
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2010

Vol. 9, No. 3, May-June 2010

Rajesh Kumar, P.S. Grover, Avadhesh Kumar: “A Fuzzy Logic Approach to Measure Complexity
of Generic Aspect-Oriented Systems”, in Journal of Object Technology, vol. 9, no. 3, May-June
2010, pp. 43-57 http://www.jot.fm/issues/issue_2010_05/article1/

A Fuzzy Logic Approach to Measure
Complexity of Generic Aspect-Oriented
Systems

Rajesh Kumar, School of Mathematics & Computer Applications, Thapar
University, Patiala, Punjab, India.
P.S. Grover, Guru Tegh Bahadur Institute of Technology, GGS Indraprastha
University, Delhi, India.
Avadhesh Kumar, Galgotias College of Engineering & Technology, UP
Technical University, Uttar Pradesh, Greater Noida, India.

Abstract
Aspect-oriented programming (AOP) is an emerging technique that provides a
mechanism to clearly encapsulate and implement concerns that crosscut other
modules. It is claimed that this technique improves code modularization and therefore
reduces complexity of object-oriented programs (OOP). Most of the proposed
complexity measurement frameworks for AOP are for AspectJ programming language.
In this paper, a generalized framework for assessment of complexity of aspect-oriented
(AO) systems, has been defined that takes into account three, the most well known
families of available AOP languages, AspectJ, CaesarJ and Hyper/J. In order to
automate complexity measurement, a tool has been developed using fuzzy logic, in
which some set of rules have been defined as rule base. Using this tool, complexity of
majority of AOP languages can be measured, which will further help in the
measurement of external software qualities, such as maintainability, reusability,
adaptability and understandability.
Keywords: aspect-oriented programming, complexity metrics, fuzzy logic.

1 INTRODUCTION

Now days, our society is becoming dependent on software that’s why demand of quality
software is increasing day by day. In the literature of software quality models, many
researchers and practitioners have proposed their quality models, which are intended to
evaluate external software qualities such as maintainability, usability, efficiency,
functionality, reliability, portability and reusability. These external software quality
characteristics could be measured with the help of software metrics. Metrics are designed
on the basis of design structure of programming languages such as module-oriented

A FUZZY LOGIC APPROACH TO MEASURE COMPLEXITY OF GENERIC ASPECT-

ORIENTED SYSTEMS

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3

programming (MOP), object-oriented programming (OOP) and aspect-oriented
programming (AOP) [1]. Design of metrics depends on internal quality characteristics
such as encapsulation, cohesion, coupling and complexity. In turn, researchers and
practitioners have proposed a large number of new metrics and assessment frameworks
for quality design principles such as complexity [2, 3, 4, 5]. High complexity of any
software system is an indication of low quality.

AOP languages aim to improve the ability of designers to modularize concerns that
cannot be modularized using traditional module-oriented (MO) or object-oriented (OO)
paradigms. Such concerns are scattered in multiple modules (classes) and are known as
crosscutting concerns [6]. Examples of crosscutting concerns include logging, tracing,
caching, resource pooling etc. The ability to modularize such concerns is expected to
improve comprehensibility, parallel development, reuse and ease of change [7, 8],
reducing development costs, increasing dependability and adaptability. Since AO is a
new abstraction, the definition of complexity is required to redefine in the context of
AOP.

Out of all available AOP languages, the most popular is AspectJ [9]. AspectJ is an
extension of Java with several complementary mechanism, namely join points (JPs),
pointcut descriptors (PCDs), advice, introduction and aspect. JPs represent well-defined
points in a program's execution. Typical join points in AspectJ include method calls,
access to class members, and the execution of exception handler blocks. A PCD is a
language construct that picks out a set of join points based on defined criteria. The
criteria can be explicit function names, or function names specified by wildcards. Advice
is code that executes before, after, or around a join point. You define advice relative to a
pointcut, saying something like "run this code before every method call I want to log”.
Introduction allows aspects to modify the static structure of a program. Using
introduction, aspects can add new methods and variables to a class, declare that a class
implements an interface, or convert checked to unchecked exceptions. Advice, pointcuts,
ordinary data members and methods are grouped into class-like modules called aspects.
Aspects are intended to support the modular representation of crosscutting concerns,
although they admit other uses. Some existing AOP languages and frameworks provide a
very similar composition model to the AspectJ one, such as Springs AOP framework [10]
and JBoss AOP [11]. However, despite a good amount of work for measuring
complexity, there is poor understanding of complexity in the context of AOP. Some
researchers and practitioners have proposed complexity measurement frameworks and
metrics for AOP [12, 13, 14]. But most of them are for AspectJ. They have defined
complexity in context of AspectJ.

Another family of AOP languages is CaesarJ [15], which does not have aspects as a
separate language abstraction. It supports additional concepts such as virtual classes,
mixin composition, aspectual polymorphism, and bindings. IBM’s Hyper/J [16], is also
becoming popular as one of the AOP languages. When using Hyper/J, a developer
provides three inputs: a hyperspace file that describes the Java class files, which can be
manipulated by Hyper/J, a concern mapping file that describes, which pieces of the Java

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 45

source map to each dimension of concern, and a hypermodule file that describes which
dimensions of concern should be integrated (i.e., which hyperslices) and how that
integration should proceed. Individual aspect may be viewed as hyperslice, and the set of
aspects together with the core classes as hypermodule. There is no central composition
rule in AspectJ and CaesarJ. Instead, each aspect contains its part of the rule, specifying
how that aspect is to be woven into the base classes. Despite a growing body of work
dedicated to measure complexity in AO systems, there is no tool which could automate
the assessment of complexity of generic AO systems. We have proposed new complexity
metrics for generic AO systems and have developed a tool using fuzzy logic [17] to
automate complexity measurement. There are three different inputs, which contribute in
complexity of module/component in AO system. Ninety six fuzzy rules have been
defined as rule base (knowledge base) to measure complexity of generic AO systems.
This proposed framework has specifically targeted at the composition models supported
by Java, AspectJ, CaesarJ and Hyper/J. This will help in: (i) defining new complexity
metrics, which in turn, permits the analysis and comparison of Java, AspectJ, CaesarJ and
Hyper/J implementations, (ii) integrating different existing measures, which examines the
same concepts in different ways, and (iii) automate complexity measurement of majority
of the AOP languages.

The paper is structured accordingly. Section 2 describes related work. Section 3
presents software complexity model for generic aspect-oriented programs. After defining
complexity model in section 3, section 4 defines a fuzzy-logic approach to complexity
metrics and model. Conclusions and future work are presented in section 5.

2 RELATED WORK

Xia et al. [18] described a new way of assigning complexity weight values to function
point metric. They discussed the concepts of calibrating Function Points, whose aims are
to estimate a more accurate software size that fits for specific software application, to
reflect software industry trend, and to improve the cost estimation of software projects. In
this paper, a Function Point calibration model called Neuro-Fuzzy Function Point
Calibration Model (NFFPCM) that integrates the learning ability from neural network
and the ability to capture human knowledge from fuzzy logic is proposed. The empirical
validation using International Software Benchmarking Standards Group (ISBSG) data
repository release 8 shows a 22% accuracy improvement of mean magnitude relative
error (MMRE) in software effort estimation after calibration. This weight values
assignment is for functions (operations) only, not for other members of the class and this
framework is for object-oriented systems.

Sicilia et al. [12] talked about the main design and implementation issues aspect-
oriented design (AOD)-based extensions on OJB database libraries using fuzzy logic.
They specified that fuzziness can be considered as separate crosscutting concern in
existing software, and in consequence, AOD techniques provide a convenient framework
to implement fuzzy extensions to existing libraries.

A FUZZY LOGIC APPROACH TO MEASURE COMPLEXITY OF GENERIC ASPECT-

ORIENTED SYSTEMS

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3

Jana [13] measured code complexity in projects designed in AspectJ. They have
defined and used entropy metrics for ordering of symbols to estimate the complexity of
AspectJ based programs. The entropy metrics are useful in ranking different modules and
symbols with regard to their complexity. They introduced weighted entropy values to
accommodate the subjective perspective of an observer. Their approach provides multi
valued space more suitable for prediction models. This framework is applicable only for
AspectJ-like languages.

Norbert et al. [14] described a multi-paradigm metric which is extended for aspect-
oriented programs. The metric can measure complexity of MO, OO and AO parts of
programs implemented in AspectJ. This extended metric revealed that aspect-oriented
does not necessarily reduce the complexity on its own- the gain highly dependent on the
actual problems.

Kumar et al. [19] defined unified framework for cohesion measurement in AO
systems. In their framework they considered Java, AspectJ and CaesarJ programming
languages. Grover et al. [7] defined unified/generic AOP framework for changeability
measurement using same terminologies and framework mentioned in [19]. Kumar et al.
[20, 21] also defined new unified/generic framework for measuring coupling and
complexity of AO systems. In this framework, they included Hyper/J, one of the popular
AOP language, besides Java, AspectJ and CaesarJ. This paper is an extension of our
earlier work [21].

3 SOFTWARE COMPLEXITY MODEL FOR GENERIC ASPECT-
ORIENTED SYSTEM

In order to define generic complexity model which accounts Java, AspectJ, CaesarJ and
Hyper/J as part of generic AO framework, first step will be to define (i) AO terminology
and formalism for unambiguous and standardized representation and (ii) generic AO
framework which can specify different aspects like inheritance, domain of measure,
interaction type and so on. Since this work is an extension of our earlier work [21], in
which we have already defined both the sections of (i) and (ii). So, there is no need to re-
write the same thing here, but to understand terminologies and formulism used in this
paper, one has to refer [21].

We have divided complexity of generic AO system in two categories: (i) Code
Complexity and (ii) Interaction Complexity, which could be defined as:
Complexity of AO system:

AOSCMPX =)(sCCMPX +)(SICCMPX
Where, AOSCMPX ,)(sCCMPX and)(SICCMPX are complexity of AO system, code complexity
of Component Set and complexity of interactions between the Components respectively.
Scope of this paper is to measure code complexity only. Interaction complexity could be
measured in the similar way.

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 47

Code Complexity of Component Set:

)(sCCMPX =)(

1

xcM

X

x

CMPX∑
=

Where, X is the total number of components in the AO system and)(xcMCMPX is the code
complexity of a component xc .
Code Complexity of a Component:

)(CMCMPX = α ×)(cAttCMPX + β ×)(cOpCMPX + γ ×)(cNestedCMPX

Where,α , β and γ are the coefficients for)(cAttCMPX ,)(cOpCMPX and
)(cNestedCMPX respectively and are dependent on the nature of components.

)(cAttCMPX ,)(cOpCMPX and)(cNestedCMPX are attributes complexity, operations complexity
and nested components complexity respectively in a component c .
Complexity of Attributes:

)(cAttCMPX = ∑
=

×
L

l

cAttw ll

1

)(

Where, L is total number of attributes in a component c and lw is the corresponding
weight value of an attribute)(cAttl .

Complexity of Operations:

)(cOpCMPX = ∑
=

×
M

m

cOpw mm

1

)(

Where, M is total number of operations in a component c and mw is the corresponding
weight value of an operation)(cOpm .

Complexity of Nested Components:

)(cNestedCMPX =∑
=

×
N

n

cNestedw nn

1

)(

Where, N is total number of nested components in a component c and nw is the
corresponding weight value of a nested component)(cNestedn .

Now, we can represent Complexity of Component Set as:

)(sCCMPX =∑
=

X

x 1

(α × ∑
=

×
L

l

xll cAttw
1

)(+ β × ∑
=

×
M

m

xmm cOpw
1

)(+ γ × ∑
=

×
N

n

xnn cNestedw
1

)()

It is important to note that we can add above complexity metrics only when all metrics
values are in same unit/scale. For example, if one metrics is in a/b format and ranges
between 0 to 1, then others must be in same unit to add values. If scales are different then
there is a need to normalize units so that all metrics are of same units. It is very difficult
to assign numeric values to weight values lw , mw and nw .For example mw is numeric value
of complexity weight value of an operation. Operation complexity depends on return

A FUZZY LOGIC APPROACH TO MEASURE COMPLEXITY OF GENERIC ASPECT-

ORIENTED SYSTEMS

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3

type, number of parameters and their parameter type. Return type and parameter type
may be built in types, user defined types and component types. Due to different number
of parameters, different parameter types and different return types, there will be hundreds
of combinations of complexity weight values of operations. Similarly we can assign
different numeric values to lw and nw which may be hundreds in numbers. Complexity of
attributes, complexity of operations and complexity of nested components are different in
nature and have different type of complexity value.)(cAttCMPX is due to data,)(cOpCMPX is
due to data as well as business logic (set of instructions) implemented for the data and

)(cNestedCMPX is contribution of both)(cAttCMPX and)(cOpCMPX . So, these complexities cannot
be added to get)(CMCMPX of a component. Solution of this problem is proposed in section
4.1 and 4.2.

4 A FUZZY-LOGIC APPROACH TO COMPLEXITY METRICS AND
MODEL

The solution that is suggested here to overcome previously mentioned problems is to use
fuzzy logic linguistic variables for the complexity metrics and model. Fuzzy logic is a
mathematical tool for dealing with uncertainties and also it provides a technique to deal
with imprecision and information granularity. Fuzzy logic is seen as a means of
approximate reasoning .Our fuzzy model for integrating AO component complexity

)(CMCMPX accounts the effect of complexity of attributes)(cAttCMPX , complexity of
operations)(cOpCMPX and complexity of nested components)(cNestedCMPX . A block diagram
for the fuzzy model is shown in Fig-I.

The fuzzy model consists of four modules. The fuzzification module is the first stage
in working of any fuzzy model, which transforms crisp input(s) into fuzzy values. In the
second stage, these values are processed in the fuzzy domain by interface engine based on
production rules (knowledge base) supplied by the domain expert(s). During second
stage, the fuzzy operators are applied. In third stage implication process is applied and
then all outputs are aggregated. In fourth and final stage, the processed output is
transformed from fuzzy domain to crisp domain by defuzzification module.

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 49

Fig-I: Fuzzy model for complexity measurement of a component.

4.1 Membership Functions for Input Parameters

In this paper, complexity of component ()(CMCMPX) have been taken in the scale of 0 to 1
and member functions as NIL, Very Low (VL), Low (L), Medium (M), High (H) and
Very High (VH). Because nested component is also a component, member function of
nested component will be same as of a component i.e. NIL, VL, L, M, H and VH.
Complexity of nested component ()(cNestedCMPX) can be evaluated recursively with
terminal condition as the component is without nested component i.e.)(cNestedCMPX as NIL
for that component. For simplification,)(cAttCMPX and)(cOpCMPX values also we have taken
in the range of 0 to 1. For)(cAttCMPX and)(cOpCMPX , member functions have been
considered as NIL, L, M and H. Now the question is, how to decide whether)(cAttCMPX is
NIL, L, M or H?)(cAttCMPX value depends on number of attributes and their data types. In
the section of terminology and formulism [21], there are three broad categories of types
as built in types (BT), user defined types (UDT) and component types (CT). If
complexity weight value assigned to individual attribute is taken in the range of 0 to 1,
then we can assign weight values to the three types as given in Table-I.

Attribute Types Complexity weight
value

BT 0.33
UDT 0.66
CT 1.00

Table-I: complexity weight values to individual attribute

In order to evaluate complexity of all the attributes of a component, i.e.)(cAttCMPX , we can
apply formula given in the section 3. For example, in a component, there are 3 attributes
of type BT, 4 attributes of type UDT and 2 attributes of type CT, then)(cAttCMPX will be
5.63 (3*0.33+4*0.66+2*1.00). For a component without attribute,)(cAttCMPX will be NIL.
In order to decide whether this value (5.63) of complexity of attributes falls in category of

A FUZZY LOGIC APPROACH TO MEASURE COMPLEXITY OF GENERIC ASPECT-

ORIENTED SYSTEMS

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3

L, M or H, we performed experiment on benchmark projects [22, 23] and found that the
maximum value of)(cAttCMPX was 10.61 (9*0.33+4*0.66+5*1), and in many other
components this value was reaching 10. In other projects, this value may vary but if there
is major difference, then proper decomposition of components at design time have not
been done. For simplification, this maximum value of)(cAttCMPX has been normalized in
the scale of 0 to 1. Range of member functions NIL, L, M and H of variable)(cAttCMPX are
0.00-0.00, 0.00-0.36, 0.33-0.68 and 0.65-1.00 respectively. There is overlapping in
member function values for better results in fuzzy system. This is also shown in Fig-II.

Fig-II

Complexity of operation depends on its return type, number of input parameters and
parameter types, because business logic written in an operation depends on these.
Complexity of parameters, we can evaluate using same methodology as applied on
attributes. We can define whether an operation is simple type, medium type, complex
type or very complex type; by input parameter complexity and return type. By the
experience and expertise opinion of the field, we have defined the different types of
operations, which are listed in Table-II.

Return
Type

Input
Parameters
Complexity

Operation Type

Void NIL Simple
Void L Simple
Void M Simple
Void H Medium
BT NIL Simple
BT L Simple
BT M Medium
BT H Complex
UDT NIL Simple
UDT L Medium
UDT M Medium
UDT H Complex

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 51

CT NIL Medium
CT L Medium
CT M Complex
CT H Very Complex

Table-II: type of operations.

After categorizing operation types, we can assign complexity weight values to individual
operations in the scale of 0 to 1 similar as in case of attributes, these are given in Table-
III.

Operation Types Complexity Weight
Value to Individual
Operation

Simple Type 0.25
Medium Type 0.50
Complex Type 0.75
Very Complex Type 1.00

Table-III: complexity weight values of operations.

We can now measure)(cOpCMPX using formula given in section 3 and by using weight
values from Table-III. For example, a component is having 3 simple type operations, 2
medium type operations, 3 complex type operations and 1 very complex type operations,
then)(cOpCMPX for this component will be 5.0 (3*0.25+2*0.5+3*0.75+1*1.0). Here, the
same question arises as in case of)(cAttCMPX , whether this value of)(cOpCMPX is L, M or H.
For the solution of this, we again performed experiment on same set of projects [22, 23]
and found that maximum value of)(cOpCMPX was 6.5 (6*0.25+4*0.50+2*0.75+1*1.00).
We also found that for many components)(cOpCMPX value is in between 5 and 6. This
maximum value of)(cOpCMPX may vary from project to project, but if there is major
variation, then it may be because of proper decomposition of components have not taken
place. Range of member functions NIL, L, M and H of)(cOpCMPX variable have been
considered as 0.0-0.0, 0.0-0.36, 0.33-0.69 and 0.66-1.00 respectively, which are also
shown in Fig-III.

Fig-III

A FUZZY LOGIC APPROACH TO MEASURE COMPLEXITY OF GENERIC ASPECT-

ORIENTED SYSTEMS

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3

Range of member functions NIL, VL, L, M, H and VH of input variable)(cNestedCMPX and
output variable)(CMCMPX have been considered as 0.0-0.0, 0.0-0.23, 0.2-0.43, 0.4-0.63,
0.6-0.83 and 0.8-1.00 respectively and for)(cNestedCMPX it is shown in Fig-IV, which will
be similar for)(CMCMPX .

Fig-IV

4.2 Fuzzy Rules for the Proposed Model

In order to measure complexity of a component ()(CMCMPX), which is the main objective
of our model, there three members)(cAttCMPX ,)(cOpCMPX and)(cNestedCMPX contributing in
the complexity of any component. Attributes, operations and nested components are
different in nature and have different type of contribution in the complexity of a
component, so we cannot simply add these values to get complexity of a component. As a
solution of this problem, we have used fuzzy logic and have designed 96 fuzzy rules (4
member functions of)(cAttCMPX *4 member functions of)(cOpCMPX *6 member functions
of)(cNestedCMPX). Here, mamdani method for defining fuzzy rules is used, which is used for
nonlinear equations. These rules are designed on the basis of experience and expertise
knowledge of the field that’s why these are also known as knowledge base. For sample,
some of the rules are listed in Table-IV. First column labeled Rule# represent rule
number, second column is for input linguistic variables,)(cAttCMPX ,)(cOpCMPX and

)(cNestedCMPX and third column is for output linguistic variable)(CMCMPX .

Rule# Input Variables Output Variable
)(cAttCMPX)(cOpCMPX)(cNestedCMPX)(cOpCMPX

1 NIL NIL NIL NIL
12 NIL NIL VH VH
25 L NIL NIL VL
37 L M NIL M
45 L H L H

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 53

57 M L L M
65 M M H VH
93 H H NIL H

Table-IV: Some Sample Rules of the Complexity Fuzzy Model

As an example, if)(cAttCMPX =0.573 (M),)(cOpCMPX =0.596 (M) and)(cNestedCMPX =0.5 (M)
are input values then)(cOpCMPX value is resulting as 0.692, which is high for output
variable)(cOpCMPX . It is also shown in Fig-V as rule viewer.

Fig-V:

Three dimensional surface view of this rule base is given in Fig-VI.

Fig-VI

A FUZZY LOGIC APPROACH TO MEASURE COMPLEXITY OF GENERIC ASPECT-

ORIENTED SYSTEMS

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3

Using proposed methodology and model, complexity of all the components of the
software system can be measured and we can evaluate average of these complexity
values. The average complexity value will be between 0 and 1and will be in any of the
ranges, VL, L, M, H and VH. With the help of this value, we can specify complexity
level of AO system.

5 CONCLUSION AND FUTURE WORK

In this paper, we have used fuzzy logic for defining software complexity metrics as
linguistic variables and for the modeling process has been outlined. The motivation has
been difficulties faced to get total complexity of a component in generic aspect-oriented
system, because members, which contribute in the complexity of a component, are
different in nature and have different type of complexity value. Using common
terminology, formalism and generic/unified framework defined for Java, AspectJ,
CaesarJ and Hyper/J, new complexity metrics have been defined. These metrics are
defined for measuring code complexity and interaction complexity of AO system. In this
paper, only code complexity has been evaluated. A fuzzy model has been defined to
measure code complexity of a component. Average complexity of all the components
available in the AO software system will be indicator to the complexity level of the
system. Using this model, complexity of software developed in most of the AO languages
including Java (OOP) can be measured, which further may be used as an indicator to
external software quality such as maintainability, reusability, adaptability and
understandability.

In future work, we have planned to measure interaction complexity of generic AO
system using fuzzy logic approach and developing a model to get total complexity. In this
paper, process of getting number of attributes, attribute types, number of operations,
prototype of operations, numbers of nested components etc., is a manual process. This
could be automated by developing a tool written in any programming language. We are in
the process of developing this tool in Java, so that whole system of measuring complexity
could be fully automated.

REFERENCES

[1] Avadhesh Kumar, Rajesh Kumar, P.S. Grover, “A Comparative Study of Aspect-
Oriented Methodology with Module-Oriented and Object-Oriented
Methodologies”, ICFAI Journal of Information Technology, Vol. 2, No. 4,
pp.7-15, December 2006.

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 55

[2] H.W. Schmidt and W. Zimmermann, “A Complexity Calculus for Object-Oriented
Programs”, Journal of Object-Oriented Systems, Volume-1, Issue-2, pp. 117-
-147, 1994.

[3] Weyuker, E. J., “Evaluating Software Complexity Measures”, IEEE Transactions on
Software Engineering, Volume- 14,Issue- 9, pp: 1357-1365, Sep. 1988.

[4] Ognjen Prnjat, Lionel Sacks, "Complexity Measurements of the Inter-Domain
Management System Design", Ninth IEEE International Conference on
Networks (ICON'01), pp:2, 2001.

[5] Wilkie, F., “Tool Support for Measuring Complexity in Heterogeneous Object-
Oriented Software”, In Proceedings of the international Conference on
Software Maintenance (ICSM'02), Washington, DC, October 03 - 06, 2002,
pp: 152, IEEE Computer Society.

[6] V. C. Garcia, E. K. Piveta, D. Lucrédio, A. Álvaro, E. S. Almeida, L.C. Zancanella, &
A.F. Prado, “Manipulating crosscutting concerns” , Proc. 4th Latin American
Conf. on Patterns Languages of Programming (SugarLoafPLoP), Porto das
Dunas, CE, Brazil, 2004.

[7] Avadhesh Kumar, Rajesh Kumar, P.S. Grover, “An Evaluation of Maintainability of
Aspect-Oriented Systems: a Practical Approach”, International Journal of
Computer Science and Security, Volume -1, Issue-2, pp. 1-9, Aug 2007.

[8] P.S. Grover, Rajesh Kumar, Avadhesh Kumar, “Measuring Changeability for
Generic Aspect-Oriented Systems”, ACM SIGSOFT Software Engineering
Notes, Volume 33, Issue 6, pp-1-5, November 2008.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. “An
Overview of AspectJ”. In Proceedings of the 15th European Conference on
Object-Oriented Programming, pp. 327–355, Springer, 2001.

[10] R. Johnson. Introducing the Spring framework., 2003.
http://www.theserverside.com/tt/articles/article.tss? l=SpringFramework.

[11] J. Inc. JBoss AOP Beta3, 2004. http://www.jboss.org.

[12] Miguel-Ángel Sicilia, Elena García-Barriocana, “Extending Object Database
Interfaces with Fuzziness Through Aspect-Oriented Design”, ACM SIGMOD
Record, Volume 35, Issue 2, pp: 4 – 9, June 2006.

[13] Jana Dospisil, “Measuring Code Complexity in Projects Designed with AspectJ”,
Informing Science InSITE-“Where Parallels Intersects”, pp: 185-197, June
2003.

[14] Norbert Pataki, Adam Sipos, Zoltan Porkolab, “Measuring the Complexity of
Aspect-Oriented Programs with Multiparadigm Metric”, ECOOP 2006
Doctoral Symposium and PhD Students Workshop.
http://www.ecoop.org/phdoos/ecoop2006ds/ws/pataki.pdf

A FUZZY LOGIC APPROACH TO MEASURE COMPLEXITY OF GENERIC ASPECT-

ORIENTED SYSTEMS

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 9, NO. 3

[15] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. “Overview of CaesarJ”,
Transactions on AOSD I, LNCS, 3880: pp.135 – 173, 2006.

[16] Barry R. Pekilis, “Multi- Dimensional Separation of Concerns and IBM Hyper/J”,
Technical Research Report, January 22, 2002.

[17] Zadeh, L. A., Fuzzy Logic, Neural Networks, and Soft Computing, Communications
of the ACM, Volume-37, Issue-3, pp: 77-84, Mar. 1994.

[18] Wei Xia, Luiz Fernando Capretz, Danny Ho and Faheem Ahmed, “A new
calibration for Function Point complexity weights”, Information and
Software Technology, Volume 50, Issue 7-8, pp: 670-683, June 2008.

[19] Avadhesh Kumar, Rajesh Kumar, P.S. Grover, “Towards a Unified Framework for
Cohesion Measurement in Aspect-Oriented Systems” , 19th Australian
Software Engineering Con-ference , 2008 (ASWEC 2008) Perth, Western
Australia, pp.57-65, March 26-28, 2008 , IEEE Computer Society.

[20] Avadhesh Kumar, P.S. Grover, Rajesh Kumar, “Generalized Coupling Measure for
Aspect-Oriented Systems”, ACM SIGSOFT Software Engineering Notes,
Volume 34, Issue 3, pp:1-6 May- 2009.

[21] Avadhesh Kumar, Rajesh Kumar, P.S. Grover, “Towards a Unified Framework for
Complexity Measurement in Aspect-Oriented Systems” , 2008 International
Conference on Computer Science & Software Engineering (CSSE 2008),
Wuhan, China, pp:98-103, Dec-12-14, 2008, IEEE Computer Society.

[22] http://caesarj.org/index.php/Caesar/Tutorial.

[23] Ramnivas Laddad, “AspectJ in Action: Practical Aspect-Oriented Programming”,
Manning Publications, 2003.

VOL. 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 57

About the authors
Rajesh Kumar is presently Associate Professor and Head, Computer
Centre at Thapar University, Patiala, Punjab, India. He received his
Master and Doctorate degrees from Indian Institute of Technology
(IIT), Roorkee. His area of research is Software Engineering focusing
on Aspect-Oriented Programming, Component Based Software,
Metrics and Software Quality. He has published more than 50 research
papers in international and national journals of repute. He can be

reached by e-mail at: rakumar@thapar.edu

P. S. Grover is presently Director General at Guru Tegh Bahadur
Institute of Technology, GGS Indraprastha University, Delhi, India.
Formerly he was Dean & Head of Computer Science Department, Delhi
University, Delhi, India. He received his master’s degree and doctorate
from Delhi University, Delhi, India. He is widely travelled and delivere
invited talks/key note addresses at many National/International

Conferences/Seminars and Workshops. His current resrarch interests are: Component-
based and Aspect-orinted Software Engineering and Autonomic Embedded Systems. He
is on the Editorial Board of Four International Journals. Prof. Grover has written 9 books
and many of his articles have appeared in several books published by IEEE of USA. He
has published more than 100 research papers in international and national journals and
conferences including published by IEEE, ACM and Springer. Dr. Grover is a member
od IEEE Computer Society. He can be reached by e-mail at: groverps@hotmail.com

Avadhesh Kumar is presenty Associate Professor & Head, department
of IT at Galgotias College of Engineering & Technology, UP Technical
University, Uttar Pradesh, Greater Noida, India. He obtained his
B.Tech. in Computer Science & Engineering from H.B.T.I. Kanpur,
U.P., India and M.Tech. in IT from Punjabi University, Patiala, Punjab,
India. He has submitted his Ph.D. thesis at Thapar University, Patiala,

Punjab, India. His area of research is Software Engineering focusing on Aspect-Oriented
Programming, Metrics, Software Quality and Component Based Systems. He is a
member of IEEE, ACM & CSI. He has published more than 20 research papers in reputed
international and national journals, and conferences including published by IEEE and
ACM. He can be reached by e-mail at: kumar.avadh@gmail.com

