
Vol. 8, No. 7, November–December 2009

Method Proxy-Based AOP in Scala
Daniel Spiewak and Tian Zhao
University of Wisconsin – Milwaukee, {dspiewak,tzhao}@uwm.edu

This paper describes a fully-functional Aspect-Oriented Programming framework
in Scala – a statically typed programming language with object-oriented and func-
tional features. This framework is implemented as internal domain-specific lan-
guages with syntax that is both intuitive and expressive. The implementation also
enforces some static type safety in aspect definitions.

1 INTRODUCTION

Aspect-Oriented Programming (AOP) implementations such as AspectJ provide language
extensions of pointcuts and advices to insert code of crosscutting concerns into the base
program through bytecode transformation. In this paper, we describe a framework to
implement an AOP extension to the Scala language [13] using higher-order functions
as AOP proxies 1. This framework allows programmers to specify pointcuts and aspects
using a Domain Specific Language (DSL) [5] embedded within Scala. Our technique uses
Scala’s higher-order functions to intercept method calls with minimal syntactic overhead
imposed on the base program. This framework allows developers to define pointcuts
by specifying class types and method signatures. The framework also allows access to
context variables, while aspects can insert advice code before or after the advised body.

The rest of the paper is organized as follows: In Section 2, we present the main idea
using an example. Section 3 explains the syntax of pointcuts and advices. Section 4 ex-
plains the implementation details. We discuss the benefits and tradeoffs of our framework
in Section 5. and related works are in Section 6.

2 EXAMPLE

AOP enables developers to write code that is modularized to a point beyond the capabil-
ities of vanilla object-oriented design. This kind of modularization is expressed declara-
tively in the form of cross-cutting concerns. A simple example of this can be seen in the
Java implementation of a basic Circle class:
1 public class Circle {
2 private int x, y;
3

4 public void setX(int x) {

1The source code is available at: http://www.codecommit.com/scala-aop.zip

Cite this article as follows: Daniel Spiewak and Tian Zhao: Method Proxy-Based AOP in
Scala, in Journal of Object Technology, vol. 8, no. 7, November–December 2009, pages
149–169,
http://www.jot.fm/issue/issues 2009 06/article5/

http://www.codecommit.com/scala-aop.zip
http://www.jot.fm/issue/issues_2009_06/article5/

METHOD PROXY-BASED AOP IN SCALA

5 this.x = x;
6 repaint();
7 }
8 public void setY(int y) {
9 this.y = y;

10 repaint();
11 }
12 private void repaint() { ... }
13 }

The problem with this class is a tight coupling between the Circle class and the re-
peated invocation of the repaint() method. Every point in the class where values may
have changed, code must be duplicated to make a call and ensure the screen is updated.
Aspect-oriented programming provides a solution to this problem by treating the Circle
repaint as a cross-cutting concern. AOP design says that the repaint logic and the logic
dictating when to repaint should both be factored out into a separate module, called an
aspect. An aspect contains pointcuts to specify sets of the joinpoints while advices spec-
ify the code to insert at various joinpoints using the pointcuts. An aspect is basically a
class with additional constructs allowing it to define logic which is to be “weaved” into
relevant classes. Using AspectJ:2, we can define an aspect CirclePainter to insert
calls to repaint method after each call to the setter methods of Circle class.

1 public aspect CirclePainter {
2 pointcut move(): call(void Circle.setX(int)) ||
3 call(void Circle.setY(int));
4

5 after(Circle c): move() && target(c) {
6 c.repaint();
7 }
8 }

Our goal is to create a framework which can enable aspect-oriented patterns within
the confines of an object-oriented programming language. No bytecode manipulation
should be utilized, nor should any compiler modifications be required. Existing language
constructs should be used to provide a quantification syntax that is both powerful and
flexible. Any further aims (such as completely transparent join point interception) are
secondary and should not come before the goal of avoiding semantic alteration. Scala is
a language with flexible syntax and incorporates features from both object-oriented and
functional languages [13], so it seems to be an excellent target for our experiment.

The first concern for an AOP implementation is to determine how the method inter-
ception is to take place. As far as we know, there is no way to do this transparently. Taking
the Scala implementation of a Circle class as an example:

1 class Circle {
2 private var ix, iy
3

4 def x_=(x:Int) = { ix = x }
5 def y_=(y:Int) = { iy = y }

2http://www.eclipse.org/aspectj

150 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

http://www.eclipse.org/aspectj

2 EXAMPLE

6 }

Notice the differences between Scala and Java implementation of this example include the
use of keyword “var” to declare to private variables x and y, and the use of keyword “def”
to declare the methods to set values. The functions “x =” and “y =” are setter functions
similar to “setX” and “setY” in the Java implementation of this example.

Scala does not provide a mechanism with which an external framework can intercept
calls to arbitrary methods within the Circle class without modifying Circle itself.
This can be considered a key requirement for transparent join-point weaving. Thus, our
Scala AOP implementation must use a non-transparent mechanism for method intercep-
tion. There are alternative ways such as using Mixins to override the method in question
within the confines of the language. These techniques are discussed later in the paper.

The most obvious way to accomplish this would be to utilize a delegate. Every method
in the Circle class would make a call to some singleton in the AOP framework which
would actually perform the work of the method in question, triggering any advice given
matching pointcuts. The delegate function will need to accept a functional which specifies
the intended body of the original method. This functional will ensure that the delegate
itself is not coupled to the methods weaved. By making use of Scala’s powerful mixin
mechanism combined with its alternate method call syntax, it is syntactically valid to
construct a syntax closer to the following:

1 class Circle(...) extends AOP {
2 ...
3 /* weavable */
4 def x_=(x:Int) = defun { ix = x }
5

6 /* not weavable */
7 def y_=(y:Int) = { iy = y }
8 }

where defun is a function within AOP which is a trait. Note that the code block
{ ix = x } is treated as an anonymous function; while defun takes a call-by-name
parameter, which is not evaluated until it is used. With this syntax, the difference between
“weavable” methods and those which are not is the addition of the defun “tag” between
the = and the opening curly-brace.

Now we are ready to define aspects in Scala. Below is the Scala implementation
of the “CirclePainter” aspect with a pointcut “move” and an advice to insert the call to
“repaint” method after each join-points specified in the pointcut. Our syntax for pointcuts
and advices resembles that of AspectJ but still has significant differences.

1 class CirclePainter extends Aspect {
2 val move = pointcut (classOf[Circle]::(’x_=, ’y_=)) -> *
3

4 after(move) { c: Circle =>
5 c.repaint();
6 }
7 }

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 151

METHOD PROXY-BASED AOP IN SCALA

Prior to the start of an application, we must instantiate aspect classes and stored them in
the singleton object “AOP”.
1 object Main extends Application {
2 AOP.addAspect(new CirclePainter())
3

4 val c = new Circle()
5 c.x = 10
6 c.y = 20
7 }

The “CirclePainter” aspect is able to insert calls to “repaint” method after each call to
setter methods. Note that the assignment “c.x = 10” has the effect of the method call
“c.x =(10)”.

3 SYNTAX

Pointcuts The most interesting part of the Scala AOP framework is the syntax used to
specify pointcuts. One of the goals of our framework is to create a fully-modular and
transparent AOP implementation. With the exception of the defun delegate tag, the
weaved code should have no knowledge of the aspects. Likewise, the dispatch code (that
which makes calls to the weaved classes) should have absolutely no knowledge of the
AOP process. The only code to be tightly coupled should be the aspects themselves. This
requires a robust syntax for specifying pointcuts, otherwise transparent and specific join
points cannot be achieved.

Before looking at the syntax itself, it is worth considering the precise requirements
for a “robust” pointcut quantification mechanism. The goal is to specify unambiguously
which methods are to be matched. Thus, several points of the method signature must be
handled to consider the syntax sufficiently robust: Return type, Containing class, Method
name. For a truly unambiguous specification, the syntax would have to consider method
parameter types as well.

Taking inspiration from AspectJ, and keeping the restrictions of Scala’s syntax al-
ways in mind, we can derive the EBNF grammar for our pointcut specifications shown in
Figure 1.

pc ::= pointcut‘(’ type-sig :: meth-sig ‘)’ -> type-sig
type-sig ::= ‘(’ type {, type} ‘)’

| *
type ::= classOf‘[’ type-name‘]’

meth-sig ::= ‘(’ ′meth-name {, ′meth-name} ‘)’
| *

Figure 1: Syntax of Pointcuts

Note that parenthesis around a type signature or a method signature are omitted if
there is only one type name or method name. Also note that in Scala, any term of the

152 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

3 SYNTAX

form ′mysym is an instance of Symbol class, which is essentially a String but is unique
for equal strings so that they can be compared using reference equality.

pointcut (classOf[Circle]::’x_=) -> *
pointcut ((classOf[Circle], classOf[Square])::’y_=) -> *
pointcut (classOf[Circle]::*) -> classOf[Int]
pointcut (*::(’x, ’y_=)) -> (classOf[String],classOf[Int])

Figure 2: Examples of pointcuts

A few pointcuts of this grammar are shown in Figure 2. The meaning of these ex-
amples is as follows. The first one defines a pointcut constrained on methods with any
return type in class Circle and with name “x =”. Likewise, the third declaration returns
a pointcut constrained on methods returning type Int in class Circle with any name.
Note that the * character is used as a wildcard here rather than the Scala conventional
underscore (). This is because the underscore has special meaning in the Scala syntax
and is unusable in a DSL like the above.

Advices Pointcuts are not the only construct which require a DSL in our pure-Scala im-
plementation of AOP; advice also has a certain DSL-like syntax. This syntax defines both
before and after advice. Both advice types can optionally require the target instance
be passed as a parameter. After-advice also may optionally receive the return value of
the method wrapped within an instance of Scala’s Option monad. All advice forms (in-
cluding those accepting parameters) are fully type-checked at compile-time. Thus, advice
may not expect an instance of String as the target instance if the pointcut only allows
capturing within instances of Circle.

The grammar for our advice syntax is shown in Figure 3. Note that pc-name refers to
pointcut variables and var-name refers to context variables that point to either the target
objects or the return values.

advice ::= before ‘(’ pc-name ‘)’ ‘{’
[target =>] body

‘}’
| after ‘(’ pc-name ‘)’ ‘{’

[after-params =>] body
‘}’

target ::= var-name : type-name
ret-val ::= var-name : Option ‘[’type-name‘]’

after-params ::= target
| ‘(’ret-val, target‘)’

Figure 3: Syntax of Advices

As with the pointcut syntax, the main idea behind the grammar is to provide an intu-
itive and minimal syntax for defining advice. Another primary concern of this grammar

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 153

METHOD PROXY-BASED AOP IN SCALA

is to provide a mechanism for accessing context data from the join point. For this par-
ticular syntax, the two kinds of contextual data which are made available are the target
instance and the return value (for after advice only). It is important to note that most
AOP implementations also allow access to parameter values as part of the context data.
Our current syntax does not support this feature due to the way in which method calls
are “intercepted”. In fact, obtaining the target instance itself must be handled through a
special work-around (using a mixin for defun rather than a singleton namespace).

The contextual data is passed to the parameters of the functional representing the
advice (if parameters are specified). It is an important requirement that all of the con-
text parameters are type-checked against whatever possible types may be represented by
the context data itself. To allow these parameters of such specific types and no others,
method overloading is used within another DSL builder object, which is an object which
exists solely to satisfy the next syntactical step in the DSL. This is an important imple-
mentation note as it depends upon a feature, method overloading for first-class functions,
which exists solely as a product of Scala’s blending of the object-oriented and functional
paradigms.

Recall the example of “CircleAspect” in our syntax of pointcuts and advices:

1 class CircleAspect extends Aspect {
2 val move = pointcut (classOf[Circle]::(’x_=, ’y_=)) -> *
3

4 after(move) { c: Circle =>
5 c.repaint()
6 }
7 }

where we define a pointcut to capture all calls to the x = and y = methods within the
Circle class. We then use the pointcut to specify after advice to repaint the Circle
instance.

One sticky point in this syntax is that we would like the parameter in the advice func-
tional to be type-checked. The parameter represents the target instance upon which the
call was “intercepted”, therefore it should be checked against any containing type the
pointcut may match. In our example it is just the single class, Circle, but in a more
realistic example there may be several possible containing classes. The DSL implemen-
tation will have to gather these different types and infer a least common supertype against
which the functional parameter may be checked. This all must happen at compile time.
Thus, like many other aspects of the syntax, carefully chosen compiler “tricks” must be
utilized in order to achieve the desired result.

4 IMPLEMENTATION

The implementation of internal domain-specific languages is a topic which has received
some attention in recent years [15, 5]. The rise of frameworks such as Ruby on Rails (and
subsequent clones) has led to increased interests in the art of API construction. Many

154 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

4 IMPLEMENTATION

articles [4] have been written describing in great detail the steps one must take to construct
an internal DSL in dynamic languages such as Ruby, Groovy, or Python. While little
material [5] has been devoted to the construction of DSLs in static languages (such as
Java and Scala), many of the same techniques apply. The general steps in creating an
internal DSL are as follows:

1. Specify a desired syntax for the DSL

2. Adjust the syntax to comply with language syntax constraints

3. Identify the elements of the syntax as recognized by the language parser

4. Create an API which satisfies the desired structure and semantics

Steps one and two have already been completed (see examples above). Step three usually
melds into step two, as the process of adjusting the syntax is highly dependent on being
able to parse the constructs according to the language specification. Usually, this step
involves instantiating the grammar for several different cases and marking down what
each element represents within the confines of the parent language.

Method Call Interception in Scala

To satisfy the syntax of method call interception, we declare a trait AOP containing
a method defun which accepts a single no-parameter functional as a parameter. This
function should make a call elsewhere in the framework to handle the before advice, call
to the functional, and then make a third call to the framework to handle after advice. The
implementation is fairly simple and its simplied form is reproduced below:

1 trait AOP {
2 def defun[A](fun: =>A): A = {
3 handleBefore()
4

5 val back = try {
6 fun
7 } finally {
8 handleAfter()
9 }

10 back
11 }
12 }

The type parameter A represents the return type for the specified functional. By making
this the return type for defun, type inference will ensure that the weaved method will
maintain the appropriate signature, thus preserving type checking. It is interesting to
note that this implementation of defun merges the after advice for both the case that an
exception was thrown, and the case that the method returned normally. AspectJ allows
these as separate join points. While it would certainly be possible to implement this
functionality in our framework, it has been omitted for the sake of simplicity.

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 155

METHOD PROXY-BASED AOP IN SCALA

DSL API

The implementation of our DSL API revolves around a single core class: Aspect. This
class contains methods like pointcut, before and after, as well as functions as the
primary containers for extra syntactic sugar such as the * symbol in its various permuta-
tions. At a minimum, this class has to contain the following:

1 abstract class Aspect {
2 protected val * = AnyClass()
3

4 def pointcut[A](sig: SigClause[A]) = new PCBuilder(sig)
5

6 def before[R, T](pc: Pointcut[R, T]) = { ... }
7 def after[R, T](pc: Pointcut[R, T]) = { ... }
8 }

Note that A, R, and T are type parameters. There are a few classes in this snippet which
are purely internal to the DSL implementation; for example: PCBuilder. This class
is necessary because the construction of a pointcut is a multi-step process in our syntax.
The class and method signatures are combined into a single value, SigClause. This is
passed to the pointcut method, which returns PCBuilder.

The before and aftermethods both return an instance of AdviceApplicator,
which defines an apply() method which takes a function value as a parameter. This
function value is what actually defines the body of the advice. By wrapping this function
within an instance of AdviceApplicator, we are able to merge the separate cases:
with and without context parameters.

AdviceApplicator in turn adds the advice body in question to a HashMapwithin
Aspect which maintains a list of all advices defined within the current aspect and their
corresponding pointcuts. These maps (one for before, one for after) are searched after a
defun invocation in order to find the advices for a given method. The process of actually
matching against a specific method is only run once per method, at which point the result
is cached within another pair of HashMap(s) for improved performance on subsequent
invocations.

Implementation of Pointcuts

Figure 4 illustrates the process of defining DSL for pointcuts. Starting from left to right,
the first thing we see is a method called pointcut. This method is implemented in the
superclass Aspect. Reading further we see that it must accept a single parameter and
return an object which defines the -> method. This single parameter will be of some
intermediate type which contains information about both the containing class(es) and the
symbols representing the methods to be matched. This instance will be constructed using
the right-associative :: method called on an instance of type (Symbol, Symbol) and
taking as a parameter an instance of type Class.

This is where we run into a bit of a problem. Unlike Ruby, Scala does not support

156 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

4 IMPLEMENTATION

Figure 4: Pointcut as DSL

the notion of “open classes.” This means that we cannot simply add a method to the
Tuple2[Symbol, Symbol] class (the underlying class for the 2-tuple type). To im-
plement this feature, we will have to make use of Scala’s implicit type conversions [13].
We define a conversion method in the Aspect superclass which takes a Symbol 2-tuple
as a parameter and returns a new instance of some class which defines the :: method.
In the framework, this class is called PCSymbol. If there is a call to :: on a 2-tuple,
Scala compiler translates it to a call to the conversion method to first turn the tuple into a
PCSymbol object and then call :: on this object.

Of course we want to generalize this solution as much as possible. Thus, we must
define conversions not just for Symbol 2-tuples, but every tuple plus the individual
Symbol type. Scala only defines tuples up to 23 values, so this is a much less daunt-
ing task than it could be. All of these conversions return an instance of PCSymbol as
a result, allowing the implementation to be abstract from the specifics of the pointcut
syntax.

Also, we must define a set of conversions from n-tuples of Class to another abstrac-
tion class, PCClass. As with symbols, these conversions are necessary to allow both
individual class literals as well as n-tuples of literals as both containers and return types.
This technique enables implementation of * as the wildcard simply represents a special
implementation of PCClass.

Returning to our syntax analysis, we see that the pointcutmethod does not actually
create the pointcut itself, but instead generates an additional intermediary instance which
defines the -> method. This method (like most in Scala) is left-associative and takes an
instance of PCClass as a parameter. Here again we see the value of converting all class
literals and class literal n-tuples to a single abstractive type.

This is a common pattern in DSL implementations: methods which build an instance
which contains some of the data required to obtain the final result and which also define
the methods necessary for the next step in the DSL syntax. Most internal DSLs of moder-
ate complexity are built in this fashion. More complex frameworks such as Ambition [1]
and scala-rel [14] must make use of a tree-based approach in which they actually build a
parse tree from method and field invocations called when the DSL executes. This tech-
nique is obviously far more flexible, but also more complicated than our AOP DSL calls
for.

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 157

METHOD PROXY-BASED AOP IN SCALA

The final product of our pointcut DSL will be the the creation of an instance of type
Pointcut. The purpose of this class is mainly to hold the PCClass and PCSymbol
data pending use in advice. The class is also polymorphic on the containing and return
types defined as part of the pointcut declaration. This will allow advice context to be
type-checked based on what types are possible with a given pointcut. In cases where
multiple containing classes are specified, a least common superclass is inferred by the
compiler and this becomes the type against which Pointcut is parameterized. This
inference is actually handled as part of the implicit conversion between Class n-tuple
and PCClass.

Here is the pointcut example reproduced with the steps taken by the runtime (in order):
val move = pointcut (classOf[Circle]::(’x_=, ’y_=)) -> *

1. Call to method symbol2PCSymbol passing instance of (Symbol, Symbol)
as a parameter. Method returns instance of PCSymbol

2. Call to method class2PCClass passing instance of Class as a parameter.
Method returns instance of PCClass

3. Call to method :: in class PCSymbol passing instance of PCClass as a param-
eter. method returns instance of SigClause

4. Call to method pointcut passing instance of SigClause as a parameter. Method
returns instance of PCBuilder

5. Resolve value * to instance of PCClass

6. Call to method -> in class PCBuilder passing instance of PCClass as a param-
eter. Method returns an instance of Pointcut

7. Assign instance of Pointcut to value move

Syntax edge cases such as specifying * for the method symbols or the containing
type can be handled by adding specific methods and values (similar to how * is handled).
With these final pieces, the DSL implementation is complete and capable of generating
any pointcut supported by the framework.

Implementation of Advices

Before looking into the precise details of the implementation, perhaps it would be useful
to re-examine a concrete example of the advice syntax:
1 class CircleAspect extends Aspect {
2 ...
3 after(move) { c:Circle =>
4 c.repaint()
5 }
6 }

158 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

4 IMPLEMENTATION

Once again, we must break down the syntax so as to identify the critical elements
which must be implemented in the API. Moving from left-to-right (following the order
of evaluation), the first step is a call to the after() method of class Aspect. We’re
passing the move pointcut as part of the invocation. Looking ahead somewhat, we see
that whatever the return value of the after function may be, it must respond to calls
to the apply() method 3, accepting a function parameter. Here, as in standard method
calls, Scala allows the omission of parentheses if the single parameter is delimited by
spaces. Thus, the second half of the syntax is invoking the parentheses “operator” on the
return value of after() by omitting the parentheses.

It is in the implementation of this apply()method that method overloading becomes
critical. This function must accept function parameters of three varieties: without param-
eters, with a single parameter of the same type as the pointcut target, and (in the case of
after advice) a function accepting an Option monad of the pointcut return type as
well as an instance of the pointcut target type. Thus, assuming that class Pointcut is
polymorphic on two type values R and T, we can define the signatures for the apply()
methods within the context of a containing class AdviceApplicator as follows:

class AdviceApplicator[R,T](pc:Pointcut[R,T]) {
def apply(fun:(=>Unit)) = ...
def apply(fun:(T)=>Unit) = ...
def apply(fun:(Option[R],T)=>Unit) = ...

}

It is interesting to note that the first signature of apply() will not accept a functional
at all. Rather, the special type (=>A) for some type A actually represents a call-by-name
parameter of type A. Thus, when advice is declared with “no parameters”, it is actually
compiled as an inner scope evaluated by name within the apply() method. Under the
surface, the Scala compiler treats call-by-name and function parameters in a very similar
fashion, but the distinction is still interesting to note.

For the sake of the example, all three apply() signatures were shown within the
same class. However, this is not the case in the actual framework implementation. The
distinction is necessary because after advice has an additional parameter (return value)
which may be handled. This context parameter is not available to before advice and
should be type-checked as unspecified for any before functional. Within the frame-
work, there are actually two *Applicator classes, one of which extends the other to
provide the after-specific overload.

Putting it Together

In summary, the pointcuts are created using a multi-step builder process with multiple
classes and symbolic method names. These pointcuts are polymorphic on the contain-
ing and return types. A single pointcut instance is passed to either the before() or

3apply() is Scala’s equivalent to C++’s operator()() function, handling calls to the parentheses
“operator”

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 159

METHOD PROXY-BASED AOP IN SCALA

after() methods along with a functional which represents the expressions to execute
at a given join point. These functionals can take parameters which allow them to access
context data such as target instance. These context parameters are type-checked against
the pointcut contravariantly so that the advice may accept the context parameters up-cast
to any super-type of the least upper bound common to all context types defined by the
pointcut. If multiple advices are found for a given pointcut, the advices will be called in
order of declaration.

At the point of method call, execution is immediately transfered to a mixin method,
defun. This method takes a functional which is to be the body of the actual method.
The defun method first calls to the singleton object AOP passing this from the mixin.
AOP then executes all before advice and returns to defun. defun executes the im-
plementation functional, ignoring any exceptions and saving the return value. Within a
finally clause, a second call is made to the AOP singleton which executes all after
advice, passing both the target instance and an Option monad containing the return
value or None. Finally, defun yields the return value it previously saved and flow is
returned to the original method. This immediately returns the value passed back from
defun.

The entire framework revolves around a main singleton: AOP. This object contains
the list of aspects which in turn contain a map of pointcuts to advice. This top-level
controlling class must be a singleton so as to allow join points to have global scope. An
interesting addition to the framework could be to implement a form of “aspect scoping,”
where certain classes or even certain instances can only be affected by a specific set of
aspects. For simplicity’s sake, this concept was not pursued in the prototype version of
the library. Such scoping would also be inconsistent with other AOP implementations
such as AspectJ which are limited to the concept of globally applied cross-cutting.

5 DISCUSSION

In examining our AOP framework, several factors emerge which distinguish it from other
implementations of the aspect-oriented concept. A few of these differences represent
limitations in the implementation, but many of them may be seen as advantages over
other implementations such as AspectJ. We examine these differences in some detail,
considering both theoretical and practical implications.

More Robust Pointcuts

So far, we have focused on minimizing the impact of our framework on base code by
using a simple defun call in each method that needs to be advised. While this approach
allows us to emulate the way that pointcuts are defined in other AOP implementations,
it does not help aspect writer to define more robust pointcuts. Pointcuts defined using
method and class names are fragile and may become invalid if these names are modified
during refactoring or maintenance.

160 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

5 DISCUSSION

There are many proposals to make pointcuts more robust. Some of these proposals
use naming conventions, annotations, or dedicated interfaces in base code as markers
for pointcut definitions [9, 10]. The purpose of this is to map join points to view-based
abstractions and then define pointcuts using these views [7, 11]. These approaches make
the base code less oblivious to the aspects. In essence, the base code must include some
hints – directly or indirectly – for the aspect writers to create pointcuts. The degree of
entanglement between the base program and aspects is similar no matter which approach
is taken.

In this framework, the base code and the aspects are directly connected through defun
calls. However, we are not restricted to just one such function. We can define many dif-
ferent defun functions to represent various kinds of join points. For example, one can
define the following pointcut in AspectJ to capture calls to all mutator methods in the base
code.

pointcut mutators() call(* set*(..));

In this example, the pointcut assumes that base code will always define mutators using
the naming pattern set*. This expectation is implicit and any violation can easily go
undetected, as the AspectJ compiler will not raise warnings for failing to capture a join
point which had been captured in a previous iteration. There are techniques to prevent
this [16], but they require additional tool support. A view-based approach [7] solves
the problem by creating constraints on the view mappings from base programs and by
ensuring that base-code revisions do not violate the constraints.

For example, we can define a function called mutator in AOP, which is called by
each mutator method.

class Circle(...) extends AOP {
...
def x_=(x: Int) = mutator { ix = x }
def y_=(y: Int) = mutator { iy = y }

}

The mutator function would behave in the same way as defun except that it would
carry additional information used to indicate that the intercepted methods are mutators.

trait AOP {
def mutator[A](fun: =>A): A = { defun(defun, ’mutator) }

def defun[A](fun: =>A, pcType: Symbol): A = { ... }
}

Aspects could use the mutator function to specify pointcuts so that there is no need to
resort to stack inspection to discover the caller’s signature:

val move = pointcut ’mutator

The syntactic overhead of this approach is similar to source code annotations. The dif-
ferentiating factor is that it allows base code to pass context variables directly to aspects.
For example, the code below uses an mutator function with a parameter so that as-

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 161

METHOD PROXY-BASED AOP IN SCALA

pects which wish to advise these join points may utilize the context variable through the
parameter.

Of course, mutator must be changed to accommodate the additional parameter and
its implementation must pass the parameter along to the advice. This can be accomplished
within the framework by adding an overload to AdviceApplicator which allows a
optional added parameters of type Any* (var-args of Any). These additional parameters
could handle any context variables passed to the defun implementations. The only prob-
lem with this is that all type-checking on those parameters is lost when they are up-cast to
Any. This problem could be overcome in the same way as target and return value context
parameters are handled, but only in the case of a fully defined pointcut, rather than a defun
symbol.

The syntax for passing method parameters to the defun function could be fairly
simple:

class Circle(...) extends AOP {
...
def x_=(x:Int) = mutator(x) { ix = x }
def y_=(y:Int) = mutator(y) { iy = y }

}

While this approach makes base code less oblivious to aspects, it also makes the aspects
much more robust by avoiding the selection of context variables from method parameters
through dynamic join points, something which can easily break down if the base code
changes method signatures, rearranges parameter lists, or renames field variables. The
functions like mutator partially serve the purpose of view abstractions for join points
while remaining within the base language, allowing the compiler to ensure correct appli-
cation.

Static Checking

By creating an implementation of aspect-oriented programming as an internal domain-
specific language, we have made it possible for the Scala compiler itself to perform some
amount of static checking on aspects. The theoretical capabilities of such static checking
are not fully explored by our framework, but there is great potential for future enhance-
ment in this area. At the moment, the primary example of such static checking in the
framework is demonstrated in the access of context variables by advice (both before and
after). Consider the following example of a simple pointcut which matches any methods
in the hypothetical class Person which either return String or StringBuilder:

val strings = pointcut (classOf[Person]::*) ->
(classOf[String], classOf[StringBuilder])

before(strings) { p: Person =>
...

}
after(strings) { (ret: Option[CharSequence], p: Person) =>

...

162 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

5 DISCUSSION

}

In both the before and after advice, we are accepting parameters which represent context
variables on the join point. In both cases, these context variables are statically checked,
proving correctness at compile-time. Based on the pointcut alone, the framework is able to
infer that the most-specific type of the invocation target will be Person, while the most-
specific return type will be the unification of String and StringBuilder, which
happens to be CharSequence. This type unification is computed statically by Scala’s
compiler, based on the type parameter constraints defined on the implementation class,
PCClass.

Of course, this sort of checking is only possible in situations where the return type
and/or containing class are used as criteria in defining the pointcut. However, this check-
ing does illustrate what is possible, hinting at further potential for such compile-time
checking in future implementations. For example, returning to the concept of named in-
terceptors, it is possible to define a named interceptor such that it only functions on a
method with a specific return type, or perhaps one which requires certain context param-
eters to be present. This sort of checking is possible to implement within the confines of
Scala’s type system, whereas other runtime AOP implementations (such as Spring AOP)
must perform all checking dynamically.

Performance Considerations

One of the advantages of an AOP implementation based on artifact instrumentation is that
of performance. The framework or runtime may incur some overhead, but the method
interception and identification process will not. Unfortunately, this is not the case with
a pure-language implementation. Our framework must go through several steps in the
process of passing flow control from the base code to the relevant advice. First, the
defun call is handled. This requires obtaining stack information to determine the base
code method signature. This is then used in a linear search through every aspect in the
system to locate a match for the given method. Once a match is located, the associated
advice is invoked, passing the appropriate parameters.

This process imposes significant overhead on any advised base code. Our tests in-
volved two identical methods, one advised, the other unadvised. These methods were
then invoked separately over a large number of iterations. It was discovered that the
overhead imposed by a successful match and advising was roughly 38 microseconds, av-
eraged over 1,000,000 iterations. This translates to slightly more than a hundred times
slower than Spring’s AOP implementation. More than 90% of this overhead is caused by
the method used to interrogate the call stack. We performed some experimental bench-
marking with a hard-coded method signature, avoiding the need to check call stacks. The
overhead in this experiment is 1.58 microseconds for before advice and 1.98 for after
advice.

We believe that the performance can be further improved in two key areas. One op-
timization would be to avoid using call stacks to look up calling method signature. For

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 163

METHOD PROXY-BASED AOP IN SCALA

example, earlier we showed that it is possible to use function such as mutator to capture
join points, and use its symbolic name to define pointcuts. Additionally, our framework
implementation makes heavy use of closures and function parameters. Scala’s implemen-
tation for these constructs may be inefficient on the JVM due to a lack of native support for
first class functions. This may be improved by research currently in progress on projects
such as Sun’s Da Vinci Machine 4.

6 RELATED WORK

In comparison to AOP implementations that use bytecode transformation, our framework
has its limitations in capturing join points. For example, our pointcuts are similar to
the pointcut designators execution and within in AspectJ [8]. However, we do
not have pointcuts similar to call or cflow. Aspects in this framework can obtain
context variables such as receivers and return values. We can allow aspects to access any
context variables, including method parameters, by adding new defun functions with
parameters.

Many AOP implementations try to minimize the impact of language extensions by
using source code annotations or external configuration files. For example, AspectJ allows
aspects be written in Java syntax with annotations to designate pointcuts. Spring and
JBoss AOP use XML. These changes make aspects look more like regular Java programs
so that aspect writers need not learn a new language. Unfortunately, it still requires the
same amount of effort to learn the predefined annotations and XML tags. Annotations and
XML effectively take the place of a formal language, defining domain-specific semantics
and syntax. Often, it is no easier to work with these internal constructs than it is to
learn external constructs defined by a separate language. Also, such constructs require
an external tool for any sort of static checking, whereas our framework allows compile-
time verification of soundness under certain situations with nothing more than the Scala
compiler itself.

Proxy-based AOP

Proxy-based AOP implementations such as Spring AOP do not transform bytecode and
rely on object proxies instead to apply advice code by intercepting method calls at runtime
While the compiled approaches can result in more efficient program, proxy-based AOP
implementation requires no special compilation process.

However, AOP frameworks based on object proxies have the drawback that when a
method invokes another method on the this pointer, advice on the latter method is not
executed5. The reason is that the object identity referenced by this pointer is not the
same as the object identity of the proxy object. Therefore, calls through this pointer

4http://openjdk.java.net/projects/mlvm
5http://blog.xebia.com/2006/08/18/the-problem-with-proxy-based-aop-frameworks/

164 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

6 RELATED WORK

are intercepted by proxies. Though one can fix this problem by obtaining a reference to
the proxy context, the resulting program becomes explicitly dependent on the implemen-
tation details of the framework. Proxy-based AOP frameworks in Java have this inherent
problem. For example, Spring AOP uses JDK interface proxies as well as CGLIB – both
of which are proxies for Java objects. Though Java does not provide the ability to add
proxies to methods, more advanced languages such as Scala do offer this through higher-
order functions. As indicated earlier, we differ from Spring AOP in that our proxy is
method-based instead of object-based so that we can intercept method calls invoked on
this pointer. In addition, we do not rely on external configuration files or Java annotations
to denote pointcuts and advice applications. All our AOP constructs are based on Scala.

Another similar approach is Composition Filters [2] where filters are aspects that act
as proxies to messages to impose additional functionalities. These functionalities can be
activated based on conditions specified in the filters. The filters have distinct syntax and
complex semantics, which may be difficult to be implemented as an internal DSL. There
is also a radical proposal of machine model for AOP [6] where aspects are inserted at
runtime as proxies to actual objects. Method calls are intercepted by the proxies to decide
the actual code to run in a way similar to virtual method dispatch. Though this approach
can be quite flexible and more efficient than other proxy-based AOP frameworks, it is not
applicable to applications run on Java virtual machines.

Other Scala Implementations

A few attempts have been made to implement AOP in pure Scala. It’s interesting that this
language more than others seems to see such attention. These implementations have var-
ied properties and are often useful as design patterns for solving many common scenarios.
Foremost among these implementations are mixins [3, 13].

Scala mixins Scala mixins [13] are similar to those available in other languages such as
Ruby in that they are almost literally inserting code into a particular class. It is not inher-
itance so much as method rewriting. This property can be exploited to implement a form
of base-code oblivious method interception (unlike our defun implementation which is
base-code aware). To the best of our knowledge, the technique was first demonstrated in
Scala by Martin Odersky in his discussion of the Scala compiler architecture [12]. This
idea was further expanded upon by Jonas Bonér6 to provide fully composable intercep-
tion.

Figure 5 is a simplified implementation of AOP using this technique, which shows
the Circle class completely oblivious to any advising. The AOP itself is driven en-
tirely by the driver code during instantiation. Creating a new Circle instance us-
ing with CirclePainter actually creates a new subclass of Circle which uses
the CirclePainter mixin. CirclePainter brings into the class the overridden
x =(Int) and y =(Int) methods which wrap added functionality around the super-

6http://jonasboner.com/2008/02/06/aop-style-mixin-composition-stacks-in-scala

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 165

METHOD PROXY-BASED AOP IN SCALA

1 class Circle {
2 private var ix, iy;
3

4 def x_=(x:Int) = { ix = x }
5 ...
6 }
7 trait CirclePainter {
8 override def x_=(x:Int) = {
9 val back = super.x_=(x)

10

11 this.asInstanceOf[Circle].repaint()
12

13 back
14 }
15 ...
16 }
17 val c = new Circle with CirclePainter
18 c.x = 12

Figure 5: Base and driver code

class (Circle) implementation. This can effectively be thought of as the advice. When
the x =(Int) method is invoked on this special instance, it is calling the override within
CirclePainter.

This implementation has the very interesting property of being totally transparent to
the base-code. Advising is effectively enabled or disabled at instantiation time by the
driver-code. This pattern can be useful in solving problems traditionally approached using
AOP or dependency injection. This pattern also has the advantage of having full access to
the parameters of the method being advised. This is something our implementation could
support, but only by modifying or overloading defun.

This approach has two primary shortcomings. It relies on the driver to setup the mixin
in the instantiation syntax. This breaks the AOP principle of driver-code obliviousness. It
is possible for code to use the Circle class without properly repainting it on all mutator
calls merely by neglecting to include the mixin syntax. The driver code is tightly coupled
to the design of CirclePainter as a mixin. But more importantly, there is no way to
specify gradient pointcut quantifiers using a simple override.

With most AOP implementations, it is possible to define a pointcut which will match
any method with a given return type, or perhaps any method with a given return type and
a single parameter of another given type. This control over the pointcut match quantifiers
can be extremely useful when examining more general use-cases than a simple repaint.
Likewise, it allows the implementation of the circle repaint advise in a single point, rather
than in every override. While technically the mixin allows the logic to be factored out into
a delegate method using standard procedural techniques, it still requires a certain amount
of redundancy. More than that, any time a new mutator is added to the Circle class, a
new override must be added to the CirclePainter trait. Thus, the advice is tightly
coupled to the structure of the base code.

166 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

7 CONCLUSION

Our AOP implementation allows powerful pointcut quantification. For example, we
could define the move pointcut from previous examples to match any method which
takes a single Int parameter and returns Unit. The pointcut would then match both
x =(Int) and y =(Int) in a single quantifier. Further, if the base-code designer chose
to add a mutable property radius, it too would be automatically matched by the point-
cut without any changes to the aspect. Thus, while the advice is coupled to the base-code
structure, the coupling is far looser than in the case of mixins. This loose coupling in-
creases flexibility and eases concurrent development of the separate layers.

Scala views It has been shown that Scala’s implicit type conversions (also called views)
can be used to implement AOP-style security checks7. The idea is to perform additional
operations (such as security checks) when an object is implicitly converted to another
type. The views from one class to another can be introduced by normal methods with the
implicit modifier. This approach is limited because views alone cannot insert after
advice. Also, it does not support quantification over join points since each view can only
insert advice into the methods defined in the view’s return type.

7 CONCLUSION

Scala’s powerful constructs and flexible syntax allow for the implementation of varied
techniques within the confines of the language itself. By making full use of the available
techniques, implementing AOP does not strictly require the modification of language se-
mantics. Our framework fully implements the core concepts of AOP and represents the
potential for new innovation in the field without the unnecessary hardship of modifying a
compiler. The framework can easily be extended to encompass other concepts in AOP, as
well as opening the door to new design patterns within other hybrid functional / object-
oriented languages. As future work, we would like to improve the performance of the
implementation in the areas mentioned earlier. Also, it would be interesting to test the
effectiveness of the framework with some larger applications.

REFERENCES

[1] Ambition. http://ambition.rubyforge.org.

[2] L. Bergmans and M. Aksit. Principles and design rationale of composition filters.
Aspect-Oriented Software Development. Addison-Wesley, pages 0–32, 2004.

[3] Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings of the
Conference on Object-Oriented Programming: Systems, Languages, and Applica-
tions / Proceedings of the European Conference on Object-Oriented Programming,
pages 303–311, 1990.

7http://scala.sygneca.com/code/aop-style-security-check

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 167

METHOD PROXY-BASED AOP IN SCALA

[4] Martin Fowler. Implementing an internal DSL, September 2007.
http://martinfowler.com/dslwip/InternalOverview.html.

[5] Steve Freeman and Nat Pryce. Evolving an embedded domain-specific language
in Java. In Companion to the 21th Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, pages 855–865, 2006.

[6] M. Haupt and H. Schippers. A machine model for Aspect-Oriented Programming.
Lecture Notes in Computer Science, 4609:501, 2007.

[7] Andy Kellens, Kim Mens, Johan Brichau, and Kris Gybels. A Model-driven Point-
cut Language for More Robust Pointcuts. In Proceedings of the European Confer-
ence on Object-Oriented Programming, pages 501–525, 2006.

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In Proceedings of the European Con-
ference onbergmans2004pad Object-Oriented Programming (ECOOP). Springer-
Verlag, June 2001.

[9] Gregor Kiczales and Mira Mezini. Aspect-Oriented Programming and Modular Rea-
soning. In Proceedings of International Conference on Software Engineering, 2005.

[10] Gregor Kiczales and Mira Mezini. Separation of Concerns with Procedures, An-
notations, Advice and Pointcuts. In Proceedings of the European Conference on
Object-Oriented Programming, 2005.

[11] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving code and design with
intensional views - a case study. Computer Languages, Systems and Structures,
32(2-3):140–156, 2006.

[12] Martin Odersky. The scala experiment: can we provide better language support for
component systems? In Proceedings of the 33rd ACM Symposium on Principles of
programming languages, pages 166–167, 2006.

[13] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubo-
chet, Burak Emir, Sean McDirmid, Stephane Micheloud, Nikolay Mihaylov, Michel
Schinz, Lex Spoon, Erik Stenman, and Matthias Zenger. An Overview of the Scala
Programming Language (2nd edition). Technical report, EPFL, 2006.

[14] Scala-Rel. http://code.google.com/p/scala-rel.

[15] Tim Sheard, Zine el-abidine Benaissa, and Emir Pasalic. DSL implementation using
staging and monads. In PLAN ’99: Proceedings of the 2nd conference on Domain-
specific languages, pages 81–94, 1999.

[16] Maximilian Stoerzer and Juergen Graf. Using Pointcut Delta Analysis to Support
Evolution of Aspect-Oriented Software. In Proceedings of the 21st IEEE Interna-
tional Conference on Software Maintenance (ICSM’05), pages 653–656, 2005.

168 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 7

7 CONCLUSION

Daniel Spiewak is a software developer and currently an undergraduate
student at University of Wisconsin – Milwaukee. Over the years, he has
worked with Java, Scala, Ruby, C/C++, ML, Clojure and several experi-
mental languages. He currently spends most of his free time researching
parser theory and methodologies, particularly areas where the field in-
tersects with functional language design, domain-specific languages and
type theory. Daniel regularly writes articles on his weblog, Code Com-
mit (www.codecommit.com), including his popular introductory series,
Scala for Java Refugees.

Tian Zhao is an associate professor of Computer Science at the Univer-
sity of Wisconsin – Milwaukee. His main research interests are in the ar-
eas of programming languages, which include type systems, static analy-
sis, and real-time programming. He can be reached at tzhao@uwm.edu.

VOL 8, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 169

file:www.codecommit.com
mailto:tzhao@uwm.edu

