
Vol. 8, No. 1, January–February 2009

Activity Diagrams : A Formal Framework to
Model Business Processes and Code Gener-
ation

A.K. Bhattacharjee Reactor Control Division, Bhabha Atomic Research
Centre, Mumbai 400 085, email:anup@barc.gov.in

R.K. Shyamasundar School of Technology and Computer Science,Tata
Institute of Fundamental Research, Mumbai 400 005,email:shyam@tcs.tifr.res.in

Activity Diagram is an important component of the set of diagrams used in UML.
The OMG document on UML 2.0 proposes a Petri net based semantics for Activity
Diagrams. While Petri net based approach is useful and interesting, it does not exploit
the underlying inherent reactive behaviour of activity diagrams. In the first part of the
paper, we shall capture activity diagrams in synchronous language framework to arrive
at executional models which will be useful in model based design of software. This also
enables validated code generation using code generation mechanism of synchronous
language environments such as Esterel and its programming environments. Further,
the framework leads to scalable verification methods.
The traditional semantics proposed in OMG standard need enrichment when the activ-
ities are prone to failure and need compensating actions. Such extensions are expected
to have applications in modelling complex business processes. In the second part of
the paper, we propose an enrichment of the UML Activity Diagrams that include
compensable actions. We shall use some of the foundations on Compensable Trans-
actions and Communicating Sequential Processes due to Tony Hoare. This enriched
formalism allows UML Activity Diagrams to model business processes that can fail
and require compensating actions.

1 INTRODUCTION

In model-driven development, models are used to describe user requirements, activ-
ities, information structures, components and component interactions of a system.
These models govern the system development in a way that they can be transformed
to ultimately to program code. UML is now the industry standard for describ-
ing software requirement specifications and design models [2]. It is a collection of
graphical notations, each providing a particular view on the system being specified.
Business processes based on workflows involve interaction and coordination between
several services. The Unified Modeling Language (UML) and the Model Driven Ar-
chitecture (MDA)provide a technology independent framework that can be used to
model and specify composition of business processes.

Cite this document as follows: A. K. Bhattacharjee and R.K. Shyamasundar: ”Activ-
ity Diagrams: A Formal Framework to Model Business Processes and Code Generation”,
in Journal of Object Technology, vol. 8, no. 1, January-February 2009, pp. 189-220
http://www.jot.fm/issues/issue 2009 01/article3/

mailto:anup@barc.gov.in
mailto:shyam@tcs.tifr.res.in
http://www.jot.fm/issues/issue_2009_01/article3/

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

One of the important modeling artifacts used in UML, is the Activity Diagrams
(referred as UML AD)that are used to model sequence of actions as part of the
process flow. It is used to model sequence of actions to capture the process flow
actions and its results. It focuses on the work performed in the implementation of
an operation (a method), and the activities in a use case instance or in an object.
A simple activity diagram describing the order processing and account is shown in
Fig. 1.

Receive
Order

Fill Order Ship Order

Invoice

Make
Payment

[Order rejected]

Payment
Accept Send Invoice

Close Order

Cancel
Order

OrderCancel Request

Figure 1: Simple Activity Diagram

Although the OMG document [1] provides an intuitive semantics of Activity
Diagrams, it lacks a formal semantics required for analysis and automatic code
generation. Hence, in the recent past there has been a lot of interest in giving a
formal semantics to Activity Diagrams.

In the first part of the paper, we extend the process algebraic semantics of ac-
tivity diagrams and propose a reactive formalism of Activity Diagrams of UML AD
A shorter version of this work appeared in [27]. We use Esterel [13] language for
description purpose. Our approach combines the requirement level and implemen-
tation level semantics. Further the notion of procedure call transitions as used in
activity diagrams are captured nicely through the ‘‘run module’’ construct and
one can specify the number of incarnations of the same module when called multi-
ple times. Since it is based on Esterel, that has efficient code generation tools, the
transformations can be used to realize a system directly from the model. Thus in
our approach, we can not only reason about functional requirements of UML AD
but also generate validated code automatically. This approach is useful for model
based design of embedded systems.

190 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

1 INTRODUCTION

In [7] it has been shown that UML AD can be used to model some of the
workflows patterns identified in [6]. It is pertinent to ask Can we use UML AD to
specify business processes which are prone to failure?. We opine that the traditional
Activity Diagram needs to be enriched with additional constructs to enable us to
model failures in any of the component processes. One of the advantage of having
such a semantics for activity diagrams will allow modeling distributed workflows
coupled with interruptible regions and evaluate their transitional state and behaviour
for checking conformance to the requirement. Business Process Modeling Notation
(BPMN) [3] has constructs to show failures and compensations, however we are
not aware of a formal semantics of BPMN. On the other hand, the semantics of
Activity Diagrams has been studied extensively in literature [24] and by enriching
the constructs, it is expected to be useful. In the second part of the paper, we
discuss the use of UML AD in modeling business processes.

The contribution of this paper is in the following

� Establishing a semantic mapping between UML AD to a synchronous language
which allows validated code generation.

� Establishing the requirement of compensation actions in UML AD for model-
ing business processes.

� Enriching the constructs of UML AD with compensable actions [15] which
enables modeling of failure in business processes.

The semantics of the additional constructs are based on CSP enrichment that can
cater to failures in activities. Failures/exceptions are modeled as a part of the
activities and is robust in the sense of CSP; as the failure action has also become
an explicit action treated in a first-class manner and hence there is nothing like a
real ”exception”. The proposed constructs can also be used to provide a theoretical
framework for BPMN.

The paper is organized with an overview of the recent work in this direction
in section 2. A description of various constructs of activity diagrams are given in
section 3 and it’s realization in a synchronous framework is given in 4. In section
5, a brief description of simulation and code generation based on the synchronous
framework is presented. A brief insight into the requirement of activity diagram to
model business logic is given in 6. Section 7 introduces the additional structures
required to build compensating activities in modeling with a formal semantics. In
section 8 a possible implementation of compensating activities is given in terms of
Mode Automata. Verification approaches are presented in section 9 and the section
10 gives an outline of the future work.

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 191

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

2 RELATED WORK

To the best of our knowledge, the first formal semantics of UML AD was proposed
by Eshuis [24]. A token flow semantics based on Petri Nets was proposed in [26].
Eshuis [24] proposes the semantics at the following two levels :Requirement Level
and Implementation Level. The first level is based on Statechart like semantics and
is transformed into a transition system for model checking by NuSMV. The second
level is based on STATEMATE semantics of Statecharts extended with properties
to handle data. The semantics covers activity charts of UML 1.5 but not of activity
diagrams of UML 2.01. Storrle [26] envisages a semantics by mapping activities into
procedural Petri nets, which excludes data type annotations but includes control
flow. He has defined mappings to procedural Petri nets to prevent multiple calls
which otherwise would result in infinite nets. However these approaches do not
address the automatic code generation as may be required in a tool driven environ-
ment. Semantics based on synchronous language was proposed in [27] which allows
a validated code generation from the notation.

The suitability of activity diagrams for modeling business process has been ar-
gued in [7]. A process algebraic formulation of workflow is proposed in [8]. However
these semantics cannot handle failures in activities and hence not suitable for mod-
eling business processes. The extensions of Activity Diagrams proposed in this
paper is inspired by Hoare [12] and is based on a flow composition language with
a trace semantics introduced in [14]. A theoretical foundation of flow composition
languages is given by Bruni in [25]. Fu et.al., presented an approach of converting
BPEL Web services into guarded statement and further into PROMELA/SPIN for
verification in [20]. Similar approaches based on Finite State Processes (FSP) [19]
and CCS were presented in [21] and [23] . However they didn’t consider failure and
subsequent compensation. Verification approaches for incorporating compensating
transactions were reported in [22, 28].

3 ACTIVITY DIAGRAMS: INTERPRETATION IN PROCESS ALGE-
BRA

An action is the fundamental unit of executable functionality in an activity. The
execution of an action represents some transformation or processing in the modeled
system, which could be a computer system or a process. An action may have sets of
incoming and outgoing activity edges that specify control flow and data flow from
and to other nodes. An action will not begin execution until all of its input conditions
are satisfied. The completion of the execution of an action may enable the execution
of a set of successor nodes and actions that take their inputs from the outputs of
the action. The sequencing of actions are controlled by control edges and object

1It should be pointed out that UML 2.0 is a significantly re-engineered version of UML 1.5,
particularly in the context of activity diagrams.

192 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

3 ACTIVITY DIAGRAMS: INTERPRETATION IN PROCESS ALGEBRA

flow edges within activities, which carry control and object events respectively. An
action can only begin execution when all incoming events are present. An action
execution represents the run-time behavior of executing an action within a specific
activity execution. When the execution of an action is complete, it offers events in its
outgoing control edges, where they are accessible to other actions. Communicating
Sequential Processes (CSP) [10] is a process algebra which is suited for modeling
such process flow systems. One of the advantage of CSP is that one can make
assertions about safety and correctness properties based on traces.

An interpretation of UML AD activity as CSP [10] processes is given below. The
basic flow of activity is defined by the process PROC(P) as

αPROC(P) = {P.entry, P.in, P.exit}
PROC(P) = P.entry → P.in→ P.exit→ SKIP

The process PROC(P) first performs the event P.entry at the start representing
the start of the activity P, the event P.in represents the activity P is being performed
and P.exit represents the completion of activity. In addition to these events, we
consider two more events:

√
to notify the upper level activities about the completion

of the activities in the present scope, † to notify a general trigger to higher level
activities. An activity diagram is constructed as a legal combination of activity,
start, stop state elements and merge, decision, fork and join relationship elements.

Synchronisations in Various Control Flow Patterns

A number of control flow patterns and their ability to be modeled in UML AD has
been identified in [7], which define elementary aspects of control flow. These are
also used as elementary control-flow in Workflow Management.

Sequence Exclusive Choice Simple Merge

-
P Q

...
..........
...........
..........

....
-

-

-

P

Q

R

[c1]

[c2]

...
..........
...........
..........

....?

6

-

P

R

Q

Parallel Split Synchronisation

-

-

-

P

Q

R

R

Q

P
-

-

-

Figure 2: Basic Constructs of Activities

We provide the transition rules [10] of some of the basic control patterns shown in
Fig.2 as processes in CSP. The terminal events Ω = {

√
, †,©} represent the different

ways in which an activity may terminate. Successful termination is represented by

the
√

event, action denoted as P
√
→ ◦. An interrupt event is represented by the †

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 193

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

event and yielding is represented by the ©event. The interrupt and yielding events
are described later.

Sequence We consider three cases
Process P does not terminate

P
α→P ′

P ; Q
α→ P ′; Q

α ∈ Σ

Process P terminates normally

P
√
→0 ∧Q α→ Q′

P ; Q
α→ Q′

α ∈ Σ ∪ Ω

Process P Terminates abnormally

P
ω→0

P ; Q
ω→0

ω ∈ (Ω− {
√
})

Exclusive Choice Condition c1 ⊂ α

P
√
→0 ∧Q α→ Q′

P ; Q2R
α→ Q′

α ∈ Σ

Condition c2 ⊂ α

P
√
→0 ∧R α→ R′

P ; Q2R
α→ R′

α ∈ Σ

Parallel Split

P ; Q ‖ R

P
√
→0 ∧Q α→ Q′ ∧R α→ R

P ; Q ‖ R α→ Q′ ‖ R
α ∈ αQ

P
√
→0 ∧Q α→ Q ∧R α→ R′

P ; Q ‖ R α→ Q ‖ R′
α ∈ αR

The rules for simple merge and synchronization are expressed in terms of the above
rules.
Simple Merge

P2Q; R ≡ (P ; R)2(Q; R)

Synchronization

P ‖ Q; R

194 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

3 ACTIVITY DIAGRAMS: INTERPRETATION IN PROCESS ALGEBRA

X

B

Cancel
Order

cancelOrderEvent

Process Order

Protected Node

Exception Handler

Figure 3: Activity with Exception Handlers

Handling Interrupts

Although not shown in [6], it is possible to break the flow in an activity diagram by
an asynchronous interrupt event. If activities are sequential, the exception causes
an immediate transfer of the flow of control. An interrupt handler may be used
to catch interrupts: in P 4 Q, an interrupt caused in P triggers execution of the
handler Q. It follows that a trace of (P 4Q) is just a trace of P up to an arbitrary
point when the interrupt occurs, followed by any trace of Q.

α(P 4Q) = αP ∪ αQ

traces[P 4Q] = {s _ 〈†〉_ t | s ∈ traces[P] ∩ Σ∗ ∧ t ∈ traces[Q]}

The control flows to interrupt handler from the first process which is caused by the
† event as shown below:

P
α→P ′

P 4Q
α→ P ′4Q

α ∈ Σ

P
†→0 ∧Q α→ Q′

P 4Q
α→ Q′

α ∈ Σ ∪ Ω

P
ω→0

P 4Q
ω→0

w ∈ (Ω− {†})

Fig. 3, shows how exceptions can be raised in activities and in CSP and it can be
written as ProcessOrder4CancelOrder. If interrupts could be nested i.e if P 4Q
could be interrupted and R is the handler then it could be specified as (P4Q)4R).
Generating an interrupt inside the activity diagram to interrupt other activities is
shown by a special process called THROW which generates the interrupt event †
and terminates. On occurrence of the interrupt event control flow in the activity
represented by process P will be transferred to Q. In case the interruption is caused
by an external event (†) (not inside P) it is denoted as

† 6∈ αPP 4† Q = (P 4 († → Q))

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 195

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

A B

C D

E F

D

Yield

Yield

Figure 4: Activity with Yielding Points

An activity, which is ready to yield to an interrupt is to be indicated by local
checkpoint where the state of the process is known and can be restarted. The
behaviour of such activities is similar to check-pointed transaction. A local snapshot
of the activity as shown in fig. 4 is taken through the primitive YIELD operator.
These are the points where the local state of the activity is completely known. For
example, P YIELD Q is willing to yield to an interrupt in between the execution of
P and Q but not during P or Q. This is similar to the Hoare’s restart with checkpoint
operator [11]. The transition rules are specified as

P
α→P ′

P YIELD Q
α→ P ′ YIELD Q

α ∈ Σ

P YIELD Q
†→ Q YIELD Q

P YIELD Q
©→ P YIELD Q

The effects of terminal events on the special processes (0 is the Null process) and
their composition are defined below

SKIP
√
→0

THROW
†→0

THROW ; P = THROW
THROW 4 P = P

4 SYNCHRONOUS FRAMEWORK FOR ACTIVITY DIAGRAMS

In this section, we provide an implementation [27] of the activity diagrams defined
above in a synchronous framework. Synchronous framework is based on the perfect
synchrony hypothesis: the system reacts instantaneously to events producing outputs

196 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

4 SYNCHRONOUS FRAMEWORK FOR ACTIVITY DIAGRAMS

along with the input compiling away the control commands. Synchronous languages
are based on this hypothesis and model reactive systems effectively and have a sound
and complete semantics. One of the distinct advantages of using synchronous lan-
guages for specifying reactive systems is that the description of the system analyzed
or validated is very close to implementation. One of the oldest languages in the
family of synchronous languages Esterel has good developmental facilities such as
efficient code generating compilers, verifiers etc. For these reasons, we have chosen
Esterel as the underlying language for description of activity diagrams. A brief char-
acteristics of Esterel is given in Appendix. The synchronous model for the Activity
Diagrams is represented as a collection of transformation rules for each construct
of the Activity Diagrams. In this paper, we are concerned with the Intermediate
Level of Activity Diagrams that include control and data flow and decisions. A basic
ActivityNode is modeled by an Esterel module named after the node. The invo-
cation of the activity is modeled by instantiating the module using the run module

construct.

A basic ActivityNode can invoke an asynchronous task which can handle system
specific functions and can be modeled by an Esterel task statement such as exec

taskA ()() return ExitA, where taskA is the external process performing the
actual action written in the host language. The completion of the task is signaled
by emitting the signal ExitA referred as a return signal. A return signal cannot be
internally emitted by the program. In our model we ignore the external action for
the purpose of simplicity.

Each activity node has the following set of signals associated with it.

� EntryS is the signal emitted when a particular activity node is entered.

� InS is the signal emitted when an action in a particular activity node is being
performed.

� ExitS is the signal emitted when a particular activity node is completed.

We also assume that there is a root activity node which contains and controls
the sequencing of the activity nodes through the activity edges. In the exam-
ple shown in Fig. 5 the module simpleActivity performs the task of passing
control tokens from the activity sendPayment to the activity receivePayment.
The activity node simpleActivity is the root activity controlling the activities
sendPayment and receivePayment. The activities sendPayment, receivePayment
and simpleActivity in the above example, can be interpreted through the Esterel
fragments shown in the Fig.5.

Merge Node:

A merge node (cf. Fig. 6) is a control node that brings together multiple alternate
flows. It is not used to synchronize concurrent flows but to accept one among

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 197

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

module receivePayment

 %do something

end module

output InreceivePayment;
output ExitreceivePayment;
 emit InreceivePayment;

emit ExitreceivePayment

SimpleActivity

Send Payment Receive Payment

module sendPayment

 %do something
 emit ExitsendPayment
end module

output InsendPayment;
output ExitsendPayment;
 emit InsendPayment;

module simpleActivity
inputoutput ExitsendPayment;
 run sendPayment;
 await immediate ExitsendPayment;
 run receivePayment
end module

Figure 5: Simple node

alternate flows. It has multiple incoming edges and a single outgoing edge. It can
be described as follows

module mergeNode
run A% the module A implements activity A
||

run B% the module B implements activity B
||

await ExitA ;
run C% The module C implements activity C
||

await ExitB
run C% The module C implements activity C

end module

Here the activities A and B are started concurrently, but whichever activity
completes earlier, starts the activity C. If activity A and B completes together, then
two instances of C would be running at the same time. This interpretation is in line
with recent OMG document [1].

Decision Node:

A decision node (cf. Fig. 7) is a control node that chooses between the outgoing
flows. It has one incoming edge and multiple outgoing edges. It can be described

198 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

4 SYNCHRONOUS FRAMEWORK FOR ACTIVITY DIAGRAMS

MergeNode

A

C

B

Figure 6: Merge Node

decisionNode

A

B

C

v

u

e

Figure 7: Decision Node

by the following Esterel fragment.

module decisionNode
var e in
run A ;
if e = u

run B ; % e is the guard which if has value u then run B
else if e = v

run C ; % e is the guard which if has value v then run C
end

end
end module

Here after the activity A completes, the control passes to activity B or C de-
pending on the guard condition e being equal to u or v respectively.

ForkJoin Node:

A forkJoin node (cf. Fig. 8) is a control node that splits a flow into multiple
concurrent flows. It has one incoming edge and multiple outgoing edges. Tokens
arriving at a fork node are duplicated across the outgoing edges. Tokens offered by
the incoming edge are all offered to the outgoing edges.

The forking and joining of activities can be described by the following Esterel
fragment.

module forkJoinNode
run A% run activity A

[

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 199

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

forkjoinNode

A

B C

D

Figure 8: Fork Join Node

R

A B

(2)

Figure 9: Reentrant Node

run B% run activity B
||

run C% run activity C
]

run D% run activity D
end module

Here after the activity A completes the activities B and C are started concur-
rently. Once both of B and C are complete, D is started. If concurrent activities are
not modeled carefully this may lead to problem. Let us consider the case as shown
in the Fig. 9. Here completion of A forks A once again with B. Thus, a possible
run of the system is A → AB → ABB → · · · . That is there can be an infinite
incarnation of B. This causes problem with verification because of unboundedness
of states.

If we need to consider finite number of instances, we can use the parallel construct
in Esterel to specify a finite number of concurrent activities. This is an advantage
of the model, where one can specify the number of instances of the same activity
which could be forked simultaneously. This closely maps to Workflow Management
Systems, where one would specify the maximum number of such concurrent instances
of an activity. The Esterel model of the activity diagram shown in Fig. 9 is shown
below. The module R is the coordinating module for A and B. In this model we
assume that there could be at most two instances of activity B as shown by the
two modules named B1 and B2 in the code. In Fig.9 the number shown in bracket
indicates the maximum possible number of instances of activity B. Here we assume
calling external tasks as final activities for ActivityNodes A and B.

module A :
output InA ;
return ExitA ;
task activityA () () ; % external asynchronous task declaration

200 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

4 SYNCHRONOUS FRAMEWORK FOR ACTIVITY DIAGRAMS

exec activityA () () return ExitA% external action
||

abort
sustain InA ; % indicates module A is active

when ExitA
end module
module B :

return ExitB ;
output InB ;
task activityB () () ; % external asynchronous task declaration
exec activityB () () return ExitB% external action
||

abort
sustain InB ;

when ExitB
end module
module R :

return ExitA,ExitB1,ExitB2 ;
input InA, InB1,InB2 ;
task activityA () () ; % external asynchronous task
task activityB () () ; % external asynchronous task
input start ;
signal b1b2, free in

loop
await [start or ExitA];
present free then [

abort
run A

when ExitA
]

end
end
||

loop
present [not InB1] then % First instance of B

[
await ExitA ;
run B1/B [signal ExitB1/ExitB,InB1/InB]

]
else [present not InB2 then

[% Second instance of B
await ExitA ;
emit b1b2 ;
run B2/B [signal ExitB2/ExitB,InB2/InB]

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 201

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

]
else [

await [ExitB1 or ExitB2];
emit start

]
end

]
end present

end
||

loop
await start ;
abort

sustain free% free is on when B1 is active but B2 is dormant
when b1b2

end
end

end module

Since each run B produces a separate instance of the task associated with the
activity B, several simultaneous instances of activity associated with B can exist. In
this case one should specify the number of instances of such activities. The model
here shows capability of running two identical activities concurrently.

Modeling Exception:

Fig. 10, shows the exception in an activity diagram. The node which is aborted due
to the exception is called the protected node and the receiving node is the exception
handler node. An exception handler is an element that specifies a body to execute
in case the specified exception occurs during the execution of the protected node.
In Fig. 10, Activity Node ProcessOrder is the protected node and CancelOrder is
the exception handler and CancelOrderEvent is the exception input. This can be
modeled in Esterel as shown below..

module B
input cancelOrderEvent, ExitProcessOrder ;
trap T in

run ProcessOrder
||

abort
loop

await cancelOrderEvent ; % Watch exception event

202 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

4 SYNCHRONOUS FRAMEWORK FOR ACTIVITY DIAGRAMS

X

B

Cancel
Order

cancelOrderEvent

Process Order

Protected Node

Exception Handler

Figure 10: Exception Node

exit T
end

when ExitProcessOrder
handle T do

run cancelOrder% Exception Handler
end

end

Here the activity ProcessOrder is preempted and the the activity cancelOrder

is executed on raising the exception event cancelOrderEvent.

Activity with Data and Nesting

In many instances one ActivityNode may need to pass a data to another ActivityNode
for processing by the Activity performed at that ActivityNode. For example if P
and Q are two ActivityNodes and P is required send a data X to Q as shown in
Fig.11 then this can be modeled using the mechanism shown below. The ExitS
signal emitted by the activity node S is used for synchronizing the fact that the
data token is available at the end of activity P.

module main

inputoutput X:type % X is the data which is passed between activities

run P(X)

await immediate exitP

run Q(X)

end module

module P

output X:type

...

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 203

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

���
�

������������

X

Main

P

Q

Figure 11: Object node with
data

���
�

���
�

���
�

���
�

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�Y

Y

(call)

A B

P

Q R

X

Figure 12: Activity with
Nesting

module X module Y

...

run A run P;

if e = u then

run B; run Q

run Y else if e = v then

... run R

... end

end end

emit ExitP

end module

module Q

input X:type

task QActivity()(); % declaration of asynchronous task

...

exec task QActivity(X) return ExitQActivity;

...

end module

In our model, Activity Diagrams with nested call can be modeled naturally. Let
us assume that one activity Y is nested in another activity X as a call Y action in
the activityNode C of X shown in Fig. 12. This can be modeled by using the run
Y construct of Esterel. The following Esterel fragment describes the nested call of
the Fig.12.

204 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

5 SIMULATION AND CODE GENERATION

Communication in Activity Diagrams

The notion of communication between two Activity Diagrams can be nicely modeled
in the Communicating Reactive Processes (CRP) [18] framework. The CRP model
consists of network M1M2..Mn of Esterel modules, each having its own inputs
and outputs and its own notion of instants. The network is asynchronous and
the nodes communicate though synchronous channels. In this model, each Mi is
an Activity Diagram each of which evolve locally with its own input and output
and mutually independent notions of time [18]. Signals may be sent or received in
activity diagrams through channels and is denoted by the common send and receive
nodes. As an implementation model, one can think of an asynchronous layer (task)
that handles rendezvous by providing the link between the asynchronous network
events and node reactive events. The shared task can be called as channel. Fig. 13,
shows a simple example of an activity diagram showing two component activities
PrintServer and PrintClient communicating data (as files) through a channel. The
CRP code for the same is shown below.

module PrintServer

input channel printq from PrintClient : FILE % CRP channel

......

receive(printq,file) % send data file to printq

.....

end module

module PrintClient

output channel printq from PrintServer :FILE % CRP channel

...

send(printq,file) % receive data file from printq

....

end module

The send and receive [17] are communication primitives realizing the communi-
cation rendezvous between two locally synchronous programs. The primitive send

blocks until sending data on the named channel succeeds and the primitive receive

blocks until a communication succeeds on the named channel and the value assigned
to the variable.

5 SIMULATION AND CODE GENERATION

Above we have shown how activity diagrams can be transformed into Esterel model.
We are augmenting our previous work [16] to translate them automatically. The
Esterel model can be simulated by using the xes interface. Xes is the simulator
freely available along with the Esterel distribution. The simulator can be generated

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 205

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

by compiling the Esterel program with the xes library. The simulation gives the user
a clear picture of the execution of the activity diagrams and checking conformance
to requirement is easy. We are also building simulators directly in the domain of
input activity diagrams whereby one can see the simulation graphically.

C

PrintClient

Create

Clean

PrintServer

Print

(file)
ReceiveSend

(file)

Figure 13: Object node with com-
munication

click_I_I1()
I1 click() O1

click_O_O1()

Input/Output Handling Interface Functions

Figure 14: Activity to Code Map-
ping

Code Generation

There are two orthogonal levels of semantics, both indispensable: the intuitive level,
where semantics must be natural and easy to understand, and the formal level,
where the semantics is rigorously defined and fully non-ambiguous. Having formal
semantics for the languages also makes code generators much easier to develop and
verify. The translation process from Activity Diagrams to High Level Language
(HLL) code like C is based upon sound proven algorithms that the Esterel code
generators directly implement. By providing a formal semantics based on the syn-
chronous paradigm and Esterel, it is easy to build correct code by construction,
using Esterel-C/Java code generators. We assume Esterel-C code generator for fur-
ther discussion.

For actual execution of the code , the generated code must also be linked with
some extra layer of code that realizes the interface with the outside world which
detects input events, read data and realizes output events and send data.If for
example the module click should react to an input event, composed for example
of one input tokens I1 as shown in Fig. 14. The sequence will include call to one
automatically generated input C function click I I1() . This should be followed
by call to the reaction function by executing the C code click(), followed by a call
to output C function click O O1().

The automatic code building process is achieved using the rules described above

1. Model the flow as an activity diagram model

206 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

6 MODELING BUSINESS PROCESSES AS ACTIVITY DIAGRAM

2. Transform the model into the Esterel model following the rules as described
above. These can be automated by encoding them in a model transforming
algorithm similar to [16].

3. Describe interfaces as required by the Esterel modules regarding inputs and
outputs.

4. The activities to be performed in the software exec tasks are to be encoded
in the host language and operating systems.

6 MODELING BUSINESS PROCESSES AS ACTIVITY DIAGRAM

Let us now consider the activity diagram shown in Fig. 15, where activity B can
fail. This activity B can be a service provided by a server. Since the UML AD can
only model forward flow, it is not possible to show the actions required if the service
provided by this activity fails.

A B C

failback is required

This flow is not
possible if B failsif B fails then fail

Figure 15: Activity with Failure

If the activity A is not successful because of some internal exception or an exter-
nal condition, we must be able to undo the partial effect of actions executed in A.
Let us now consider the activities required to process an order for which the activity
diagram is shown in fig 16.

���
�

DispatchOrder

ProcessOrder

AcceptOrder

PackOrder BookCourier CheckCredit

CreditOk

CreditNotOK
X

ShipOrder

Figure 16: Order Processing

This is the classical book store problem where customers can order books over
the web to the vendor. The vendor may not store all books and need some time
in processing with other suppliers. However he can check the credit status of the
customer with the bank. In case the activity CheckCredit reports a credit failure
like CreditNotOK which should trigger the cancellation of the order, cannot be shown

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 207

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

Compensation

Action
Start Finish

Fail Failback

Throw

Local Memory
Post finish

Prestart

PrePost fail
failback

Figure 17: Activity with Compensation

using the traditional token flow semantics of UML Activity diagrams. This is the
underlying motivation of this paper.

A business process as described above typically consists of steps (each of which
may be refined in substeps) and each step is called an activity. The requirements of
business processes modeling are to be able to describe the process map showing the
flow in the activities, description of these activities, handling exceptions and failure.

7 MODELING FAILURES IN ACTIVITY DIAGRAMS

We propose to extend the syntax and semantics of UML activity diagram inspired
by [12] and [15]. Here an activity is drawn as a box with two entry points and three
exit points. The entries and exits are as shown in Fig.17. The box indicates an
activity which may be composed of sub-activities but the interior components and
connections of the box can be ignored from the outside. The entry and exit points of
a compensable activity are activated in a standard sequential ordering. The normal
entry point for an activity is at the start and failure leads to an exit along the exit
labeled fail, which returns control to the compensation of the previous transaction.
Successful execution ends with a finish, which will start the next activity in the
sequence. If a subsequent activity fails triggering a failback, so that in this activity
is able to compensate. If an activity detects that it can neither compensate nor
succeed, it will allow the control to pass on the throw exit, which needs to be
handled at the higher level as shown in Fig.18. After compensation, the activity
exits by the failure arrow as before. In this sense, the compensable activities has a
three way token flow.

For example, consider a simple activity whose input is X and which computes
an output data Y such that Y = X + X. The compensating activity must be
able to compute X such that X = Y/2. The action of compensation is to save
a local snapshot of local state (values of variables) before change and restore it
when required to compensate. This is the technique used in traditional transaction
processing systems. The post condition of an activity at the finish edge must entail
the precondition at the failback edge. Postfinish ⇒ Prefailback. Similarly Prestart ⇒
Postfail.

208 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

7 MODELING FAILURES IN ACTIVITY DIAGRAMS

THROW

P Q R
A

Figure 18: Composition of Compensating Activities

This is similar to what is supported at procedural level in BPEL4WS where the
compensation handler can be invoked by using the compensate activity.

<compensationHandler>

activity

</compensationHandler>

<compensate scope=’’ncname’’ ? attributes>

standard block

</compensate>

The advantage of graphical notation like Activity Diagram is that it would be easier
to capture the choreography in a graphical formalism than in a imperative language
like BPEL.

Semantics of Activity Diagrams with Failures in Enriched CSP Framework

In order to support failed activities, we use compensation operators [15] and the
Activities are classified into standard and compensable activities. A compensable
activity has associated compensation actions which are invoked in case of a failure
in the forward activities. A compensable activity consists of a forward behaviour and
a compensation behaviour. In the case of an exception, activities will be executed
to compensate the forward behaviour. The basic way of constructing a compensable
activity is through the compensation primitive P÷P̄ , where P is the forward activity
and P̄ is its associated compensation. P̄ should be designed to compensate for the
effect of P and may be run after P has completed. The parallel and sequential
composition operators for compensable processes are designed in such a way that
ensures that after the failure of an forward activity the necessary activities are
performed in an appropriate order to compensate the effect of already performed
actions. Sequential composition of compensable processes is defined so that the
compensations for all performed actions will be in the reverse order to their original
sequence.

The compensation enabled activity PP = P ÷ P̄ is composed of two standard
processes. The first one is called forward process which is executed during normal
execution and the second one is called the compensation of the forward process

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 209

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

which is stored for future use when it is required for compensation:

P
α→P ′

P ÷ P̄ α→P ′ ÷ P̄
α ∈ Σ

If the forward activity terminates normally then the complete activity terminates
with P̄ a the result compensation. This is to say that the at the end of successful
termination of present activity, the compensating activity P̄ is installed.

P
√
→0

P ÷ P̄
√
→P̄

If any forward activity terminates abnormally, then so does the complete activity,
resulting in an empty compensation activity

P
ω→0

P ÷ P̄ ω→SKIP
w ∈ {†,©}

A standard activity can be transformed into a compensable activity by adding to
it an activity, which actually does nothing (SKIP). We use P,Q to identify standard
activities and PP,QQ to identify compensable activities.

PP ::= P ÷ P̄ (compensation pair)
| SKIPP = SKIP ÷ SKIP
| THROWW = THROW ÷ SKIP

Standard activities can be constructed with the CSP operators for choice, sequenc-
ing and parallel composition. The compensation enabled activity PP = P ÷ P̄ is
composed of two standard processes. The first one is called forward process which
is executed during normal execution and the second one is called the compensation
of the forward process which is stored for future use when it is required for com-

pensation: P
α→P ′

P÷P̄ α→P ′÷P̄
α ∈ Σ If the forward activity terminates normally then the

complete activity terminates with P̄ a the result compensation. We say that the at
the end of successful termination of present activity, the compensating activity P̄ is
installed.

P
√
→0

P ÷ P̄
√
→P̄

If any forward activity terminates abnormally, then so does the complete activity,
resulting in an empty compensation activity

P
ω→0

P ÷ P̄ ω→SKIP
w ∈ {†,©}

If the activity PP = P ÷ P̄ cannot progress either way due to an internal condition,
it generates a throw which should be caught by an exception handler. This handles
the three way flow

PP 4 IP = [P ÷ P̄]
†→ IP

210 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

7 MODELING FAILURES IN ACTIVITY DIAGRAMS

traces[PP 4 IP] = {s _ t | s ∈ traces[P ÷ P̄] ∧ t ∈ traces[IP]}

Let us consider PP = P ÷ P̄ and QQ = Q ÷ Q̄ as two compensable activities
then the following rules define the sequential composition of compensating activities

PP
α→PP ′

PP ; QQ
α→ PP ′; QQ

α ∈ Σ

if PP fails the whole activity terminates and the compensation activity of PP that
is run.

PP
α→P̄

PP ; QQ
α→ P

α ∈ (Ω− {
√
})

However if QQ terminates normally after PP, the compensation of PP i.e P̄
should be composed with the compensations from QQ i.e Q̄. The reversal of process
order is shown by 〈Q̄, P̄ 〉. This is shown by

PP
√
→P̄ ∧QQ

√
→ Q̄

PP ; QQ
ω→ Q̄; P̄

(ω ∈ Ω)

A compensable activity PP can be converted into standard activity by defining a
block [PP] = P ÷ P̄\αP ∪ αP̄ ∪ †. Successfully completed PP represents successful
completion of the whole transaction block and compensations are no longer needed.
When the forward behaviour of PP throws an interrupt, the compensations are
executed in the appropriate order and the interrupt is not observable outside the
block. Parallel composition of compensable activities is defined in such a way that
compensations for performed actions will be accumulated in parallel. We assume
that each of the activities P and Q are not raising interrupt and not yielding to
interrupt.

[P ÷ P̄ ‖ Q÷ Q̄; THROWW] = (P ‖ Q); (P̄ ‖ Q̄)

[P ÷ P̄ ‖ Q÷ Q̄ ‖ THROWW] = SKIP2(P ; P̄)

(Q; Q̄)2(P ‖ Q); (P̄ ‖ Q̄)

A typical behaviour concerning the stack of compensation activities is shown in
Fig. 19. One of the safety requirement of such compensating activity diagram is that
the stack of compensating activities must be empty at the end. Now let us consider
the above activity diagram in Fig.16 to process orders which require compensation
because of exceptions raised by the CheckCredit activity when sufficient credit does
not exist. The modified activity diagram is shown in Fig 20.

The activities can be specified formally as

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 211

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

P

P

Q

P
Q

P Q R

R

Figure 19: Stack of Compensation Activities

���
�

DispatchOrder

ProcessOrder

CheckCredit

CreditOk

AcceptOrder

BookCourierPackOrder

UnpackOrder CancelCourier
CreditNotOK

CancelOrder

ShipOrder

THROWW
!

Figure 20: Activity with Compensation

212 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

9 VERIFICATION

ProcessOrder = (AcceptOrder÷ CancelOrder)

; ShipOrder; DispatchOrder

ShipOrder = (PackOrder÷ UnpackOrder) ‖
(BookCourier÷ CancelCourier)

‖ CheckCredit ; (CreditOK ; SKIPP 2

CreditNotOK ;THROWW)

This shows the underlying formal description of the activity diagram with compen-
sating constructs. The advantage is in that this can be subjected to analysis for
showing certain desired properties of business logic. The model can be used also to
construct an implementation from the description like that of [29].

8 IMPLEMENTATION MODEL FOR COMPENSATING ACTIVITIES

The compensating activity diagrams can be represented as a model in a synchronous
framework based upon Mode Automata [32]. Mode Automata is a synchronous lan-
guage which combines synchronous data flows with running modes. The compen-
sating activity could be considered as having two modes: normal and compensating
modes. The normal mode defines the activity in the forward direction and the com-
pensating mode defines the activity which is run in case of a failure in the subsequent
activities. Fig. 21 shows two compensating activities PP and QQ. The modes of
PP are also shown as a Mode Automaton in bottom of the the Fig.21. The com-
pensating activities PP and QQ are shown as two concurrent state machines. In the
forward mode of P the variable x is incremented by 1. In case the forward activity
of QQ = Q ÷ Q̄ fails, it is compensated by the compensating mode P̄ of PP. The
actual action in each activity is written as a dataflow equation in the box. These
could be the tasks as shown in earlier in the Esterel code. In Fig. 22 we show the
composite Mode Automaton.

9 VERIFICATION

We only discuss the verification approach in case of conventional UML AD (i.e.
without compensation). The model captures the operational semantics of activity
diagrams. However it is not amenable to formal verification using model checking
due to presence of asynchronous tasks invoked by the exec statements. For the
purpose of verification, it is required to do a control abstraction of the Esterel models
whereby we only retain the labels where the task is to be created. The derived model
is thus converted into a pure Esterel program and one can perform a constructive
causality analysis using the Esterel compiler option of causal. This model can then

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 213

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

x:=if x>0 then pre(x)−1
else 0

x:=if x>0 then pre(x)−1
else 0

X

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

x:=0−>pre(x)+1 Killw

x:=0−>pre(x)+1

PP QQ

finish_P

finish_P

fail_Q

τ

finish_P

fail_Q

Normal Mode

Compensating Mode

Figure 21: Mode Automata for Activity with Compensation

x:=if x>0 then pre(x)−1
else 0

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

x:=0−>pre(x)+1 Killw

finish_P

finish_P

fail_Q

τ

Killw

τ

x:=pre(x)*2

fail_Q

finish_P

finish_Q

Normal Mode

Compensating Mode

PP

QQ

Figure 22: Composition of Mode Automata

214 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

10 CONCLUSION AND FUTURE WORK

be converted into an automaton in BLIF (Berkley Logical Interchange Format)
format, which is accepted by the Esterel model checker xeve.

As an example, let us consider the activity diagram given in Fig. 9 with the
following very simple safety property: when both B1 and B2 activities are going
on activity A cannot be started. It is to be noted here that B1 and B2 are two
incarnations of the activity B. This is assuming that there is no queuing of input.
This could be verified by xeve. The screen shots taken from xeve are included here
in Figs.23,24 for reference.

Figure 23: Verification Screen
Figure 24: Output of Verification

10 CONCLUSION AND FUTURE WORK

We have explored the specification of operational semantics for the Activity Dia-
grams of UML 2.0 in a synchronous style. The semantics is good for simulation,
code generation and verification. All the constructs can be expressed uniformly in
the constructs of Esterel. In this approach the external action done in the activ-
itynode can be easily modeled as an external task in the Esterel language. The
exception handling in Petri Nets as shown in [26] is rather difficult which can be
modeled easily in our framework. We have later extended the syntax and semantics
to handle business processes which are prone to failure and require compensating
actions. Further work is required to study capabilities and compare with BPMN
[3]. We are also working on verification approaches required for the compensating
activities.

REFERENCES

[1] OMG: Unified Modeling Language : Superstructure, Version 2.0, Revised Final
Adopted Specification, October 8, 2004, Source: WWW.omg.org

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 215

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

[2] Douglass B.P. Real Time UML Advances in the UML for Real-Time Systems,
Pearson Edition,2004

[3] Business Process Modeling Notation (BPMN) Specification, Final Adopted
Specification, dtc/06-02-01, available from http://www.bpmn.org

[4] Business Process Execution Language for Web Services Ver 1.1, available from
http://www-128.ibm.com/developerworks/webservices/library/ws-bpel

[5] From UML to BPEL, Model Driven Architecture in a Web services world avail-
able from http://www-128.ibm.com/developerworks/webservices/library/ws-
uml2bpel

[6] van der Aalst,W. ter Hofstede A.Kiepuszewski B., Barros A., Workflow pat-
terns, Distributed and Parallel Databases, 14(3), 2003

[7] Russel N., van der Aalst , W. ter Hofstede A ., Peta WohedOn the Suitability
of UML 2.0 Activity Diagrams for Business Process Modelling,Proceedings of
the Third Asia-Pacific Conference on Conceptual Modelling ,APCCM, 2006.

[8] Yeong W.L. CSP-Based Verification for Web Service Orchestration and Chore-
ographySimulation,Society for Computer Simulation International, 2007

[9] Peter Y. H. Wong and Jeremy GibbonsA Process-Algebraic Approach to Work-
flow Specification and Refinement, In Proceedings of 6th International Sympo-
sium on Software Composition, March 2007

[10] Brookes S.D. , Hoare C.A.R, Roscoe A Theory of Communicating Sequential
Process, JACM, Vol 31, 1984

[11] Milner R., Communication and Concurrency, Prentice Hall, 1989.

[12] Hoare T. Compensable Transactions from Slides Presented atUNI-IIST, Beijing,
May 2006

[13] Berry G, Gonthier G., The Esterel Synchronous Programming Language: De-
sign, Semantics, Implementation, Science of Computer Programming, 1992.

[14] Butler M., Ferriera C., A Process Compensation Language, IFM’ 2000, LNCS
1945, 2000

[15] Butler, M., Hoare, C. A. R. and Ferreira, C.,A trace semantics for long-running
transactions. In Proceedings of 25 Years of CSP, LNCS 3525

[16] Bhattacharjee A.K., Dhodapkar S.D., Seshia S., Shyamasundar R.K. PERTS:
an environment for specification and verification of reactive systems , Reliability
Engineering & Systems Safety Journal, 71(2001), Elsevier, UK, 2001

216 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

10 CONCLUSION AND FUTURE WORK

[17] Rajan B. and Shyamasundar R.K., An Implementation of Communicating Re-
active Processes IASTED - PDCN’97, Int. Conf. on Parallel and Distributed
Computing and Networks, Singapore, 1997

[18] Berry G., Ramesh S., Shyamasundar R.K. :Communicating Reactive Processes,
20th ACM Symposium on Principles of Programming Languages, 1993

[19] Magee and Kramer Concurrency : State Models and Java Programs, Wiley
1999

[20] Fu X., Bultan T., Su J. Analysis of interacting BPEL web services, Proceedings
of the 13th international conference on World Wide Web, ACM Press, 2004

[21] Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer, Model-based Verifi-
cation of Web Service Compositions,Eighteenth IEEE International Conference
on Automated Software Engineering (ASE), Montreal, Canada, 2003.

[22] Augusto, J. C., Leuschel, M., Butler, M. and Ferreira, C.Using the Extensible
Model Checker XTL to Verify StAC Business Specifications. In Proceedings of
3rd Workshop on Automated Verification of Critical Systems (AVoCS 2003)

[23] Mariya Koshkina, Franck van Breugel, Modelling and verifying web service or-
chestration by means of the concurrency workbench ACM SIGSOFT Software
Engineering Notes, Volume 29 , Issue 5, September 2004.

[24] Eshuis Rik, Semantics and Verification of Activity Charts, Ph.D Thesis, Uni-
versity of Twente, 2002

[25] Bruni R., Melgratti H, Montanari U., Theoretical Foundations for Compensa-
tions in Flow Composition Languages,POPL 2005

[26] Harald Storrle, Semantics of UML 2.0 Activities,German Software Engineering
Conference, 2005.

[27] Bhattacharjee A.K., Shyamasundar R. K.: Validated Code Generation for Ac-
tivity Diagrams,Distributed Computing and Internet Technology, Second In-
ternational Conference, ICDCIT 2005, Bhubaneswar, India, December 22-24,
2005, Proceedings. Lecture Notes in Computer Science 3816 Springer 2005

[28] Emmi M., Majumdar R.Verifying compensating transactions., VMCAI 2007,
LNCS 4349.

[29] Sebastian Pavel, Jacques Noye, Pascal Poizat, Jean-Claude Royer,Java Imple-
mentation of a Component Model with Explicit Symbolic Protocols, Software
Composition, 4th International Workshop,2005,Edinburgh, LNCS 3628.

[30] BPELJ:BPEL for Java technology available from http://www-
128.ibm.com/developerworks/ library/specification/ws-bpelj.

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 217

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

[31] Harel D. and Naamad A., The STATEMATE Semantics of Statecharts, ACM
Trans. on Software Engineering Method. 5:4 October 1996.

[32] Maraninchi F. and Reymond Y.,. Mode-automata: About modes and states for
reactive systems. In European Symposium on Programming, ESOP’98, Lisbon,
April 1998

A BRIEF DISCUSSION ON CSP

In CSP the ultimate unit in the behaviour of a process is an event (conditions)
which are regarded as instantaneous and A is the set of all events. The behaviour
of a process upto some instant of time can be a record of events in which it has
participated. The basic CSP processes are

P ::= STOP | SKIP | e→ P | c?x→ P |

P2Q | P uQ | P ; Q | P ‖X Q | P\A | µx.P (x)

The process STOP can perform no events: it represents the end of a pattern of
behaviour. The process SKIP can do nothing but terminate and the future behaviour
is determined by the expression following the next sequential composition symbol.
The process e→ P (”e then P”) is ready to perform the event e and if this event is
performed, the future behaviour of this process is described by term P. The query
symbol, ?, denotes a choice of events: the process c?x→ P is ready to perform any
event of the form c.x; if this process performs a particular event c.a, then x takes the
value a for the rest of the current scope. The symbol 2 denotes an external choice of
behaviours. if x and y are distinct events (x→ P2y → Q) describes a process which
initially engages in either of the event x or y. The notation P uQ (P or Q) denotes
a process which behaves either like P or like Q, where the choice is made internally
and may represent run-time nondeterminism. P;Q denotes a process which initially
behaves like P and upon successful termination of P behaves like Q. The parallel
composition, P ‖ Q, specifies the process which behaves like the system composed
of processes P and Q interacting in lock step synchronisation. The set of events
that can occur only if performed simultaneously by both processes. In P ‖X Q, the
execution of the activities in P and Q are synchronized over X. The hiding operator
internalises sets of events: the expression P\A denotes a process that behaves exactly
as P, except that events from the set A are no longer visible in the environment i.e.
they may not be shared with, and do not require the cooperation of, other processes.
A recursive process like a clock can be defined as µx : (tick) | (tick → x).

Traces play a central role in CSP in describing the behaviour of processes. A
trace of the behaviour of a process is a finite sequence of symbols recording the
events in which the process has engaged up to some moment in time. traces[•] is a
semantic function which maps a CSP expression to its set of possible traces. The set
of all such traces is defined by traces[P] = {s ∈ A∗ | ∃Q.P s→ Q}. The general CSP

218 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

B ESTEREL

process composition rules defined in terms of antecedent and consequent A1,A2,··· ,An
C

are defined below :

Termination
SKIP

√
→STOP

Prefix
a→P a→P

Choice P
a→P ′

P2Q
a→P ′

Q
a→Q′

P2Q
a→Q′

Sequence P
a→P ′∧a6=

√

P ; Q
a→P ′; Q

P
√
→0∧Q a→Q′

P ; Q
a→Q′

Interleaving Parallel P
a→P ′∧a6∈A

P‖AQ
a→P ′‖AQ

Q
a→Q′∧a6∈A

P‖AQ
a→P‖AQ′

Synch. Rule P
a→P ′∧Q a→Q′∧a∈A
P‖AQ

a→P ′‖AQ′

B ESTEREL

The basic object of Esterel without value passing, referred to as PURE Esterel, is
the signal. Signals are used for communication with the environment as well as for
internal communication. The programming unit is the module. A module has an
interface that defines its input and output signals and a body that is an executable
statement:

module M:

input I1, I2;

output 01, 02;

input relations

statement

end module

At execution time, a module is activated by repeatedly giving it an input event
consisting of a possibly empty set of input signals assumed to be present and satis-
fying the input relations. The module reacts by executing its body and outputs the
emitted output signals. We assume that the reaction is instantaneous or perfectly
synchronous in the sense that the outputs are produced in no time. Hence, all nec-
essary computations are also done in no time. The only statements that consume
time are the ones explicitly requested to do so. The reaction is also required to be
deterministic: for any state of the program and any input event, there is exactly
one possible output event. In perfectly synchronous languages, a reaction is also

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 219

ACTIVITY DIAGRAMS : A FORMAL FRAMEWORK TO MODEL BUSINESS PROCESSES AND CODE
GENERATION

called an instant. Instantiation of a module is done through the run statement. For
instance, run exchange [X1/E1, ... Xn/En] copies the body of the module exchange
in place of the run command after renaming all occurrences of the signals X1, ...
Xn by E1, ... En respectively; in other words, the parameters are bound by capture.

Asynchronous tasks are those tasks which do take time; that is, the time between
initiation and completion is observable. In the terminology of Esterel, this can be
interpreted to mean that there will be at least one instant between initiation and
completion. The exec primitive provides the interface between Esterel modules
and asynchronous tasks. An asynchronous task is declared by the statement “task
task id (f par lst) return signal nm (type);” where task id is the name of the task,
f par lst gives the list of formal parameters (reference or value) and the signal
returned by the task is given by the signal nm with its type after the keyword
return Instantiation of the task is done through the primitive exec. For example,
the above task can be instantiated from an Esterel program as “exec task id

(a par lst);”.

A typical task declaration appears as “task ROBOT move (ip, fp) return complete”
and the call appears as “exec ROBOT move (x,y)”. The execution of this statement
in some process starts task ROBOT move and awaits for the return signal complete
for it to proceed further. In other words, exec requests the environment to start
the task and then waits for the return signal.

ABOUT THE AUTHORS

Anup Kumar Bhattacharjee has a Master of Technology from IIT Kharagpur
in Computer Science and he is a doctoral student under Prof. R.K. Shyamasun-
dar, TIFR. He is employed with BARC, Mumbai, India. He can be reached at
anup@barc.gov.in.

R.K. Shyamasundar has a Ph.D in Computer Science and Automation from IISc,
Bangalore. He did his post-doctoral work during 1978-1979 as an International Re-
search Fellow at Eindhoven Technological University, Eindhoven, Netherlands under
the famed Professor Dr. Edsgar W Dijkstra. He was the first Dean of the School
of Technology and Computer Science at the Tata Institute of Fundamental Re-
search. He had various assignments at IBM TJ Watson Research center, Eindhoven
University of Technology, The Netherlands, State University of Utrecht, the Nether-
lands, Pennsylvania State University, University of Illinois at Urbana, University of
California, San Diego, ENSMP Sophia Antipolis, IRISA, Rennes, Verimag Greno-
ble Max Planck Institute for Computer Science at Saarbrucken etc. He has more
than 200 publications and several patents in US and India. Thirty students have
done their Ph.D. under his guidance in India and abroad. He can be reached at
shyam@tcs.tifr.res.in.

220 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 1

mailto:anup@barc.gov.in
mailto:shyam@tcs.tifr.res.in

