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versità degli Studi di Trento, Italy

We propose an extension to the security model of Java, that allows for specifying,
analysing and enforcing history-based usage policies. Policies are defined by usage
automata, that recognize the forbidden execution histories. Programmers can sandbox
an untrusted piece of code with a policy, which is enforced at run-time through its
local scope. A static analysis allows for optimizing the execution monitor: only the
policies not guaranteed to be always obeyed will be enforced at run-time.

1 INTRODUCTION

A fundamental concern of security is to ensure that resources are used correctly.
Devising expressive, flexible and efficient mechanisms to control resource usage is
therefore a major issue in the design and implementation of security-aware program-
ming languages. The problem is made even more crucial by the current programming
trends, which allow for reusing code, and exploiting services and components, offered
by (possibly untrusted) third parties. It is common practice to pick from the Web
some scripts, or plugins, or packages, and assemble them into a bigger program,
with little or no control about the security of the whole.

Stack inspection, the mechanism adopted by Java [26] and the .NET CLR [37],
offers a pragmatic setting for access control. Roughly, each frame in the call stack
represents a method; methods are associated with “protection domains”, that re-
flect their provenance; a global security policy grants each protection domain a set
of permissions. Code, tipically within libraries, includes local checks that guard
access to critical resources. At run-time, an access authorization is granted when
all the frames on the call stack have the required permission (a special case is that
of privileged calls, that trust the methods below them in the call stack). Being
strongly biased towards implementation, this mechanism suffers from some major
shortcomings. First, there is no automatic mechanism to decide where checks have
to be inserted. Since forgetting even a single check might compromise the safety
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of the whole application, programmers (in particular, library programmers) have
to carefully inspect their code. This may be cumbersome even for small programs,
and it may lead to unnecessary checking. Second, many security policies are not
enforceable by stack inspection. Indeed, those security policies affected by some
method that has been removed from the call stack cannot be enforced by inspecting
just the call stack. This may be harmful, e.g. when trusted code depends on the
results supplied by untrusted code [25].

History-based access control generalizes stack inspection, as the run-time moni-
tor can check (a suitable abstraction of) the whole execution. History-based policies
and mechanisms have been studied at both levels of foundations [3, 24, 42] and
of language design and implementation [1, 21]. A common drawback of these ap-
proaches is that a policy must be respected through the whole execution. This may
involve guarding each resource access, and ad-hoc optimizations are then in order
to recover efficiency, e.g. compiling the global policy to local checks [18, 33]. Also,
a large monolithic policy may be hard to understand, and not very flexible either.

Local policies [7] generalise both history-based global policies and local checks
spread over program code. They exploit a scoping mechanism to allow the program-
mer to “sandbox” arbitrary program fragments. Local policies smoothly allow for
safe composition of programs with their own security requirements, and they can
drive call-by-contract composition of services [9]. In mobile code scenarios, local
policies can be exploited, e.g. to model the interplay among clients, untrusted ap-
plets and policy providers: before running an untrusted applet, the client asks the
trusted provider for a suitable policy, which will be locally enforced by the client
throughout the applet execution.

In this paper, we outline the design and the implementation of an extension to
the security model of Java, which features history-based local usage policies. In the
spirit of JML [32], policies are orthogonal to Java code. They are defined through our
usage automata, a variant of finite state automata (FSA), where the input alphabet
comprises the security-relevant events, parameterized over objects. So, policies can
express any regular property on execution histories. Our policies are local, in the
sense that programmers can define their scope through a “sandbox” construct.

The first contributions of this paper are a language for specifying usage policies,
and a run-time mechanism for enforcing them on Java programs. Some remarkable
features of our technique are that:

• our usage policies are expressive enough to model interesting security require-
ments, also taken from real-world applications. For instance, in Sec. 3 we use
them to specify the typical set of policies of a realistic bulletin board system.
At the same time, usage policies are statically amenable, i.e. model-checking
usage policies against given abstractions of program usages (named history
expressions) is decidable in polynomial time.

• apart from the localization of sandboxes, enforcing policies is completely trans-
parent to programmers. Moreover, since the enforcement mechanism is based
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on bytecode rewriting, it does not require a custom Java Virtual Machine.

• even in the case when the program source code is unavailable, we still allow
for specifying and enforcing policies on its behavior.

The second contribution of this paper is an optimization of the run-time enforce-
ment mechanism. This is based on a static analysis that detects the policies violated
by a program in some of its executions [10]. The analysis is performed in two phases.
The first phase over-approximates the patterns of resource usages in a program. The
second phase consists in model-checking the approximation of a program against the
policies on demand. Summing up, we optimise the run-time security mechanism,
by discarding the policies guaranteed to never fail, and by checking just the events
that may lead to a violation of the other policies.

The third contribution is an open-source implementation of the above-mentioned
techniques as an Eclipse plugin, within the Jalapa Project [31]. We provide pro-
grammers with a development environment that offers facilities to write the usage
policies, use them to sandbox Java code, and compile it with the needed hooks to the
security monitor. Also, through the plugin it is possible to run the static analysis,
to discover which policies can be disregarded by the security monitor.

An example. Consider a trusted component NaiveBackup that offers static meth-
ods for backing up and recovering files. Assume that the file resource can be accessed
through the interface below. The constructor takes as parameters the name of the
file and the directory where it is located. A new file is created when no file with the
given name exists in the given dir. The other methods are as expected.

public File(String name, String dir);
public String read();
public void write(String text);
public String getName();
public String getDir();

In the class NaiveBackup, the method backup(src) copies the file src into a
file with the same name, located in the directory /bkp. The method recover(dst)

copies the backed up data to the file dst. As a näıve attempt to optimise the access
to backup files, the last backed up file is kept open.
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class NaiveBackup {
static File last;
public static backup(File src) {
if(src.getName() != last.getName())
last = new File(src.getName(), "/bkp");

last.write(src.read());
}
public static recover(File dst) {
if(dst.getName() != last.getName())
last = new File(dst.getName(), "/bkp");

dst.write(last.read());
}

}

Consider now a malicious Plugin class, trying to spoof NaiveBackup so to obtain
a copy of a secret passwords file. The method m() of Plugin first creates a file called
passwd in the directory "/tmp", and then uses NaiveBackup to recover the content
of the backed up password file (i.e. /bkp/passwd).

class Plugin {
public void m() {
File g = new File("passwd","/tmp");
NaiveBackup.recover(g);

}
}

To prevent from this kind of attacks, the Plugin is run inside a sandbox, that
enforces the following policy. The sandboxed code can only read/write files it has
created; moreover, it can only create files in the directory "/tmp". This policy is
specified by the usage automaton file-confine in Fig. 1 (left). This resembles a
finite state automaton, but its edges carry variables (f and d) and guards (when
d!="/tmp"). The policy is parametric over all such variables. The policy is violated
whenever some instantiation of these variables to actual objects drives the automa-
ton to an offending state. The tag aliases introduces some convenient shorthands
for the security-relevant methods mentioned in the policy. For instance, new(f,d)
abstracts from invoking the constructor of the class File on the target object f.

The remaining part describes the automaton: the tag states is for the set of
states, start is for the initial state, and final is for the final, offending state.
The tag trans preludes to the transition relation of the automaton. The edge
from q0 to q1 represents creating a file f in the directory "/tmp" (the name of the
file is immaterial). The edge from q0 to fail labelled read(f) prohibits reading
the file f if no new(f,d) has occurred beforehand. Similarly for the edge labelled
write(f). The edge from q0 to fail labelled new(f,d) when d!="/tmp" prohibits
creating a file in any directory d different from "/tmp". In Fig. 1 (right), the
policy is depicted in the usual notation of finite state automata. For instance,
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name: file-confine
aliases:
new(f,d) := (f:File).<init>(String n,String d)
read(f) := (f:File).read()
write(f) := (f:File).write(String t)
states: q0 q1 fail
start: q0
final: fail
trans:
q0 -- new(f,"/tmp") --> q1
q0 -- new(f,d) --> fail when d!="/tmp"
q0 -- read(f) --> fail
q0 -- write(f) --> fail

new(f,d) when d!="/tmp"

read(f)

write(f)

q0

new(f,"/tmp")

q1

fail

Figure 1: Usage automaton file-confine for the file confinement policy.

the trace new(f,"/tmp") write(f) respects the policy (the offending state cannot
be reached), while both new(f,"/home") and read(passwd) violate it. The trace
new(f1,"/tmp") new(f2,"/etc") violates the policy, too: while instantiating the
policy with f=f1 drives the automaton to the safe state q1, the instantiation f=f2

causes the offending state fail to be reached.

class Main {
public static void main() {
File f = new File("passwd","/etc");
NaiveBackup.backup(f);
PolicyPool.sandbox("file-confine", new Runnable() {
public void run() {
new Plugin().m();

}});
}

}

The class Main first backs up the passwords file through the NaiveBackup. Then,
it runs the untrusted Plugin inside a sandbox enforcing the policy file-confine.
The Plugin will be authorized to create the file "/tmp/passwd", yet the sandbox
will block it while attempting to open the file "/bkp/passwd" through the method
NaiveBackup.recover(). Indeed, Plugin is attempting to read a file it has not cre-
ated, which is prohibited by file-confine. Any attempt to directly open/overwrite
the password file will fail, because the policy only allows for opening files in the di-
rectory "/tmp". Note that our sandboxing mechanism enables us to enforce security
policies on the untrusted Plugin, without intervening in its code.
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2 SECURING JAVA

We now introduce our extension to the security model of Java. We are interested in
specifying and enforcing safety policies of method traces, i.e. the sequences of run-
time method calls. We define policies through usage automata, an automata-based
policy language featuring facilities to deal with method parameters. We found this
model suitable for expressing a wide variety of usage policies, also taken from real-
world scenarios. In the setting of usage control, finite-state policies are typically
enough; using more powerful formalisms, e.g. pushdown automata, would add a
marginal practical gain, at the cost of more complex enforcement mechanism and
analysis. The scope of policies needs not be global to the whole program; we use
sandboxes to localize the scope of a policy to a given program fragment. We conclude
by specifying an enforcement mechanism for our policies. In the next section, we
will show how we actually implemented this mechanism to secure Java programs.

Aliases and events

As mentioned above, our policies will constrain the sequence of run-time method
calls. Clearly, any policy language aiming at that will need some facilities to abstract
from the (possibly infinite) actual parameters occurring in program executions. To
do that, one could use method signatures as a basic building block to specify policies.
However, this may lead to unnecessarily verbose specifications; so, we provided our
policy language with a further indirection level, which helps in keeping simple the
writing of policies.

We call aliases our abstractions of the security-relevant methods. Let m be a
method of class C, with signature (y : C).m(C1 y1, . . . , Cn yn), where y is the target
object. An alias ev(x1, . . . , xk) for m is defined as:

ev(x1, . . . , xk) := (y : C).m(C1 y1, . . . , Cn yn)

where {x1, . . . , xk} ⊆ {y, y1, . . . , yn} (note that the set inclusion may be strict, when
some parameters in the method signature are irrelevant for the policy of interest).

For instance, recall the aliases introduced in Fig. 1:

new(f,d) := (f:File).<init>(String name, String d)

read(f) := (f:File).read()

write(f) := (f:File).write(String t)

The first item means that new(f,d) is an alias for the constructor of the class File
with parameters name and d, both of type String. In the other items, read(f)

(resp. write(f)) is an alias for the method read() (resp. write(String t)) of the
same class. The parameter f is the target object, in this case of class File. Note
that the parameter t, irrelevant for our policy, is not mentioned in the aliases. Note
also that aliasing is not an injective function from method signatures to aliases. For
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instance, if multiple methods were provided to write a file, they could be abstracted
to a single alias write(f), so simplyfing the definition of the usage automaton.

As a method call is the concrete counterpart of a method signature (the formal
parameters in the latter are concretised into actual parameters in the former), an
event is the concrete counterpart of an alias. Summing up, we have a mapping from
method calls to events, and – by lifting this to sequences – a mapping from method
traces to event traces. For instance, the method trace:

g.<init>("passwd","/etc") f.read() g.write("secret")

is abstracted into the event trace:

new(g,"/etc") read(f) write(g)

Usage automata

We define safety policies on the method traces through usage automata. They
are an extension of finite state automata, where the labels on the edges may have
variables and guards. Variables represent universally quantified resources, while
guards express conditions among resources. A usage automaton is specified in plain
text as follows:

name: name of the usage automaton
aliases: set of aliases
states: set of states
start: initial state
final: final (offending) states
trans: set of labelled edges

The first item is just a string, to be used when referencing the usage automaton
(e.g. in the definition of sandboxes, see below). The second item lists the aliases
(separated by newlines) relevant for the policy. The remaining four items define
the operative part of the usage automaton, i.e. its finite set of states (separated by
spaces), the initial and the final states, and the set of edges. The formal parameters
of a usage automaton are the variables occurring in its edges.

To define an edge from state q to state q’ we use the following syntax:

q -- label --> q’ when guard

The label is a (possibly, partial) concretisation of an alias defined in the aliases

item. Concretising an alias ev(x1, . . . , xk) results in a label of the form ev(Z1, . . . , Zk),
where each Zi can be either:
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• S, for a static object S. Static objects comprise strings (e.g. "/tmp"), final
static fields (e.g. User.guest), and values of enum types.

• x, for some variable x. This means that the parameter at position i is univer-
sally quantified over any object.

• ∗, a wildcard that stands for any object.

A guard represents a condition among resources, defined by the following syntax:

guard ::= true | Y!=Z | guard and guard

where Y and Z are either static objects or variables. The guard when true can be
omitted. For the sake of minimality, we introduced only two logical operators, in
Section 6 we discuss some possible extensions to the language of guards.

Note that policies can only control methods known at static time. In the case of
dynamically loaded code, where methods are only discovered at run-time, it is still
possible to specify and enforce interesting classes of policies. For instance, system
resources – which are accessed through the JVM libraries only – can always be
protected by policies.

To give semantics to usage automata, one can proceed in two equivalent ways.
The first consists in reconducting them to finite state automata, by instantiating the
formal parameters (i.e. the variables occurring in their edges) to actual parameters.
The second way consists in exploiting them to define a run-time monitor that checks
all the method invocations occurring in a program execution, and aborts it when
an attempted policy violation is detected. In [5] this two approaches are shown
equivalent in an abstract framework.

Here, we focus on the run-time monitor approach, detailed in the next sub-
section in the concrete framework of Java, and we only give below the intuition
on when a trace complies with the policy defined by a usage automaton. As said
above, we reconduct a usage automaton to a (finite) set of finite state automata
(FSA), by instantiating the formal parameters into actual objects. A trace complies
with a policy if it is not recognized by any of the resulting FSA. Actually, the final
states in usage automata represent policy violations: a trace leading to a final state
suffices to produce a violation. An alternative approach would be the “default-deny”
one, that allows for specifying the permitted usage patterns, instead of the denied
ones. We could deal with this approach be regarding the final states as accepting.
Both the default-deny and the default-allow approaches have known advantages and
drawbacks. Below we will give a more formal account, by specifying our enforcement
mechanism.

The instantiation procedure roughly amounts to: (i) binding each formal pa-
rameter to each object (of compatible type) encountered in the method trace, (ii)
removing the edges not respecting the conditions in the guards, and (iii) adding
self-loops for all the events not explicitly mentioned in the usage automaton.
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Back to our running example, consider the following event traces (easily ab-
stracted from the actual method traces):

η0 = new(f0, "/tmp") read(f1)
η1 = new(f0, "/tmp") read(f0)
η2 = new(f0, "/tmp") read(f0) new(f1, "/etc")

The trace η0 violates the policy file-confine, because it drives to the offending
state fail the FSA obtained by binding the parameters f and d to f1 and "/tmp".
The trace η1 respects the policy, because the read event is performed on a newly
created file f0 in the directory "/tmp" (recall that the instantiated FSA will have a
self-loop labelled read(f0) on q1). Instead, η2 violates the policy, because it drives
to the state fail the FSA obtained by binding the parameters f and d to f1 and
"/etc". Indeed, since the guard is satisfied, the instantiated FSA has an edge
labelled new(f1, "/etc") from q0 to fail.

Enforcement mechanism

We now introduce an enforcement mechanism for usage automata, that is suitable
for run-time monitoring. The configurations of our mechanism have the form:

Q = {σ0 7→ Q0, . . . , σk 7→ Qk}

where, for each i ∈ 0..k, σi is a mapping from the parameters of U to actual objects,
while Qi contains states of U . Intuitively, each σi singles out a possible instantiation
of U into a finite state automaton AU(σi), while Qi represents the states reachable
by AU(σi) upon the method trace seen so far.

The configuration Q of the mechanism is updated whenever a method is invoked
at run-time. The formal specification is in Fig. 2, where with R(Q) we denote the set
of objects occurring in Q. The number of instantiations recorded by the mechanism
grows as new objects are discovered at run-time. Note the use of the distinguished
objects #1, . . . ,#p, that represent the objects before they actually appear in the
trace.

As an example, consider again the policy file-confine of Fig. 1, and the event
trace η0 = new(f0, "/tmp") read(f1). Upon the first event, the state of the monitor
is augmented with the following mapping (among the others, omitted for brevity):

{f 7→ f0, d 7→ "/tmp"} 7→ {q1}

When the event read(f1) is fired, the state is updated with the following mapping:

{f 7→ f1, d 7→ #1} 7→ {fail}

Since the offending state fail has been reached, a policy violation is triggered.
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INPUT: a usage automaton U and a method trace η.
OUTPUT: true if η complies with the policy defined by U , false otherwise.

1. Q := {σ 7→ {q0} | ∀x : σ(x) ∈ {#1, . . . ,#p} }, where q0 is the initial state of
U , #1, . . . ,#p are distinguished objects, p is the number of parameters of U

2. while η = o.m(o1, ..., on) η
′ is not empty, do:

(a) let ev(o′1, . . . , o
′
k) be the event abstracting from o.m(o1, . . . , on)

(b) for all i such that o′i 6∈ R(Q), extendQ as follows. For all σ occurring inQ
and for all mappings σ′ from the parameters of U to R(Q)∪{o′1, . . . , o′k}∪
{#1, . . . ,#p} such that, for all x, either σ′(x) = σ(x) or σ(x) = #j:

Q := Q [σ′ 7→ Q(σ)]

(c) let step(q) be the set of states q′ such that there exists an edge from q to q′

with label ev(x1, ..., xk) and guard g, where ev(x1, ..., xk)σi = ev(o′1, ..., o
′
k)

and gσi is true. Let step′(q) = if step(q) = ∅ then {q} else step(q). Then,
for all (σi 7→ Qi) ∈ Q, update Q as:

Q := Q [σi 7→
⋃

q∈Qi
step′(q)]

3. if Qi contains no final state for all (σi 7→ Qi) ∈ Q, then return true else false.

Figure 2: Enforcement mechanism for policies defined through usage automata.

Some optimization of the algorithm, omitted for brevity in Fig. 2, are possible.
For instance, there is no need to allocate in step (b) a new instance AU(σ), unless
AU(σ) can take a transition in step (c). Also, when an object o is garbage-collected,
we can discard all the instantiations AU(σ) with o ∈ ran(σ); it suffices to record the
states of Q(σ) in a special σ† for disposed objects.

Sandboxes

The programmer defines the scope of a policy through the method sandbox of the
class jisel.policy.PolicyPool. This signature of sandbox is:

public static void sandbox(String pol,Runnable c) throws SecurityException

The string pol is the name of the usage automaton that represents the policy to be
enforced through the execution of the code c. For instance:

PolicyPool.sandbox("file-confine", new Runnable() {
public void run() {

// sandboxed code
...

}
});
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The effect of this is that the method trace originated after the call to run() is
constrained to respect the policy defined by the usage automaton file-confine, at
each step. The past method trace is not considered by the policy. Note that when
run() returns, the policy is not enforced anymore — indeed, policies are local.

3 CASE STUDY: A SECURE BULLETIN BOARD

We illustrate the expressive power of usage policies through a simple bulletin board
system inspired by phpBB, a popular open-source Internet forum written in PHP.
We consider a Java implementation of the server-side of the bulletin board, and we
make it secure through a set of globally enforced usage policies.

The bulletin board consists of a set of users and a set of forums. Users can create
new topics within forums. A topic represents a discussion, to be populated by posts
inserted by users. Users may belong to three categories: guests, registered users,
and, within these, moderators. We call regular users those who are not moderators.
Each forum is tagged with a visibility level: PUB if everybody can read and write,
REG if everybody can read and registered users can write, REGH if only registered
users can read and write, MOD if everybody can read and moderators can write, MODH
if only moderators can read and write. Additionally, we assume there exists a single
administrator, which is the only user who can create new forums and delete them,
set their visibility level, and lock/unlock them. Moderators can edit and delete
the posts inserted by other users, can move topics through forums, can delete and
lock/unlock topics. Both the administrator and the moderators can promote users
to moderators, and viceversa; the administrator cannot be demoted. The public
interface of the bulletin board SecBB is given below.

User addUser(String username, String pwd);
Session login(String username, String pwd);
void logout(User u, Session s);
void deleteUser(User u0, Session s, User u1);
void promote(User u0, Session s, User u1);
void demote(User u0, Session s, User u1);
void addPost(User u, Session s, Post p, Topic t, Forum f);
void editPost(User u, Session s, Post p, Topic t, String msg);
void deletePost(User u, Session s, Post p, Topic t);
void addTopic(User u, Session s, Topic t, Forum f);
void deleteTopic(User u, Session s, Topic t, Forum f);
void moveTopic(User u, Session s, Topic t, Forum src, Forum dst);
void lockTopic(User u, Session s, Topic t);
void unlockTopic(User u, Session s, Topic t);
List<Post> viewTopic(User u, Session s, Topic t);
void addForum(User u, Session s, Forum f);
void deleteForum(User u, Session s, Forum f);
void setVisibility(User u, Session s, Forum f, Forum.Visibility v);
void lockForum(User u, Session s, Forum f);
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void unlockForum(User u, Session s, Forum f);
List<Topic> viewForum(User u, Session s, Forum f);

In this scenario, we assume only the bytecode of the bulletin board is available.
We consider below a substantial subset of the policies implemented (as local checks
hard-wired in the code) in phpBB, and we specify them through usage automata.
We shall globally enforce these policies by applying the Jisel Runtime Environment
to the whole bulletin board code.

• only registered users can post to a REG or REGH forum; only moderators can
post to a MOD or MODH forum.

• only registered users can browse a REGH forum; only moderators can browse a
MODH forum.

• the session identifier used when interacting with the bulletin board must be
the one obtained at login.

• a message can be edited/deleted by its author or by a moderator, only.

• a regular user cannot edit a message after it has been edited by a moderator.

• a regular user cannot delete a message after it has been replied.

• nobody can post on a locked topic.

• only moderators can promote/demote users.

• only moderators can lock/unlock topics.

• only the administrator can lock/unlock forums.

Also, some sanity checks can be easily specified as usage automata. For instance:
session identifiers must be fresh, users have to logout before logging in again, a
message cannot be posted twice, a topic cannot be created twice, a message belongs
to exactly one topic, a topic belongs to exactly one forum, a deleted message cannot
be edited, a deleted topic cannot be moved, non-existing topics and forums cannot
be locked/unlocked, etc.

We now show how to formalize some of the above-mentioned policies as usage
automata. It is convenient to introduce some aliases first.

post(u,s,p,t,f) := SecBB.addPost(User u, Session s, Post p, Topic t, Forum f)
edit(u,s,p) := SecBB.edit(User u, Session s, Post p, String msg)
delete(u,s,p) := SecBB.deletePost(User u, Session s, Post p)
lockT(t) := SecBB.lockTopic(User u, Session s, Topic t)
unlockT(t) := SecBB.unlockTopic(User u, Session s, Topic t)
promote(u0,u1) := SecBB.promote(User u0, Session s, User u1)
demote(u0,u1) := SecBB.demote(User u0, Session s, User u1)

Consider first the policy requiring that “nobody can post on a locked topic”.
This is modelled by the usage automaton no_post_locked_topic below. In the
start state q0, locking the topic t leads to q1. From q1, posting to the topic t (i.e.
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firing the event post(*,*,*,t,*), where * is a wildcard matching any resource)
leads to the offending fail state, while unlocking t leads back to q0.

Consider now the policy “only moderators can promote and demote other users”.
This is modelled by the usage automaton mod_promote_demote below. The state
q0 models u being a regular user, while q1, is for when u is a moderator. The first
two transitions actually represent u being promoted and demoted. In the state q0,
u cannot promote/demote anybody, unless u is the administrator. For example, the
trace η = promote(admin, u1) promote(u1, u2) demote(u2, u1) respects the policy,
while η promote(u1, u3) violates it.

name: no_post_locked_topic name: mod_promote_demote
states: q0 q1 fail states: q0 q1 fail
start: q0 start: q0
final: fail final: fail
trans: trans:
q0 -- lockT(t) --> q1 q0 -- promote(*,u) --> q1
q1 -- unlockT(t) --> q0 q1 -- demote(*,u) --> q0
q1 -- post(*,*,*,t,*) --> fail q0 -- promote(u,*) --> fail when u!=User.admin

q0 -- demote(u,*) --> fail when u!=User.admin

We now specify the policy stating that “the session identifier used when interact-
ing with the bulletin board must be the one obtained at login”. For simplicity, we
only consider post events; adding the other kinds of intraction is straightforward.
The needed aliases are defined as follows:

login(u,s) := SecBB.login(String username, String pwd)
> SessionTable.put(User u, Session s)

logout(u) := SecBB.logout(User u)

Note that the alias for the login event is defined quite peculiarly. This is because
the formal parameters of the method SecBB.login are two strings (user name and
password), while our policy needs to speak about a User and a Session. To do
that, we inspect the code of the method SecBB.login, and find that it implements
the action of logging in a user by inserting a pair (User u, Session s) into a
SessionTable. This is what the alias above stands for: an event login(u,s) is
fired whenever an SessionTable.put(User u, Session s) occurs between the call
and the return of SecBB.login(String username, String pwd). This new kind
of aliases can be dealt with through a mapping to usage automata that track both
the method calls and the returns. Except from requiring to track the return events,
these aliases do not affect the run-time enforcement and model checking.

The policy post_sid follows. The state q0 models u being a guest user, while in
q1, u has logged in. In the state q0, guests are prohibited from posting a message.
In the state q1, posting with a session id s2 is prohibited if s is not the same id s1

obtained at login.
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name: post_sid
states: q0 q1 fail
start: q0
final: fail
trans:
q0 -- post(u,*,*,*,*) --> fail when u!=User.guest
q0 -- login(u,s1) --> q1
q1 -- logout(u) --> q0
q1 -- post(u,s2,*,*,*) --> fail when s2!=s1

The policy mod_author_post states that “a message can be edited/deleted by its
author (unless it is a guest) or by a moderator, only”. The policy post_after_reply

below states that a regular user cannot delete a message after it has been replied
to. The states q0,q1, and q2 correspond to the conditions “not posted”, “posted, no
reply”, and “posted, replied”, respectively. Clearly, a delete event from q2 triggers
failure. The states q0’, q1’, and q2’ correspond to the same conditions, except
that u has been promoted to the moderator role. Thus, a user u that attempts to
delete the post p from the state q2’, does not violate the policy.

name: mod_author_post name: post_after_reply
states: q0 q1 q2 q3 fail states: q0 q1 q2 q0’ q1’ q2’ fail
start: q0 start: q0
final: fail final: fail
trans: trans:
q0 -- post(u,*,p,*,*) --> q1 q0 -- post(*,*,p,t,*) --> q1
q1 -- edit(u1,*,p) --> fail when u!=u1 q1 -- post(*,*,*,t,*) --> q2
q1 -- edit(User.guest,*,p) --> fail q2 -- delete(u,*,p) --> fail
q1 -- delete(u1,*,p) --> fail when u!=u1 when u!=User.admin
q1 -- delete(User.guest,*,p) --> fail q0 -- promote(*,u) --> q0’
q0 -- promote(*,u1) --> q2 q0’ -- demote(*,u) --> q0
q2 -- demote(*,u1) --> q0 q0’ -- post(*,*,p,t,*) --> q1’
q2 -- post(u,*,p,*,*) --> q3 q1 -- promote(*,u) --> q1’
q1 -- promote(*,u1) --> q3 q1’ -- demote(*,u) --> q1
q3 -- demote(*,u1) --> q1 q1’ -- post(*,*,*,t,*) --> q2’

q2 -- promote(*,u) --> q2’
q2’ -- demote(*,u) --> q2

4 THE JALAPA PROJECT

To support our approach, we started up an open-source project, called Jalapa [31].
Its main products are:
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• a runtime environment, called Jisel, that dynamically enforces local usage
policies to Java programs.

• a static analyser of Java bytecode, that constructs an abstraction (called his-
tory expression) of the behaviour of a program.

• a model checker that reduces the infinite-state system given by the history
expression to a finite one, and checks it against a set of policies. Only the
policies that do not pass model checking need to be enforced at run-time.

• an Eclipse plugin that combines the previous items into a developer environ-
ment, with facilities for writing policies, sandboxing code, and running the
static analyses.

In the remaining of this section, we describe in a little more detail the individual
components of Jalapa.

The Jisel Runtime Environment

The first step towards implementing the Jisel runtime environment consists in in-
tercepting the security-relevant operations of the program in hand, so to promptly
block them before they violate a policy.

Our approach is based on bytecode rewriting, similarly to [47]. We instrument
the Java bytecode, by inserting the pieces of code needed to implement the security
mechanism. First, we detect the set M of all the methods involved in policies.
We inspect the bytecode, starting from the methods used in the aliases, and then
computing a sort of transitive closure, through a visit of the inheritance graph.
Similarly to JavaCloak [40], we create a wrapper for each of these security-relevant
methods. A wrapper WC for the class C declares exactly the same methods of C,
implements all the interfaces of C, and extends the superclass of C. Indeed, WC can
replace C in any context, in that it admits the same operations of C. The wrapper
class WC has a single field, which will be assigned upon instantiation of C.

A method m of WC can be either monitored or not. If the corresponding method
m of C does not belong to M, then WC.m simply calls C.m. Otherwise, WC.m calls
the PolicyPool.check method that controls whether C.m can actually be executed
without violating the active policies. A further step substitutes (the references to)
the newly created classes for (the references to) the classes in the original program.

The method PolicyPool.check() implements the enforcement mechanism in
Fig. 2. Weak references [19] are used to avoid interference with the garbage collec-
tor. Standard references would prevent the garbage collector from disposing objects
referenced by the PolicyPool only, so potentially leading to memory exhaustion.
An object only referenced by weak references is considered unreachable, so it may
be disposed by the garbage collector. The result of check() is true if and only if
no policy automaton reaches an offending state. If so, the method call is authorized
and forwarded to the actual class; otherwise, a SecurityException is thrown.
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The instrumented code is deployed and linked to our run-time support, which
contains the resources needed by the execution monitor. Note that our instrumen-
tation produces stand-alone application, requiring no custom JVM and no external
components other than the library. The Jisel preprocessor takes as input the file
containing the needed policies, the directory where the class files are located, and
the directory where the instrumented class files will be written. To run the instru-
mented program, one must supply the set of policies to be enforced, besides the
inputs of the original program. Full details about the command lines are in [31].

Verification of usage policies

While the run-time enforcement mechanisms of Jisel ensure that policies are never
violated at run-time, they perform checks at each method invocation, imposing
some overhead on the code running inside a sandbox. In order to mitigate this
overhead, we verify programs to detect those policies that are always respected in
all the possible executions of the sandboxed code. For those policies that may fail,
our technique finds (an over-approximation of) the set of method calls that may
lead to violations. By exploiting this information, the run-time enforcement can
be optimized, since it is now safe to skip some run-time checks. Note that, in the
most general case, the Java source code could be unavailable, yet one might still
want to optimize its execution. To this aim, we perform our verification on the Java
bytecode.

Our verification technique consists of two phases, briefly described below.

• first, we extract from the bytecode a control flow graph (CFG), and we trans-
form it into a history expression [10], a sort of context-free grammar enriched
with special constructs for dealing with policies and events.

• then, we model-check the history expression against the usage policies enforced
by the sandboxes used in the program.

We now show an example where our verification technique can be exploited to
remove unneeded checks. Consider the following code snippet:

PolicyPool.sandbox("ssl", new Runnable() {
public void run() {

Connection c = new Connection(url);
c.startSSL();
for (String s : confidentialData)

c.send(s);
}});

The "ssl" policy (the full definition is omitted) ensures that no data is sent over
the network unless SSL is enabled beforehand, i.e. startSSL is invoked before every
send. Assume the related events are startSSL(c) and send(c) – we neglect the
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parameter s here. Our static analysis extracts the control flow graph, and transforms
it into the following history expression:

Hssl = νc. new(c) · startSSL(c) · µh. (send(c) · h+ ε)

The operator ·models sequential composition, + stands for non-deterministic choice,
µh is for recursion, and the binder νc defines the scope of a dynamically created
resource c. Intuitively, Hssl represents all the traces where a new connection c is
created, an SSL connection over c is started, and then a loop of send(c) is entered.

We then check Hssl against the "ssl" policy using our model checker, and
discover that no possible trace violates the policy. Therefore, we can safely remove
the sandbox, and directly execute the code, so improving its performance.

The static analyser

The CFG of a program is a static-time data structure that represents all the possible
run-time control flows. In particular, we are interested in constructing a CFG the
paths of which describe the possible sequences of method calls. This construction
is the basis of many interprocedural analyses, and a large amount of algorithms
have been developed, with different tradeoffs between complexity and precision [27,
38]. The approximation provided by CFGs is safe, in the sense that each actual
execution flow is represented by a path in the CFG. Yet, some paths may exist
which do not correspond to any actual execution. A typical source of approximation
is dynamic dispatching. When a program invokes a method on an object O, the run-
time environment chooses among the various implementations of that method. The
decision is not based on the declared type of O, but on the actual class O belongs to,
which is unpredictable at static time. To be safe, CFGs over-approximate the set of
methods that can be invoked at each program point. Similarly, CFGs approximate
the data flow, e.g. relating object creation (new) to the location of their uses (method
invocations). For each method invocation occurring in the program, say m(x), the
CFG defines a set of all the possible sources of the object denoted by x, i.e. which
new could have created x. Again, this is a safe approximation in the sense that this
is a superset of the actual run-time behaviour.

For each policy for which the original program defines a sandbox, the CFG
extracted at the previous step is transformed into an event graph. This operation
involves substituting events for method signatures, according to the aliases defined
in the policy, and suitably collapsing all the other nodes of the graph.

Finally, the event graph is transformed into a history expression. This is done
through a variant of the classical state-elimination algorithm for FSA [16]. For
instance, the history expression Hssl of the ssl example is obtained from the event
graph depicted in Fig. 3.

One of the main issues in converting CFGs to history expressions is to correctly
track objects. For instance, in Fig. 3 it is important to detect that c always denotes
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send(c)new(c) startSSL(c)

Figure 3: Event graph, from which the history expression Hssl is obtained.

the same object, so to express this information in the history expression without
losing precision. When this is not possible, e.g. because c = new Connection()

occurs in many places in the code, we need to use a more approximated history
expression. This is done by exploiting non-deterministic choice (+). In complex
scenarios that involve complex loops, and where c is used to represent different
objects, we resort to events of the form m(?), where ? stands for an unknown object.

The LocUsT model checker

The final phase of the analysis consists in model-checking history expressions against
usage policies. To do that, history expressions are transformed first into Basic
Process Algebras (BPAs, [14]), so to enable us to exploit standard model-checking
techniques [22]. Our algorithm checks that no trace of the BPA is also a trace
recognized as offending by the policy. To do that, we check the emptiness of the
pushdown automaton resulting from the conjunction of the BPA and the policy
(which denotes the unwanted traces). The transformation into BPA preserves the
validity of the approximation, i.e. the traces of the BPA respect the same policies
as those of the history expression. The crucial issue is dealing with the dynamic
creation of resources, which is not featured by BPAs. To cope with that, we devised
a sort of skolemization of history expressions, which uses a finite number of witness
resources. This transformation step provides a posteriori justification for the use of
history expressions as an intermediate language for program abstraction.

We implemented the model-checker as a Haskell program that runs in polynomial
time in the size of the history expression extracted from the event graph. Full details
about our technique and our LocUsT model-checker can be found in [10, 11].

5 RELATED WORK.

A wide variety of languages for expressing policies has been proposed over the years,
also as extensions to the security model of Java. A typical design compromise is that
between expressivity and performance of the enforcement mechanism. The latter
can be obtained either through an efficient implementation of the run-time monitor,
or by exploiting suitable verification techniques to optimize the monitor (e.g. by
removing some or all the dynamic checks).
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Policy languages

A characterization of the class of policies that can be enforced through run-time
monitoring systems is given in [41]. There, the policy language is that of security
automata, a class of Büchi automata that recognize safety properties. To handle the
case of parameters ranging over an infinite domains (e.g. the formal parameters of
a method), security automata resort to a countable set of states and input symbols.
While this makes security automata hardly usable as an effective formalism for
expressing policies, they can be used as a common semantic framework for policy
languages. For instance, the semantics of our usage automata can be given in terms
of a mapping into security automata. In [28] a characterization is given of the
policies that can be enforced through program rewriting techniques. In [12] a kind
of automata that can delete and insert events in the execution trace is considered.

Many approaches tend towards maximizing the expressivity, while disregarding
static optimizations. In [30] a customization of the JVM/KVM is proposed for ex-
tending the Java run-time enforcement to a wider class of security policies, mainly
designed for devices with reduced computational capabilities. The proposed frame-
work does not feature any static analysis. Polymer [13] is a language for specifying,
composing and dynamically enforcing (global) security policies. In the lines of edit
automata [12], a Polymer policy can intervene in the program trace to insert or
suppress some events. The access control model of Java is enhanced in [39], by
specifying fine-grained constraints on the execution of mobile code. A method in-
vocation is denied when a certain condition on the dynamic state of the system is
false. Security policies are modelled as process algebras in [2, 34, 35]. There, a
custom JVM is used, with an execution monitor that traps system calls and fires
them concurrently to the policy. When a trapped system call is not permitted by
the policy, the execution monitor tries to force a corrective event – if possible –
otherwise it aborts the system call. Since the policies of [13, 39, 2, 34, 35] are
Turing-equivalent, they are very expressive, yet they have some drawbacks. First,
the process of deciding if an action must be denied might not terminate. Second,
non-trivial static optimizations are unfeasible, unlike in our approach.

The problem of deciding whether the contract advertised by an application is
compatible with that required by a mobile device is explored in [20]. To do that, a
matching algorithm is proposed, based on a regular language inclusion test. In [36]
the model is further extended to use automata modulo theory, i.e. Büchi automata
where edges carry guards expressed as logical formulas. In this approach both the
policy and the application behavior are expressed using the same kind of automata.
Instead, using history expressions, which have the same expressivity of context-free
languages, allows for modelling richer behavior.

The problem of wrapping method calls to make a program obey a given policy
has been widely studied, and several frameworks have been proposed in the last
few years. Some approaches, e.g. the Kava system [47], use bytecode rewriting to
obtain behavioural run-time reflection. This amounts to modifying the structure of
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the bytecode, by inserting additional instructions before and after a method invoca-
tion. A different solution, adopted e.g. by JavaCloak [40], consists in exploiting the
Java reflection facilities to represent Java entities through suitable behavioural ab-
stractions. More in detail, a specific class loader substitutes proxies for the original
classes. A proxy is a dynamically defined Java class that implements the interfaces
of all and only the methods implemented by the wrapped class. Clearly, reflection
requires no changes in the monitored application code. However, this is not fully
applicable in our case, since currently it neither supports wrapping of constructors,
nor it allows one to handle methods not defined in some interface. Note that our
bytecode rewriting approach needs no such assumptions.

Verification of security policies

Many authors have studied verification techniques for history-based security at a
foundational level. Static and dynamic techniques have been explored in [18, 45,
33, 44], to transform programs and make them obey a given policy. While these
approaches consider global policies and no dynamic creation of objects, our model
also allows for local policies, and for events parameterized over dynamically created
objects. A typed λ-calculus with primitives for creating and accessing resources, and
for defining their permitted usages, is presented in [29]. A type system guarantees
that well-typed programs are resource-safe. The policies of [29] can only speak about
the usage of single resources, while ours can span over many resources, as seen in
the policies of Sect. 3. A model for history-based access control is proposed in [46],
which uses control-flow graphs enriched with permissions and a primitive to check
them, similarly to [6]. The run-time permissions are the intersection of the static
permissions of all the nodes visited in the past. The model-checking technique can
decide if all the permitted traces of the graph respect a given regular property on its
nodes. Unlike our usage automata, that can enforce regular policies on traces, the
technique of [46] is less general, because there is no way to enforce a policy unless
encoded as an assignment of permissions to nodes. Our model checking technique
allows for verifying properties of infinite structures (BPAs extracted from history
expressions). Efficient algorithms for model checking pushdown systems, which
share similarities with BPAs, and other infinite structures are proposed in [23, 17].

A lot of effort has been devoted to develop verification techniques for Java pro-
grams. The Soot project [43] provides a comprehensive Java optimization frame-
work, also exploiting static analysis techniques to compute approximated data flow
and control flow graphs, and points-to information. In [15] Java source programs
are monitored through tracematches, a kind of policies that constrain the execution
traces of method calls. Static analysis is used to prove that code adheres to the
tracematch at hand, so the monitor can be removed. Unlike ours, these policies
are global. Also, bytecode analysis is not considered. JACK [4] is a tool for the
validation of Java applications, both at the levels of bytecode and of source code.
Programmers specify application properties through JML annotations, which are as
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expressive as first-order logic. These annotations give rise to proof obligations, to be
statically verified by a theorem prover. The verification process might require the
intervention of the developer to resolve the proof obligations, while in our frame-
work the verification is fully automated. JACK can specify history-based policies
by using ghost variables spread over JML annotations to mimick the evolution of
a finite-state automaton defining the policy. Our formalism allows for expressing
history-based policies in a more direct and compact way. An extension of the syntax
of JML to express usage policies would be desirable.

6 CONCLUSIONS

We have presented an extension to the security model of Java. This is based on
history-based usage policies with local scope. These policies are naturally expressed
through usage automata, an extension of finite state automata where edges may
carry parameters and guards. The use of these automata is new in the context of
Java. It required extending the formal model of [8] with polyadic events, i.e. events
involving more than a single object, that model method invocations. We have pro-
posed a programming construct for specifying sandboxes, then designed and imple-
mented an execution monitor for enforcing them. We have devised a static analysis
that optimizes the run-time enforcement of policies. We exploit a control flow anal-
ysis of Java bytecode and the LocUsT model-checker to predict the policies that will
always be obeyed. For each policy which is possibly violated, the model-checker can
be used to over-approximate the set of methods leading to the violation, so allowing
us to guard them with suitable run-time checks. An open-source implementation
of our framework is available [31]. It features the full-fledged runtime environment
and model-checker, and a prototype of the static analyser.

We now discuss some possible extensions to our proposal. A significant improve-
ment consists in extending the language of policies by allowing for further logical
operators in guards. As a simple extension, we can add the “or” connective. This
can be done either in a native fashion, or by exploiting the existing operators. The
latter requires to transform logical conditions into disjunctive normal form, and to
create an edge for each disjunct. As a further extension, we can add a string match-
ing operator, similarly to the policy specification language of Java 2 [26]. This would
allow our policies to exploit the hierarchical structure of file paths and URLs, e.g.
to require that new files can only be created under a given directory. The expressive
power can be further increased by including the usage of JML boolean expressions,
like e.g. the evaluation of pure methods without side effects. This would allow to
directly specify policies that depend on implicit counters (e.g. no more than N kilo-
bytes of data can be transmitted). The impact of such a refinement on the static
analysis requires further investigation. Another improvement would be to allow our
policies to mention the values returned by methods. This can be done by exposing
these values when generating the “return” events.
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