) throws Throwable {
...

}

Listing 4: Selector clause in a pointcut expression defined by a Java annotation

<bind pointcut="execution(org.jboss.test.aop.selector.MyPOJO->*(..)) AND
"parameterTypeIs("0", "java.lang.Integer")">

<advice name="advice" aspect="TestAspect"/>
</bind>

Listing 5: Selector clause in a pointcut expression defined by an XML element

In our current prototype, the arguments of selector clauses must be strings. We
plan to support other argument types in a future implementation. Note that the
arguments of a selector clause appear within an attribute of an annotation or XML
element. Since both the attribute and the selector argument (a string) are enclosed
by quotes, the inner quotes must be escaped and thus they appear as “\"” within
the annotation attribute and as “"” within the XML attribute.

12 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

4 EXAMPLES OF USER-DEFINED SELECTORS

Internal View

Our extension to JBoss AOP consists of the following modifications: (i) changes
in the pointcut grammar of JBoss AOP to recognize selectors within pointcut ex-
pressions, (ii) the addition of new elements to the XML and annotation bindings to
allow for selector declarations, and (iii) changes in the JBoss AOP weaver to add
calls to run-time selectors where necessary.

4 EXAMPLES OF USER-DEFINED SELECTORS

This section presents examples that demonstrate how our proposal can improve
pointcut quality. These examples are meant as a sample of the anticipated uses
of join point selectors. Due to the open nature of selectors, it is not possible to
anticipate all of their practical applications.

Parameter Type

This example was borrowed from [7], with a slight generalization. It consists of a
selector that picks executions of methods with a parameter of a specified type in a
specified position. (The pointcut examples of section 3 used such a selector to pick
all methods whose first parameter is an Integer.) The purpose of this example is to
show a very simple use of selectors to solve a problem that is not motivated by a real-
world application, but nevertheless does not have an elegant answer in conventional
aspect-oriented languages. We consider our solution simpler and more elegant than
the one in [7], thanks to the clear separation between the static (weave-time) and
dynamic (run-time) parts of the selector.

Declarations for the selector parameterTypeIs appeared in Listings 2 and 3.
Listing 6 shows the selector class, which is derived from SelectorBase and imple-
ments two selector methods: the weave-time matcher that picks method executions
and the corresponding run-time matcher.

The weave-time matcher looks at the declared type of the parameter at the
specified position. If the declared parameter type is the same as the desired type
or is a subtype of the desired type, it returns “join point matched”. Otherwise, if
the declared parameter type is a supertype of the desired type (for example, if the
declared type is Object when we want an Integer), it defers the decision to run
time. In all other cases, it returns “join point not matched”. The run-time matcher
is even simpler. It looks (via standard Java reflection) at the type of the actual
parameter passed to the method at run time and checks if that type is compatible
with the desired one. Note that there is no run-time penalty unless a dynamic check
is truly needed.

Recall our comment on the possibility of creating a selector that picks heteroge-
neous join points. The selector parameterTypeIs could be easily modified to pick

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 13

USER-DEFINED JOIN POINT SELECTORS

@SelectorDef
public class ParameterTypeSelector extends SelectorBase {

// Weave-time matcher for method executions
public SelectionValue matchesExecution(Advisor advisor, CtMethod m,

List<SelectorParam> params) {
// Gets selector parameters
int paramIndex = Integer.parseInt(params.get(0).getValue());
String wantedTypeName = params.get(1).getValue();
// Obtains CtClass for the declared type of the method parameter
CtClass paramType = m.getParameterTypes()[paramIndex];
// Obtains CtClass for the desired type
CtClass wantedType = ClassPool.getDefault().get(wantedTypeName);
// Tests for compatibility between types
if (paramType.subtypeOf(wantedType))

return TRUE;
else if (wantedType.subtypeOf(paramType))

return CHECK_AT_RUNTIME;
else

return FALSE;
}

// Run-time matcher for method executions
public boolean matchesExecution(Advisor advisor, Method m,

Object target, Object[] args,
List<SelectorParam> params) {

// Gets selector parameters
int paramIndex = Integer.parseInt(params.get(0).getValue());
String wantedTypeName = params.get(1).getValue();
// Obtains Class object for the desired type
Class wantedType = Class.forName(wantedTypeName);
// Gets the actual parameter passed to the method
Object param = args[paramIndex];
// Tests for run-time compatibility between types
if (param == null)

return true; // null matches any type
else {

Class paramType = param.getClass();
return wantedType.isAssignableFrom(paramType);

}
}

}

Listing 6: A selector to pick methods with a parameter that is compatible with a
specified type

not only method executions, but also method calls, constructor executions, and con-
structor calls, whenever a method/constructor receives a parameter of a given type
in a given position. The enhanced selector would simply have additional weave-
time/run-time matcher pairs, which would be implemented similarly to the pair of
matcher methods in Listing 6.

14 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

4 EXAMPLES OF USER-DEFINED SELECTORS

Figure Editor

Let us revisit the figure editor scenario and create a selector that solves the pointcut
quality problem identified in section 1. The new selector takes two parameters
(a class name and a method name) that specify a reader method2. It picks all
the executions of methods that can possibly update some field read by the reader
method. Given such selector, a high-quality pointcut for the figure editor would
simply use the following selector clause:

updatesStateReadBy("Display", "redraw")

With the new selector, the DisplayUpdating aspect (Figure 1) runs only after
the executions of methods that alter fields read by the Display.redraw() method.
Pointcut quality is high, because the pointcut is fully resilient to code changes and
its intent is more clear to the reader than a naming pattern.

Listing 7 shows an skeletal implementation of the new selector. The selector class

@SelectorDef(name="updatesStateReadBy")
public class StateUpdaterSelector extends SelectorBase {

// Weave-time matcher for method executions
public SelectionValue matchesExecution(Advisor advisor, CtMethod m,

List<SelectorParam> params) {
// Gets selector parameters
String readerTypeName = params.get(0).getValue();
String readerMethodName = params.get(1).getValue();
// Obtains the reader method
CtClass readerType = ClassPool.getDefault().get(readerTypeName);
CtMethod readerMethod =

readerType.getDeclaredMethod(readerMethodName);
// Gets the sets of read and updated fields
Set<CtField> readFields = getFieldsReadByMethod(readerMethod);
Set<CtField> updatedFields = getFieldsUpdatedByMethod(m);
// Compares the sets
return readFields.removeAll(updatedFields) ? TRUE : FALSE;

}

// Recursively finds (possibly a superset of) the set of all fields
// updated by the method m, including those updated within calls
// to other methods.
private Set<CtField> getFieldsUpdatedByMethod(CtMethod m) { ... }

// Recursively finds (possibly a superset of) the set of all fields read
// by the method m, including those read within calls to other methods.
private Set<CtField> getFieldsReadByMethod(CtMethod m) { ... }

}

Listing 7: A selector to pick join points that update fields read by a given method

2For simplicity, we are not dealing with overloaded methods.

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 15

USER-DEFINED JOIN POINT SELECTORS

is derived from SelectorBase and implements a single selector method: the weave-
time matcher that picks method executions. In other words, the entire decision is
based on static (weave-time) analysis. By using the Javassist API, the weave-time
matcher performs a recursive search to build the set of all fields that may be read
by some control flow of the reader method. It then performs a similar search and
builds the set of all fields that may be written by some control flow of the join
point method (i.e., the method whose execution is the candidate join point that is
being matched). If the intersection of those sets is not empty, it returns ‘join point
matched”. Otherwise (empty intersection), it returns “join point not matched”.

Even though the selector performs static analysis only, its implementation is not
simple. Both recursive searches take into account the subclasses of any types that
may be reached by some sequence of nested calls from the root method (the reader
method or the join point method). This is a conservative approach that presumes
the worst-case scenario with respect to conditional statements and inheritance. It
ensures that no correct match will be left out, but may also produce false matches.

Reflective Calls

Method calls performed via reflective techniques are becoming more and more used
by infrastructural software such as frameworks and middleware, which often needs to
invoke methods on application objects but has no prior knowledge of the interfaces
of those objects. Conventional aspect-oriented languages do not currently offer
a simple way of adding caller-side advice to reflective calls. Caller-side advice is
important in scenarios that disallow the instrumentation of callee code.

JBoss AOP even provides a helper aspect for intercepting reflective calls to a
specified method. That aspect actually intercepts all reflective calls and uses advice
code to select just the calls to the specified method. Nevertheless, we think that
a solution entirely based on pointcuts would be more appropriate for the following
reasons: (i) the interception of reflective calls should be performed similarly to the
interception of plain (non-reflective) calls, which is based on pointcuts, (ii) an addi-
tional aspect just to pick reflective calls is unwarranted complexity, and (iii) point-
cuts are meant for join point selection, so using advice for that purpose is a departure
from the intended usage of these AOP constructs.

We propose a specific selector, reflectiveCall, which takes two parameters (a
class name and a method name) that specify a method3 and picks the reflective calls
to that method. Listing 8 shows the implementation of the reflectiveCall selector.
Again, the selector class is derived from SelectorBase and implements two selector
methods: the weave-time matcher that picks method calls and the corresponding
run-time matcher. When a call is performed through reflection, the called method
can be determined only at run time. Thus the weave-time matcher simply flags every
call to the invoke() method of java.lang.reflect.Method as requiring a run-time
check. For any other method calls, it returns “join point not matched”. The run-

3For simplicity, we again disregard the case of overloaded methods.

16 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

4 EXAMPLES OF USER-DEFINED SELECTORS

@SelectorDef(name="reflectiveCall")
public class ReflectiveCallSelector extends SelectorBase {

// Holds a reference to the CtMethod object for Method.invoke()
private CtMethod invoke;

public ReflectiveCallSelector() {
invoke = ClassPool.getDefault().get("java.lang.reflect.Method")

.getDeclaredMethod("invoke");
}

// Weave-time matcher for method calls
public SelectionValue matchesCall(Advisor callingAdvisor,

MethodCall methodCall,
List<SelectorParam> params) {

if (methodCall.getMethod().equals(invoke))
return CHECK_AT_RUNTIME;

else
return FALSE;

}

// Run-time matcher for method calls
public boolean matchesCall(Advisor advisor, AccessibleObject within,

Class calledClass, Method calledMethod,
Object target, Object[] args,
List<SelectorParam> selectorParams) {

String methodClassName = selectorParams.get(0).getValue();
String methodName = selectorParams.get(1).getValue();
Method targetMethod = (Method) target;
String targetMethodClassName =

targetMethod.getDeclaringClass.getName();
String targetMethodName = targetMethod.getName();
return (targetMethodClassName.equals(methodClassName) &&

targetMethodName.equals(methodName));
}

}

Listing 8: A selector for reflective method calls

time matcher looks at the invoke() target, which is a java.lang.reflect.Method,
and checks if this object represents the method specified by the selector parameters.

Selector for Web Services

Various domain-specific languages (DSLs) have been proposed to tailor aspect-
oriented programming to specific problem domains. One such language is Dox-
pects [20], a DSL for processing XML documents in messages exchanged via SOAP.
Doxpects allows the definition of pointcuts that specify XML elements within SOAP
messages. Moreover, it exposes those elements to advice so that the elements can be
processed in a convenient way. Essentially, the language introduces two new kinds

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 17

USER-DEFINED JOIN POINT SELECTORS

of pointcuts: header and body, which match the header and the body of a SOAP
message. A header or body pointcut takes as argument an XPath query that selects
a set of elements from the corresponding section (head or body) of the message.

In addition to the new pointcuts, the language also introduces two qualifiers
for advice: request and response, which indicate if pointcut (header or body)
evaluation will be performed on a request message or on a response message. The
authors of Doxpects make a parallel between those qualifiers and AspectJ’s before
and after modifiers. Even so, a request or response qualifier can be regarded
as a part of the pointcut definition, because it helps to determine the join point
(the processing of a message, which is either an outgoing request or an incoming
response) that will be affected by the advice.

We believe that specific selectors can be used as a substitute for a DSL in some
scenarios. A selector-based solution for the processing of SOAP messages would
include a selector for SOAP requests and another for SOAP responses. Listing 9
shows a skeletal implementation of a simple selector for SOAP requests. This selector

@SelectorDef(name="request")
public class WsRequestSelector extends SelectorBase {

// Weave-time matcher for method calls
public SelectionValue matchesCall(Advisor callingAdvisor,

MethodCall methodCall,
List<SelectorParam> params) {

return (isWsRequestMethod(methodCall)) ? CHECK_AT_RUNTIME : FALSE;
}

// Run-time matcher for method calls
public boolean matchesCall(Advisor advisor, AccessibleObject within,

Class calledClass, Method calledMethod,
Object target, Object[] args,
List<SelectorParam> selectorParams) {

String xpathExpression = selectorParams.get(0).getValue();
Document docroot = getWsDocument(target, args);
XPath xpath = XPathFactory.newInstance().newXPath();
NodeSet resultNodes =

(NodeSet) xpath.evaluate(xpathExpression, docroot,
XPathConstants.NODESET);

return (resultNodes != null && resultNodes.getLength() > 0);
}

// Returns true if the given method call is a call to a method that
// sends out a SOAP request.
private boolean isWsRequestMethod(MethodCall methodCall) { ... }

// Gets the DOM document for the SOAP request.
private Document getWsDocument(Object target, Object[] args) { ... }

}

Listing 9: A selector for XML elements in Web Services requests

18 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

4 EXAMPLES OF USER-DEFINED SELECTORS

takes a single parameter, which is an XPath expression, and selects the outgoing
requests that contain the XML elements specified by that expression. The selector
class implements two selector methods: the weave-time matcher that picks method
calls and the corresponding run-time matcher.

Let us assume that the underlying Web services framework has one or more
sender methods, which take the actual responsibility for sending out SOAP requests.
The weave-time matcher flags every call to a sender method as requiring a run-time
check. For any other method calls, it returns “join point not matched”. Let us also
assume that a sender method receives as a parameter the SOAP request (an XML
document) to be sent out. When the run-time matcher intercepts a call to the sender
method, it has access to that parameter. It evaluates the XPath expression against
the outgoing SOAP request. If the XPath evaluation produces a non-empty set of
XML elements, the run-time matcher returns “join point matched”. Otherwise, it
returns “join point not matched”. Note that our WsRequestSelector is specific
to a given SOAP framework. In order to intercept sender methods and access the
outgoing requests, it needs knowledge on certain details of that framework. The
methods isWsRequestMethod and getWsDocument encapsulate that knowledge.

Framework-Specific Selectors

Pointcuts that use framework-specific metadata are a promising application area for
selectors. It is often desirable to use framework metadata to decide which elements of
a program should be affected by an aspect. In many cases, a selector is the only way
for a pointcut to employ framework metadata. Such situations arise, for instance,
when the metadata is external to the Java code (e.g., metadata in XML files).
In other cases, it would be possible to define a pointcut that accesses framework
metadata without resorting to a selector, but the aspect programmer would need
framework-specific knowledge in order to write the pointcut. This need would be a
burden on the programmer and would generate excessive coupling.

We propose framework-specific selectors that let the programmer use framework
concepts and metadata to define pointcuts in a modular way. Such selectors would
encapsulate the framework details and would expose to the programmer high-level
concepts. In this approach, framework-specific selectors would better be provided as
parts of the framework upon which they rely, as a selector library that applications
could use as they use the class and procedure libraries distributed with the frame-
work. Such an arrangement respects the modularity of the framework and shields
the application/aspect programmer from framework-specific details.

With the goal of validating the proposal outlined above, we have implemented
a selector library for Hibernate [4], a popular framework for object/relational map-
ping. Our library has selectors that pick executions of persistent attribute getters,
persistent attribute setters, primary key getters and primary key setters. It also has
a withinPersistent selector, which picks classes that represent persistent entities.
Listing 10 shows a selector for persistent attribute setters. The selector uses the
framework itself to load the metadata.

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 19

USER-DEFINED JOIN POINT SELECTORS

@SelectorDef(name = "hibernateSetter")
public class HibernateSetterSelector extends SelectorBase {

// Hibernate SessionFactory
private SessionFactory sessionFactory =

new Configuration().configure().buildSessionFactory();

// Weave-time matcher for method executions
public SelectionValue matchesExecution(Advisor advisor,

CtMethod m,
List<SelectorParam> params) {

// Gets the method’s class
Class declaringClass = m.getDeclaringClass().toClass();
// Gets the class’s persistent properties and iterates over them
ClassMetadata cmd = sessionFactory.getClassMetadata(declaringClass);
if (cmd == null)

return FALSE; // Not a persistent class
String[] persistentProperties = cmd.getPropertyNames();
for (String prop : persistentProperties) {

// Gets the JavaBeans method used to set the property
PropertyDescriptor pd = new PropertyDescriptor(prop,

declaringClass);
Method writeMethod = pd.getWriteMethod();
// If the methods are the same, we found a match
if (writeMethod.getName().equals(m.getName()))

return TRUE;
}
return FALSE;

}
}

Listing 10: A selector for Hibernate property setters

To show how the hibernateSetter selector can improve pointcut quality, we
will compare two definitions for a pointcut intended to pick setters of persistent
attributes of type java.util.Date.

The first pointcut definition, shown in Listing 11, uses a naming pattern to
match the setters. This pointcut works under two assumptions: (i) that all classes
under the package com.acme.someapp are mapped for persistence, and (ii) that all
methods starting with “set” in those classes are setters for persistent attributes. If
any of these assumptions fails, the pointcut will fail. Another drawback is that a
programmer looking at this pointcut will not immediately know that its intent is
to capture setters for persistent attributes. A comment would have to be added for
that to become clear. Therefore, the pointcut has low quality: it has low tolerance
to changes in the base program and does not communicate its intent clearly.

@Bind(pointcut = "execution(void com.acme.someapp.*->set*(java.util.Date))")

Listing 11: A pointcut based on naming conventions

20 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

5 RELATED WORK

In the second pointcut definition (Listing 12) we use the hibernateSetter se-
lector to choose only the methods that are setters for persistent attributes. We still
have a clause to filter execution of methods in a specific package and with specific
parameter and return types, but we do not rely on a naming convention anymore.
Additionally, it is clear to the programmer that we are picking only methods that
are setters for persistent attributes managed by Hibernate. Therefore, we have en-
hanced the pointcut quality considerably. A major advantage of this approach is
that the access to framework-specific metadata is encapsulated inside the framework
classes that are used by the selector. This way, artifact boundaries are crossed in a
way that is transparent to the aspect programmer.

@Bind(pointcut = "execution(void com.acme.domain.*->*(java.util.Date)) " +
"AND hibernateSetter()")

Listing 12: A pointcut based on the hibernateSetter selector

5 RELATED WORK

Several approaches have been proposed for improving the expressiveness of pointcut
languages. Some authors have used logic languages as a basis for pointcut languages.
In [9], a new aspect-oriented language, called Andrew, is proposed. It uses a logic
language, similar to Prolog, for the definition of pointcuts. The base language over
which the aspects are applied is Smalltalk, and this language’s meta-information
facilities are used as a basis for the join point model. In [10], the authors explain
what features of their language make it a good fit for defining pointcuts.

In [17], the authors propose the aspect-oriented language Gamma, which is based
on a simplified version of Java, for the base program, and on Prolog for pointcut
definition. The main focus of this approach is on dynamic pointcuts. It uses a join
point model that is based on a trace of the program execution, with timestamps
associated with each point of the execution. This allows very easy definition of
pointcuts that depend on the order of events, like cflow. However, this approach
has serious limitations for practical use, and the authors regard the overcoming of
these as future work. Alpha [19] is a logic-based language related to Gamma. It
uses a less elegant model, but is more tractable in practice. Alpha works with four
sources of information: a representation of the program’s abstract syntax tree, a
representation of its heap, the static type of every expression in the program, and a
representation of the program execution trace.

In our view, logic languages are good for expressing the types of pointcuts that
are most commonly used today: the ones that use only the basic join point model.
However, they would be very hard to use in situations like the one we presented
in section 4, when other sources of data are necessary besides the basic join point
model. By using an imperative language, preferably the same in which the base

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 21

USER-DEFINED JOIN POINT SELECTORS

program is written, users can take advantage of practically any data source they
need.

In [8], the authors propose the use of the functional language XQuery as a replace-
ment for current pointcut languages. They run XQuery on an XML representation
of Java bytecode. The main shortcoming of their approach is that it employs only
weave-time information. It also adds to the weaving process one more step, which
builds the XML representation of the bytecode.

Josh [7] has a lot in common with our approach. It proposes an extension
mechanism that is based on the same language as the base program, just as ours.
It also uses the Javassist bytecode manipulation framework to obtain weave-time
information about the program. The main difference is that it does not deal with
run-time information. If a run-time check is necessary, it must be explicitly inserted
into the program through the bytecode manipulation framework. Such a task, which
can be difficult and error-prone, is not needed in our approach.

The AOP part of the Spring framework [13] defines all of its pointcuts through
Java classes. It has a mechanism for the combination of weave-time and run-time
checks that is very similar to ours. However, it does not provide a language to easily
combine pointcuts. Instead, it relies on verbose XML definitions. Moreover, Spring
AOP does not give access to a powerful API for structural reflection that could be
used for join point selection: it relies exclusively on standard Java reflection. That
makes it difficult to use Spring AOP for implementing more powerful selectors, such
as the one described in section 4.

The AspectBench Compiler (abc) [3] is a framework for experimentation of novel
language features and implementation techniques in AspectJ. It supports extensions
on the syntax of AspectJ, on its type system, and on the set of possible join points.
abc also lets language researchers create new kinds of pointcuts and advice, as well
as new semantic checks and optimizations. Its back-end pointcut language parti-
tions the pointcuts in four categories: lexical pointcuts, shadow pointcuts, dynamic
pointcuts, and compound pointcuts. This categorization makes it easier to compile
new primitive pointcuts into existing ones. abc also has a notion of dynamic residue,
which in our terminology would correspond to the run-time part of a selector. Albeit
powerful, abc is a complex framework. The complexity of abc may be an overkill
for users, but that framework could certainly be used as the basis for a simpler
extension mechanism, such as ours.

SCoPE [1] is an AspectJ compiler that supports user-defined analysis-based
pointcuts. Rather than extending the language, SCoPE lets the programmer write
pointcuts that analyze the base program by using a plain if pointcut with intro-
spective reflection libraries. It introduced a novel compilation scheme based on a
back-patching technique. Unlike our work, SCoPE does not deal with user-defined
dynamic pointcuts. Nevertheless, its sophisticated static techniques could be applied
to user-defined join point selectors in order to enhance weave-time matching.

22 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

6 CONCLUSION AND FUTURE WORK

6 CONCLUSION AND FUTURE WORK

Our work shows that extension mechanisms for pointcut languages can increase
pointcut quality. It also enables the creation of new types of pointcuts that were
not previously possible, such as those that depend on external metadata sources.
Moreover, it lets framework implementors define framework-specific selectors, which
allow aspects to cross the boundaries of a given framework and of its different arti-
facts, while still respecting the modularity of that framework.

A feature that will make user-defined join point selectors even more useful is
the possibility of aggregating metadata and making such information available to
advice implementors. That feature would be especially useful to selectors that take
advantage of external metadata. This extension would also make it possible to
implement a feature of the Doxpects DSL that the example in section 4 does not
provide: the transformation of XML elements into Java objects, which are made
available to advice programmers.

Finally, the combination of selectors could be easier if we made the following
changes to the selector semantics:

• Instead of receiving one join point as an argument, a selector would receive a
set of join points;

• Instead of returning a boolean, it would return a subset of the set of join points
received as an argument.

These changes would make it possible to use the result of one selector as an
argument to another one. For example, the updatesStateReadBy selector (section 4)
could be divided in two selectors: the first one would select all fields read by a given
method and the second would select all methods that update any of a given set of
fields. Both selectors could then be reused independently.

REFERENCES

[1] Tomoyuki Aotani and Hidehiko Masuhara. SCoPE: an AspectJ compiler for supporting user-
defined analysis-based pointcuts. In Proceedings of the 6th International Conference on Aspect-
Oriented Software Development (AOSD 2007), pages 161–172. ACM Press, 2007.

[2] AspectWerkz Project. http://aspectwerkz.codehaus.org/, 2005.
[3] Pavel Avgustinov et al. abc: An extensible AspectJ compiler. In Proceedings of the 4th

International Conference on Aspect-Oriented Software Development (AOSD 2005), pages 87–
98. ACM Press, 2005.

[4] Christian Bauer and Gavin King. Hibernate in Action. Manning, 2005.
[5] Cristiano Breuel and Francisco Reverbel. Join point selectors. In Proceedings of the 5th

Workshop on Software Engineering Properties of Languages and Aspect Technologies (SPLAT
2007), pages 14–21. ACM Press, 2007.

[6] Shigeru Chiba. Load-time structural reflection in java. In Proceedings of the 14th European
Conference on Object-Oriented Programming (ECOOP 2000), volume 1850 of Lecture Notes
in Computer Science, pages 313–336. Springer, 2000.

[7] Shigeru Chiba and Kiyoshi Nakagawa. Josh: an open AspectJ-like language. In Proceedings
of the 3rd International Conference on Aspect-Oriented Software Development (AOSD 2004),
pages 102–111. ACM Press, 2004.

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 23

USER-DEFINED JOIN POINT SELECTORS

[8] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts as functional queries. In
Proc. 2nd Asian Symposium on Programming Languages and Systems (APLAS 2004), volume
3302 of Lecture Notes in Computer Science, pages 366–381. Springer, 2004.

[9] K. Gybels. Using a logic language to express cross-cutting through dynamic joinpoints. In Sec-
ond Workshop on Aspect-Oriented Software Development of the German Information Society.
Institut für Informatik III, Universität Bonn, February 2002. Technical report IAI-TR-2002-1.

[10] Kris Gybels and Johan Brichau. Arranging language features for pattern-based crosscuts. In
Proceedings of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD 2003), pages 60–69. ACM Press, 2003.

[11] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In Proceedings of the 3rd
International Conference on Aspect-Oriented Software Development (AOSD 2004), pages 26–
35. ACM Press, 2004.

[12] JBoss AOP Project. JBoss AOP Reference Documentation (v1.3), 2005. http://docs.
jboss.com/aop/1.3/aspect-framework/.

[13] Rod Johnson et al. Spring - Java/J2EE Application Framework Reference Documenta-
tion, 2006. http://static.springframework.org/spring/docs/2.0.0/reference/index.
html.

[14] Mik Kersten. AOP@Work: AOP tools comparison, Part 1: Language mechanisms. Technical
report, IBM Developer Works, February 2005.

[15] G. Kiczales et al. An overview of AspectJ. In Proceedings of the 15th European Conference
on Object-Oriented Programming (ECOOP 2001), volume 2072 of Lecture Notes in Computer
Science, pages 327–353. Springer-Verlag, 2001.

[16] Gregor Kiczales. The fun has just begun. Keynote at AOSD 2003, March 2003.
[17] Karl Klose and Klaus Ostermann. Back to the future: Pointcuts as predicates over traces. In

Proc. 4th Workshop on Foundations of Aspect-Oriented Languages (FOAL 2005), 2005.
[18] Christian Koppen and Maximilian Störzer. PCDiff: Attacking the fragile pointcut problem.

In Kris Gybels, Stefan Hanenberg, Stephan Herrmann, and Jan Wloka, editors, European
Interactive Workshop on Aspects in Software (EIWAS), September 2004.

[19] Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive pointcuts for increased
modularity. In Proc. 19th European Conference on Object-Oriented Programming (ECOOP
2005), volume 3586 of Lecture Notes in Computer Science, pages 214–240. Springer, 2005.

[20] Eric Wohlstadter and Kris De Volder. Doxpects: aspects supporting XML transformation
interfaces. In Proceedings of the 5th International Conference on Aspect-Oriented Software
Development (AOSD 2006), pages 99–108. ACM Press, 2006.

ABOUT THE AUTHORS

Cristiano Breuel has a Computer Engineering degree from the
University of São Paulo, Brazil, and a M.Sc. degree in Computer
Science, also from the University of São Paulo. He can be reached
at cmbreuel@ime.usp.br.

Francisco Reverbel is a Professor of Computer Science at the
University of São Paulo, Brazil. He has E.E. and M.Sc. degrees
from the University of São Paulo and a Ph.D. from the University
of New Mexico. He can be reached at reverbel@ime.usp.br. See also
http://www.ime.usp.br/˜reverbel/.

24 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

http://docs.jboss.com/aop/1.3/aspect-framework/
http://docs.jboss.com/aop/1.3/aspect-framework/
http://static.springframework.org/spring/docs/2.0.0/reference/index.html
http://static.springframework.org/spring/docs/2.0.0/reference/index.html
mailto:cmbreuel@ime.usp.br
mailto:reverbel@ime.usp.br
http://www.ime.usp.br/~reverbel/

