
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 6, September-October 2009

Markus Voelter: “Best Practices for DSLs and Model-Driven Development”, in Journal of
Object Technology, vol. 8, no. 6, May-June 2005, pp. 79-102
http://www.jot.fm/issues/issue_2009_09/column6/

Best Practices for DSLs and Model-
Driven Development

Markus Voelter, independent/itemis

1 INTRODUCTION

In this article I describe best practices I learned over the years using DSLs for
developing software. Before we start, let me outline the context. I exclusively cover
external domain specific languages (DSLs), languages that are custom-defined to
describe aspects of a software system. These languages can be textual or graphical,
the models created with the language can be used as input for code generation,
validation, simulation or interpretation. The DSLs can be intended for use by
developers and architects (covering mainly architectural/technical aspects of software
systems), but also by business users who are not classically considered “developers”.

I explicitly exclude internal/embedded DSLs such as the ones built with Ruby,
Converge or Lisp. It also does not consider tools like MPS, where you typically build
DSLs by extending a Turing-complete base language (Java, in case of MPS).

The article is a highly condensed collection of best practices. For each of them, I
could have written a couple of pages (in fact, many pages have been written on these
and other best practices, see [1,2,3]). However, in spite of its brevity, this article
reminds you of all the things you should consider when (thinking about) starting an
MD* project.

Some notes on terminology. I use MD* as a common moniker for MDD, MDSD,
MDE, MDA, MIC, and all the other abbreviations for basically the same approach.
Models can be processed in many ways. They can be validated, transformed,
generated into code, or interpreted. I use “model processing” (and the noun, “model
processor”) to refer to all of these with a single term. I use the term “metaware” to
mean all the artifacts on the meta level. Metaware includes DSLs, meta models,
editors and of course, model processors. In many cases, the overall model that
describes a system is separated into a number of “model units” which I call partitions
(XML files are an example). If I use the term “business” (in the context of business
user, business expert or business domain), I don’t specifically mean business in the
sense of financials/accounting/legal, but refer to all kinds of application domains (in
German: “fachliche Domänen”); they can include scientists, mechanics, automotive
or, of course, financials or insurance. The term is used to contrast the
programming/software domain which deals with programmers, architects and
analysts.

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Each of the best practices is rated with a number of stars. The star rating is based
on a small survey I did among colleagues. As of now, 10 people have replied, so the
survey is not necessarily representative, but it is an indication about the confidence
into the best practice. Here is what the stars mean:

 I don't think this works, I typically use a technique that contradicts this
one

 I haven't used this, but it sounds reasonable and I guess that is how I'd
do it if I had to something like this

 I have used this successfully, but I am not sure it is a general best
practice

 I have used this successfully a number of times, and I am sure it is a
best practice. Can't imagine not to use it.

The paper has three main sections. The first one, Designing DSLs, looks at best
practices to keep in mind as you design your languages. Section two, Processing
Models, looks at model checking interpretation and code generation. Section three
considers a couple of things you need to keep in mind about process and organization.
A final section looks at open issues and challenges in MD* world.

2 DESIGNING DSLS

Sources for the language

How do you find out what your DSL should express? What are the relevant
abstractions and notations? This is a non-trivial issue, in fact, it is the key issue in
MD*. It requires a lot of experience, thought and iteration. However, there are several
typical ways of how to get started.

If you’re building a technical DSL, the source for a language is often an existing
framework, library, architecture or architectural pattern. The knowledge often already
exists, and building the DSL is mainly about formalizing the knowledge: defining a
notation, putting it into a formal language, and building generators to generate parts of
the (potentially complex) implementation code. In the process, you often also want to
put in place reasonable defaults for some of the framework features, thereby
increasing the level of abstraction and making framework use easier.

In case of business domain DSLs, you can often mine the existing (tacit)
knowledge of domain experts. In domains like insurance, science or logistics, domain
experts are absolutely capable of precisely expressing domain knowledge. They do it
all the time, often using Excel or Word. They often have a “language” to express
domain concerns, although it is usually not formal, and there’s no tool support. In this
context, your job is to provide formality and tooling. Similar to domain knowledge,
other domain artifacts can also be exploited: for example, hardware structures or
device features are good candidates for abstractions in the respective domains.

In both previous cases, it is pretty clear how the DSL is going to look like;
discussions are about details, notation, how to formalize things, viewpoints,
partitioning and the like (note that those things can be pretty non-trivial, too!).

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 81

However, in the remaining third case, however, we are not so lucky. If no domain
knowledge is easily available, we have to do an actual domain analysis, digging our
way through requirements, stakeholder “war stories” and existing applications.

For your first DSL, try to catch case one or two. Ideally, start with case one, since
the people who build the DSLs and supporting tools are often the same ones as the
domain experts – software architects and developers.

Limit Expressiveness

When building a DSL, make sure you’re not lured into building yet another Turing-
complete, general purpose language. In many cases, a purely declarative language that
“states facts” about a system is good enough.

Note the difference between configuration and customization. A customization
DSL provides a vocabulary which you can creatively combine into sentences of
potentially arbitrary complexity. A configuration DSL consists of a well-defined set
of parameters for which users can specify values (think: feature models).
Configuration languages is are more limited, of course, since you cannot easily
express instantiation and the relationship between things. However, they are also
typically less complex. Hence, the more you can lean towards the configuration side,
the easier it usually is to build model processors. It is also simpler from the user’s
perspective, since the apparent complexity is limited.

Be aware of the difference between precision and algorithmic completeness.
Many domain experts are able to formally and precisely specify facts about their
domain (the “what” of a domain) while they are not able to define (Turing-complete)
algorithms to implement the system (the “how”). It is your job as a developer to
provide a formal language for domain users to express facts, and then to implement
generators and interpreters to map those facts into executable algorithms that are true
to the knowledge they expressed. The DSL expresses the “what”, the model processor
adds the “how”.

If there’s a concern in your system for which 3GL code is the right abstraction
(i.e. you need the full expressive power of a Turing-complete language with no
significant semantic extensions), it is not necessarily a good idea to try and define a
DSL for the concern. It is often perfectly ok to define (generate) a nice API against
which developers can then write code in a 3GL. You can also generate hooks into the
generated code which users can implement with 3GL code to realize some exceptional
behavior. Keep the purpose of the hooks well defined, and their number limited,
though!

Notation, Notation, Notation

When building DSLs, notation is extremely important. As the language designer, you
care mostly about the underlying meta model, and you might not really care about the
“nice syntax”. But from the (domain) user’s perspective, the situation is exactly
opposite!

Especially (but not exclusively) in business domains, you will only be successful
if and when you can tailor your notations to fit the domain – there might even be

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

existing notations. It is often hopeless to try and convince domain users or experts
about a “better notation” – just implement what they have.

Note that this might require textual and graphical notations, Excel-like
spreadsheets, form-based systems, or all of them mixed. Today’s DSL tools have
limitations in this respect. I am sure the next couple of years of evolution in DSL
tooling will address mainly this issue. As of now, just be aware of the wide variability
of notations, and try to do as best as you can given the tooling that’s available.

The notation should make the expression of common concerns simple and
concise and provide sensible defaults. It is ok for less common concerns to require a
bit more verbosity in the notation.

When prototyping or sketching a DSL, it is often useful to start with the notation,
cross-checking it with the language users.

Graphical vs. Textual Notation

Things that are described graphically are easier to comprehend than textual
descriptions, right? Not really. What is most important regarding comprehensibility is
the alignment of the concepts that need to be conveyed with the abstractions in the
language. A well-designed textual notation can go a long way. Of course, for certain
kinds of information, a graphical notation is better: relationships between entities, the
timing/sequence of events or some kind of signal/data flow. On the contrary,
rendering expressions graphically is a dead end (note how a graphical formula editor
is somewhat of a hybrid with the way it displays fractions, matrices, integrals and the
like.)

When deciding about a suitable notation, you might want to consider the
following two forces: in most (but not all!) tool environments, editors for textual
notations (incl. code completion, syntax highlighting and the like) are much easier to
build and evolve than really user-friendly and scalable graphical editors. Textual
models also integrate more easily with existing source code management and build
infrastructures.

Also, instead of using full-blown graphical editing, you might want to consider
textual editing plus graphical visualization (see below)

In environments where usable graphical editors are a lot work to build, I
recommend first stabilizing the concepts and abstractions of the language with very
simple editors (textual, tree, generic box/line) and then investing into a polished
graphical editor.

Finally, in many systems some viewpoints will be graphical, others textual.
Sometimes you will even want to mix the two forms of syntax: consider a state
machine (graphical) with embedded guard expressions (textual). This can be tricky
with today’s tooling.

DSL Semantics (unrated)

It is not enough to define the abstractions and the notations for a DSL, you also have
to define the meaning of those abstractions – the language semantics.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 83

In some sense, the semantics of a language takes into account more knowledge
about the domain than what is expressed in the language: the language only allows
users to express things that are particular to the specific system/application/instance
they describe with the model. The semantics, however, also takes into account the
knowledge about all the stuff in the domain that is identical for every
system/application/instance in that domain.

Technically it is the job of the generator, interpreter and platform to bridge this
gap. However, from the perspective of the language user (who might not know
specifically what a model processor does) the semantics are tacit knowledge about
“how the language works” and it has to be explained as “the meaning of the
language”.

There are various ways of defining semantics formally, none of them being
sufficiently pragmatic (as of 2008) to be useful in mainstream DSL practice.
Consequently, the meaning of a language is defined in two ways: it is explained in
prose and with examples towards the language users and it is tied down towards the
execution platform using the code generator (which is, strictly speaking, a form of
operational semantics definition, since the generator maps the language concepts to
the concepts of a target language whose semantics are known) or the interpreter.

Viewpoints

A software system usually cannot be described with one notation for all relevant
aspects. Also, the development process requires different aspects to be described by
different roles at different times, as you want to be sure to have a clean separation of
concerns. Hence it is important to identify the set of viewpoints relevant for
describing the different concerns of a system, and provide notations and abstractions
for each.

In some system that means that you’ll define separate DSLs for each viewpoint.
In other systems you’ll define one language that has a number of sections, one for
each viewpoint.

Whichever approach your tooling supports, viewpoints need to be connected to
other viewpoints to be able to describe the overall system. Make sure those
“connection points” are explicitly defined and limited in number. Also, make sure the
direction of dependency is clear between the viewpoints – strict layering with
unidirectional dependencies is highly recommended.

Note how this is similar to the modularization of software systems, the same rules
apply: strong coherence internally, few interfaces externally and generally as little
coupling as possible.

Partitioning

Like everything in software, DSLs editors and model processors don’t scale arbitrarily
– something you tend to forget when starting a project from a small prototype. In most
scenarios, it is important to partition the overall model into separate “model units”.

Partitions have consequences in many respects. They are often the unit for
checkin/checkout or locking. Also, references within a partition are often direct

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

references, whereas cross-partition references might be implemented via proxies,
(tool-enforced) name-references or generally, lazy-loading. Partition-local constraints
are often checked in real-time in the editor, global constraints might only be checked
upon request, maybe as part of an overall “build” process.

Also, it often makes sense to ensure that each partition is processable separately.
Alternatively, it is possible to explicitly specify the set of partitions that should be
processed in a given processor run (or at least a search path, a set of directories, to
find the partitions, like an include path in C compilers). You might even consider a
separate build step to combine the results created from the separate processing steps
of the various partitions (like a C compiler: it compiles every file separately into an
object file, and then the linker handles overall symbol/reference resolution and
binding).

In many tools, partitioning is not completely transparent. You might have to
include partitions explicitly and/or you have to make sure you don’t accidentally
create unintended dependencies on other partitions. Hence, it is important to consider
partitioning early in the DSL/generator development process and design your
metaware accordingly.

The design of a workable partitioning strategy is part of language design! Things
to keep in mind in this context are: which partition changes as a consequence of
specific changes of the model (changing an element name might require changes to all
by-name references to that element in other partitions), where are links stored (are
they always stored in the model that logically “points to” another one)?, and if not,
how/where/when to control reference/link storage.

Partitions are really about physically partitioning the overall model. They can be
aligned with the logical model structure (think namespace) or viewpoints, but they
don’t have to. For example, a partition that describes the Billing subsystem, might
contain elements in several (nested) namespaces and cover several viewpoints (data
structure, process, UI definition).

Evolution

Another important aspect that is often forgotten when initiating a MD* project is the
need for language evolution. If you change the language, make sure that you also have
a way of adapting model processors as well as existing models.

Doing this requires any or all of the following: a strict configuration management
discipline, versioning information in the models to trigger compatible model
processors, keeping track of the changes as a sequence of change operations, or model
migration tools to transform models based on the old language into the new language.

Whether model migration is a challenge or not depends quite a bit on the tooling.
There are tools that make model evolution a very smooth, but many environments
don’t. Consider this when deciding about the tooling you want to use! Note that in
case of textual DSLs, model migration can be achieved via regular expressions and
grep (at least as a fallback).

It is always a good idea to minimize DSL changes that break existing models.
Backward-compatibility and deprecation are techniques well worth keeping in mind
in MD*-land. Note that you might be able to instrument your model processor to

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 85

collect statistics on how deprecated language features continue to be used. Once no
more instances show up in models, you can safely remove the deprecated language
feature.

Using a set of well-isolated viewpoint-specific DSLs prevents rippling effects on
the overall model in case something changes in one DSL.

The fallacy of generic languages

Predefined, generic languages and generators are tempting – especially if you want to
describe technical aspects of your system. After all, you can model everything with
UML, can’t you? Just add a bunch of stereotypes and tagged values…

Be careful. Using predefined languages makes you spend most of your time
thinking about how your domain concepts can be shoehorned into the existing
language. Also, you’re being sidetracked by abstractions and notations from the
existing language. Of course, some generic languages provide facilities for adaptation,
like UML’s profiles. Still, at least in practical tool reality, UML shines through all the
time. You’ll have to add a lot of constraints that prevent users from using UML
features that don’t make sense in your domain. Also, your language will often look
like UML, since the practical reality of customizing UML tools is far from sufficient
(remember: Notation, Notation, Notation!). Finally, your model processor will have to
deal with the complex and big meta model of UML – profiles always add, they never
remove anything.

In practice, in most cases it is much better to define your own DSL. Initially, it
seems like a bit more work, but rather soon it becomes much more efficient

However, make sure you don’t reinvent the exact same wheels for which
standard already exists. For example, there’s not much need to reinvent state charts
(for state-based behavior) and sequence diagrams (to describe scenarios or text cases)
– UML does a pretty good job with these. Also, for small, incremental deviations
from a useful UML notation, profiles are a good choice.

So, if a suitable generic language exists, either use the existing language, or make
sure your own implementation is compatible as far as possible (duck modeling: if it
looks like a state machine and it behaves like a state machine, it is a state machine1)

Learn from 3GLs

Above we discussed the fact that a DSL is not a general purpose language in disguise.
However, there is still a lot we can learn from existing formalisms and languages.

Here are four examples. Most languages need some notion of scoping: for a given
reference on a model element, only a subset of the type-compatible model elements
constitute valid targets for the reference.

Specialization is a concept that can be applied not just to classes in OO, but also
to state machines, or specifications for insurance contracts.

Also, the notion of namespaces is found in many DSLs to organize the naming
scheme for model elements.

1 Thanks to Achim Demelt for this ☺

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Finally, many DSLs contain the notion of instantiation – being able to express
that some concept is an instance of another concept, effectively introducing in-
language type systems. As part of your constraint checks, you might have to do actual
type computations and type checks.

To become a good DSL designer, it is useful to have broad knowledge about
existing programming language paradigms. Please read the book Concepts,
Techniques and Models of Computer Programming by Peter Van Roy and Seif Haridi.

Who are the first class citizens?

There are two different styles of language design: one advocates big languages with
first class support for many different domain concepts. The other advocates minimal
languages with few but powerful primitive features, from which bigger features are
constructed by combination and made available via libraries (this is somewhat similar
to the Microkernel pattern).

Here are some things to keep in mind when building DSLs. Make sure your
language design is consistent in the sense that you stick to one of the two approaches
throughout. Using the second approach is more complicated and requires considerable
effort in finding what those basic primitive features are. Especially in business domain
DSLs, the second approach often fails because business users are not used to working
with few, powerful, orthogonal concepts.

In DSLs that address domains with well identifiable or well known concepts,
make sure you make those concepts the first class citizens, and use appropriate
notations. For example, in a DSL for programming mobile phones, make sure make
sure you have native language elements all the input elements (left button, right
button, 0..9 keys, joystick). Don’t try to abstract this into generic “input devices”.

You can combine the two approaches, however, make sure your languages retain
a feeling of consistency and integrity.

Libraries

A topic related to the previous best practice is the use of libraries. Libraries are
collections of instances of your DSL, intended for reuse, typically stored in a separate
model partition.

Libraries help reusing model data – this is obvious. For example, in a DSL that is
used to describe data structures, it is often useful to put reusable data structures (date,
time, address) into a library for others to use (libraries are a form of partitioning).

However, libraries can also be used as a way to limit language complexity.
Consider the above mentioned data structure DSL: instead of hard coding the
primitive types int, string and bool, you can just implement a primitive type construct
and make int, string and bool instances of that type. This allows users to add new
primitive types by changing the model as opposed to changing the language – this is
much less hassle!

However, if you use the library approach, make sure the model processors don’t
make assumptions about the structure of some of the higher-level constructs, but
instead are really only based on the basic primitive features. In case of our example,

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 87

the mapping of the primitive types to the target language (e.g. Java) may need to be
part of the model, otherwise you’d have to change the generator when adding a new
primitive type by changing the library.

Teamwork Support

An important aspect of your DSL tooling is support for versioning, tagging,
branching, locking, comparing and merging – all aspects of working collaboratively
on models. Make sure the tools you use support all of these – using the languages’
concrete syntax, nobody is willing to handle these issues on an abstract syntax/meta
model/tree level!

When working with business experts, repository-based systems are often very
capable of addressing these issues. However, when targeting developers, the models
(and the meta ware) have to interoperate with the rest of the development tools.
Specifically, you need to integrate with existing source code control systems (CVS,
SVN, Git and the like). Moreover, if your system is specified via models as well as
manually written 3GL code, it must be possible to tag, compare and version both
kinds of artifacts together to prevent running into CM hell. A tool specific repository
can be a problem in such a scenario if it does not provide means to integrate with the
repository for code artifacts.

Textual DSLs have a clear advantage here, since, regarding the concerns we
discussed here, the models are just text (at least if they are stored as actual text files,
and the textual notation is not a projection of underlying structured data).

For business users, pessimistic locking (and consequently no need for comparing
and merging) might be easier to understand. In general, the decision between a
pessimistic and optimistic approach should be based on the process and the
collaboration use cases.

Note that good partitioning can make teamwork support much easier; the
partition becomes the unit for comparison, merging or locking.

Tooling Matters!

Defining languages and notations is not enough per se – you have to provide good
tool support for them, too.

DSL editors need to be able to support teamwork (see above), navigation,
overviews, searching, quick-find, find-references, show usage, maybe even
refactoring. For textual DSLs, your editors have to provide code completion, syntax
highlighting and the like to make sure developers (who are used to powerful IDEs for
their “regular” language) are willing to work with DSLs.

The same is true for the “meta developers”. Make sure your environment
provides a good experience for writing transformations and code generators, for
example, by providing meta model-aware editors for these artifacts.

To increase usability, DSL editors need to be able to cope with wrong or
incomplete models as they are entered by the users. Ideally, it should even be possible
to persist them. Of course, as long as models are wrong or incomplete they cannot be
processed any further. In the context of textual languages, this might mean that you

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

design a somewhat “looser”, more tolerant grammar, and enforce correctness via
constraints.

You also have to make sure the model processors are able to run as part of the
nightly build (outside of the editor or tool) to integrate them into existing build
environments.

3 PROCESSING MODELS

Interpretation vs. Code Generation (unrated)

When thinking about executing models, most people inherently tend towards code
generation. However, interpretation is also a valid option. An interpreter is a (meta-
)program that reads the model and executes code (calculations, communication, UI
rendering) as it queries or traverses the model.

There’s a whole bunch of tradeoffs between interpretation and code generation.
Let’s first look at the advantages of code generation.

Code generation is perceived to be simpler, because the resulting code can be
inspected. The templates can even be “extracted” from manually coded example
applications. Generated code is also easier to debug than an interpreter (you need to
use conditional breakpoints all the time). Generated code can be tailored more closely
to the task at hand, and can hence be smaller and/or more efficient than an interpreter.
This is especially relevant for resource-constrained environments. Finally, a code
generator can work with any target platform/language, there are no changes to the
target platform required (if you want to interpret, you need to run an interpreter on the
target platform). More generally, using code generation, the overall MD* approach
leaves no traces whatsoever in the resulting system.

Interpretation also has a number of advantages: changes in the model don’t
require an explicit regeneration/rebuild/retest/redeploy step, significantly shortening
the turnaround time, and in some scenarios, the overall change management process.
It is even possible for models to be changed from within the running application, and
take effect immediately. Also, since no artifacts are generated, the build times can be
much reduced. Depending on the specific case, an interpreter and the model can be
smaller than generating the code.

As can be learned from programming languages, there are also potential
combinations between interpretation. You can generate a lower-level representation of
the model (often XML) that is subsequently interpreted (analogy: Java or CLR byte
code), maybe by a previously existing interpreter. It is also conceivable to
transparently generate code from within the interpreter to optimize performance (think
just in time compilation, Hotspot VM). However, I have never seen this approach
used in practice in the context of MD*.

Rich Domain-Specific Platform (unrated/)

Code generation is a powerful tool, and a necessary ingredient to the success of
model-driven development and external DSLs. However, make sure you don’t
generate unnecessary code.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 89

It is always a good idea to work with a manually implemented, rich domain
specific platform. It typically consists of middleware, frameworks, drivers, libraries
and utilities that are taken advantage of by the generated code.

In the extreme case, the generator just generates code to populate/configure the
frameworks (which might already exist, or which you have to grow together with the
generator) or provides statically typed facades around otherwise dynamic data
structures. Don’t go too far towards this end, however: in cases where you need to
consider resource or timing constraints, or when the target platform is predetermined
and perhaps limited, code generation does open up a new set of options and it is often
a very good option (after all, it’s basically the same as compilation, and that’s a
proven and important technique).

Checks first and separate

In all but the most trivial cases, the structures defined by the meta model do not
express the whole truth about models. Constraints – basically Boolean expressions
with error messages attached – are required to validate models. It is essential that
those constraints are treated as first class citizens and have their own phase during
model processing.

For example, putting the constraint checks into the generator templates is bad,
since it makes templates overly complicated. Also, if you have several different sets
of templates (e.g. for different target languages) you’d have to put the constraints into
each of them. There’s usually no point in even starting up a code generator if the
constraint checks don’t succeed. If the model is wrong, the generated code will be
wrong.

Keep in mind that it is often useful to check different constraints on different
parts of the overall model at different times in the model processing chain. One
example is checking certain constraints after a transformation. As another example
you typically want to execute partition-local constraints interactively (e.g. when
saving the partition in the editor) while global constraints should maybe be executed
only on demand, because they typically take much longer to evaluate.

Check constraints as early in the processing chain as possible. The more domain-
specific the model and the constraints are, the more understandable a failed constraint
will be to the user. Check as many constraints as you possibly can, try to make sure
that if the model validates, the resulting system is correct (this is not always possible,
see runtime errors in 3GL languages, but you should strive to be as good as possible).

If you use incremental model refinement with model transformations (see
Cascading below), check constraints at every level, but make sure constraints of a
lower level never fail for any correct input from a higher level model – the user will
not understand it.

Finally make sure you can express constraints of different severity, such as
warnings and errors. Errors will typically stop the next step in the model processing
chain, warnings typically won’t.

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Don’t modify generated code

In many systems, some parts will still be expressed using code of the target language.
Consequently, you have to integrate generated code and manually written code. Most
tools provide what’s called protected regions, marked up sections of the generated
files into which you can insert manually written code that will not be overwritten
when the files are regenerated.

It is often a bad idea to use them. You’ll run into all kinds of problems: generated
code is not a throw-away product anymore, you have to check it in, and you’ll run
into all kinds of funny situations with your CM system. Also, often you will
accumulate a “sediment” of code that has been generated from model elements that
are no longer in the model (if you don’t use protected regions, you can delete the
whole generated source directory from time to time, cleaning up the sediment).

Instead, add extension points into the generated code, using the composition
features provided by your target language. You can e.g. generate a base class with
abstract methods (requiring the user to implement them in a manually written
subclass) or with empty callback methods which the user can use to customize in a
subclass (for example, in user interfaces, you can return a position object for a widget,
the default method returns null, default to the generic layout algorithm). You can
delegate, implement interfaces, use #include, use reflection tricks, AOP or take a look
at the well-known design patterns for inspiration. Some languages provide partial
classes, where a class definition can be split over a generated file and a manually
written file.

In the rare case where the target format does not support modularization and
composition you can put the manual code literally into the model (or an external file)
and have the generator paste it into the generated artifact, avoiding the need to modify
it.

Separating generated and manually written code also has its drawbacks. For
example, if you change the model and hence get different generated code, the
manually written code is not automatically refactored accordingly (could be done in
theory, but I haven’t see it in practice). Also, the approach can result in an increased
number of implementation artifacts (a generated base class and a manually written
subclass), possibly increasing compilation time.

As tools become better, additional approaches might become feasible. However,
as of now, the approach advocated here results in the lowest amount of headache.

Note that a similar problem can arise if you modify models resulting from a
model-to-model transformation; which is why we don’t recommend doing this.

Control manually written code

Based on the previous best practices, the following can easily happen: the generator
generates an abstract class from some model element. The developer is expected to
subclass the generated class and implement a couple of abstract methods. The
manually written subclass needs to conform to a specific naming convention. The

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 91

generator, however, just generates the base class and stops. How do you remind
developers to create a subclass?

Of course, if the constructor of the concrete subclass is called from another
location of the generated code, and/or if the abstract methods are invoked, you’ll get
compiler errors. By their nature, they are on the abstraction level of the
implementation code, however. It is not always obvious what the developer has to do
in terms of the model or domain.

To solve this issue, make sure there is there a way to make those conventions and
idioms interactive. One way to do this is to generate checks/constraints against the
code base and have them evaluated by the IDE. If one fails, an error message is
reported to the developer. As soon as the developer implements the manual code in
the required way, the error message goes away.

Another way to achieve this goal in some circumstances is to generate code that
is never executed, but coerces the IDE into providing a quick fix that creates the
missing artifact. For example, if you expect users to manually write a subclass of a
generated class, generate a statement such as if (false) { GeneratedBaseClass x = new
ManualSubclass() }.

Care about generated code

As we saw above, generated code is a throw-away artifact, a bit like object files in a C
compiler. Well, not quite! When integrating with generated code, you will have to
read the generated code, understand it (to some extent), and you will also have to
debug it at some point.

Hence, make sure generated code is documented, uses good names for identifiers,
and is indented correctly. All of this is relatively easy to achieve, as you have all the
information you need when writing the code generator!

Making generated code adhere to the same standards as manually written code
also helps to diffuse some of the skepticism against code generation that is still
widespread in some organizations.

Note that in very mature environments where you generate 100% of the
implementation code, the generated code is never seen by a meta ware user. In this
case (and only in this case) the statements made here don’t apply.

Make the code true to the model

In many cases, you will implement constraints that validate the model in order to
ensure some property of the resulting system. For example, you might check
dependencies between components in an architecture model to ensure components can
be exchanged in the actual system.

Of course this only works if the manually written code does not introduce
dependencies that are not present in the model. In that case the “green light” from the
constraint check does not help much.

To ensure that promises made by the models are kept by the code, use the
following two approaches. First, generate code that does not allow violation of model
promises. For example, don’t expose a factory that allows components to look up and

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

use any other component (creating dependencies), but rather use dependency injection
to supply objects for the valid dependencies expressed in the model. Second, use
architecture analysis tools (dependency checkers) to validate manually written code.
You can easily generate the check rules for those architecture analysis tools from the
models.

Viewpoint-aware processing

Viewpoints, as introduced above, are not just relevant for modeling. They are also
important when processing models. You might want to check constraints separately
for different viewpoint models. Some viewpoints might be better suited for
interpretation instead of code generation. When generating code, you might want to
consider generating in phases, based on the viewpoints.

For example, you should have separate code generators for the type viewpoint
(once generated, developers can write manual code against the generated APIs) and
the deployment viewpoint (from which you generate code that maps the API/manual
code onto an execution platform), and finally interpret the state machine models
within generated code by delegating to an existing state machine interpreter
framework. Note that if you fail to have separate generators per viewpoint, you
introduce viewpoint dependencies “through the back door”, effectively creating a
monolith again.

Note that there’s also a separation vs. model partitions, each partition should be
processable separately. If partitions and viewpoints align, this makes things especially
easy.

Overall Configuration Viewpoint (unrated)

If you use viewpoints and partitions extensively, you will possibly end up with a large
set of models – separate resources, that all contain parts of the overall system. For
reasons of scalability and/or process, you often don’t want to generate code for the
whole system and/or for all viewpoints. Also, many systems can generate code for a
number of target languages or environments.

In short, when running the model processor, there are often quite a number of
options to specify: validate the whole model, but only with this subset of constraints;
generate all the code needed for implementing the business logic for only this
subsystem; or generate the deployment code for the whole system, targeting the
production environment.

It is a good idea to have a separate model that captures this configuration. In
some sense, it ties together the “scope of concern” for the model processor. By
handling this “compiler configuration” as a model, too, you get all the benefits of
modeling also for this concern, making it much more tractable than putting all of that
into properties files or XML configuration files.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 93

Care about templates

Code generation templates will be one of your central assets. They contain the
knowledge of how to map domain concepts expressed in DSLs to implementation
code.
Over time, they have a tendency to grow and become non-trivial. To keep the
complexity in check, make sure you use well-known modularization techniques: break
templates down into smaller templates that call each other, extract complex
expressions into functions called by the templates and use AO to factor out cross-
cutting template behavior.

Sometimes I notice that people forget about these proven techniques as soon as
they go to the meta level ☺. Even worse, some of the tool builders seem to have
forgotten those techniques when they built the generator tools! Make sure, when
choosing a generator tool, it allows you to use those techniques for code generation
templates.

Here’s a specific tip: indent your templates in a way that makes sense for the
template, not for the generated code. You can always run a beautifier over the
generated files (at least as long as you’re generating code for a language whose block
structure is not based on indentation!)

Finally, by generating code against meaningful frameworks, the overall amount
of template code required is reduced, improving maintainability of templates simply
by having fewer of them.

M2M transformations to simplify generators

As mentioned above, generators tend to become complicated. Another way of
simplifying them is to use intermediate model-to-model transformations. Two
examples:

Consider the case of a state machine where you want to be able to add an
“emergency stop” feature, i.e. a new transition from each existing state to a new
STOP state. Don’t handle this in the generator templates. Rather, write a model
transformation script that preprocesses the state machine model and adds all the new
transitions and the new STOP state. Once done, you can run the existing generator
unchanged. You have effectively modularized the emergency stop concern into the
transformation.

Second example: consider a DSL that describes hierarchical component
architectures (where components are assembled from interconnected instances of
other components). Most component runtime platforms don’t support such
hierarchical components, so you need to “flatten” the structure for execution. Instead
of trying to do this in the code generator, you should consider an M2M step to do it,
and then write a simpler generator that works with a flattened, non-hierarchical
model.

Generally, in the case where some language features are built on top of others
(see Who are the first class citizens above) you can reduce the higher-level constructs

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

to their constituent lower-level constructs, and then only provide code generators for
those.

Note that for the kind of model transformations discussed here, unidirectional
transformations (and hence, simpler, unidirectional transformation languages) are
perfectly good enough. Bidirectional transformations are only useful in rare cases not
covered in this paper.

M2M transformations for simulation (unrated)

Another important use case for model-to-model transformations is the integration of
domain DSLs with existing general-purpose formalisms for which suitable validation
or proofing tools exist.

For example, by transforming a specific behavior description to a state machine,
you can use existing tools to automatically generate test sequences for the respective
behavior. As another example consider the description of behavior for a concurrent,
distributed system. By transforming it into petri nets and using suitable tools, you can
make statements about reachability and liveliness of you behavior. As a third
example, simulation environments are often used to verify timing or resource
consumption for a specific system.

To be able to extrapolate system characteristics proven/simulated for the version
of the system in the generic formalism to your original system description, you have
to make sure that the simulated system is semantically equivalent to the final system
being executed. So, theoretically, you have to prove that the transformations
model/simulation and model/code are correct. This is very hard to actually prove, but
by using a sufficient number of tests, you can show the correctness well enough for
most practical purposes.

Allow for adaptations

MD* benefits from the economies of scale. If you can write a DSL/generator once and
then (re-)use it on many projects or systems, you will win big. However, as we all
know, reuse is hard, because every project/system has some specifics that are not
covered by the reuse candidate.

Hence, make sure you provide means for implementing unexpected variability in
a non-invasive way.

For example, developers should be able to annotate model elements with
additional information that can be used in tailored generators (e.g. store name/value
pairs in a hash map for each element). Also, make sure code generation templates can
be customized non-invasively to support generation of slightly-different code. This
can be achieved, for example, using generator AO (the ability to contribute advice
into existing generator templates) or a combination of factories and polymorphism.

Note that allowing for adaptations in all locations results in all template code
being API code in the sense that developers might rely on the structure for their
adaptations. As a tradeoff, you might want to mark up certain templates as “public
API” or “private – don’t rely on it”.

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 95

Cascading

Many publications advocate the idea of starting the MD* approach by defining a PIM
and then transforming it into less abstract, more platform-specific PSMs, and finally
to code. In my experience, it is better to start from the bottom: first define a DSL that
resembles your system’s software architecture (used to describe applications), and
build a generator that automates the grunt work with the implementation technologies.
The abstractions used in the DSL are architectural concepts of your target
architecture.

In subsequent steps, build on top of that stable basis abstractions that are more
business-domain specific. You can then use M2M transformations to map some
aspects of those more abstract concepts to existing abstractions of your architectural
language, “feeding” them into the existing generator chain. For those aspects that
cannot be mapped to lower level architectural abstractions provide specific generators
that generate code that acts as “business logic implementation” from the architectural
generator’s viewpoint (replacing some of the code that had to be manually written
before).

Note that you should never ever modify the intermediate stage models. They are
transitive and are typically not even stored (unless for debugging purposes). They
serve as a “data extension format” between the various stages of your cascaded meta
ware. If you need to put additional information into the result model, use an
annotation model.

Annotation Models

When working with model-to-model transformations you can run into some of the
same problems as with code generation in that sometimes, it seems necessary to mark
up the result of a transformation step manually before it is further processed. Actually
changing the model after it has been created via a transformation would be an
approach similar to protected regions – with similar challenges.

The better solution is to create a separate model – an annotation model – that
references the elements in the intermediate model for which it specifies additional
model data (effectively an additional viewpoint). The downstream processor would
process the model created via the upstream model-to-model transformation and the
annotation model in conjunction, understanding the semantics of the annotation
model’s relationship to the original model.

For example, if you create a relational data model from an object oriented data
model, you might automatically derive database table names from the name of the
class in the OO model. If you need to “change” some of those names, use an
annotation model that specifies an alternate name. The downstream processor knows
that the name in the annotation model overrides the name in the original model.

An alternative, but very related approach is to use the annotation model directly
during the model-to-model transformation. In case of our example, the annotation
would annotate and reference the OO model, and the transformer would take the table
name specified in the annotation model into account.

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Classify Behavior

There’s a tendency to use action semantic languages (ASLs) to describe system
behavior on model level. However, the abstraction level of ASLs is not fundamentally
different from a 3GL. Implementing functionality against a clean API is almost as
good although it is, of course, implementation language specific and leads to the
problem of integrating generated and manually written code. Action languages stay on
the model level and hence alleviate this problem. They can also be integrated more
easily into model refactoring and global constraint checking.

To become more efficient with implementing behavior, classify behavior into
different kinds such as state-based or business-rule based, and provide specific DSLs
for those classes of behavior. In many cases you can even generate the behavior based
on a very limited set of configuration parameters.

Also, business domain specific DSLs should be used for suitable classes of
behavior; as an example consider a temporal expression language for insurance
contract specification.

In some sense, manually written code is just a suitable implementation language
for some kind of behaviors, for which there’s no more efficient way to express it.

Don’t forget testing

Just like in any aspect of software, testing is an important ingredient. In MD*, testing
comes in different flavors, though. Here are some thoughts.

First of all, constraint checks are a form of test, a bit similar to compiler checks in
classical programming, albeit easily customizable and domain specific. When testing
a code generator, don’t test for the syntax of the generated code, rather compile the
code and write unit tests against it. This tests the generated code’s semantics as
opposed to its syntactic structure. You can also test model transformations by writing
constraint checks against the concrete data in the models that result from a
transformation. When building a generator, always keep a test model around that uses
all features of the language, and write tests against this model (be aware of the
coverage issue!). Building and maintaining this model and the corresponding tests is
the job of those developers who build the generator, not of the generator users!

Assuming the generator is well tested and mature (see previous paragraph), then
there’s no need to write tests that verify the generated code in projects that use the
generator. However, it is usually still useful to write tests against the overall system
built via MD* - to make sure the model semantics is as expected, and to make sure
them manually written code sections behave correctly.

When generating the system as well as the test, make sure you don’t derive both
from the same model. This might lead to a situation where a faulty test is run against a
faulty system resulting in a succeeding test!

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 97

4 PROCESS AND ORGANIZATION

Iterate!

Some people use MD* as an excuse to do waterfall again. They spend months and
months developing languages, tools, and frameworks. Needless to say, this is not a
very successful approach. You need to iterate when developing the metaware.

Start by developing some deep understanding of a small part of the domain for
which you build the DSL. Then build a little bit of language, build a little bit of
generator and develop a small example model to verify what you just did. Ideally,
implement all aspects of the metaware for each new domain requirement before
focusing on new requirements.

Especially newbies to MD* tend to get languages and meta models wrong
because they are not used to “think meta”. You can avoid this pitfall by immediately
trying out your new language feature by building an example model and developing a
compatible generator.

Co-evolve concepts and language

In cases where you do a real domain analysis, i.e. when you have to find out which
concepts the language shall contain, make sure you evolve the language in real time as
you discuss the concepts.

Defining a language requires formalization. It requires becoming very clear –
formal! – about the concepts that go into the language. In fact, building the language,
because of the need for formalization, helps you become clear about the concepts in
the first place. Language construction acts as a catalyst for understanding the domain!

I recommend actually building a language in real time as you analyze your
domain: over the last two years I have been doing this with textual editors in the
domain of software architecture, with extremely good results. As we define, evolve
and verify a system’s architecture with the team, I build the architecture DSL in real
time.

To make this feasible, your toolkit needs to be lightweight enough so support
language evolution during domain analysis workshops. Turnaround time should be
minimal to avoid overhead (the more a tool uses interpretation to work with the DSL,
the better). You also have to tackle the Evolution issue (see above). Textual
languages, with models stored as text files, are a good option here. Model migration
can be done mostly via global search and replace.

Documentation is still necessary

Building DSLs and model processors is not enough to make MD* successful. You
have to communicate to the users how the DSL and the processors work. Specifically,
here’s what you have to document: the language structure and syntax, how to use the
editors and the generators, how and where to write manual code and how to integrate
it as well as platform/framework decisions (if applicable).

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Please keep in mind that there are other media than paper. Screencasts, videos
that show flipchart discussions, or even a regular podcast that talks about how the
tools change are good choices, too.

And please keep in mind that hardly anybody reads reference documentation. If
you want to be successful, make sure the majority of your documentation is example-
driven or task-based.

When selecting MD* tools, make sure that the meta ware artifacts (meta models,
templates, transformations, etc.) as well as your models support comments in a
meaningful and scalable way.

Reviews

A DSL limits the user’s freedom in some respect: they can only express things that are
within the limits of DSLs. Specifically, low-level implementation decisions are not
under a DSL user’s control because they are handled by the model processor.

However, even with the nicest DSL, users can still make mistakes, the DSL users
can still misuse the DSL (the more expressive the DSL, the bigger this risk).

So, as part of your development process, make sure you do regular model
reviews. This is critical – but not limited - especially to the adoption phase when
people are still learning the language and the overall approach.

Two notes: reviews are easier on DSL level than on code level. Since DSL
“programs” are more concise than their equivalent specification in 3GL code, reviews
become more efficient.

Also, if you notice recurring mistakes, things that people do in a “wrong” way
regularly, you can either add a constraint check that detects the problem
automatically, or (maybe even better) consider this as input to your language
designers: maybe what the users expect is actually correct, and the language needs to
be adapted.

Let people do what they are good at

MD* offers a chance to let everybody do what they are good at. There are several
clearly defined roles, or tasks, that need to be done. Let met point out two,
specifically.

Experts in a specific target technology (say, EJB on JBoss) can dig deep into the
details of how to efficiently implement, configure and operate a JBoss application
server. They can spend a lot of time testing, digging and tuning. Once they found out
what works best, they can put their knowledge into generator templates, efficiently
spreading the knowledge across the team. For the latter task, they will collaborate
with generator experts and language designer – our second example role.

The language designer works with domain experts to define abstractions,
notations and constraints to accurately capture domain knowledge. The language
designer also works with the architect and the platform experts in defining code
generators or interpreters. For the role of the language designer, be aware that there
needs to be some kind of predisposition in the people who do it: not everybody is

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 99

good at “thinking meta”, some people are simply more skewed towards concrete
work. Make sure you use “meta people” to do the “meta work”.

There’s also a flip side here: you have to make sure you actually do have people
on your team who are good at language design, know about the domain and
understand target platforms. Otherwise the MD* approach will not deliver on its
promises.

Domain Users Programming?

We already alluded to the fact that domain users aren’t programmers, but are still able
to formally and precisely describe domain knowledge. Can they actually do this
alone?

In many domains, usually those that have a scientific or mathematical touch, they
can. In other domains you might want to shoot for a somewhat lesser goal. Instead of
expecting domain users and experts to independently specify domain knowledge, you
might want to pair a developer and a domain expert. The developer can help the
domain expert to be precise enough to “feed” the DSL. Because the notation is free of
implementation clutter, the domain expert feels much more at home than when staring
at 3GL source code.

Initially, you might even want to reduce your aspirations to the point where the
developer does the DSL coding based on discussions with domain experts, but then
showing them the resulting model and asking confirming or disproving questions
about it. Putting knowledge into formal models helps you point out decisions that
need to be made, or language extensions that might be necessary.

If you’re not able to teach a business domain DSL to the domain users, it might
not necessarily be the domain users’ fault. Maybe your language isn’t really suitable
to the domain. If you encounter this problem, take it as a warning sign and take a
close look at your language.

Domain Users vs. Domain Experts (unrated)

When building business DSLs, people from the domain can play two different roles.
They can participate in the domain analysis and the definition of the DSL itself. On
the other hand, they can use the DSL to express specific domain knowledge.

It is useful to distinguish these two roles explicitly. The first role (language
definition) must be filled by a domain expert. These are people who have typically
been working in the domain for a long time, maybe in different roles, who have a
deep understanding of the relevant concepts and they are able to express them
precisely, and maybe formally.

The second group of people are the domain users. They are of course familiar
with the domain, but they are typically not as experienced as the domain experts

This distinction is relevant because you typically work with the domain experts
when defining the language, but you want the domain users to actually work with the
language. If the experts are too far ahead of the users, the users might not be able to
“follow” along, and you will not be able to roll out the language to the actual target
audience.

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

Hence, make sure that when defining the language, you actually cross-check with
real domain users whether they are able to work with the language.

Metaware as a product

The language, constraints, interpreters and generators are usually developed by one
(smaller) group of people and used by another (larger) group of people. To make this
work, consider the metaware a product developed by one group for use by another.
Make sure there’s a well defined release schedule, development happens in short
increments, requirements and issues are reported and tracked, errors are fixed
reasonably quickly, there is ample documentation (examples, examples, examples!)
and there’s support staff available to help with problems and the unavoidable learning
curve. These things are critical for acceptance.

A specific best practice is to exchange people: from time to time, make
application developers part of the generator team to appreciate the challenges of
“meta”, and make meta people participate in actual application development to make
sure they understand if and how their metaware suits the people who do the real
application development.

Compatible Organization

Done right, MD* requires a lot of cross-project work. In many settings the same
metaware will be used in several projects or contexts. While this is of course a big
plus, it also requires, that the organization is able to organize, staff, schedule and pay
for cross-cutting work. A strictly project-focused organization has a very hard time
finding resources for these kinds of activities. MD* is very hard to do effectively in
such environments.

Make sure that the organizational structure, and the way project cost is handled,
is compatible with cross-cutting activities. You might want to take a look at the Open
Source communities to get inspirations of how to do this.

Forget Published Case Studies

Many “new” approaches to software development are advertised via published case
studies. While they are somewhat useful to showcase examples, they are not enough
to make a real decision. DSLs are by definition domain specific – seeing how other
people use them might not be very relevant to your situation. Some case studies even
publish numbers like “we generate 90% of the code”. That’s of course useless.
Because if modeling is 10 times more work than coding, the total effort is the same.
Also, those numbers don’t address lifecycle cost and quality.

The only real way to find out whether DSLs and MD* are good for you is to do a
prototype. Make sure you use an agile approach and lightweight tools and ensure that
4 person weeks are enough to achieve in a meaningful result (possibly using external
help if the team is new to building metaware). Look for a small, but representative
example that can be extrapolated to your real system. Be sure, when looking at the
resulting numbers, to add some overhead for lifecycle cost – there is non-linearity
involved when extrapolating from a 4 week prototype to using the approach

VOL. 8, NO. 6. JOURNAL OF OBJECT TECHNOLOGY 101

strategically. But doing a prototype still gives you much more insight than reading a
case study.

5 OPEN ISSUES

Before we conclude this paper, here is a set of challenges, or open issues, for which
the community and the tool vendors have to find satisfactory solutions. Note that for
most of the issues there’s some (proposed) implementation somewhere. But it’s not
generally part of industry-strength tools, or even an agreed-to best practice.

Mixing Notations is still a problem. There’s no tooling available to easily build
DSLs that for example embed textual notations in graphical models (with complete
editor support for both), or to build DSLs that use formula-editor-like, semi-graphical
syntax. Intentional Software is moving in that direction, but their tooling is not
generally available. And I know of no other tool.

Language Modularity and Composition is also a challenge in some
environments. Especially in textual languages that operate based on parser
technology, combining parsers is non-trivial. Systems like Intentional’s and Jetbrains’
MPS, that store (textual) models as structured meta data have an advantage here.
Also, systems like MetaEdit+ can handle language modularization quite well.

Metaware Refactoring is not supported in most systems, although there’s no
specific reason why it couldn’t. In my view it’s just one of those things that needs to
be done. Not conceptual challenges here.

Model/Code Refactoring is not quite that trivial. What I mean here is that if you
have manually written code that depends on code that is generated form a model, and
if you then change the model (and hence the generated code), what happens to the
manually written code? Currently, nothing. Ideally, the manually written code is
automatically changed in a way that keeps it current with regard to the changed
model.

Automatic Model Migration is also not a solved issue. What do you do with
your models if your language changes? Discard them, not being able to open them
anymore? Open them in the new editor, but flag the places where the old model is
incompatible with the new language? Automatically try to migrate? All those options
exists, and while the first alternative is clearly unacceptable, I am not sure how a
general best practice would look like.

Model Debugging, i.e. debugging a running system on model level is also not
generally available. While you can always hand-construct specific solutions (such as
debugging a state chart on an embedded device), there’s no tooling available to
generally support the implementation of such debuggers.

Interpretation and Code Generation are often seen as two alternatives, not as a
continuum. What you maybe really want is an interpreter, where you can selectively
use code generation for the parts for which interpretation is too slow – some kind of
partial evaluation. There’s research, but there’s nothing generally available.

Handling large or many models is also a non trivial issue. How do you scale the
infrastructure? How do you do impact analysis if something changes? How to you

BEST PRACTICES FOR DSLS AND MODEL-DRIVEN DEVELOPMENT

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 6.

navigate large or many models? How do you efficiently search and find? How do
incrementally visualize them?

Finally, Cartridges is a term that get quite a bit of airplay, but it’s not clear to me
what it really is. A cartridge is generally described as a “generator module”, but how
do you combine them? How do you define the interfaces of such modules? How do
you handle the situation where to cartridges have implicit dependencies through the
code they generate?

So, there’s a lot of challenges to work on – let’s get started

6 ACKNOWLEDGEMENTS

Thanks to Steve Cook, Axel Uhl, Jos Warmer, Sven Efftinge, Bernd Kolb, Achim
Demelt, Arno Haase, Juha Pekka Tolvanen, Jean Bezivin, and Peter Friese for
feedback on prior versions of this article – the feedback really did help in making the
article much better! I also want to thank the people who voted in response to my
survey: all of the above, plus Jeff Pinkston, Boris Holzer, Gabi Taentzer, Miguel
Garcia, Hajo Eichler, Jorn Bettin, Karsten Thoms, Keith Short, Anneke Kleppe and
Markus Hermannsdörfer.

7 REFERENCES

[1] Kelly, Tolvanen, Domain Specific Modeling, Wiley, 2008

[2] Voelter, Stahl, Model Driven Software Development, Wiley, 2006

[3] Markus Voelter, Patterns for Model-Driven Development,
http://www.voelter.de/data/pub/MDDPatterns.pdf

About the author
Markus Voelter works as an independent researcher, consultant and
coach for itemis AG in Stuttgart, Germany. His focus is on software
architecture, model-driven software development and domain
specific languages as well as on product line engineering. Markus
also regularly writes (articles, patterns, books) and speaks (trainings,
conferences) on those subjects. Contact him via voelter@acm.org or

www.voelter.de.

