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A Semantic Definition of Separate Type Check-
ing in C++ with Concepts

Marcin Zalewski and Sibylle Schupp, Chalmers University, Sweden

We formalize the informal definition of C++ concepts that is currently considered by
the C++ standardization committee for inclusion in the next version of the language.
Our definition captures the basic semantics of separate type checking, where concept-
constrained templates are checked separately from their uses and comprises of three
main parts: non-standard name lookup, type checking of constrained templates, and
implementation binding in concept maps. The formalization reveals two possible
problems in the informal definition: hiding of names is not respected and incompatible
implementations can be bound to concept entities. Furthermore, our definition allows
formulating intuitively correct code that is rejected by the informal specification.

1 INTRODUCTION

Generic libraries in C++ have long relied on templates, pieces of code parameterized by
types and values, to implement reusable data structures and algorithms. Such generic
code can be applied to families of types; in C++, application of generic code requires
instantiation of templates at compile time. While the families of types to which generic
libraries can be applied are infinite, types in each family share the characteristics specific
to the domain concept that these types represent.

A concept, then, can be considered, on the one hand, as a predicate on types, and,
on the other hand, as a specification of an abstract data type. Indeed, concepts have long
been used in C++ generic libraries, beginning with the Standard Template Library [15],
to document the syntax and semantics required from template parameters. True to the
specification aspect of concepts, the origins of this tradition can be traced back to the al-
gebraic specification language Tecton [11]. Since concepts have become an integral part
of generic programming in C++, direct support for concepts in the C++ language has been
proposed by several authors [6, 18]. Concepts are now de facto accepted (by the C++ ISO
standardization committee [13]) into C++0x, the next revision of C++, which is expected
to be completed by the end of this decade. As a language construct, concepts allow for
separate type checking where polymorphic, generic code (templates) and concrete types
are checked separately, against the contract represented by concepts. Then, at the point of
template instantiation, when the concrete types are substituted for template parameters, a
compiler only has to verify that the contract was checked earlier; if it was, the template
is guaranteed to work correctly (the guarantee may be weakened to permit optimizations,
see [9]). The definition of concepts for C++0x is given in natural language [7], in the style
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of the C++ standard. The wording of the definition takes about 80 pages alone, and the
complete C++ language definition spans several hundreds of pages.

Our main contribution is a formal definition of separate type checking with concepts,
with semantic judgments defined by inductive relations over the abstract syntax of a lan-
guage that captures the core functionality of concepts. Much of our semantic definition
treats the interaction of name lookup and implementation binding with concept refine-
ment, a mechanism that facilitates construction of concept hierarchies. Name lookup in
concepts differs from the usual lookup rules in C++; for example, function overload sets,
which are typically limited to the scope of one syntactic entity, can span multiple concepts
in a concept hierarchy. The implementation binding mechanism is entirely new to C++ in
that implementations are entirely separated from the types for which they are defined. Fur-
thermore, implementation binding may be non-local—the refinement relation propagates
implementations automatically, creating implicit concept maps. Every concept map intro-
duced implicitly must be compatible with the concept maps introduced previously; this
condition is quite difficult to define and is different from other mechanisms of C++. Our
formalized account of these features enables one to clearly understand all intricacies of
the design, disambiguating the natural language wording and, also, making hidden design
choices visible. In addition, our semantic rules may serve as a starting point for a compiler
implementer and provide a basis for a future, formal separate type checking safety proof.

The premise of separate type checking with concepts is that once constrained tem-
plates are checked against their requirements and concept maps are well-formed, tem-
plates can be safely instantiated without any additional type checking, provided that all
necessary concept maps have been defined. The checking of templates against constraints
and the binding of implementations in concept maps is captured, in our formalization, by
the program instantiation judgment, which relates a program to an environment if and
only if the program is correct. This judgment is the main premise of an extended version
of the separate type checking safety theorem proposed by Dos Reis and Stroustrup [18]
as a future work task for the C++ concept system. Program instantiation and the safety
theorem are described in detail in section 4 and the complete set of semantic judgments
is available in the accompanying technical report [31]. We introduce C++ concepts infor-
mally in section 2, supporting the discussion with code examples.

Notation

The semantics of concepts given in this paper is based on the latest version of the concept
wording at the time of writing [7] (available online at http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2008/), hereon referred to simply as “the wording.” Moreover,
we refer to parts of the wording by its sections and paragraphs, for instance, “clause 3.3.10
para. 1” for the first paragraph of section 3.3.10. The C++0x language extended by the
wording is referred to as ConceptC++ and the current version of the language is simply
C++. The language used for our formalization is referred to as X++.
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2 CONCEPTS, NAME LOOKUP, AND IMPLEMENTATION BINDING

In C++, a template is either a class or a function parameterized by types (also by values but
we do not discuss that here). When a template is defined, the compiler postpones all but
syntactic correctness checks for the parts of the template that depend on type parameters.
At instantiation time, the template is type-checked again with type arguments substituted
for parameters. Since full type checking does not occur until instantiation time, the de-
velopers and the users of generic libraries must agree on the semantics and the syntax
that template arguments must provide to guarantee the correct operation of generic code
when applied to these arguments. In the current C++ practice the agreement is described
in the documentation of a library where syntactic and semantic requirements of each tem-
plate are listed. Concepts for C++ provide direct support for expressing and checking of
requirements of templates within the language. Simply, concepts enable separate type
checking of the generic template code and of the particular types to which the generic
code can be applied.

In the remainder of this section, we provide an informal introduction to separate type
checking, including the details of refinement, name lookup, and implementation binding.
The discussion is supported by code examples that comply with the language specification
in the concept wording [7].

Introduction to Separate Type Checking

Listing 1 shows a simple example, illustrating the basics of separate type checking. Two
template functions, adding two values of an addable type, are defined, one is a usual,
unconstrained C++ template (lines 14–15) and the other is a constrained template with
a requires clause (lines 17–18). The unconstrained template returns a value of type
T::result_type and, consequently, requires that types with which it is used have a mem-
ber type result_type. Since nothing is known about the type parameter T and its mem-
bers, the typename keyword must be placed before the name T::result_type to explicitly
inform the compiler that the name will designate a member type. Then, two values a and
b are added and the result is returned. At this point, a compiler cannot check that the
addition produces a result of the expected type T::result_type because the definition of
the addition operation depends on template arguments and can only be looked up when
the template is instantiated. The constrained template is very similar but it requires that
its arguments model the Addable concept. The concept, defined on lines 5–8, has two
requirements, one for an associated type result_type and one for an associated function
operator+, which takes two arguments of the addable type T. The constrained template is
checked at the time of its definition, against the syntax introduced in the Addable concept.
Since Addable provides the associated type result_type and the associated operator+

that returns this type, the template type-checks. In difference to the unconstrained tem-
plate, result_type does not have to be preceeded with the typename keyword or qualified
by the parameter T because it can be looked up in the Addable concept.

When the unconstrained template is called on lines 21–22, the types of the arguments
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1 struct NotNumber {
2 typedef NotNumber result_type;
3 result_type operator+(NotNumber) { return result_type(); }
4 } a, b; // declare a and b of type NotNumber
5 concept Addable<typename T> {
6 typename result_type;
7 result_type operator+(T, T);
8 }
9 concept_map Addable<int> {

10 typedef int result_type;
11 result_type operator+(int a, int b) { return a+b; }
12 }
13

14 template<typename T>
15 typename T::result_type plus(T a, T b) { return a+b; }
16

17 template<typename T> requires Addable<T>
18 result_type cplus(T a, T b) { return a+b; }
19

20 int main() {
21 plus(1, 2); // error, int has no result_type
22 plus(a, b);
23 cplus(a, b); // error, no Addable<NotNumber> concept map
24 cplus(1, 2);
25 }

Listing 1: Type checking of constrained and unconstrained templates

are substituted for parameters and the template is type-checked. In the first call, the tem-
plate called with two integers fails to instantiate, because int, a built-in type, does not
have a member result_type. Even worse, there is no way to add such member to a type
that has already been defined or to add it at all to built-in types such as int. On line 22,
plus is called with two arguments of type NotNumber, which, as its name suggests, is not
a number. Incidentally, however, NotNumber matches the syntactic requirements of the
plus template and the instantiation succeeds even though the addition operator does not
have the desired semantics. The constrained template has the exactly opposite behavior.
When, on line 23, cplus is instantiated with arguments of type NotNumber, a concept map
Addable<NotNumber> does not exist and the instantiation process is halted with a corre-
sponding error. For int, however, an Addable<int> concept map is defined on lines 17–
18. This map provides implementations for the associated names of the concept Addable;
in particular, result_type is bound to int and operator+ to integer addition.

The process of separate type checking consists, in summary, of 3 major steps:

1. Checking of constrained templates in the context of concept requirements on their type
parameters;

2. implementation binding in concept maps checked against the signatures in correspond-
ing concepts;

3. instantiation of templates that were successfully type-checked with arguments for which
appropriate concept maps exist.

Type checking of constrained templates, thus, is essentially a name lookup problem; the
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constraints on the template parameters establish an environment in which names used in a
constrained template are looked up. Once the names are found, a template body is checked
as if the template parameters were usual types. In the second step, particular implemen-
tations are bound to the names provided by concepts. Name lookup and implementation
binding must match; for example, if an associated function is chosen between duplicate
signatures, these signatures must later have identical implementation so the semantics of
a program does not depend on the order of definitions.

Refinement, Name Lookup, and Implementations Binding

In the example in listing 1, there was only one concept and only one concept map but
generic libraries are always more complex. Instead of giving many large concepts, generic
libraries are founded upon conceptual hierarchies in which concepts refine other, simpler
concepts. The semantics of name lookup and implementation binding is complicated by
refinement. Name lookup in constrained templates must be performed throughout re-
finement hierarchies. Implementation bindings can be made at different points of these
hierarchies, requiring implementation compatibility checking and propagation.

Name Lookup

Name lookup in constrained templates applies to names of types and functions. We first
discuss the two independently, in listings 2 and 3, and then, in listing 4, give an example
of how the two lookups interact.

1 concept A<typename T> { typename t; }
2 concept B<typename T> : A<T> { typename t; }
3 concept C<typename T> { typename t; }
4 concept D<typename T> : B<T>, C<T> { }
5 concept E<typename T> : A<T>, C<T> { }
6

7 template<typename T> requires D<T>
8 struct Test1 { typedef t test1; typedef A<T>::t test2;
9 typedef B<T>::t test3; typedef C<T>::t test4; };

10

11 template<typename T> requires E<T>
12 struct Test2 { typedef t test1; };

Listing 2: Name lookup of associated types

In listing 2, a refinement hierarchy is formed where concept B refines concept A, con-
cept D refines concepts B and C, and concept E refines concepts A and C. Each of the
concepts A, B, and C introduces a requirement for an associated type t, while concepts D

and E do not introduce any new requirements but only refine other concepts. Two tem-
plate structures demonstrate how name lookup proceeds. The type parameter of the first
structure, Test1, is constrained by D. In definition of test1, which simply aliases the
name test1 to t, t is looked up in the scope of requirements, specifically in D<T>, which
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is the only requirement. In D there are three types named t, from A, B, and from C, but the
t of A is hidden by the t in B. Still, there are two ts to choose from, in B and C. In our
semantic definition (section 4), we state that the two ts must be the same in this case, al-
though the concept wording [7] requires that for the lookup to succeed without ambiguity,
the equivalence of the two types must be declared explicitly, through compiler-supported
concepts. Our decision to assume the equivalence of types stems from a fix to an error that
we have discovered in the wording—we discuss the details in section 5. In cases like this,
where types are equivalent, a representative still has to be chosen as the lookup result; the
wording proposes the one found in the depth-first, left to right traversal of the refinement
hierarchy in the order prescribed by the syntactic order in refinement lists. Consequently,
test1 becomes an alias for the B<T>::t. In the remaining definitions, t is looked up in
the qualifying scopes; B<T>::t and C<T>::t are the same type since they are both visible
and in the same refinement hierarchy, but A<T>::t may name a different type since it is
hidden by B<T>::t. In the second template, Test2, constrained by the requirement E<T>,
there are two ts visible, one in A and one in C. Since there is no hiding, t in the defini-
tion of test1 resolves to A<T>::t because of the depth-first traversal strategy (note that
A<T>::t and C<T>::t are the same type).

1 concept A<typename T> { void f(); }
2 concept B<typename T> { void f(); }
3 concept C<typename T> : A<T>, B<T> { void f(); }
4 concept D<typename T> : A<T>, B<T> { }
5

6 template<typename T> requires C<T>
7 void f1() { f(); } // C<T>::f
8

9 template<typename T> requires D<T>
10 void f2() { f(); } // A<T>::f
11

12 template<typename T> requires A<T>, B<T>
13 void f3() { f(); } // error, ambiguous

Listing 3: Name lookup of associated functions

Listing 3 gives an example of function name lookup in the presence of refinement.
Two concepts, A and B, have an associated function void f(). The concepts C and D

both refine A and B but C introduces its own associated function f. In the template f1

constrained by C, the functions from A, B, and C are visible and f from C is selected. Al-
though incidentally the result of the name lookup is very similar to that in inheritance,
name lookup proceeds entirely differently. The refinement hierarchy is traversed, starting
at C, and an overload set that contains all functions named f found in the hierarchy is
constructed—this is different from class hierarchies where name lookup may only result
in overload sets containing names from a single class (clause 10.2 of the C++ standard).
The overload set may contain functions with identical signatures, declared in different
concepts in the refinement hierarchy; these signatures are assumed to refer to the same
specification of a function. Consequently, rather than causing ambiguity, one of the iden-
tical signatures is chosen as a unique representative while the others are removed from the
overload set. As in type lookup, the strategy for picking representatives is to pick the sig-
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nature found first in a depth-first traversal of a refinement hierarchy and C<T>::f is thus
chosen. In the template f2, the situation is similar and A<T>::f is chosen. In the template
f3, there are two requirements, A<T> and B<T>. In this case, the two signatures A<T>::f

and B<T>::f are visible, but since they are not part of the same refinement hierarchy, as in
f2, it can be no longer safely assumed that the two signatures represent the same function
and the lookup results in ambiguity.

1 concept A<typename T> { typename t; void f(t); }
2 concept B<typename T> : A<T> { typename t; void f(t); }
3

4 template<typename T> requires B<T>
5 void f1(A<T>::t a, B<T>::t b) { f(a); f(b); } // calls A<T>::f and B<T>::f
6

7 template<typename T> requires B<T>, A<T>
8 void f2(A<T>::t a, B<T>::t b) { f(a); f(b); } // error, ambiguous

Listing 4: Name lookup of associated types and functions

The last example of name lookup, in listing 4, shows how lookups of associated types
and functions interact. The refinement hierarchy is simple, concept B refines concept A.
Both concepts require an associated type t and an associated function void f(t). The
t in B shadows the t in A and the two functions thus have different signatures because
the two ts are not equivalent. The function template f1 takes two arguments of types
A<T>::t and B<T>::t and then calls function f with each of the arguments. In the first
case, A<T>::f is called and in the second B<T>::f, as a result of overload resolution with
both functions in the overload set and the correct calls chosen based on the arguments.
The second template, f2, adds A<T> to the list of requirements. Name lookup is performed
in each of the requirements and A<T>::f is discovered twice, causing ambiguity in the call
f(a) but the second call succeeds since there is only one void f(B<T>::t) available. In
a conceivable alternative design, the second requirement for A<T> could be “merged” with
the same requirement introduced through B<T> but this is not the semantics in the current
concept wording [7].

Implementation Binding

Concepts provide an environment of function and type names. In the previous section, we
have shown how this environment is used to check constrained templates. Next, we show
how particular implementations are bound to the names provided by concepts. For conve-
nience, only some implementations have to be provided at certain points of the refinement
hierarchy; these are then propagated along the refinement relation. At the same time, the
compiler checks that no entities have multiple, possibly incompatible, realizations, and
that no entities are left unimplemented. Consequently, the main parts of implementation-
binding semantics are implicit concept map generation, which propagates implementa-
tions, and compatibility checking, which ensures there are no conflicting implementations.

Listing 5 shows how implementations are bound to associated function requirements.
Two concepts, A and B, each require an associated function void f(). Concept C only
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1 concept A<typename T> { void f(); }
2 concept B<typename T> { void f(); }
3 concept C<typename T> : A<T>, B<T> { }
4

5 concept_map A<int> { void f() { return; } }
6 concept_map B<int> { void f() { return; } }
7 concept_map C<int> { } // error, two implementations for f
8

9 concept_map C<bool> { void f() { return; } }
10 // concept maps for A<bool> and B<bool> implicitly generated
11

12 concept_map A<float> { void f() { return; } }
13 concept_map C<float> { } // error, no implementation of f to push to B<float>

Listing 5: Implementation binding for functions

refines A and B without adding any new requirements. On lines 5–7, concept maps for
A<int> and B<int> are defined, each binding an implementation to function f. Refining
concepts must provide definitions for all the requirements from all the concepts they re-
fine but they can do so explicitly or implicitly. An implicit definition “pulls” definitions
from refined concepts and an explicit one “pushes” to refined concepts. The concept map
for the refining concept C on line 9 defines the function f explicitly, while the concept
maps on lines 7 and 13 make the definition implicit. When a concept map for C<int> is
defined, the implementations from its refined concepts are propagated and there are two
implementations for f. Even though the two implementations are obviously the same, the
wording does not force compilers to compare functions because, in general, such com-
parison is not feasible. Consequently, the concept map for C<int> fails. The concept map
for C<bool>, on line 9, includes a definition for f although it is not required by the con-
cept C itself; this definition is used to implicitly generate maps for A<bool> and B<bool>.
Finally, the concept map on line 13 fails because it does not contain an explicit definition
to push to its refined concept B and the implementation from A<float> seen on line 12
is not allowed to be pushed “sideways” to B<float>. Implementation binding for associ-
ated types is very similar, except that more than one definition is allowed since it is easy
to check whether two type names reference the same type. Thus, concept maps such as
those on lines 5–7 would be accepted for types if both definitions were to the same type.

3 FORMALIZATION

Our formalization is carried out for a subset of ConceptC++, comprising concepts, tem-
plates, and concept maps; for ease of reference we name the language X++. In this section
we discuss the definition, conventions, and the ConceptC++ constructs included in X++.
In the next section, we give a semantic definition of separate type checking.

112 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5
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Definition and Conventions

X++ is defined using Ott [20], a tool for a “working semanticist.” The metalanguage of
Ott is used to define the syntax of X++ and the semantic judgments given as inductive
relations over the syntax. From that metadescription, Ott can generate LATEX output as
well as formal definitions for Coq, HOL, and Isabelle/HOL. Our semantics of X++ com-
prises 62 judgment rules, corresponding to 62 relations, with the total of 229 rule clauses
specifying those relations. In this paper we show only a fraction of the rules, the complete
definition is available in the accompanying technical report [31].

The definition of X++ is checked by Ott: the grammar is parsed and sort-checked, in-
consistencies in judgment forms and metavariable naming conventions are prevented, and
bounds of list forms are checked. Sequences are indicated by overline: x is a sequence of
xs, xi

i is the same but with indexes, xi
i is a sequence formed by concatenating a number

of sequences of xi, xi xi
i is a sequence formed by prepending an element xi to a sequence

xi and then concatenating the resulting sequences. Formulas can also be sequenced; for
example, xi = yi

i compares each xi and yi from some sequences xi
i and yi

i. Syntax printed
in monotype signifies terminals representing C++ syntax. Every sequence may be treated
as a set when necessary. Some rules use function syntax to indicate that in principle they
could be written as functions rather than as relations. Grammar rules can be annotated
with an M for metarules. Metarule annotation causes Ott not to generate constructors for
the particular rule in a theorem prover output and not to consider this rule when parsing
example input. The [I] annotations signify that a rule is not part of the user syntax and is
only used on the metalevel in the semantic rules. Finally, the annotation S states that a
rule is a metarule but it can be parsed in concrete syntax.

In the metatheory, we use options, indicated by adding a question mark to an identi-
fier. For example, cid? can either be a cid or None. Given a list of options, the function
rm? removes all the None options; for example, rm?(cm?) gives a list cm with all None
options removed. In some rules we use set comprehension, where {x ∈ y | · · ·} gives all
elements x in y that fulfill some condition. Set comprehension is assumed to be an opera-
tion on sequences that removes all elements that do not fulfill the comprehension criterion
and all duplicates.

Errors are not handled explicitly. Semantic judgments capture the expected behavior
of a compiler only for a correct program. An ill-formed program will simply cause one
to get “stuck” when searching for a derivation tree of a semantic relation.

X++ Language

Figure 1 shows the syntax of X++ expressions and programs, while figure 2 lists the gram-
mar for the three basic constructs of X++ (for the complete grammar, see [31]): concepts
[7, clause 14.9.1], concept-constrained templates [7, clause 14.10], and concept maps [7,
clause 14.9.2]. An X++ program P comprises definitions of concepts, templates, and con-
cept maps. The syntax of a user program, which is omitted in figure 1, is denoted by
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e ::= expressions
| var variable
| objτ object
| f (ei

i) application
| vint integral
| vbool boolean
| (e) S parenthesis

P ::= program
| d M one
| Pi

i M flatten
d ::= definitions
| cp concept
| tl template
| cm concepts map
| icm [I] implicit map

Figure 1: Grammar of expressions and top-level program syntax

cp ::= concept
| conrefinescid { tya f a } def.

tl ::= template
| templatereq tn{e} def.

req ::= requirements clause
| requirescidi

i def.
cm ::= concept map

| concept_mapcid{ tydef fdef } def.
| icm .cm M[I] implicit concept map

Figure 2: Grammar of concepts, templates, and concept maps

Puser and is the same as the syntax of a program in figure 1 except that it does not include
implicit concept map definitions (the icm production for d). Expressions are kept simple
and the syntax is self-explanatory.

In none of the examples in section 2 did type parameters in templates and concepts
play a role and accordingly X++ excludes those parameters. Although some parts of the
semantics of concepts cannot be formulated without concept and template parameters,
the name lookup and implementation binding semantics we consider is independent of a
particular choice of template arguments.

A concept consists (figure 2) of a concept name con followed by a refinement clause,
which contains a list of concept identifiers, cid, followed by the concept body. A concept
identifier, cid, represents a concept instantiated with some arguments, and in X++ is sim-
ply just a concept name con. For example, in the refinement “B<typename T> : A<T>,”
concept B refines a concept instance A<T>. In X++, the difference between a concept name
con and a concept identifier cid is that a concept name is used in a definition of a concept
and the concept identifier is used to refer to that concept. While in the concept wording
[7], refinement is specified as a relation between concepts, in X++, refinement is a relation
either between concepts and concept instances (in concept definitions) or between con-
cept instances (in concept uses). Direct refinement (≺1) and its transitive closure (≺) is
described by the following 2 rules:

1.refined (C, cid) = cid

C ` cid ≺1 cid
1.C ` cid ≺1 cidi

i 2.C ` cidi ≺ cidi
i

C ` cid ≺ cidi cidi
i
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The rules should be interpreted as an inductive relation over abstract syntax, where, for
each fraction, top and bottom are related. In the context of programming languages, the
rules can be read top-to-bottom, considering only one direction of the relation: the sim-
pler premises on the top give a semantic conclusion on the bottom. In our presentation
we number premises for easy reference. The first rule determines the meaning of direct
refinement denoted by ≺1. The sole premise is that the refined function, defined else-
where, returns a sequence of concept identifiers cid given a list of defined concepts C and
a concept identifier cid. The conclusion states that cid directly refines cid in the context
of C (indicated by the turnstile). This rule is the base case of refinement. The second
rule defines the transitive closure ≺ of direct refinement ≺1. The first premise extracts
the list of directly refined concepts, containing i elements, and the second premise applies
the refinement relation to each one of the directly refined concepts obtaining i new lists
cid. This is repeated recursively, since the second premise is the refinement (≺) relation
itself, until the leaves of the refinement tree, i.e., concepts with empty refinement clause
for which i = 0, are reached. In the conclusion, all the results are concatenated together
giving a list of all refined concepts. An important property of the refinement relation def-
inition is that the syntactic order of concept identifiers in concept refinement clauses is
preserved. This property is not apparent from the semantic rules we have listed because
it depends on the function refined, which extracts a list of concept identifiers from a re-
finement clause preserving their syntactic order (see [31]). The list of refined concepts,

cidi cidi
i
, in the transitive closure rule, preserves the depth-first, syntactic order in which

concepts were visited, since every concept identifier is followed directly by the ordered
list of concept identifiers reached from it in the traversal.

A concept body contains (figure 2) concept requirements comprising associated types
tya and associated functions f a. In ConceptC++, the requirements can be freely inter-
mixed but for simplicity, X++ requires that associated types precede associated functions.
A template (figure 2) consists of a requirements clause, a template name tn, and a template
body with, for simplicity, a single expression. The requirements clause, next, consists of
concept identifiers, each representing a requirement that must be fulfilled by a correspond-
ing concept map. In X++, there is no distinction between function templates (e.g., cplus
in listing 1) and class templates (e.g., Test1 in listing 2). Lastly, a concept map provides
type and function definitions necessary to satisfy the requirements corresponding to a par-
ticular concept id cid. In X++, there can be only one concept map per concept. The second
syntax rule for concept maps, at the bottom of figure 2, is used in the metatheory. It states
that given an implicit concept map icm, which, as explained in section 4, is a tuple of a
concept map and a concept identifier, the concept map part of the tuple can be extracted
using syntax akin to field access.

4 SEMANTICS OF SEPARATE TYPE CHECKING

In section 2 we have informally outlined how separate type-checking safety is achieved.
Here, we define separate type checking safety formally, in the form of a theorem:
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Theorem 1 (Separate type-checking safety).
Let C, M, and T represent an environment of the defined concepts, the defined concept
maps, and the defined templates, respectively. Let Puser be a program, tl be a template,
req be a requirements clause of a template. Assume

1. Puser ⇓ C ; M ; T , i.e., the program Puser is correct and produces the environment C ; M ; T
when processed,

2. tl = templatereq tn{e} ∈ T , i.e., tl is a specific template in the environment,
3. req = requirescidi

i, i.e., the requirements of the template tl are given by concept
identifiers cidi

i, and
4. cm(M, cidi) = cmi

i
, i.e., for every concept identifier cidi a concept map cmi can be

found in the list of defined concept maps.

Then, instantiating the template tl is guaranteed to succeed. Template instantiation can be
reduced to binding symbols from each requirement cidi to definitions in the corresponding
cmi, and no additional checks are necessary.

The theorem states that given a correct program, i.e., one that instantiates (⇓), a
concept-constrained template can be safely instantiated without any additional type check-
ing, which otherwise is necessary for unconstrained templates. The particular imple-
mentations of the types and functions used in the template are taken from the concept
maps corresponding to the requirements rather than from the surrounding or argument-
dependent namespaces as in the instantiation of unconstrained templates. The first premise
states that the program Puser instantiates to an environment C ; M ; T . The premises 2–4
simply introduce names for a template and the concept maps that are referred to in the
conclusion of the theorem.

In the remainder of this section we present in detail the crucial program instantiation
relation that is the centerpiece of our semantic definition. The two major tasks of the pro-
gram instantiation relation are processing of constrained templates and implementation
binding in concept maps—the discussion is organized accordingly. In this section, we
concentrate on the discussion of our semantics and in section 5 we discuss its correspon-
dence to the wording.

Program Correctness

The program instantiation relation takes a context C ; M ; T and a program to a new con-
text C′ ; M′ ; T ′. The relation consists of 5 rules, one for the empty program and one per
d-production in figure 1. The rules for templates and implicit concept map definitions are
shown in figures 5 and 7 and discussed in detail in the following subsections. The rules
for processing concepts, concept maps, and empty programs are omitted here but can be
found in the companion technical report [31]. The rule for processing concepts contains
only a basic check that a concept is not already defined in the context. The rule for pro-
cessing concept maps simply forwards all the work to the rule for processing implicit
concept maps and the rule for processing empty programs is trivial.
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It is important to note that while our semantic definition of program instantiation de-
fines which programs are correct, there is no effort made to establish in what way an
incorrect program is wrong. If a program is incorrect, it is simply impossible to show that
it instantiates but no “error diagnostic” can be obtained as to why. This is a usual property
of formal semantic definitions—error handling has to be added by compiler writers.

Both type checking of constrained templates and checking of concept map definitions
depend on the formalization of name lookup in concepts. Accordingly, we preceed the dis-
cussion of the program instantiation rules with a presentation of the rules for name lookup.

Name Lookup

Name lookup for concepts, described in clause 14.9.3.1 (of [7]), is quite different from
other name lookups in C++; we have given some examples in listings 2, 3, and 4, in sec-
tion 2. The main difference is that functions and types may be declared multiple times
throughout a refinement hierarchy but, in difference to other name lookups in C++, with-
out causing ambiguity—if there are duplicates, a single representative is chosen. Clause
14.9.3.1 designates the unique representative to be the type or function found first in the
depth-first traversal of the refinement structure, where refinement lists preserve the textual
order in which refinements were given in a program.

1.C ` cid ≺ cidi
i 2.find-scope(C, cid, f ) = sig

3.find-scope(C, cidi, f ) = sigi
i

4.sig′ = sigsigi
i

5.rdup(sig′) = sig′′

find-rec(C, cid, f ) = sig′′

1.con(cid) = con 2.find-concept (C, con) = cp 3. f a (cp) = f a

4.overload-set (f , f a) = sig 5.normalize(C, cid, sig) = sig′

find-scope(C, cid, f ) = sig′

Figure 3: Function name lookup in constrained context

Figure 3 lists the rules for function name lookup. The first rule defines recursive
lookup, find-rec, and the second one defines local lookup in a concept, find-scope. The
recursive rule first finds the sequence of refined concept identifiers that, as discussed in
section 3, preserves the depth-first traversal order of the refinement hierarchy. Then, in
the second premise, associated function signatures, sig, are extracted from the concept
cid, the root of the current lookup. In the third premise, a sequence of associated function
signatures, sigi, is extracted from each of the concepts, cidi, found in the first step. The
sequences of function signatures are concatenated in the same order as their enclosing
concepts in the sequence cidi

i, preserving the depth-first traversal order of discovery. In
premise 4, the signatures sigi from the refined concepts are appended to the sequence of
signatures for the root of the lookup, sig. Finally, in premise 5, the function rdup (defined
elsewhere) removes duplicate signatures from the sequence sig′, keeping the signatures
encountered first and removing the subsequent duplicates, keeping only a single represen-
tative for each function. The second rule describes how an overload set is extracted from
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each concept locally. The first two premises extract the name con of a concept from a con-
cept identifier and check that such concept indeed exists in the current environment. The
third premise extracts a list of associated functions, f a, from the concept and in premise
4 an overload set is constructed, extracting signatures for functions named f from f a.
Premise 5 is the most involved. For every signature in the overload set, the types in the
signature are looked up in the current concept. This is done so that signatures can be
distinguished later from other signatures with the same unqualified parameter types; for
example, void f(t) may be void f(X<T>::t) in one concept and void f(Y<T>::t) in
another. To distinguish these functions later, fully qualified type names must be used for
parameter types. The definitions of the functions used in the premises, e.g., normalize,
are listed in the report [31].

1.find-scope(C, cid, idτ) = τ

find-rec(C, cid, idτ) = τ

1.find-scope(C, cid, idτ) = None 2.C ` cid ≺1 cidi
i

3.find-rec(C, cidi, idτ) = τ?i
i

4.rm?(τ?i
i) =

find-rec(C, cid, idτ) = None

Figure 4: Selected rules for recursive type lookup

Type lookup is similar to function lookup except that only one type is returned rather
than a set, as in the case of functions. On the other hand, there are more cases to handle
since types can be hidden. All together, the recursive part of type lookup comprises 4
rules, of which 2 are shown in figure 4. The first rule is the base case of the recursive
search: if the scope identified by cid contains an associated type τ named idτ , the search
is terminated and τ is the result of this part of the lookup. There may be other concepts
that cid refines but hiding rules (clause 3.3.10 para. 1) require that they not be searched.
The first premise of the second rule ensures that no type was found in the current concept.
Then, the second premise extracts the directly refined concepts (≺1). If the transitive
refinement (≺) was applied instead, the base rule could not stop the search from pro-
gressing into scopes in which potentially matching types should be hidden by an earlier
result. In the third premise, the refined scopes are searched recursively, until the first rule
is matched or the list of refinements extracted in the second premise is empty. For each
of the searched scopes, cidi, a type option, τ?i, is returned. Finally, the fourth premise
states that after removing all None results, which signify unsuccessful lookups in refined
scopes, the sequence of results is empty. In such case, the result of the whole lookup is
None since no type named idτ was found.

Given the definition of name lookup, we next discuss the two parts of separate type
checking: checking of constrained templates and of implementation binding.

Type Checking of Constrained Templates

Processing of constrained templates is the first step of separate type checking. The rule
in figure 5 shows how a template definition tl, in a program tlP, is checked in the context
C ; M ; T , producing a new context C′ ; M′ ; T ′. Checking of constrained templates boils
down to type checking of the expression e contained in the template tl in the context given
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1. tl = templaterequirescidi
i
tn{e} 2.cidi defined in C

i

3. tl not defined in T 4.C ; /0 ; cidi
i ` e : τ 5.C ; M ; tlT ` P ⇓ C′ ; M′ ; T ′

C ; M ; T ` tlP ⇓ C′ ; M′ ; T ′

Figure 5: Type checking of constrained templates

by the requirement clause of the template; premise 4 states that the expression e is of the
type τ (e : τ) in the context of all concepts C (necessary to traverse the refinement hierar-
chy), an empty variable typing environment /0, and the requirements cidi

i of the template
tl. The other premises, in order, introduce the full definition of tl, ensure that every con-
cept referred to in the requirements is defined, assert that a template with the same name
is not already defined, and that processing the rest of the program P with the currently
processed template inserted into context (tlT ) produces the new context C′ ; M′ ; T ′.

1.find-rec(C, cidi, f ) = sigi
i

2.distinct (sigi
i
)

3.C ; Γ ; cidi
i ` ek : τk

k
4.overload-res(f τk

k, sigi
i
) = sig 5.returns(sig) = τ

C ; Γ ; cidi
i ` f (ek

k) : τ

1.find-rec(C, cidi, τ) = τ?i
i

2.rm?(τ?i
i) = τ 3.τ ≈ τ

C ; Γ ; cidi
i ` objτ ′ : τ

Figure 6: Selected rules for typing expressions in constrained contexts

An expression is typed in the context consisting of available concepts C, a variable
typing environment Γ, and a list of concept identifiers cid that represents the require-
ments of a constrained template. Type checking of expressions includes some expected
rules, for example, the type of a variable is looked up in a local environment. The dif-
ference to the usual type checking is in name lookup, which is performed in the concepts
that the constrained template requires. Figure 6 shows typing of function application and
of object creation, which require name lookup.

Type checking a function application f (ek
k) consists of 5 steps. First, find-rec looks

up f in each of the requirements and the lookup gives a sequence of function signatures
representing an overload set from each of the requirements. The second step ensures that
function signatures found through name lookup are distinct and that there are no ambigu-
ities in the overload set. In the third premise, the arguments with which the function is
called are typed themselves. Then, in premise 4, overload resolution is invoked to choose
one signature from the overload set given the function name and the types of the argu-
ments with which the function is called. Finally, in the fifth premise, the return type of
the function is extracted. Given all these premises, function application is typed with the
return type of the function selected by overload resolution.

Type checking of object creation starts with name lookup, in each of the requirements,
for the type with which the object is created. Each lookup returns a type option, which is
None if name lookup failed. In premise 2, the None results are removed, yielding a list of
types that were successfully looked up. Premise 3 states that only one distinct type was
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found by requiring set equality (≈) between the sequence of results τ and a sequence of
a single type τ . In such case, the created object can be typed with type τ .

In the following subsection, we discuss the next step of separate type checking as
outlined in section 2, namely implementation binding.

Implementation Binding, Compatibility, and Propagation

1. icm = (cm, cid?) 2.cm = concept_mapcid{ tydef fdef }
3.cm not defined in M 4. tydefs-check (C, cid, tydef ) 5. tydefsP (C, M, cid, tydef )
6. fdefs-check (C, cid, fdef ) 7. fdefsP (C, M, cid, cid?, fdef )
8. icms(C, M, cid, cid?, tydef , fdef ) = icmi

i 9.C ; icmM ; T ` icmi
i P ⇓ C′ ; M′ ; T ′

C ; M ; T ` icmP ⇓ C′ ; M′ ; T ′

Figure 7: Checking and generation of implicit concept maps

The two main tasks when processing a concept map are to check whether the defini-
tions that the map provides are compatible with the definitions in concept maps defined
earlier and to implicitly define concept maps for refined concepts as necessary (clause
14.9.3.2). The program instantiation rule for processing concept maps is listed in fig-
ure 7. We first give an overview of the rule and then discuss it in detail in the remainder
of the section.

The first premise simply creates an alias for the implicit concept map icm that is be-
ing processed, which is a tuple of a concept map cm and an optional concept identifier
cid; the second premise creates an alias for the cm component of icm. The third premise
establishes that a concept map for the same concept instance has not yet been defined.
Premises 4 through 7 state that type and function definitions are well-formed, well-typed,
and compatible (P) with definitions provided in existing concept maps. Premise 8 gives
the set of implicit concept maps that are generated by the concepts directly refining the
currently processed concept map cm. And finally, premise 9 finds the new environment
C′ ; M′ ; T ′ resulting from processing the newly generated implicit concept maps and the
rest of the program in the old environment extended by the current concept map. Each of
the generated implicit concept maps is then processed in the same manner as the map that
initiated their generation. This recursive processing ensures that implicit concept maps
are propagated throughout the refinement hierarchy, traversed depth first.

1.∀τ f (vari : τi
i){e} ∈ fdef •C ; [vari : τi

i] ; cid ` e : τ 2.distinct (sig(fdef ))
fdefs-check (C, cid, fdef )

1. tya (C, cid) = tya≺ 2. idτ (tydef ) ≈ idτ (tya≺)
3.∀ tydef ∈ tydef • tydef

√
4.distinct (idτ (tydef ))

tydefs-check (C, cid, tydef )

Figure 8: Function and type definitions check in concept maps

Figure 8 shows how function and type definitions are checked in the premises 4 and 6
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in figure 7. For functions, the first condition is that the body of every function definition
(• separates the quantifier from the condition) must type-check in the context of the con-
cepts C in the environment, the function parameters [vari : τi

i], and the concept identifier
cid, designating the concept map to which the function definition belongs. Type checking
proceeds as described previously (figure 6).

Checking of type definitions differs from checking function definitions. The first
premise extracts associated types, tya≺, from all refined concepts (indicated by≺ in tya≺)
and the second premise requires that type definitions in tydef provide a definition for every
type in tya. The equality in the second premise is a set equality because different concepts
refined by cid may require an associated type with the same name. Premise 3 requires
that every type definition is well-formed (see [31] for details) and premise 4 requires that
there is only one definition per associated type name.

1. f a (C, cid) = f a≺ 2.sig(C, M, cid?, cid) = sig≺

3.distinct (sig≺) 4.sig(fdef ) ≈ f a≺ \ sig≺

fdefsP (C, M, cid, cid?, fdef )

1. tya (C, cid) = tya 2.C ` cid ≺1 cid
≺1

3. tydef (M, cid
≺1) = tydef

≺1 4. tya ` tydef P tydef
≺1

tydefsP (C, M, cid, tydef )

Figure 9: Function and type definitions compatibility in concept maps

The next step is to check that the newly introduced implementations are compatible
with the existing ones (premises 5 and 7 in figure 7). The rules for compatibility checking
are listed in figure 9. For functions, first all associated function requirements are extracted
from refinements, including the associated functions from the currently considered con-
cept. The second premise finds existing implementations, omitting concept maps that are
implicitly defined by the same parent (based on the cid? argument to sig). The omission
is necessary to properly handle diamonds in the refinement hierarchy; an example of such
hierarchy is shown in the following code snippet:

1 concept A<typename T> { void f(); }
2 concept B1<typename T> : A<T> { }
3 concept B2<typename T> : A<T> { }
4 concept C<typename T> : B1<T>, B2<T> { }
5

6 concept_map C<int> { void f() { return; } }

The definition of void f() is propagated from C to its refined concepts, and maps for A,
B1, and B2 are automatically created. The propagation proceeds from left to right in the
refinement clauses, generating concept maps for B1, A, and B2 in that order. When the map
for B2 is checked, the map for A is already in the environment and contains the definition
for void f() propagated from C. The concept map for B2 contains the same definition
but since the two maps originate from C it is clear that they must be the same. The third
premise checks for duplicate definitions. Finally, the fourth premise requires that the set
of function signatures in the current concept map, sig(fdef ), is equal to the difference
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between the set of required signatures f a≺ and the set of signatures of required functions
sig≺.

1. tydef
′ = { tydef ∈ tydef | ¬ idτ (tydef ) ∈ idτ (tya)}

2.∀ tydef ∈ tydef
′ • find-defs(idτ (tydef ), tydef

≺1) ≈ tydef

tya ` tydef P tydef
≺1

Figure 10: Type definitions one-level compatibility

Compatibility checking of associated types, given by the second rule in figure 9, is
different because associated types can be defined many times (clause 14.9.3.2 para. 4),
as long as each definition names the same type, and they can be hidden by other associ-
ated types while functions cannot. First, a sequence of associated type requirements is
extracted from the current concept. Next, in premise 2, the sequence of directly refined
concepts is obtained and then, in premise 3, all the type definitions contained in the cor-
responding concept maps are extracted. Finally, in the fourth premise, the definitions are
checked for compatibility, according to the rule in figure 10. Compatibility between type
definitions tydef , from the concept map designated by cid, and type definitions tydef≺1 ,
from the concept maps for concepts directly refining cid, are compared in the context of
associated types tya that are explicitly required in the concept cid. These associated types
hide others with the same names in the refined concepts and, consequently, their defini-
tions do not need to be compared with the ones in the refined concept maps; premise 1 in
figure 10 accordingly eliminates hidden definitions from the compatibility check. All re-
maining definitions, tydef ′, must be identical to those in the directly refined concept maps.
Accordingly (premise 2), the set of definitions in tydef≺1 , that define a type with the same
name, idτ (tydef ), as that defined by a tydef in tydef ′, must consist of only one element,
tydef itself. Because this compatibility check is performed at every step of refinement and
because every concept map must contain definitions for associated types from its own and
from all concepts it refines, type definitions for associated types with the same name are
guaranteed to be the same unless one definition hides another.

1.cid? = cidimpl 2.C ` cid ≺1 cid
≺1 3.cidi

i = {cid ∈ cid
≺1 | cm(M, cid) = None}

4. fdef (C, M, cidimpl, cid) = fdef
≺ 5. tya (C, cidi) = tya≺

i
i

6. f a (C, cidi) = f a≺
i

i
7. tydef i = { tydef ∈ tydef | idτ (tydef ) ∈ idτ (tya≺

i)}
i

8. fdef i = { fdef ∈ fdef fdef
≺ | sig(fdef ) ∈ f a≺

i }
i

9.cmi = concept_mapcidi { tydef i fdef i }
i

icms(C, M, cid, cid?, tydef , fdef ) = (cmi, cidimpl)
i

Figure 11: Generation of implicit concept maps

After the current concept map is checked for compatibility, concept maps for refined
concepts are generated if they do not already exist (premise 8 in figure 7). Figure 11
shows how implicit concept maps are generated from a concept map that itself has been
implicitly generated. Another rule, not listed in the figure, defines how concept maps are
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generated from an explicit concept map; these two rules differ only in the first premise.
The rule in the figure handles concept maps that are implicitly generated by requiring the
optional concept identifier of the implicit “parent” to be set to cidimpl. The identifier of the
parent is then passed on to further generated concept maps, marking all generated maps
with the explicit map that triggered the generation. For an explicit concept map, the first
premise reads cid? = None, meaning that the concept map currently considered was not
generated from another concept map but that it was explicitly defined. Then, the concept
identifier of the current map, cid, is passed to the generated concept maps as the “parent.”
In premise 2, the sequence of directly refined concepts is extracted and then, in premise 3,
restricted to only the concepts for which no concept map is found in the environment M.
Next, a sequence of all associated function implementations is extracted from all concept
maps that are defined for any of the concepts refined by the current concept represented
by cid. In premises 5 and 6, the sequences of required associated types and functions are
extracted for each of the directly refined concepts in cidi

i. In premise 7, a sequence of type
definitions tydef i is constructed for each of the implicit concept maps from the definitions
tydef in the parent concept map. This is possible because, as we described earlier, the
parent concept map contains type definitions for all associated types from all concepts it
refines. Premise 8 defines how associated function definitions are generated. Premise 9
puts all the parts together in a sequence of implicitly defined concept maps to be returned.

5 INTERPRETATION OF THE INFORMAL DEFINITION

While our semantic definition is as faithful as possible to the concept wording [7], we have
encountered informal definitions that were either ambiguous or seemed to be inconsistent
with the understood design goal. In this section we outline the important differences
between our definition and the wording.

Name Lookup

Clause 3.3.10 para. 1 states that a name can be hidden by a declaration in a refining
concept. While it is not stated explicitly which names can be hidden, the previous pub-
lications on concepts and the authors’ experience suggest that associated type names can
be hidden by associated type names in refining concepts. On the other hand, the formu-
lation of name lookup in concepts, specifically clause 14.9.3.1 para. 4, 4th bullet, states
that associated type names are collected from the scopes of all refining concepts and that
for the name lookup to succeed they all must be the same type, as if there was no hiding.
Our semantics assumes hiding, as prescribed in clause 3.3.10 para. 1, and terminates the
search through the refined scopes once a matching type is found: the first rule in figure 4
does not continue if a type was found while the second rule continues the search since the
first premise assures that no matching type was found in the currently searched scope.

Furthermore, clause 14.9.3.1 para. 4 states that if there is more than one associated
type with the same name in a refinement hierarchy, these types must be explicitly declared
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to be the same—through SameType constraints (a built-in, compiler-supported concept)—
for name lookup to succeed; if these constraints are missing then name lookup fails with
ambiguity. Our semantics implicitly assumes these constraints; the motivation for that
assumption is given in the next subsection.

Implementation Binding

Compatibility and definition propagation. Clause 14.9.3.2 para. 4 states that a defi-
nition in a concept map for a refining concept is compatible with a definition in a refined
concept only in three cases:

• the definition in the refining concept map is explicit and the definition in the refined
map is implicit,
• the definition in the refined concept map is explicit and the definition in the refining

concept map is implicit,
• the definitions satisfy an associated type requirement and both definitions explicitly

name the same type.

When formalizing this definition we have discovered that the definition in the wording
may allow cases that are not compatible and that it makes defining certain concept maps
impossible. Consequently, our semantic rules differ from the wording.

The first compatibility difference is that we restrict associated types definition to the
third case given above. That is, the second rule in figure 9 requires, in the third premise,
that every concept map provide definitions for every associated type requirement in the
concept hierarchy. Since every concept map explicitly defines all required associated
types, the compatibility check boils down to the third rule, which requires that the defini-
tions for the same associated type requirement name the same type. Note that while the
wording does not take hiding into account, our definition in figure 10 eliminates hidden
types from compatibility check.

The compatibility rules in the wording, specifically the second rule, allow the situa-
tion where concept maps for refined concepts provide differing definitions for associated
functions with identical signatures. This compatibility breach, coupled with the name
lookup rules given in clause 14.9.3.1 and reflected in our semantic rules listed in figure 3,
means that one definition is chosen out of potentially conflicting associated function def-
initions, according to the depth-first traversal discovery rules discussed in section 4. Our
semantic definition allows only one explicit definition for an associated function in re-
fined concept maps, as seen in figure 9, first rule, premise 3. Consequently, there cannot
be conflicting definitions. In addition, while the wording allows only one level of defini-
tion propagation, from an explicit definition to an implicit one, our rules allow definitions
to be propagated further. In figure 11, associated function definitions are taken from the
sequence fdef fdef≺ meaning that definitions will be propagated downwards but also side-
ways in the refinement hierarchy. The wording allows propagating downwards, from an
explicit definition in a refining concept map to an implicit definition in a refined concept
map, while our definition allows taking both implicit and explicit definitions in refined
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concept maps and propagating them to other refined concept maps. If, in figure 11, we
changed the sequence of available definitions to fdef , our semantics would match the se-
mantics in the wording. However, the semantics in the wording may be too restrictive; in
the following code listing we give an example of a situation where concept maps cannot
be defined in the semantics given by the wording.
1 concept A<typename T> { void f(); }
2 concept B<typename T> { void f(); }
3 concept C<typename T> { void f(); }
4 concept E<typename T> : A<T>, B<T> { }
5 concept F<typename T> : B<T>, C<T> { }
6

7 concept_map A<int> { void f() {} }
8 concept_map B<int> { void f() {} }
9 concept_map C<int> { void f() {} }

10 concept_map E<int> { } // error
11 concept_map F<int> { } // error
12

13 concept_map E<float> { void f() {} }
14 concept_map F<float> { void f() {} } // error

Given the concept hierarchy in the example there is no way to define a concept map for
all of the concepts. The concept maps for int are defined starting with the refined con-
cepts A, B, and C. The concept maps for the refining concepts have no explicit definitions
of void f() and must “pull” the implementations from the refined concept maps. Yet,
for both concept maps E<int> and F<int> there are conflicting definitions in the refined
maps. In the maps for float, the first concept map is defined and it implicitly generates
maps for A<float> and B<float>. When the map for F<float> is defined, an explicit
definition of void f() must be given so that the missing map for C<float> can be gen-
erated but that definition conflicts with the one in B<float> generated previously. If our
“sibling-to-sibling” semantics was allowed, the map for F<float> could be defined with-
out an explicit definition of void f(), first pulling the definition from B<float> and then
pushing it to C<float>.

Our choice of compatibility semantics is not meant as a final one. Instead, we indicate
that there may be a problem and we show one example solution.

Substitution of associated type implementations. According to the wording in
clause 14.9.2.2 para. 2, associated types are substituted with their assigned implemen-
tations in the signatures of associated functions within concept maps; for example,
void f(A<T>::t) becomes void f(int) in contexts where A<T>::t has been imple-
mented as int. In our semantics, this substitution does not take place; this can be seen
in premise 4 of the first rule in figure 9 where signatures of function definitions must be
exactly the same as the signatures of associated functions, without substituting the actual
type implementations, and in premise 1, where signatures of the associated functions are
normalized, i.e., parameter types are fully qualified (the extraction of associated function
signatures is not shown in any of the figures but is included in the companion technical
report [31]). These function definitions are directly stored in concept maps, which can be
seen in premise 2 of the rule in figure 7 for explicit concept maps, and premise 9 of the
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rule in figure 11 for implicit concept maps. The following code listing shows an example
of a situation where our semantics allows code that is incorrect according to the wording
and rejects code that the wording deems correct.
1 concept A<typename T> { typename t; void f(t); }
2 concept B<typename T> : A<T> { typename t; void f(t); }
3

4 concept_map B<int> {
5 typedef int t;
6 void f(int) { return; }
7 }
8 concept_map B<float> {
9 typedef int t;

10 void f(A<int>::t) { return; }
11 void f(B<int>::t) { return; }
12 }

The concept map for B<int> is allowed by the wording but not by our semantics. The
difference between two associated functions is lost and they are “munged” into a single
void f(int) function. The second map for B<float> is allowed by our semantics
but not by the wording. According to the wording, both A<int>::t and B<int>::t

become aliases to int due to the definition on line 9 and the two function signatures on
lines 10–11 are identical, causing an error. In our semantics, the substitution of associated
type implementations does not take place and, although both associated types have been
assigned the same implementation, the functions remain different, insulating templates
constrained with the concept B from the fact that both associated types are assigned the
same implementation.

Type Checking of Concept-Constrained Templates

According to the wording, clause 14.10.2 para. 18, in a situation where different re-
quirements introduce conflicting associated functions, no effort should be made to check
whether the conflicting functions are actually the same. The following listing gives an
example of a situation in which name lookup finds the same function through each of the
requirements but the call to the function results in an error:
1 concept Child<typename T> { void f(); }
2 concept Parent1<typename T> : L<T> { }
3 concept Parent2<typename T> : L<T> { }
4

5 template<typename T> requires Parent1<T>, Parent2<T>
6 void test1() { f(); } // error

As a consequence of performing type lookup in each of the requirements separately
and choosing the type found first in depth-first search, sometimes intuitively correct code
may cause errors; a small example is shown in the following code listing1:
1 concept A1<typename T> { typename t; }

1The example would require same-type constraints in the concepts P1, P2, and P3 but in our semantics
the constraints are implied.
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2 concept A2<typename T> { typename t; }
3 concept P1<typename T> : A1<T>, A2<T> { }
4 concept P2<typename T> : A2<T>, A1<T> { }
5 concept P3<typename T> : A2<T>, A1<T> { }
6

7 template<typename T> requires P1<T>, P2<T> struct Test1 {
8 typedef t test; // error: A1<T>::t or A2<T>::t?
9 };

10 template<typename T> requires P2<T>, P3<T> struct Test2 {
11 typedef t test; // ok: A2<T>::t
12 };

In Test1, name lookup for t finds A1<T>::t in P1<T>::t and A2<T>::t in P2<T>::t.
Since the two types are different, there is ambiguity. In Test2, lookup of t in both of the
requirements results in A1<T>::t, and the sequence of final results contains two types that
are the same. The first rule in figure 6 makes it clear that lookup is performed in each
requirement separately and that the knowledge about identity of associated types is lost
between requirements. In this case our semantics agrees with the wording but a potential
problem is clearly exposed.

6 RELATED WORK

Linguistic support for concepts in C++ has a long history in the C++ standardization pro-
cess, dating back to Stroustrup [26] and Siek et al. [23]. More recently, concepts have been
presented to a broader forum by Dos Reis and Stroustrup [18] and soon after by Gregor
et al. [6]. All concept proposals share the goal of separate type checking safety and Dos
Reis and Stroustrup indeed provide a sketch of a type checking safety theorem as a fu-
ture work item. Our theorem 1 is a development of this idea, supported by our semantic
definition—in that sense, our contributions are a direct continuation of the previous work.

The tradition of C++ concepts is rooted in the formal setting of algebraic specification
[11] but, nevertheless, the true utility of concepts was first manifested in the design doc-
umentation of the Standard Template Library [1, 24]. As prominence of concepts rose
in C++ generic libraries, there was renewed interest in formalizing concepts. Willcock
et al. [29] proposed a formal definition of concepts based on their algebraic specification
roots, on various counterparts in other languages, mostly in ML [14], and on the ongoing
experience of concept use in the C++ world. Their formalization had the ambitious goal
of capturing the very notion of concepts in a programming language. Siek and Lumsdaine
[21], on the other hand, incorporated concepts into System F [3], providing strong formal
foundation to separate type checking with concepts and outlining the important features
that a concept system should include. Finally, in our own work [34], we bridged the gap
between concepts as proposed for C++ and their roots in algebraic specification—we have
described how concepts may be interpreted as specifications in the context of institutions
[4] (Haveraaen [8] also considers concepts as institutions, specifically in the context of
testing). In the current paper, we complement the existing body of work with a C++ spe-
cific formalization that formalizes the design of concepts as proposed for the next version
of C++. Our formalization has the practical goals of enabling precise analysis of the cur-
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rent design and providing a foundation for the future compiler implementations, but also
the more theoretically inclined goal of initiating the work on formal verification of crucial
parts of C++ concepts design.

Concepts are the basis of practical analysis and programming techniques. Currently,
these applications of concepts are developed in terms of concrete C++ syntax and tools—
our analysis provides a foundation to describe and develop such applications. In our
previous work [33], we have demonstrated a change impact analysis for conceptual spec-
ification of generic libraries; Tang and Järvi [27] propose concept-based optimizations.
Concepts have also been used to compose generic libraries. Järvi et al. [10] use concepts
to compose GUI controls from different libraries and to compose graph and imaging li-
braries; Breuer et al. [2] compose a parallel graph and eigensolver libraries to obtain an
efficient parallel graph eigensolver. Furthermore, Gregor and Lumsdaine [5] develop prin-
ciples and patterns for using generic libraries—their development is based on concepts.

Our formalization shares the motivation and some techniques with formalizations of
other parts of C++. Wasserrab et al. [28] have formalized type safety of multiple inheri-
tance and provided a machine-checked proof in support of their hypothesis. Many issues
covered by their formalization are related to lookup of names; in particular, they rely on
a slightly modified sub-object model introduced by Rossie and Friedman [19]. Siek and
Taha [22] have formalized the template instantiation process and operational semantics
for a subset of the C++ language, providing a proof of type safety. Their formulation of
the template instantiation process served as the basis for our program instantiation rela-
tion. Dos Reis and Stroustrup [17] have provided a formal framework for a large part of
the C++ language, concentrating on the features necessary to concept checking. Their for-
malization is broad, covering a large part of the C++ language, but is not as well developed
as others and, to our knowledge, has not been used in the current process of specifying
concepts. A final note of caution: Järvi et al. [9] have identified cases where separate
type-checking safety cannot hold, yet those violations stem from the interaction of the
(safe) concept language with unsafe features outside (e.g., partial ordering of function
templates) and cannot be prevented without changing, and breaking, legacy C++.

Finally, our formalization has been strongly inspired by the Ott tool [20]. Ott lowers
the cost of formally defining a language and enables a smooth progression in formality,
from LATEX typeset mathematics to a theorem prover definition. Our semantic definition
borrows many techniques from the formalizations of a fragment of OCaml by Owens [16]
and of Java modules semantics by Strniša et al. [25], which are defined using Ott.

7 CONCLUSIONS AND FUTURE WORK

While concepts are considered one of the most important features to be introduced in the
next version of C++, the current design process relies on informal design documentation
supported by only a partial implementation and little experience. In this paper we have
provided a formal semantic definition of the crucial parts of concept design, covering
name lookup in concepts, implementation binding in concept maps, and type checking in
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concept-constrained templates.

We first give, in section 2, an informal introduction to concepts. We illustrate separate
type checking with several examples, such as listing 1 that shows the difference between
concept-constrained and unconstrained templates, and with more specific examples, such
as listing 5 that shows implementation binding for associated functions.

Next, in section 3, we introduce the abstract syntax of a small language, X++, that con-
tains the crucial features of the C++ concept system: concepts, concept maps, and concept-
constrained templates. X++ includes language features necessary to discuss concepts,
such as overload resolution, but excludes all other features that are orthogonal to concepts.

The semantic definition of concepts, which is the crux of our contribution, is presented
in section 4. There, we formulate the separate type-checking safety theorem (theorem 1).
In the rest of the section we present the semantic judgments that form the basis of the
theorem. The presentation of the semantics is divided into three parts: name lookup, type
checking of constrained templates, and implementation binding.

Finally, in section 5, we discuss how our formal definition corresponds to the infor-
mal definition in the wording [7]. Two differences stem from our attempt to fix apparent
errors in the wording. First, type lookup rules in the wording do not respect hiding rules
established elsewhere in the wording; in our semantic definition the hiding rules are hon-
ored. Second, the wording admits a situation where concept maps for refined concepts
can provide conflicting implementations for associated entities; our semantics does not
allow such situations. Furthermore, our semantics differs from the wording where intu-
itively valid code is not admitted by the wording. In summary, the differences are that our
semantics allows “sibling-to-sibling” propagation of associated function implementations
and it does not perform substitution of associated types with their implementations in con-
cept maps. Furthermore, our semantics exposes a possible problem with type checking of
concept-constrained templates where types and functions that are intuitively the same are
considered different.

Our formalization is useful in the analysis of the current concept design put in front
of the C++ standardization committee. A formal definition of concept semantics, such
as ours, is a great aid in understanding and discussing the design, and can serve as the
specification for implementations. Also, a formal semantics makes it easier to design pro-
gram analyses involving concepts; instead of having to understand hundreds of pages of
C++ standard and complex compiler implementations, an analysis can be prototyped at
the abstract level of semantic entities and relations.

To facilitate such design and prototyping, we plan to make our semantics “executable”
through a context-sensitive term-rewriting system. In particular we plan to investigate the
PLT Redex rewriting system [12]. Using a context-sensitive rewriting system may require
restatement of our semantic definition with evaluation contexts, in the style of Wright and
Felleisen [30]. Ott currently supports evaluation context semantics but it does not generate
output for a rewriting system.

To further enhance usefulness of our semantics for the development of tools we plan
to extend the coverage of C++ with concepts. First, we plan to extend our semantics with
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concept parameters. Directly related features that we plan to include in the next version of
semantics are template concept maps and same type constraints on template parameters.
We anticipate that adding parameters and the related features may as much as double the
size of the definition.
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