
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 1, January-February 2009

Fateh Boutekkouk, Mohammed Benmohammed, Sebastien Bilavarn: “UML2.0 Profiles for
Embedded Systems and Systems On a Chip (SOCs)”, in Journal of Object Technology, vol. 8,
no. 1, January – February 2009, pp. 135-157 http://www.jot.fm/issues/issue_2009_01/article1/

UML2.0 Profiles for Embedded Systems
and Systems On a Chip (SOCs)

Fateh Boutekkouk, University of Constantine, 25000, Algeria.
Mohammed Benmohammed, University of Constantine, 25000, Algeria.
Sebastien Bilavarn, University of NICE, Sophia Antipolis, 06000, France.
Michel Auguin, University of NICE, Sophia Antipolis, 06000, France

Abstract
Recent embedded systems and SOCs design is confronted with the problem of the so-
called productivity gap. In order to cope with this problem, authors emphasize on using
UML as a system level language, so higher level of abstraction is achieved. However
UML in its current form has not yet achieved the maturity necessary to enable its
efficient use within current embedded systems and SOCs CAD environments.
Consequently a proper tuning of UML to the specificities of such systems has became
mandatory. To meet this requirement, many UML profiles have been proposed by both
academia and industry. On the other hand enhancements included in UML2.0 has
increased UML opportunities to model embedded systems. UML2.0 is qualified to be a
component-based which is more suitable for hardware modeling. In this paper we
review and compare the most known UML2.0 profiles for embedded systems and
SOCs. For each profile, we try to show its defined stereotypes and the corresponding
design flow if it exists. We use some objective criteria to highlight the benefits and the
pitfalls of each profile.

1 INTRODUCTION

The productivity gap between semiconductor technology and methodology and tool
support has become one of the biggest challenges in embedded systems and SOCs design.
To deal with this problem, specialists in the field have resorted to software engineering
and borrowed from it many ideas to close this gap. Most of authors are agree on at least
five principles that are raising the level of abstraction, hierarchy, separation of concerns,
reuse, and integration. Since embedded systems and SOCs development requires
collaboration between customers, software and hardware teams, a visual common
language is preferable to eliminate misunderstandings that can occur. This language must
be able to capture customer requirements and then proceeds toward an efficient software
and hardware implementations in a well defined design flow supporting the five

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

principles mentioned above. We believe that if done correctly, the Unified Modeling
Language (UML) can be such a language.

UML2.0 has brought several significant improvements to support concepts related to
Codesign.The latter aims at meeting the system-level requirements by using a concurrent
design and validation methodology, thus exploiting the synergism of the hardware and
the software parts. Although software (Sw) design techniques may seem foreign to
hardware (Hw) designers, at a reasonable level of abstraction such separation can be
blurred because many of concepts are similar. For instance Sw objects communicate with
messages and Hw blocks communicate with signals. Sw systems reuse classes from
libraries and Hw systems reuse IPs (intellectual properties).

Embedded systems (ES) are generally defined as application-specific computers,
masquerading as non-computers that interact with the physical world and must perform a

small set of tasks cheaply and efficiently. ES have specific characteristics such as
heterogeneity (hardware / software), ability to react, criticality, real-time and
consumption constraints. As the resources are constrained, the design of embedded
systems requires optimization. According to Moore’s law stipulating that the integration
density of VLSI circuits doubles all the eighteen (18) months, embedded systems will
contain more one billion of transistors in the near future. Modern ESs are capable to
execute very complex algorithms implemented in only one chip (SOC: System-on-a
chip). A SOC is a complex and heterogeneous system that can integrate in the same chip
hundreds of IPs possibly furnished by different manufactures and connected by
communication infrastructure ranging from simple buses to complex On chip networks
(NOC : Network On Chip). A general classification of the design process of embedded
systems is available through the DajskiY-Chart as shown in Figure 1.

It defines System, Register-Transfer (RT), gate, and transistor levels where each
level is defined by the type of objects and where higher level objects are hierarchically
composed out of lower level ones. At each level, the design can be described in the form
of a behavioral, a structural model, or a physical model. A conventional design process
(see figure 2) starts from informal requirements; a functional executable model (eg.
C/C++) is modelled from the requirements to capture the system behaviour. At this level
there is no difference between software and hardware parts. The final destination of the
various parts of the design are decided at the partitioning stage. Two separate design
flows start concurrently for the software and hardware. Software parts are compiled for
the target processing elements and hardware parts are translated to an HDL (Hardware
Description Language) description, then synthesized into ASICs or FPGAs. Intermediate
steps of functional and timing verifications and simulations are carried out at different
phases.

Today ‘s methodologies fail to meet embedded systems requirements. This is due
essentially to the large gap that exists between the specification level and the
implementation level on one hand and because the hardware and software teams are still
work independently and the actual hardware-software integration takes place lately where
discovered errors are often uncorrectable.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 137

2 UML2.0 AND HARDWARE DOMAIN

UML is a graphical object-oriented modeling language, originally, was used in software
(information) systems. The use of such graphical notation help designer to understand,
capture and analyze the client requirements at early stages of development in a
semiformal manner. In its basic form, it is applicable to a wide variety of systems (open
language). However, several key attributes of UML are important to embedded systems:

1. UML is abstract, and designers can focus on the high-level characteristics of the
system, rather than implementation-specific factors.

2. Hardware and software designers would share a common language.
3. A rich set of notations, executable models and semantics suited for modeling

different points of view, simulation and formal verification.
4. Support for object-based structural decomposition and refinement.
5. Support for state-machine semantics which can be used for modeling and

synthesis.
Beyond UML1.x deployment diagram, StateChart and sequence diagram which had even
used to model hardware resources and their topology, to synthesize FSM controllers, and
to model hardware communication protocols (eg. Handshake) respectively, UML2.0
includes two new diagrams more suitable to represent hardware concepts that are the
structure diagram (SD) and timing diagrams (TD). The SD describes the structure of the
system as a network of components (objects, composite objects and blocks) related by
channels (links). It is similar to the well known functional block diagram used in the
hardware domain. Components are associated with ports defining required and provided
interfaces and communicate via signals. We can consider The TD as a chronogram which
is used to represent signal progression over time. The new semantics attached to activity

Figure 1: The Y-chart model of Gajski [9] Figure 2: Conventional SOC design flow [15]

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

diagrams (data flow) are also important to model the Datapath of the processing units.
New features included in UML2.0 sequence diagrams (eg. Control flow, hieararchy,
timing constraints) are also important for SOCs performance analysis [21].

Recent works aim at generating hardware description languages like VHDL [20],
and SystemC from UML diagrams [15]. The generated code is used either for simulation
or synthesis purposes.

Despite of the effort in the direction of UML-based system-level design, there is no
consistent design flow for embedded and SOCs systems and the proposed methodologies
and associated tools still lack completeness and interoperability. For this reason, many
UML2.0 profiles have been proposed by both academia and industry. According to
authors,UML2.0 can be tailored to different application domains by the definition of
profiles. A profile extends an application specific UML sub-set using extension
mechanisms offered by UML like stereotypes, constraints, and tagged values. Further
more a profile must provide a methodology.

3 SYSML

The System Modeling Language (SysML) [18] is the resullt of a joint initiative of OMG
and the INCOSE (International Council on Systems Engineering). It reuses a subset of
UML 2.0 and provides additional extensions needed in system engineering. SysML
supports the specification, analysis, design, verification and validation of a broad range of
complex heterogeneous systems which are not necessarly software based. It is intended to
unify the diverse modelling languages currently used by systems engineers.
As shown in figure 3, the set of UML metaclasses to be reused are merged into a single
metamodel package called UML4SysML. The SysML profile can be applied by a user
model either “strictly” where, only the UML metaclasse referenced by SysML are
available to the user of that model or “not strictly” where additional UML metaclasses
which were not explicitly referenced may also be available.

Figure 3: SysML architecture [18]

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 139

SysML introduces two new diagrams (Figure 4): the Requirement diagram and the
Parametric diagram. A requirement diagram allows the system engineer to model
requirements and relating them to other model elements that satisfy or verify them (
figure 5). The parametric diagram is used to model systems parameters and relate them to
each other. Block definition, Internal Block, and Activity diagrams are similar to the
UML2.0 class diagram, composite structure diagram, and activity diagram respectively,
with some extensions. We note especially the concepts of assembly and flowPort for
composite diagrams, and the actions execution control mechanism for activity diagrams
(eg. Running actions can be disabled). SysML does not use UML object diagram,
communication diagram, interaction overview diagram, timing diagram, and deployment
diagram. In the case of deployment diagrams, the deployment of software to hardware
can be represented in the SysML internal block diagram using the concept of allocation
which is a more abstract form from UML deployment [20].

Figure 4: SysML diagram taxonomy

Figure 5: SysML Requirements

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

4 MARTE (MODELING AND ANALYSIS OF REAL TIME
EMBEDDED SYSTEMS)

Defined by the ProMARTE Working Group and is voted at OMG for the Model-Driven
Development (MDD) and analysis of real time and embedded systems, MARTE [16]
intends to replace the existing UML-SPT profile. It is based on the UML2.0 Metamodel,
OCL2, and MOF 2.0 QVT. As illustrated by Figure 6, the MARTE architecture is
focused on four packages : the MARTE foundations, the MARTE design model, the
MARTE analysis model, and the MARTE annexes. The MARTE foundations package
includes the NFPs profile for Non-Functional Properties modelling which is one of the
main capabilities of this profile. An NFP (see figure 7), can be either basic or complex,
qualitative or quantitative. An NFP value can be specified as a constant value (NFP
Constant), as a variable (NFP Variable) or as an expression (NFP Expression), the TIME
profile for logical and physical time modelling and related concepts, the GRM profile for
Generic Resource Modelling. The GRM is detailed via DRM for Detailed resource
modelling, the GCM profile for Generic Component Modelling, and the ALLOC profile
for application-hardware mapping. The MARTE design model package represents the
profile core, it encompasses the RTEMOCC profile for real time model of computation
and communication. The latter is based on the Runit concept, which combines between
object and process paradigms, the SRM profile for Software Resource modelling, and the
HRM profile for Hardware Resource Modelling.

The MARTE analysis package introduces common elements that can be used in
providing input to many kinds of quantitative analysis. Three particular types of analysis
are considered, The Schedulability Analysis Modeling (SAM), the Performance
AnalysisModeling (PAM) and the WorstCaseExecution TimeAnalysisModeling. The
MARTE annexes package includes in particular the VSL subprofile for Value
Specification Language which is an expression language, used to specify non-functional
values, and the RSM sub-profile for repetitive structure modelling.

Figure 6: Architecture of the MARTE profile [16]

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 141

MARTE brings many benefits since it provides support for specification, analysis,
design, and verification/validation stages, provides a common way of modelling both
hardware and software aspects of a real time embedded systems in order to improve
communication between developers, and fosters the construction of models that may be
used to make quantitative predictions.

5 UML-SOC

It is developed by Fujitsu Limited and Fujitsu Laboratories. A related OMG submission
[17] was prepared by a consortium consisting of Fujitsu Limited, IBM Corporation,
CANON INC., CATS Co., Metabolics Ltd., RICOH COMPANY LTD., and Toshiba
Corporation. This profile intends to describe System-On-Chip specific information using
UML. It integrates concepts from SOCs and allows automatic code generation for
hardware (eg. SystemC), covering abstraction levels from Transactional Level Modelling
(TLM) to Register Transfer Level (RTL). UML-SOC is focused on the UML2.0 structure
diagram. It proposes the stereotypes that allow the structural modelling, communication
modelling, operation and property modeling. Table 1, gives correspondance between
some SOC stereotypes and UML constructs.The motivation for the profile is that UML
defines many types of diagrams but does not describe how to use them. The decisions
concerning the part of the specification to be modeled and the diagrams to be used as well
as how to model the specification with different diagrams must be made. In this approach
UML is used as a formal model for the specification of the SoC design to allow the
validation of the consistency and completeness of the specification (see figure 8). The
consequent SoC implementation is validated by a systematic derivation of test scenarios
from the UML model. UML is integrated into the verification process without changing

Figure 7: Example of user model with NFPs and VSL [16]

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

the current design style. Only use case diagrams, sequence diagrams and class diagrams
of UML are utilized in modelling of functions, data types and behaviors in the
specification. Interfaces in SoC cannot be modeled simply by operations and methods.
Instead, a proprietary Component Wrapper Language (CWL) as a formal interface
specification language is used to model the specification of signal changes at input/output
ports [22].

Table 1: A Sub-set of the UML-SOC profile stereotypes [17]

Figure 8: UML- SOC profile flow [22]

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 143

6 UML-SYSTEMC

This profile is developed by University of Catania and STMicroelectronics [15]. It takes
advantages of both UML2.0 and SystemC language following the MDA principles.
SystemC is well suited for implementing UML models, since it supports object-oriented
paradigm and can uniformly represent hardware and software in a single language.
Furthermore, as UML, SystemC is becoming the standard system level language for
SOCs design. According to [15], UML may improve the SOC design flow in three ways:

6. The UML in a platform-independent manner can be adopted at System Functional
Executable Model level to describe the specification.

7. The UML profile for SystemC can be used for the hardware description at the
abstraction layers on top of the RTL layer.

8. UML profiles tailored for programming languages like C/C++, Java, etc. can be
used, instead, for the software parts.

The UML-SystemC profile captures both the structural and the behavioral features of the
SystemC language and allows high level modelling of SOCs with straightforward
translation to SystemC code. It is based on two diagrams : classes diagrams to model
structure and statecharts to model behaviour. The most significant stereotype elements
used in various UML structural diagrams represent the structural building blocks of
SystemC such as module, port, interface, primitive channel, hierarchical channel, thread
process and event. Figure 9, shows the correspondence between SystemC and UML
concepts. The proposed profile is believed to benefit greatly the portability, interchange,
and reuse of the IPs.

Figure 9: UML notation for SystemC concepts [15]

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

7 TUT

It is developed in the Institute of Digital and Computer Systems at Tampere University of
Technology (TUT), the TUT Profile is an UML2.0 profile for multi-processor SOCs
design [13]. It classifies different application and platform components by defining
various stereotypes and strict rules how to use them. The objective is to enhance the
support of external tools for automatic analyzing, profiling, and modifying the UML2.0
description of an embedded system. The classification also assigns defined parameters to
proper components. Using this profile application is modelled as a network of processes
following the Kahn Process Network (KPN) semantics. Each process behaviour is
modelled via a statechart. The platform description is not used for hardware synthesis,
rather than, it represents an abstraction of an available parametrized RTL components
library. The mapping is defined by the stereotype “PlatformMapping”. It is applied to
describe how a process group is mapped to a platform component. The methodology is
realized with the Koski design flow (figure 11). The platform mapping can be explicitly
performed by the designer, or assisted with tools. In the latter case, an UML profiling tool
that combines the UML2.0 description and simulation statistics that is obtained the
verification phase is developed. Based on the profiling results, the application can be
modified to fulfill real-time constraints. When the verification is completed, executable
application for the implemented platform is automatically generated from the UML2.0
description. The TUT profile provides an automated path from UML design entry to
FPGA prototyping including the functional verification and the automated architecture
exploration focusing on automatic profiling and performance values back annotation.

Figure 10: UML –SystemC based SOC design flow

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 145

8 GASPARD2

Developed by the DaRT (Dataparallelism for Real-Time) team of LIFL (Laboratoire
d’Informatique Fondamentale de Lille- France), the Gaspard2.0 is an UML2.0 profile that
targets the intensive signal processing domain [4]. It follows the MDA principles and
emphasizes system level co-modelling and concurrency, separation of concerns

Table 2: TUT profile stereotypes summary

Figure 11: Koski design flow [13]

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

(communication vs computation, data vs control, application vs architecture), simulation,
models refinement, automatic code generation (eg. SystemC, VHDL, JAVA) and IP
integration. Gaspard2.0 profile extends the UML2 semantics to allow the user to describe
a SoC at different level of abstractions in three steps: the application, the hardware
architecture, and the association of the application to the hardware architecture.

The gaspard2.0 profile includes six main packages (see figure 12), that are the
component, the factorization, the hardwareArchitecture, the application, the control, and
the association. In Gaspard, application is modelled using three models of computation
that are : KahnProcessNetwork (KPNs) to model computational tasks using the
GaspardComponent and GaspardPort stereotypes (component package). The former can
be elementary, hierarchical or repetitive, Array-OL to express in a compact way the
topologies of relations and dependencies between multi-dimensional arrays of
connectable elements (factorization package), and synchronous reactive programming
(Esterel, Lustre) to model reactivity and control related aspects via automata (Control
package). The principles of application metamodel are based on the ISP UML profile that
allows the expression of task and data parallelisms [6]. HardwareArchitecture describes
hardware resources and their topologies at a cross grained level. The goal of the
association is to provide tools that bind an application to a hardware architecture. They
mainly consist in mapping tasks to active components and mapping data to memories,
while handling hierarchy and repetitions.

Figure 12: Gaspard packages [4]

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 147

9 DIPLODOCUS (DESIGN SPACE EXPLORATION BASED ON
FORMAL DESCRIPTION TECHNIQUES, UML AND SYSTEMC)

Is an UML2.0 profile based on the TURTLE UML profile targeting SOCs domain [2]. it
is focused on four aspects :

9. Abstract application modelling using two kinds of UML diagrams: a
DIPLODOCUS class diagram modelling tasks, and activity diagrams for the
intern behavior of those tasks. Tasks communicate using three paradigms:
Channel, Event, and Request. Simulation or static analysis can be performed from
those diagrams.

10. Architecture modelling as a composition of instances of five generic components:
CPU, bus, memory, hardware accelerator and input/output peripheral. These
components are abstract and parameterized through a small set of simple
parameters.

11. Mapping each task onto an execution node of the architecture.
12. Refining the application to go for the final implementation.

DIPLODOCUS UML profile focuses on design space exploration. Its strength relies on
transformation rules that make it possible to automatically transform DIPLODOCUS
modelings either in SystemC, for simulation purpose, or in a LOTOS specification.
Before simulation is done, each task behaviour which is modelled via an activity diagram
is transformed to an equivalent behavior expressed in a simple language called TML
(Task Modeling Language) [1]. This language abstracts data exchange, data processing
and control exchange using coarse-grained instructions. There is no data processing
details inside the tasks. They are only control oriented without any notion of physical
time. However operations within a task model are totally ordered and among a set of
tasks, they are partially ordered. The functional simulation is achieved by translating
TML instructions to corresponding SystemC constructs.

Figure 13: The MDA/Y-chart approach adopted by Gaspard2 [6]

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

10 UML PLATFORM

Developed by the University of California at Berkeley, the UML platform targets the
domain of wireless protocols [5]. It is based on UML2.0, and the UML Real Time. Since
the UML Platform profile follows the platform-based design, it defines stereotypes for
application, platform, mapping, and refinement. In this profile application is modelled as
a processes network using standard MoCs (Models Of Computations) such as Kahn
Process Networks, Synchronous Dataflow etc. and elementary building blocks, such as
buffers, and protocols that can be used to specify a MoC. The behavior of individual
components is specified using State Machine, Activity Diagrams, or textual notation. The
Platform model includes many kind of stereotyped components such as physical and
logical resources, services offered by resources, QoS constraints, and relations between
resources, services and service users stereotyped by UML Real-Time and UML Platform
profiles. The semantics of UML Platform is defined in terms of the Metropolis
Metamodel by establishing a direct correspondence between modeling elements of UML
Platform and elements of the Metropolis Metamodel.

Figure 14: Semantics of various operators of DIPLODOCUS activity diagrams [2]

Figure 15: Methodology adopted by DIPLODOCUS [1]

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 149

The design methodology, based on the UML Platform profile and Metropolis, is shown in
Figure 17. In the first step the design problem is formulated using Use Case diagrams,
and the constraints are annotated to the model, then, the functionality is decomposed into
components and captured using the UML Platform stereotypes. Constraints are
propagated and budgeted to the components. The Metamodel functional specification can
be validated using the Metropolis simulator. As a next step, the UML Platform
specification is compiled into a Metropolis Metamodel specification. Then,
Communication Refinement and Mapping take place. The UML Platform model is
compiled into a mapped Metamodel specification, and performance analysis and
validation take place in the Metropolis simulation environment (figure 17).

Figure 16: Stereotyped relationships

Figure 17: UML Platform Design Flow [5]

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

11 DISCUSSION

In this section, we try to highlight in some detail the limitations of each profile. A full
comparison is showed in table 3.

SYSML

With regard to embedded systems and SOCs particularities, there are strong similarities
between the methods used in the area of System Engineering and complex SOC design,
such as the need for precise requirements management, heterogeneous system
specification, simulation, verification, and validation [20]. One of the major contributions
of SysML in the area of ES and SOCS is the support for requirements modeling (see
figure). The main limitations of SysML are not in the early design phase, but become
clear as the design is refined towards the Software/Hardware implementations. On the
other hand, SysML does not solve the question of the lack of semantics in UML2.0 and
does not dictate any particular development process to be used. In order to be able to
integrate SysML requirements models in embedded systems and SOCs design flows,
formalization of such informal annotations is required.

MARTE

MARTE targets mainly real time embedded software-dominated systems. This profile
offers a facility for modelling and analyzing real time applications, however in the
Codesign context, where hardware and software developments often take place
simultaneously, the profile becomes less useful: Hardware related problems like, design
space exploration, synthesis, hardware-software interfaces generation are not sufficiently
adressed. It also miss links to requirements modelling, formal analysis, and more
profound discussion of abstraction and hierarchy of both application and hardware
platform modelling would be needed [11].

UML-SOC

The UML- SoC profile can be considered as an extension of a conventional SoC design
process, and it addresses only limited aspects of embedded systems development, namely
formalization of specification and subsequent test scenario derivation. The focuses are on
the completeness and consistency of specification, and on functional coverage of test
scenarios. When considering the particular aspects of complex embedded systems and
SOCs, the main limitations of this profile are:

Non-Functional Property (NFPs) aspects, e.g. performance, are not addressed in the
UML specification at the system level.

Interface refinement is based on a proprietary CWL language leading to a lack in
interoperability between tools.

Implementation is described in RTL separately, but functional verification uses the
same test scenarios as in UML.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 151

Some semantics of stereotypes are defined informally (eg. protocol), others still
require some clarification (eg. Synchronicity semantics).

UML-SYSTEMC

This profile targets hardware related aspects such as system level modelling, synthesis,
simulation and IPs reuse exploiting the capabilities of the two standard UML2.0 and
SystemC. However, in the context of Codesign, it shows some limitations, that are:

It does not address neither requirements capture neither Non-Functional Properties
(NFPs).

It does not take into consideration neither the software part nor the
hardware/software interface generation.

The lack of clear semantic forces to translate the complete SystemC code to UML,
thus several pages are required to capture a simple function

The profile is restrictive since it considers only state diagrams: The state diagram
methodology is too detailed. Activity diagrams are also important in data or activity-
oriented systems modelling.

The profile includes some unusual relationships for UML capture tools, such as
associations among pseudo-states.

TUT

The main focus of this profile is the automation of architecture exploration targeting
FPGA based prototyping. According to our knowledge, the TUT profile is the first profile
showing actual automatic profiling and back annotations from and to UML models.

From a complex embedded systems and SOCs design perspectives, the main
limitations of this profile are :

Is restrictive because, on one hand it supports only one MOC (the Kahn Process
Network paradigm), on the other hand, it models the behaviour of each process with a
StateChart : activity diagrams are also important.

Lack of formal semantics support for UML models validation and verification.
The platform model is based on a pre-existing libraries targeting FPGA prototyping.

We have no results on the efficiency of the proposed profile and the associated design
flow for more case studies.

GASPARD2

This profile targets extensive signal processing domain, it emphasizes MDA principles
coupled with the Y chart approach at different level of abstractions. The first focus of this
profile is SOC Co-modelling using a variety of models of computation, Co-simulation,
models refinement, and automatic code generation. However it still lacks a support for
NFPs modelling for both software and hardware, formal analysis, requirements capture
and hardware/software interface synthesis.

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

DIPLODOCUS

This profile is based on an existing TURTLE profiling whose first aim was formal
analysis. this new profile tends to enhance TURTLE profile to support hardware/software
Codesign and related aspects as design space exploration, mapping, and co-simulation.
The main limitations are :

Since the same abstract specification serves as input to both formal analysis and
abstract simulation, It is not clear whether abstraction (in both data and tasks internal
behaviour), which is one of the basic principles of DIPLODOCUS conflicts or not with
formal semantics of LOTOS.

The architectural model is strongly dependant on the TML semantics.
TML language is too restrictive since there is no support for hierarchy and input

dependant behaviour expression
The design space exploration concerns only architecture, but not application. In

some cases, we must for instance split an intensive computationally task to parallel sub-
tasks or to merge two tasks with high communication workload into one task.

The methodology is still under experimentation, and should prove its efficiency for
more complex and realistic architectures [3].

UML PLATFORM

This profile adds a superficial layer on the Metropolis metamodel. All Co-design aspects
are metropolis-related. Since the UML platform is strongly related to Metropolis
approach, therefore it lacks interoperability with other profile and tools.

According to table 3, we can extract, some common limitations :
1. Since , most profiles focus on the process (task) paradigm, they lack of

capabilities for the higher level object oriented service-based application.
Althought, the process paradigm is more suitable for synthesis, hardware/software
partitioning and performance analysis, it lacks reusability and abstraction.
According to our knowledge, a few work aiming at hardware synthesis from
object-oriented specifications. The work in [8], targets reconfigurable
architectures generation from pure objects specification, exploiting actual object
paradigm principles like polymorphism, encapsulation, and heritage.

2. Most profiles may suffer from the NFPs annotations cross-cutting problem
through UML models. In order to solve this problem, we can resort to Aspect-
Oriented Programming (AOP) principles.

3. Most profiles lack formal support for analysis, reffinement, and validation.
4. Lack of incompatible IPs reuse modeling and integration at UML level. For this

purpose, we can define a stereotype named “IP” for Intellectual Property (see
figure 19). To enable the effective integration of incompatible IPs, we may
develop a wrapper design pattern, that takes as input an IP and translates it to an

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 153

XML representation. The latter can be considered as a Meta-Language to generate
HDLs.

5. Contrary to time and memory occupation related NFPs which are well adressed,
power consumption related NFPs are not well adressed.

 SysM
L

UML
SOC

UML
System

C

TUT MAR
TE

GASP
ARD2

DIPL
ODOC

US

UML
PLAT
FORM

NC N N N Y Y Y Y Y

RC Y N N Y N N Y N
PA N N N Y Y Y Y Y
HS N Y Y Y N Y Y Y

HSI N N N Y N N N Y

IPR N Y Y Y N Y N N

FA N N N N N N Y Y

Figure 18: Example of SOC Requirements

154 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

PAR COM PROC PROC PROC COM
PROC

COM
PROC
SR
Array-
OL

PROC PROC

TD SYS SOC SOC SOC ERS ISP
SOC

SOC WCP
ES

AF ? MDA MDA KOSK
I

? MDA
Y-
Chart

Y-
Chart

PBD

12 CONCLUSION

In this paper, we give a panorama of the well-known UML2.0 profiles for embedded
systems and SOCs. We remark, that, it does not exist a complete profile addressing all
aspects related to the embedded and SOCs domains. However prudent coupling between

« IP »
IPName = DCT
IPType = SOFT
SourceCode = SystemC
AbstractionLevel = TLM
Protocol = HANDSHAKE
Inputs = “frame: FRAME”,
Outputs = “Coefft:COEFF”
TConstraints : “Output after 100s of Inputs “
ISsBlackBox = false
IsProtected = false
Furnisher = “IBM”

Figure 19: IP stereotype

NC: NFPs Capture. RC: Requirements Capture. PA: Performance Analysis. HS: Hardware Synthesis. HSI:
Hw/Sw Interface Synthesis. IPR: IPs Reuse and Integration. FA: Formal Analysis. PAR: Paradigm.
 TD: Target Domain. AF: Associate Flow (Methodology). COM: Component. PROC: Process. SR:
Synchronous Reactive. ISP: Intensive Signal Processing. SOC: System On a Chip. ERS. Embedded Real
time Systems. ES. Embedded Systems. WCP. Wireless Communication Protocols. PBD: Platform-Based
Design. MDA: Model Driven Architecture. MDD: Model Driven Development.

Table 3 : UML2.0 Embedded Systems and SOCs Profiles

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 155

them is possible and may lead to better results. This coupling is possible since most of
profiles are focused on the process paradigm. What we need is a Meta-profile, in which
we have to define rules for automatic passage from one profile to another. We are
currently undertaking a research work to establish an integration of SysML, MARTE,
TUT, and UML-SystemC profiles while formalizing SysML requirements diagrams and
applying AOP principles.

REFERENCES

[1] L. Appvrille, M. Waseem,R. Ameur Boulifa, S. Coudert, and R. Pacalet. Abstract
application modeling for system design space exploration. Euromicro Conference on
Digital System Design (DSD’06), Dubrovnik, Croatia, August 2006.

[2] L. Appvrille, M. Waseem,R. Ameur Boulifa, S. Coudert, and R. Pacalet. A UML-
based Environment for System Design Space Exploration. 13th IEEE International
Conference on Electronics, Circuits and Systems (ICECS’2006), Nice, France,
December 2006.

[3] M. K. Bhatti, and L. Apvrille. Modeling and simulation of SoC hardware Architecture
for Design Space Exploration. In SAME 2007 Forum. Session : Academic Posters.
LaboSOC GET/ENST Paris, Sophia Antipolis, France, October 3 & 4, 2007.

[4] R. Ben Atitallah, P. Boulet, A. Cuccuru, J.L. Dekeyser, A. Honré, O. Labbani, S. Le
Bleu, P. Marquet, E. Piel, J. Taillard, and H. Yu. INRIA. Rapport technique,
Gaspard2 UML profile documentation.. N° 0342. September 2007.

[5] R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-Vincentelli, and J.
Rabaey. UML AND PLATFORM-BASED DESIGN. in "UML for Real", Edited by
B. Selic, L. Lavagno, G. Martin, pp. 107-126, Kluwer Academic Publishers, May
2003.

[6] DaRT. Dataparallelism for Real-time futurs. INRIA. Theme 1C. Activity Report
2003.

[7] C. Dorotska, D. Frohlich, and B. Steinbach. Synthesis of UML-Models for
Reconfigurable Hardware. In proceeding, 2nd UML for SoC Design Workshop at
42nd Design Automation Conference (DAC), Anaheim, California, 2005.

[8] D. Frohlich. Object-Oriented Development for Reconfigurable Architectures.
Dissertation. Von der Fakultat fur Mathematik und Informatic. Der Technischien
Universitat Bergakademie Freiberg. 20. Juni 2007.

[9] D.D Gajski, F. vahid, S. Narayan, and J. Gong. Specification and Design of
Embedded Systems. Published by Prentice Hall. Englewood, Newjersey 07632. 1994.

[10] A.Gerbi and K. Ferhat. UML Profiles for Real-Time Systems and their Applications.
Journal paper. JOT, vol. 5, no. 4, pp. 149-169, May-June 2006.
http://www.jot.fm/issues/issue_2006_05/article5/

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 1

[11] ITEA. Information Technology For European Advancement. MARTES. Model-
Based Approach for Real-Time Embedded Systems development. Title: Current
limitations of best practices. Deliverable ID: 1.1, Version: 1.0. Editor Kari Tiensyrja.
Status: Final. Confidentiality: Public. Date: 31/03/2006.

[12] S.J. Mellor, J.R. Wolf, C. McCausland. Why Systems-on-Chip Needs More UML
like a Hole in the Head. In Proceedings of the Design, Automation and Test in Europe
(DATE'05) Volume 2.

[13] P. Kukkala, J. Riihimaki, M. Hannikainen, T.D. Hamalainen, and K.Kronlof
UML2.0 Profile for Embedded System Design. In Proceedings of the Design,
Automation and Test in Europe Conference end Exhibition (DATE’05).

[14] T. Kangas, P. Kukkala, H. Orsila, E. Saminen, M. Hannikainen, and T.D.
Hamalainen. UML-Based Multiprocessor SOC Design, in ACM transactions on
Embedded computing Systems, vol. 5, No. 2, pp. 281-320, May 2006.

[15] E.Riccobene, P. Scandura, A. Rosti, and S. Bocchino. A SOC Design Methodology
Involving a UML2.0 Profile for SystemC. In Proceedings of the Design, Automation
and Test in Europe Conference end Exhibition (DATE’05).

[16] OMG. UML Profile for MARTE, Beta 1. OMG Adopted Specification, ptc/07-08-04,
August 2007.

[17] OMG. UML Profile for System on a Chip (SOC). OMG Available Specification,
version 1.0.1 formal /06-08-01, August 2006.

[18] OMG. Systems Modeling Language (SysML) Specification. OMG document:
ad/2006-03-08-01, version 1. Draft, April 2006.

[19] T. Schattkowsky. UML2.0 Overview and Perspectives in SOC Design. In
Proceedings of the Design, Automation and Test in Europe (DATE'05), Vol. 2.

[20] Y. Vanderperren, and W. Dehaene. SysML and Systems Engineering Applied to
UML-Based SOC Design. In Proc. 2nd UML-SOC Workshop at 42nd DAC,
Anaheim (CA), USA, 2005.

[21] A. Viehl, O. Bringmann, and W. Rosentiel. Performance Analysis of Sequence
Diagrams for SOC design. In proceeding, 2nd UML for SoC Design Workshop at
42nd Design Automation Conference (DAC), Anaheim, California, 2005.

[22] Q. Zhu, R. Oishi, T. Hesegawa, and T. Nakata. Integrating UML into SOC Design
Process. In Proceedings of the Design, Automation and Test in Europe (DATE'05)
Vol. 2.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 157

About the authors
BOUTEKKOK Fateh (Fateh_Boutekkouk@yahoo.fr) received his BS
degree in Computer science from the University of Constantine and his
MS degree from the University of Jijel. Now he is preparing a PhD
degree at the University of Constantine. He is a lecturer at the
University of Oum el Bouaghi since 2003. His research interests include
Embedded systems, SOCs, and software engineering.

Mohamed Benmohammed was born in Constantine, Algeria on
December 26, 1959. He received his B.Sc. degree from the High School
of Computer Science (C.E.R.I) Algiers, Algeria, in 1983, and the Ph.D
degree in Computer Science from the University of Sidi Belabbes,
Algeria, in 1997. He is currently an assistant Professor at Constantine
University. His current research interests are Parallel architectures and

high level synthesis.

Sebastien Bilavarn received the B.S. and M.S. degrees from the
University of Rennes in 1998, and the Ph.D. degree in electrical
engineering from the University of South Brittany in 2002 (at formerly
Lester, now Lab-STICC). Then he joined the Signal Processing
Laboratories at the Swiss Federal Institute of Technology (EPFL) for a
three year post-doc fellowship to conduct research with the System

Technology Labs at Intel Corp., Santa Clara. Since september 2006 he is an assistant
professor at Polytech'Nice-Sophia school of engineering, and LEAT Laboratory,
University of Nice-Sophia Antipolis - CNRS. His research interests are in system
modeling, design, exploration and optimisation from high level specifications with
investigations applied to heterogeneous and reconfigurable architectures, multiprocessor
systems, ESL design, UML, power management, more especially in the field of mobile
applications.

Michel Auguin has currently a position of Research Director at CNRS
(Centre National de la Recherche Scientifique) in the group “ System
level modelization and design of communicating objects” of the LEAT
laboratory from University of Nice Sophia Antipolis in France and
CNRS. In this group he is working on SoC system level design
methodologies. Previously, he has been involved since 1980 and for

nearly 15 years in the area of parallel processing and architecture. Since 1995 he has been
a staff member of several national research programs focusing on parallel architecture
and SoC. In the field of SoC design methodologies he currently participates to regional,
national and European collaborative projects.

