
Vol. 9, No. 3, May–June 2010

Extracting State Models for Black-Box Soft-
ware Components

Rajiv Ranjan Suman, Rajib Mall
Department of Computer Science & Engineering,
Indian Institute of Technology, Kharagpur, West Bengal- 721302, India

Srihari Sukumaran, Manoranjan Satpathy
GM India Science Lab, Bangalore -560066, India

We propose a novel black-box approach to reverse engineer the state model of software
components. We assume that in different states, a component supports different
subsets of its services and that the state of the component changes solely due to
invocation of its services. To construct the state model of a component, we track the
changes (if any) to its supported services that occur after invoking various services.
Case studies carried out by us show that our approach generates state models with
sufficient accuracy and completeness for components with services that either require
no input data parameters or require parameters with small set of values.

1 INTRODUCTION

In the component-based software development paradigm, a large software is built by
assembling pre-built and independently developed “plug and play” type of software
parts, called software components. The desired system behavior is achieved through
the collaborative actions of the assembled components. A component has certain
prespecified contractual obligations that comprise the services it needs to provide.
These services of a component are usually expressed as a set of named operations
(or methods) using some Interface Definition Language (IDL). Most often, only the
executable code and the IDL specifications of the components are available to the
application programmer. In other words, the design and implementation aspects of
a component are completely hidden and a component is used as a black-box by the
component integrator.

A component is a generic term and is often designed and implemented as a
single class or a collection of classes. A component may sometimes not be based
on any class at all (in case of procedural implementation), or it may even integrate
many smaller components. In spite of the apparent diversity in component imple-
mentations, as far as state modeling is concerned, a component in the component
paradigm can be considered analogous to an object in the object paradigm since
both a component and an object can be considered as black boxes that store some
data and provide some externally visible behavior.

Cite this document as follows: Rajiv Ranjan Suman, Rajib Mall, Srihari Sukumaran, Mano-
ranjan Satpathy: Extracting State Models for Black-Box Software Components, in Journal of
Object Technology, vol. 9, no. 3, May–June 2010, pages 79–103,
http://www.jot.fm/issues/issue 2010 05/article3/

http://www.jot.fm/issues/issue_2010_05/article3/

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

A state model of a component is a behavioral model that depicts the different
states that the component may assume and transitions among the states that may
occur in response to the stimuli received from its environment. Likewise, an object
in an object-oriented system may transit through various states in response to its
method invocations. Externally, the state model of a component is visualized in
terms of the state-based behavior of the component as a whole rather than in terms
of the individual objects that the component may be composed of. Due to this
close analogy between an object and a component, as far as state-based behavior is
concerned, in the rest of this paper, we use the terms service and method as well as
component and object interchangeably.

An important advantage of the component paradigm is that a component in
an application can effortlessly be replaced any time by another functionally equiva-
lent component. For example, many present day software products such as Microsoft
Internet Explorer allow upgrades (patches) to be downloaded on the fly. Each down-
loaded patch may change one or more components of the application. After every
such change to a component of a critical application, regression testing of the appli-
cation needs to be carried out to ensure that the various features continue to work
satisfactorily even after component upgradation. The regression test suite is a subset
of the existing test suite that is selected based on the relevance of a test case to the
change. Selection of regression test cases for component-based software is considered
a challenging task due to several issues that need to be handled. One particularly
vexing problem is the following. Components often have significant states. However,
components are usually not accompanied with their state models. In the absence of
a state model, it is difficult to test the state behavior of a component. Satisfactory
regression testing of a component-based software therefore is a challenging research
problem[11, 12, 13].

State-based bugs are difficult to detect using traditional testing techniques[2].
There are several types of state-based bugs that are usually targeted by the state-
based testing techniques. Examples of a few important types of state-based bugs
are the following. A system might behave correctly to a user’s requests in only
some of the states but not in other states. It is also possible that the system may
not transit to some required state even when all necessary conditions are satisfied
(missing transitions) or may have improper transitions (sneak transitions) to certain
states [2]. State-based software testing has therefore been accepted as a crucial type
of testing that can help detect such insidious bugs. State models form an important
basis for state-based testing in the component paradigm[20]. State coverage and
transition coverage are two popular state-based testing techniques [2].

The services offered by components are usually documented as interface speci-
fications. It, however, is the responsibility of the component integrator to ensure
that the components are trustworthy. In addition to validating the functional beha-
vior, dynamic behavior of the components need to be validated. As components are
available to an application programmer (a component assembler) as black-box units
with only their documented interface specifications, the state model of the compo-

80 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

2 OUR STATE MODEL EXTRACTION METHODOLOGY: COSMOD

nents are not known. Therefore, it is desirable to develop a technique to extract the
state model of a component from its observable behavior. In this paper, we propose
a technique to extract the state model of a component from an examination of its
external behavior. A preliminary position paper for this work was reported in [22].

Components are increasingly being used to build embedded systems, distributed
control applications, and several types of real-time systems. These applications
mandate ensuring high degrees of reliability, safety, and security. In this light, state
model-based testing assumes importance. Besides its use in testing, the extracted
state model of a component has several other applications as well. These include
understanding the state-based behavior of a component and re-engineering of a
component to meet new requirements or constraints. A state model can also be
used to estimate the complexity and effort needed for state-based testing, as well
as to estimate the reliability of a component. Availability of a state model of the
component can also be useful for system-level impact analysis.

Several formalisms are at present being used to represent state models. These
include finite state machines (FSMs)[9], statecharts [4], etc. These formalisms are
of varying complexities and expressive powers[10]. However, out of the available
formalisms, FSMs are considered to be more intuitive and are therefore extremely
popular. Keeping these factors in view, we attempt to recover FSM-based state
models of components in our work.

The rest of this paper is organized as follows. In section 2, we present our
methodology for extraction of the state model of a component. Section 3 presents the
results of using our methodology of state model extraction on few sample problems.
In section 4, we compare our work with related work. Finally, section 5 concludes
this paper.

2 OUR STATE MODEL EXTRACTION METHODOLOGY: COSMOD

In the following section, we first present some basic concepts related to our methodo-
logy. This is followed by an overview of our proposed approach. We have named our
algorithm COSMOD (reverse engineering COmponent State MODel from its exter-
nal behavior). Finally, the pseudo code of COSMOD is presented with an example
to illustrate its working.

Basic Concepts and Definitions

In this section, we present a few definitions and terminologies that we shall use in
the rest of this paper.

Finite State Machine (FSM): An FSM[9, 10] is popularly used to model the behavior
of a system with discrete inputs and outputs. An FSM consists of a finite number
of internal states, transitions among these states, and actions. At any moment, it
remains in any one of these states. The initial states are a subset of all of its states.

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 81

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

An FSM also has a finite (possibly empty) set of final states. A state of an FSM is
a result of all of its past inputs. Formally, a deterministic acceptor FSM is a five
tuple (Q, I, F, Σ, δ) where

1. Q is a finite, non-empty set of elements called states.

2. q0 ∈ Q is a distinguished state, called the initial state.

3. F ⊆ Q, is a (possibly empty) set of the final states.

4. Σ is a finite, non-empty set of input symbols or input events (called alphabet)
associated with the state transition of the system

5. δ is a partial function called transition function that maps a state-symbol (or
state-event) pair to at most one state, i.e. δ : Q X Σ → Q.

Non-deterministic acceptor FSM: It is the same as its deterministic counterpart
except that the transition function δ maps a state-symbol (or state-event) pair to a
subset of Q, i.e. δ : Q X Σ → 2Q, where 2Q is the power set of set Q.

Deterministic FSM with Guard Conditions: Sometimes guard conditions are
associated with the transitions of an FSM. In this case, a transition would fire only
when its input event occurs and the associated guard condition evaluates to true.
Formally, a deterministic FSM with guard conditions may be defined as δ : Q X Σ
X G → Q, where G is the set of guard conditions which are usually expressed as
boolean expressions. This is interpreted as when the FSM is in state q1 ∈ Q and
receives an input symbol (or event) e ∈ Σ, then if the guard g ∈ G is true then the
FSM transits to a state q2 ∈ Q.

Terminology used in COSMOD:

(1) methodSet of a component: Services of a component may be described in terms
of method names in its IDL specification. So, for notational convenience, we use the
term method for a service described in the IDL specification of a component. We
denote all the methods of a component as its methodSet.

(2) activeMethods: At any point of time during the lifetime of a component, only
a subset of all the methods specified in its interface may be meaningfully executed,
that is, only a subset of all of its services are active. We use the term activeMethods
to denote the set of active methods. The set of remaining methods are therefore
called inactive methods at that point of time. Invocation of an inactive method m

would either generate an exception or display message such as “method not active
in the present state”. For example, invocation of the method pop() of a stack
component when the stack is empty would result in producing an error message. In
a bank ATM component, the method performTransaction() cannot be invoked when
the ATM is in a state where it is waiting for the customer to enter the PIN.

(3) State S of a component and activeMethods[S]: At any point of time, we cha-
racterize the state S of a component in terms of activeMethods at that time. The
component would stay in state S as long as its activeMethods do not change. As a
result, we call such activeMethods as activeMethods [S] which denotes the methods

82 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

2 OUR STATE MODEL EXTRACTION METHODOLOGY: COSMOD

that can be meaningfully executed in state S. Whenever a service of a component
is requested, its activeMethods may change, that is, some methods in the set ac-
tiveMethods may become inactive (non-callable) and removed from this set, and
some other methods that were inactive before the invocation of the service may be-
come active now and are added to the set activeMethods. Change in activeMethods
corresponds to a state transition. After execution of a method, if we observe that
the activeMethods has changed, we can conclude that component has transited to a
different state.

(4) targetState[S, m(P)] and source state S: This is the state to which a component
transits when its method m is invoked with parameter value-set P in its state S. We
call it the target state of S for method invocation m(P). S is called the source state
of this transition. The component may transit to different states on invocation of
method m with different values of P.

(5) Symmetric states, symmetricStateList[Sv] and equivalent states: States S1, S2, ..., Sn

are called symmetric if they have identical activeMethods, that is, activeMethods [S1]
= activeMethods [S2] = ... = activeMethods [Sn]. Notationally, we use the term sym-
metricStateList[Sv] to denote a list of states that are symmetric to state Sv. Due
to the existence of symmetric states in the state model, activeMethods at the dif-
ferent states of the component are not all distinct. Even when the activeMethods
are the same in two different situations, a component may actually be in different
states. We consider the symmetric states in order to identify even those states in
the state model that are not distinguishable from other states only on the basis of
activeMethods, otherwise only a partial state model may be generated. We discuss
this issue further in section 2.

Two symmetric states S1 and S2 (activeMethods [S1] = activeMethods [S2]) are
considered equivalent if their target states are symmetric for each of their active
methods, that is, if targetState[S1, m(P)] = Sx, targetState[S2, m(P)] = Sy, and
states Sx and Sy are symmetric, for each m ∈ activeMethods [S1] and for all valid
values of the parameter set P. States S1 and S2 are considered non-equivalent if
there exists at least one value of m or P for which the target states Sx and Sy are
not symmetric. Intuitively, two states are equivalent if the component exhibits same
behavior in the two states.

In the state model generated by COSMOD, two or more symmetric states exist
as different states only if they are non-equivalent states. A symmetric state is
maintained as a separate state during the process of generation of the state model
as long as it is not identified as equivalent to an older state. Once it is determined
that two symmetric states are equivalent to each other, they are merged together. In
Figure 5, states S1 and S2 are symmetric but different (non-equivalent) states. They
are symmetric states because activeMethods [S1] = activeMethods [S2] = {create(),
ready()}. They are different states because on invocations of the method ready() in
states S1 and S2, the component transits to states S3 and S4 respectively, but states
S3 and S4 are not symmetric states because activeMethods [S3] = {create(), ready(),
swap()}, whereas activeMethods [S4] = {create(), ready(), swap(), finish()}. Likewise,

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 83

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

states S3 and S6 are symmetric (but different) states. States S4, S5, S7 and S8 are
also symmetric states.

(6) Naming convention for states: COSMOD assigns numbers 0, 1, 2, ... to the states
of the component in the order in which they are discovered. State numbers are used
to identify the states for various purposes. However, for the sake of readability, we
prefix the letter ’S ’ before the state numbers and we use the symbols S0, S1, S2, etc
to refer to the states 0, 1, 2, etc.

(7) Initial state of a component: The initial state of a component is denoted
by S0. This is the state that a component assumes just after it has been crea-
ted/instantiated and no service of the component has been invoked.

(8) End (or final) state of a component: This is a state from which no outbound
transition is identifiable. There may be zero, one or more than one end states
of a component. For example, the end states of a purchaseOrder component may
be the states corresponding to fulfilled order and rejected order. The scheduler

component of Figure 5 does not have any end state.

(9) stateSet: It is a set of all the states of the component that have been discovered
at any point of time during the execution of COSMOD..

(10) parameterSet [m]: It stores the different combinations of the parameter values
generated for invocations of method m. In our present version of COSMOD, we
generate the parameter values randomly. However, more effective algorithms may
be used to generate the parameter values.

(11) SRMS[S]: SRMS stands for State Recovery Method Sequence. Before the
services of a component can be invoked at a specific state, the component must be
made to assume that state. This can be done by executing a certain sequence of
methods (with suitable parameter values) in the initial state S0 of the component.
SRMS[S] denotes the specific sequence of methods, along with their input parameter
values, that are to be executed in state S0 in order to make the component transit
to state S.

(12) transitionList [S, m]: It is a list of pairs [(Pi1, Si1), (Pi2,Si2), ..., (Pin,Sin)].
This list stores the information that if the method m is invoked in state S with
parameter value sets Pi1, Pi2, ..., Pin then this makes the component transit to states
Si1, Si2, ..., Sin respectively. The variable transitionList (without S and m) denotes
the set of all such lists of state-method pairs.

(13) cycleMethodSequence: This is the sequence of methods (along with their para-
meter values) found as the labels of transitions (edges in a graphical representation)
when a cycle of the FSM (the state model under construction) is traversed. We
consider only loops (cycle of length 1) and simple cycles (those cycles in which only
one vertex (the beginning and ending vertex) appears twice and all other vertexes
appear only once). The state nearest to the starting state S0 is considered as the
first state of a cycle, next nearest state is the second state and so on. Any tie on
distances from state S0, may be resolved arbitrarily. As a result, the first method

84 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

2 OUR STATE MODEL EXTRACTION METHODOLOGY: COSMOD

of a cycleMethodSequence is the method present as the label of the transition from
the first state to the second state of the corresponding cycle.

(14) Repetition factor r: This decides the number of repeated executions of the
cycleMethodSequences of the partly constructed FSM. The value of r may be fixed
heuristically or empirically.

(15) State model: By state model of a component, we mean the FSM model of
its state behavior which is generated by the COSMOD algorithm. This state model
may be a deterministic FSM with guard conditions (if guards are identifiable) or it
may be a nondeterministic FSM when guards are not identifiable. Next state of a
component is determined by its present state, method invoked together with their
input parameters, and the guard condition (if any).

An Overview of Our Approach

The COSMOD algorithm to extract the state model of a component is based on
observing its behavior in its different states and it involves performing three basic
activities which are as follows:

(A) Invocation of active methods at a state, the function call invokeActiveMethods(Su)

(B) Confirming or merging a potential state, the function call confirmOrMergeState(Su)

(C) Repeated executions of cycleMethodSequences of the FSM, the function call
executeCycleMethodSequence(r)

By an “activity” we mean a set of steps to be carried out by our algorithm. On
page 86, we present the pseudo code of COSMOD algorithm in which function calls
invokeActiveMethods(Su), confirmOrMergeState(Su) and executeCycleMethodSe-
quence() correspond to performing the activities (A), (B) and (C), respectively.

Activities (A) and (B) are performed in sequence first for the initial state S0 and
subsequently for all the discovered states in the order in which they are discovered.
The states are numbered sequentially as S1, S2, ...etc. As shown in the pseudo code
of COSMOD (on page 86), the activity (B) is performed only for those states that
are marked as “potential state”. After carrying out the activity (B) for a state Su,
the state Su is either merged to an earlier state Si ∈ symmetricStateList [Su] that is
already marked as a “confirmed state”, or Su itself is made a “confirmed state”.

Performing activities (A) and (B) at every state, some or all the states of the
component are discovered. To discover the remaining states or transitions (if any),
COSMOD performs the activity (C). After performing the activity (C), COSMOD
repeats the activities (A) and (B) on all the states generated due to the most recent
application of activity (C), followed by performing activity (C) again on the FSM.
Construction of FSM is complete when no “confirmed state” is generated after per-
forming the activity (C).

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 85

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

Algorithm COSMOD;
Input: (1) IDL specifications and executable code of a component (2) Repetition factor r
Output: An FSM representing the state model of the component

1: mark S0 as “unexplored state” and “confirmed state”
2: SRMS[S0] ← []; stateSet← {S0}
3: activeMethods[S0] ← findActiveMethods(S0)
4: repeat
5: while stateSet has an “unexplored state” do
6: Su ← next “unexplored state” of stateSet
7: InvokeActiveMethods(Su); // perform activity (A)

8: if Su is marked as “potential state” then
9: confirmOrMerge(Su); // perform activity (B)

10: end if
11: end while
12: executeCycleMethodSeq(r); // perform activity (C)

13: until there is no “unexplored state” in stateSet

Function invokeActiveMethods(Su); // This implements activity (A)
Input: An unexplored state Su of a partly constructed FSM of a component
Output: Modified FSM with transitions of Su added to it

1: Instantiate component to state S0

2: for each method m in activeMethods[Su] do
3: parameterSet[m] ← generateParameterCombinations(m)
4: for each parameter combination in parameterSet[m] do
5: executeMethodSeq(SRMS[Su]) // set the component to state Su

6: next state Sv ← execute(m, Pv)
7: processAndSaveState(Su, Sv , Pv , m)
8: end for
9: end for

Function processAndSaveState(Su, Sv , Pv , m);
Input: A newly generated state Sv of a partly constructed FSM
Output: Various bookkeeping data about the state Sv

1: markState(Sv , “unexplored state”); addToSet(Sv , stateSet)
2: transitionList(Su, m) ← createStateTransition(Su, Sv , m, Pv)
3: SRMS[Sv] ← append(SRMS[Su], (m, Pv))
4: activeMethods[Sv] ← findActiveMethods(Sv)
5: symmetricStateList[Sv] ← markConfirmedOrPotentialState(Sv)

Function confirmOrMergeState(Su); // This implements activity (B)
Input: A “potential state” Su of a partly constructed FSM of a component
Output: Modified FSM with state Su either made a “confirmed state” or merged

to a symmetric state already marked as “confirmed state”

1: for each state S in symmetricStateList[Su] do
2: toBeMerged← TRUE
3: for each method m in activeMethods[Su] do
4: for each parameter combination P of m do
5: if NOT symmetric(targetState[S, m(P)], targetState[Su, m(P)]) then
6: toBeMerged← FALSE; break and continue the outermost forloop
7: end if
8: end for
9: end for
10: if toBeMerged == TRUE then
11: mergeState(Su,S); break
12: end if
13: end for
14: if toBeMerged == FALSE then
15: markState (Su, “confirmed state”)
16: end if

86 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

2 OUR STATE MODEL EXTRACTION METHODOLOGY: COSMOD

Function executeCycleMethodSequence(r); // This implements activity (C)
Input: (1) A partly constructed FSM of a component (2) Repetition factor r
Output: Same or modified FSM with zero or more new “unexplored states”

1: cycleList← enumerate cycles in the FSM
2: for each cycle cyc in cycleList do
3: Let the state sequence of cyc be < T1, T2,, Tx, T1 > where T1 is the first state of the sequence and let the

cycleMethodSequence of cyc be m1(P1), m2(P2),, mx(Px), where x is the cycle-length, 1 ≤ x ≤ n, and n
is the maximum number of states in the FSM

4: executeMethodSeq(SRMS[T1]) // set the component to state T1

5: for count = 1 to r in step 1 do
6: for i = 1 to x in step 1 do
7: next state Sv ← executeMethod(mi(Pi))
8: activeMethods[Sv] ← findActiveMethods(Sv)
9: if symmetric(Sv , Ti+1) then
10: continue // transition to next state in the cycle, hence start next iteration of

// the inner for-loop at line 6

11: else if symmetric(Sv , Sa), where state Sa ∈ stateSet and Sa 6= Ti+1 then
12: if pair (Pi, Sa) is already in transitionList[Ti, mi] then
13: // i.e, if there is already an edge labeled mi(Pi) from state Ti to state Sa then

14: discard state Sv // as this state is very likely to be merged later

15: else
16: processAndSaveState(Ti, Sv , Pi, mi); // a new edge detected from existing state Ti

// to existing state Sv

17: break the two inner for-loops and start next iteration of the outermost for-loop at line 2
18: end if
19: else
20: markState(Sv ,“confirmed state”) // Sv not symmetric to any existing state, hence

21: processAndSaveState(Ti, Sv , Pi, mi); // a new ‘‘confirmed state’’ Sv was discovered

22: break the two inner for-loops and start next iteration of the outermost for-loop at line 2
23: end if
24: end for
25: end for
26: end for

In the following three consecutive subsections, we discuss the activities (A), (B)
and (C) in detail.

Activity (A): Invocation of Active Methods

This activity involves invoking each active method of the component in a state Su

which is called the state being explored. Each method is invoked with different
values of parameters in state Su. COSMOD assumes that the component transits to
state Sv after invocation of a method m. Therefore, it always creates a new state Sv

and a new transition from state Su to state Sv after invocation of a method m. If the
activeMethods [Sv] is different from the activeMethods [Si] for all the earlier states Si (i
= 0 to v -1), then the component has undoubtedly undergone a state transition and
COSMOD marks Sv as “confirmed state” and saves it. However, some of the method
invocations may not result in state transition. In that case activeMethods [Su] and
activeMethods [Sv] will be the same. But, matching active methods may also be
due to state Sv being a state symmetric to (but different from) state Su. Similarly,
a method invocations may result in transition to an earlier state Si where i may
have any value from 0 to u-1 (i = u corresponds to no state transition). In such
cases, activeMethods [Su] and activeMethods [Si] will be the same. In this case also,
matching active methods may be due to state Sv being a state symmetric to (but
different from) state Si.

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 87

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

Therefore, in situations where activeMethods [Sv] is same as any one of the ac-
tiveMethods [Si] (i= 0 to v -1), that is, state Sv is symmetric to an earlier state
Si (where Si is one of the states from S0 up to Su), it is to be tested whether Sv

is equivalent (to be merged with) or only symmetric (but not equivalent) to the
earlier state Si. COSMOD resolves this ambiguity later by performing activity (B)
on state Sv just after completion of activity (A) on it, that is, after discovering all
possible transitions from state Sv. For this, it marks such state Sv as “potential
state” during activity (A) indicating that activity (B) needs to be performed on this
state. It adds all the states Si (i= 0 to v -1) to the symmetricStateList [Sv] for which
activeMethods [Su] and activeMethods [Si] are the same.

Activity (B): Confirming or Merging a Potential State

Activity (B) compares the behavior (compares target states on invocations of the
same active method with same input parameters) of the component in states Su and
in all the states S in symmetricStateList [Su] where state S has already been marked
as a “confirmed state”. If the state Su is found equivalent (refer to section 2 for
definition) to a state S, then it is merged with state S. Otherwise, its mark is changed
from “potential state” to “confirmed state”. Thus, activity (B) either converts a
“potential state” to a “confirmed state” or merges it to an equivalent symmetric
state that is already marked as “confirmed state”. Therefore, after determining the
transitions from a state Su by performing activity (A) on it, COSMOD checks how
it is marked. If Su is marked as “confirmed state”, then activity (B) is skipped.
On the other hand, if it is marked as “potential state”, then COSMOD calls the
function confirmOrMergeState(Su) to perform activity (B) that resolves whether
the state Su is a different state or equivalent to one of its symmetric states:

Activity (C): Repeated Execution of cycleMethodSequences

We discuss (a) the motivation and (b) the process of performing the activity (C) of
COSMOD.

Motivation for activity (C)

As per the assumptions of COSMOD, a transition from state Su to state Sv is
externally visible only when Su and Sv are non-equivalent states. For certain states,
a single method call may not cause an externally visible state transition to occur.
Repeated calls to one or more methods with the same or different parameter values
may cause the transition to be taken. In the following, we discuss some examples
to illustrate such situations.

Let us consider the case of libraryMember component of a Library Information
System. Its partial state model has been shown in Figure 1. On invocation of the me-
thod borrowBook(book) in state S2, the component remains in the same state as long
as the number of books borrowed by the member is less than the maximum number
of books that can be borrowed. After that, next execution of borrowBook(book)
method causes the component to transit to state S3. Suppose that the member’s

88 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

2 OUR STATE MODEL EXTRACTION METHODOLOGY: COSMOD

borrowBook(book)

borrowBook(book)
borrowBook(book)

returnBook(book)

returnBook(book)
returnBook(book)

S1 = NoLoan state

S2 = SomeLoan state

S3 = MaxLoan state

Figure 1: Partial state model of a library-
Member component of a library informa-
tion system

Sa = Handle Invalid
PIN

read&VerifyPIN(string PIN)
 [Correct PIN entered]

 read&VerifyPIN(string PIN)
 [Wrong PIN entered
 less than 3 times]

 read&VerifyPIN(string PIN)
[Wrong PIN entered 3 times]

Sc = Retain Card &
Lock Account

Sb = Choose Type of
Transaction

Figure 2: Partial state model of the
transaction session component of a
bank ATM system

loan limit is n books (where n > 2). When the library member borrows the first
book, the libraryMember component transits from state S1 to state S2 because the
method returnBook(book) does not become active until the first book is borrowed.
A single execution of the method borrowBook(book) in state S2 of the component
would not make it transit to state S3. One must execute the borrowBook(book) me-
thod n-1 times in state S2 to drive the component to the state S3, which is the state
of maximum loan limit. Here, the parameter values (e.g., book’s accession number)
in the repeated call to borrowBook(book) could be any valid parameter value, since
every time the member borrows a book, the number of borrowed books increases by
one. It is worth noting that the state S3 is different from the states S1 and S2 as
the method borrowBook(book) is not allowed (i.e. inactive) in state S3, whereas it is
allowed in states S1 and S2.

Figure 2 illustrates the fact that a bank ATM component may transit to different
states on invocation of the same method with different sets of valid parameter va-
lues. However, invocation of the method read&VerifyPIN(string PIN) at state Sa

with wrong value of the parameter PIN causes formation of a self loop (a cycle of
length 1), that is the state remains unchanged. It is required to invoke the method
read&VerifyPIN(string PIN) three times with wrong value (any arbitrary value, same
of different, except the correct value) of PIN in order to transit the component to
state Sc. These two examples indicate that we need to repeatedly execute the me-

thods along the cycles (that is, the cycleMethodSequence) of an FSM in order to
discover new states, such as the state Sc of Figure 2 and state S3 of Figure 1.

Figure 3 shows the partial state model of a power window controller (PWC)
which is obtained after performing the activities (A) and (B) of the COSMOD al-
gorithm (given on page 86). That is, by completely executing the while-loop (lines
5 to 11) with only one iteration of the outer repeat-until loop (lines 4 to 13) and
without performing the activity (C), i.e. without executing the function call exe-
cuteCycleMethodSeq(r) at line 12. Comparing this model with that in Figure 4, it
can be observed that several states and transitions are missing in this state model.
This happens due to existence of global variables. Many methods become active
and inactive depending on the values of these global variables. The value of any
local or global variable or constant is not visible in case of a black-box component.

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 89

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

S0

S1 S2

driveri(int)
[input = 0] driveri(int)

[input = 1]

S3 S5

changeState0() changeState1()

S7 S9

 down11() up11()

S11 S13

update_pos() update_pos()

S17

no_thres()

S15

no_thres()

driveri(int)
[input = 0] driveri(int)

[input = 0]

driveri(int)
[input = 1]

driveri(int)
[input = 1]

driveri(int)
[input = 0]

driveri(int)
[input = 1]

S19

S20

changeState2()

S21

S22

S23

neut1()

update_pos()

driveri(int)
[input = 0]

no_thres()

driveri(int)
[input = 2]

No of States = 16, No of Edges = 26

driveri(int)
[input = 2]driveri(int)

[input = 2]

driveri(int)
[input = 2]

Figure 3: Partial state model of a power
window component

S0

S1 S2

driveri(int)
[input = 0]

driveri(int)
[input = 1]

S3 S4 S5 S6

changeState0() changeState0() changeState1() changeState1()

S7 S8 S9 S10

 down11()
downT()

up11() upT()

S11 S13 S14

update_pos()
update_pos()

update_pos()
update_pos()

update_pos()

update_pos()

S17

no_thres()
bot_thres()

top_thres()

S12

S15 S16

no_thres()

S18
driveri(int)
[input = 0]

driveri(int)
[input = 0]

driveri(int)
[input = 0]

driveri(int)
[input = 1]

driveri(int)
[input = 1]

driveri(int)
[input = 0]

driveri(int)
[input = 2]

driveri(int)
[input = 1]

S19

S20

changeState2()

S21

S22

S25

neut1()

update_pos()

driveri(int)
[input = 0]

no_thres()
 top_thres()

 bot_thres()

driveri(int)
[input = 2]

driveri(int)
[input = 1]

No of States = 26, No of Edges = 43
driveri(int)
[input = 2]

driveri(int)
[input = 2]

driveri(int)
[input = 2]

driveri(int)
[input = 2]

driveri(int)
[input = 0]

S23 S24

update_pos()
update_pos()

Figure 4: State Model of PWC com-
ponent constructed by applying the
COSMOD algorithm

However, executions of the valid method sequences of the component repeatedly is
likely to cause these variables to assume values that they may not assume when the
method-sequences are invoked just once in a state. This, in turn, may result in a
new set of methods to become active (i.e. activeMethods of the component changes)
indicating the discovery of a new state.

The process of activity (C)

COSMOD calls the function executeCycleMethodSequence(r) to perform acti-
vity (C). During activity (C), it enumerates all the cycles in the FSM and determines
the cycleMethodSequence for each cycle. The first method of a method-sequence is
the method causing the transition from the first state (node) to the second state of
the corresponding cycle, where the first state is the state that is nearest to the star-
ting state S0. For example, < S3, S7, S11, S15, S3 > is a cycle in the FSM of Figure
3. We list the states in a cycle within angular brackets. The first state of this cycle
is S3 and its cycleMethodSequence = down11(), update pos(), no thres(), driveri(int),
which is a sequence of four methods having the method down11() as its first method.
Each cycleMethodSequence is executed r times as an attempt to discover as many
“confirmed states” as might be existing in the state model, where r is the repetition
factor chosen to uncover the states. Its value can be set (as input to COSMOD)
by the user either arbitrarily or intuitively depending on the information about the
application of the component.

90 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

2 OUR STATE MODEL EXTRACTION METHODOLOGY: COSMOD

COSMOD finds cycles in the FSM using the algorithm of [18], though the algo-
rithm of [19] could also be used. It considers the cycles in increasing order of their
lengths (number of edges in the cycle). That is, it considers the self loops first, then
the cycles containing two edges are considered, and so on. It repeatedly (r times)
executes the methods in the cycleMethodSequences.

As an illustrative example, there are 15 cycles in the FSM of Figure 3. There is a
cycle of states < S3, S7, S11, S15, S3 > that forms the method-sequence {down 11(),
update pos(), no thres(), driveri(int)}. Another cycle of states < S5, S9, S13, S17, S5 >
forms the method-sequence {up 11(), update pos(), no thres(), driveri(int)}. Simi-
larly, the cycle < S2, S5, S9, S13, S17, S1, S3, S7, S11, S15, S2 > generates the method-
sequence {changeState1(), up 11(), update pos(), no thres(), driveri(int), changeS-
tate0(), down 11(), update pos(), no thres(), driveri(int)}. Repeated executions of
cycleMethodSequence for cycles < S3, S7, S11, S15, S3 > and < S5, S9, S13, S17, S5 >
of Figure 3 discovers the state S12 and S14 (shown in Figure 4), respectively, both
of which are “confirmed states”.

Iterating the executions of the cycleMethodSequence for cycle< S1, S3, S7, S11, S15,
S19S20, S21, S22, S23, S1 > creates a new transition from state S1 to S4 and doing so
along the cycle < S2, S5, S9, S13, S17, S19S20, S21, S22, S23, S2 > discovers the tran-
sition from state S2 to S6. Repeated executions of cycleMethodSequences for the
remaining cycles do not generate any new state or transition. We then repeat the
activities (A) and (B) of the COSMOD algorithm (mentioned in section 2). Perfor-
ming these activities for newly discovered state S12 discovers three new states S16, S4

and S8 and their transitions. Similarly, performing activities (A) and (B) for state
S14 generates three more new states S18, S6 and S10 along with their transitions.
We then perform activity (C) of COSMOD on the modified FSM that uncovers
new cycles of the modified FSM. Executions of the cycleMethodSequences for these
cycles do not generate any new state and transitions which indicates completion of
the constructions of the FSM. The completed state model (FSM) has been shown
in Figure 4.

Selection of parameters during repeated executions of a cycleMethodSequence

During repeated executions of the method borrowBook(book) of the book component
of Figure 1, each invocation of this method requires different values of the parameter
book because a library member is not supposed to borrow multiple copies of the same
book. In case of repeated invocations of the method read&VerifyPIN(PIN) in state
Sa of the bankATM component of Figure 2, the value of parameter PIN can be
any arbitrary value, same or different, except the correct value of PIN in order to
transit the component to state Sc. In case of PWC component of Figure 4, the
method driveri(int buttonPressed) is the only method having a parameter. Every
invocation of this method in various cycleMethodSequences needs to be made with
the same parameter value during the repeated executions of the method-sequences,
otherwise we will get the partial state model of Figure 3 rather than the complete
state model of Figure 4. Therefore, during activity (C) for repeated executions of
the method-sequences, COSMOD first uses the same set of values of the method-

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 91

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

parameters for each invocation of a method. If, on doing so, a method invocation
generates exception or COSMOD is unable to discover new “confirmed states”, then
it attempts to execute the methods in the method-sequences with different set of
values of parameters for each invocation of a method.

Up to a certain number of repeated executions, state transitions follow the same
sequence of states in the cycle. But during the process of repeated execution, some
global variables may achieve values that cause a different execution path to be taken
resulting in a transition to a state not in the cycle under consideration. If this state
is not symmetric to any of the existing states, then we have discovered a new state
that is a “confirmed state”. On the other hand, if this state is symmetric to an
existing state, then it could be a “potential state” which is likely to be merged to
one of its symmetric states.

In order to curb state explosion, COSMOD discards a generated state Tj if Tj is
symmetric to an existing state Sa and there is already a transition (an edge in the
graphical FSM) from state Ti to the state Sa. This is because states Tj and Sa are
very likely to be found equivalent and merged together at later stage. We would miss
certain states in the state model in case the state Tj is not equivalent to any other
state. But this check is not possible until we store Tj in stateSet and later perform
activities (A) and (B) on it. Doing so will require us to handle several such states
of which very small (or even zero) number of states may be found non-equivalent
to any other state and finally become the part of the state model. Handling many
such states would increase the computation time enormously. Therefore, COSMOD
follows the policy of discarding such states.

Determining the value of the repetition factor r

The exact number of repeated invocations of cycleMethodSequences depends on the
specifics of the underlying code. In the example of Figure 1, the borrowBook(book)
method is to be executed n-1 times in state S2 to transit the component to state
S3, where n is the number of books that a user is entitled to borrow, which is solely
an application specific quantity and cannot be decided automatically. However, it
is a very hard problem to determine the exact number of times a method sequence
needs to be executed to discover all the states and transitions. For example, in a
trial version shareware game allowing the user to play 1000 times without purchasing
and registering the software, the value of r may need to be set to 1000 in order to
transit the unregistered shareware component to a state when it asks the user to
register before continuing. We have let the value of the repetition factor (r) to be
determined by the user of COSMOD either arbitrarily or intuitively.

As already pointed out, the activities (A), (B) and (C) need to be carried out
multiple times. However, for an FSM with large number (such as more than 20) of
states, computation time of activity (C) may become quite large due to detection of
all the cycles in the FSM followed by repeated execution of method-sequences along
all the cycles. Hence, number of iterations of the activities (A), (B) and (C) may

92 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

2 OUR STATE MODEL EXTRACTION METHODOLOGY: COSMOD

be kept small, such as 2 or 3 with a hope that it would uncover all (or most of)
the states and transitions of the state model of the component under consideration.
However, some states and transitions may still remain undetected, resulting in an
incomplete state model.

Parameter Value Generation

We assume that parameters of methods specified in the IDL specification of a com-
ponent are flat values and not objects. The domains of all parameters are assumed
to be discrete and finite. Besides, component specifications are assumed to describe
the constraints on parameter values. Constraints in the form of method precondi-
tions simplify the parameter generation by restricting the domains of the parameter
values, provided that the parameter values can be chosen independently. On the
other hand, constraints in the form of predicates involving more than one parameter
values may require each parameter combination to satisfy the predicate.

We proceed as follows to generate the parameters value combinations of a method
m(p1, p2, ..., pn). Suppose the domain of the parameter pi is di, ∀i. We assume
that meaningful partitions of the domain di of each parameter pi is specified in
the IDL specifications of the component. Based on this, domain di is partitioned
into qi contiguous partitions denoted by < di1, di2, di3, ..., diqi >. Taking all possible

combinations of partitions of every domain creates
∏n

1 qi combinations, such as <
d11, d21, ..., dn1 >,< d11, d21, ..., dn2 >, ..., < d1q1, d2q2, ..., dnqn >, etc. For each such
combinations, we generate parameter value combinations by randomly selecting a
value from each partition of the combination that generates a combination of n
values one for each parameter pi of the method m. For example, we can take the
combination of domain-partitions < d11, d21, ..., dn1 > and generate combinations of
n values < v1, v2, ..., vn > where vi is randomly chosen from the ith domain-partition
di1 of the combination.

Identification of Guard Conditions of State Transitions

A guard condition is a predicate that needs to hold true for a transition to occur.
A guard is usually specified as a boolean expression involving method parameters,
local and global variables, constants, etc. However, in the absence of the source code,
the only observable values are the parameter values in terms of which the guards
would have to be expressed. Needless to say that guards may only be incompletely
discovered. In COSMOD algorithm, the transitionList(S, m) is used to record the
method names along with their parameter values for every state transition. A simple
(that is, incomplete) guard may be expressed as discrete values of the parameters
of the method invocation that cause a state transition. However, different values of
a parameter may cause the same state transition and therefore they are considered
equivalent. The set of these parameter values form an equivalence class. A complete
guard may be expressed in terms of equivalence classes of the involved parameters,
local and global variables rather than in terms of their discrete values. Synthesis
of a guard condition requires equivalence class partitioning, that is, partitioning

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 93

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

the domains of the parameters into intervals (equivalence classes) such that all the
values in an interval cause similar state transitions to occur. Finding such intervals
for the parameters of a black-box component is a difficult task. Therefore, it is likely
that COSMOD may not identify some of the guards in a state model.

Time Complexity Analysis of COSMOD

We have analyzed the worst case time complexity of COSMOD algorithm and com-
puted as TCOSMOD[activities(A)and(B)] = O(n∗k2∗(n∗Tmax+Tp)) and TCOSMOD[activity(C)]

= O((n + e) ∗ c) + O(c ∗ n ∗ r ∗ k ∗ Tmax), where n is the total number of states
generated including the potential states merged to earlier states, k is the number of
methods, Tmax denotes the maximum of the time complexities of all the k methods
of the component, and Tp is the worst case time complexity of the algorithm gene-
rateParameterCombinations(m) used to generate the parameter values for a method
invocation, e is the number of edges in the final FSM, c is the number of distinct
cycles in the FSM, r is the repetition factor for activity (C) of COSMOD, and j
is the number of times activities (A), (B) and (C) are iterated, i.e. the number of
times the repeat-until loop of the COSMOD algorithm (see on page 86) is executed.

Therefore, overall time complexity of the COSMOD algorithm Tcosmod = O(j∗
(n ∗ k2 ∗ (n ∗ Tmax + Tp)) + ((n+ e) ∗ c) + (c ∗ n ∗ r ∗ k ∗ Tmax)). It can be observed
that the worst case time complexity of COSMOD is a polynomial function of k, r,
n, e, c, j Tmax, and Tp. A detailed description of this analysis is available in [14].

3 CASE STUDIES

S
0

[C]

S
1

[CR]

create()

S
2

[CR]

S
11

[CRSF]

create()

swap()

finish()

S
5

[CRSF]

S
23

[CRSF]

S
37

[CRSF]

S
3

[CSF]

S
12

[CSF]

finish()

finish()

finish()

ready()

create()

ready()

ready()

ready()

swap()
swap()

swap()

swap()

finish()

 create()

ready()

swap()

 create()

 ready()

 create()

 create()

create()

finish()

create()

Figure 5: State model of a pro-
cess scheduler component generated
by COSMOD

We have carried out several case studies
to investigate the effectiveness of our COS-
MOD algorithm. We have chosen compo-
nents from the following applications: (i) the
power window controller (PWC) component
of an Automobile System (AS) (ii) the pro-
cess scheduler and (iii) the thread compo-
nents of an Operating System (OS) (iv) the
vending machine (VM) component of a Cof-
fee Vending Machine (CVM) (v) the book
and (vi) the libMember (denoting a library
user) components of a Library Information
System (LIS) (vii) the train ticket reserva-
tion component of a Train-ticket Booking
System (TBS) (viii) the order (denotes a
purchase order received by a vendor) com-
ponent of a Trade House Automation Sys-
tem (THAS) (ix) the session (stands for a
session of ATM transaction) component of a
Bank ATM System (BAS) (x) the elevator

94 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

3 CASE STUDIES

component of an Elevator Control System
(ECS). The details of these applications, components and case studies have been
reported in [14]. We briefly outline the two of these case studies.

State Model of a Process Scheduler Component

IDL specification of a process scheduler component has been shown below. Though

interface scheduler {
int create(); // creates a new process and puts in waiting queue
void swap(); // takes an active process and puts it in waiting queue,

// and takes one ready process and makes it active (running)
void ready(); // takes a waiting process and puts it in ready queue, in case

// the processor is idle, makes this process active
void finish();// removes the active process from memory, and takes one ready

// process and makes it active

}

the process scheduler component of a typical operating system contains many me-
thods, we restrict our discussion to a scheduler component with only four methods,
create(), ready(), swap() ,and finish() due to space constraints and to make the illus-
tration easy to understand. Tasks performed by various methods of the scheduler
component is described in the IDL specification itself with the help of embedded
comments. The state model of the scheduler component obtained by applying the
COSMOD algorithm has been shown in Figure 5.

The actual state model of this scheduler is not available to us. However, it is
likely to contain very large number of states depending up on maximum number of
processes allowed in the system at a time. Therefore, a complete state model of this
is difficult to generate practically. COSMOD generates an abstracted state model
on the basis of active methods. Due to unavailability of its actual state model for
comparison, many cells in Table 1 (on page 97) are blank in the row corresponding
to the scheduler component. Detailed explanation of applying the steps of all the
activities of COSMOD algorithms, all the potential states generated, computation
of SRMS, etc are available in [14].

State Model of a Power Window Controller (PWC) Component

The PWC component is based on the controller that is used in modern automobiles
to control the movement of the window glasses. A single PWC component consists
of three buttons goUp, goDown and neutral/stop to control the glass movements.
At any point of time, the PWC remains in either of the three states dd (going
down), uu (going up), or nn (neutral). When a button is pressed, the PWC may
transit to another state. It then calculates the amount of movement, which is 1, -1
or 0, and moves the glass accordingly. It does not move the glass when the glass
is touching the top (or bottom) position of the window and goUp (or goDown) or
neutral button is pressed. After moving the glass, it checks whether the glass has
touched the top or bottom of the window and remembers this position for computing
the next movement.

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 95

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

Apart from initialization method, the PWC component supports 13 other me-
thods which are (i) driveri(int buttonPressed)(ii) changeState0() (iii) changeState1()
(iv) changeState2() (v) up11() (vi) upT (vii) down11() (viii) downT() (ix) neut() (x)
update pos() (xi) top thres() (xii) bot thres() (xiii) no thres(). Of these methods, only
the method driveri(int buttonPressed) takes a parameter that indicates the direction
of the glass movement. All the methods are visible to an external entity as the PWC
acts like a middle-ware. We applied the COSMOD algorithm to this component.
The state model constructed by COSMOD for this component has been shown in
Figure 4. A discussion regarding performing activity (C) on the partial state model
of Figure 3 to obtain the state model of Figure 4 has already been presented in
Section 2 under the subsection “The process of activity (C)” on pages 90 and 91.
We observed that COSMOD could detect all the 24 states and 39 transitions of the
PWC component that were present in a state model constructed using the know-
ledge of the source code. IDL specifications of the PWC component and detailed
explanations of the steps in obtaining the state model of Figure 4 are available in
[14].

It can be observed in Figure 4 that from state S0, the component transits either to
state S1 or state S2 upon invocation of the same method driveri(int). This function
takes an integer value as input parameter. As per the IDL specifications of the
PWC, input can be 0, 1 or 2 which denotes the power window button pressed
(such as down, up, or stop) by the user which is detected by some sensor device.
Transitions to states S1 or S2 depend on the input parameter of the method driveri(int
buttonPressed). This input value is treated as the guard condition for transitions
from state S0 to states S1 and S2 as shown in Figure 4. The same guard condition is
applied for transitions from states S15, S16, S17, S18, and S23 upon invocations of the
function driveri(int buttonPressed). However, no guard condition could be detected
for transitions to two different states S11 and S12 from state S7 and to states S13

and S14 from state S9 upon invocations of the method update pos(). Transitions to
different states from these states depend on changes in value of some internal local
or global variables which are not visible to an external observer. However, changes
in the values of internal variables change the active methods. COSMOD detects
changes to the active methods by making repetitive calls to the same method in a
state.

Values of Repetition Factor r

In case of PWC component, we tried with different values of r starting with a value
2. Setting r up to value 9 generates only the partial model of Figure 3. Applying
the COSMOD algorithm to the PWC component with r = 10 generates the state
model of Figure 4. Higher values of r , such as 11, 12, 15, 20, etc does not add
any more state or transition to the FSM of Figure 4. In case of process scheduler
component, setting r to 1, 2, or any higher value generates the same state model
of Figure 5, that is, performing activity (C) does not generates any new state or
transition in this case. Column 6 of Table 1 (on page 97) lists the values of r used
in various case studies carried out by us.

96 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

3 CASE STUDIES

Other Results

A summary of the results of the case studies carried out by us has been shown in
Table 1 (on page 97). Columns 4 and 5 of this table list the number of states and
transitions respectively of the considered components as computed manually on the
basis of the design of the components. Column 6 lists the value of repetition factor gi-
ven as input while applying the COSMOD algorithm. Columns 7 and 8 list the num-
ber of states and transitions discovered by applying the COSMOD algorithm. Co-
lumns 9 and 10 express the data presented in columns 7 and 8 as percentage of actual
number of states and transitions (as listed in columns 4 and 5 respectively) success-
fully discovered. Columns 11 and 12 show the number of states and transitions dis-
covered erroneously. Values in these columns show that the COSMOD algorithm has
not detected any false states or transitions for any component. This substantiates
our assumption that different sets of active methods characterize different states.

Table 1: Performance of COSMOD algorithm

1 2 3 4 5 6 7 8 9 10 11 12
Computed by
Component

Designer

Giv-
en by
user

Computed using COSMOD Algorithm

CS# CN (AN) NM NS NT RF NSD NTD %CSD %CTD FS FT
1. PWC (AS) 13 26 43 10 26 43 100% 100% nil nil
2. scheduler (OS) 4 1 9 34 nil nil
3. thread (OS) 10 7 11 1 7 11 100% 100% nil nil
4. VM (CVM) 3 3 4 1 3 4 100% 100% nil nil
5. book (LIS) 8 8 26 1 8 26 100% 100% nil nil
6. libMember (LIS) 4 5 9 10 5 9 100% 100% nil nil
7. reservation (TBS) 10 8 35 10 8 26 100% 74.2% nil nil
8. order(THAS) 6 8 11 1 8 11 100% 100% nil nil
9. session (ATM) 13 14 25 3 14 25 100% 100% nil nil

10. elevator (ECS) 7 10 72 1 3 12 30% 16.7% nil nil
Abbreviations used in the Table :
CS = Case Study, CN = Component Names, AN = Application Names, NM = Number of Methods,
NS = Number of States, NT = Number of Transitions, RF = Repetition Factor used by COSMOD,
NSD = Number of States Discovered, NTD = Number of Transitions Discovered, CSD = Correct
States Discovered, CTD = Correct Transitions Discovered, FS = number of False States discovered,
FT = number of False Transitions discovered.

It can be observed
from columns 9 and
10 of Table 1 that
the COSMOD algo-
rithm successfully de-
tects all (100%) the
states and transitions
for most of the com-
ponents. In case
of case study 2, we
had a process sche-
duler component for
which actual state mo-
del was not available
and was difficult to
generate manually. Hence
many cells in Table 1
corresponding to this
case study are blank.
In case of study 7, train ticket reservation component denotes the berth reserva-
tion status of an individual passenger. On invocation of the active methods, its
state depends on the ticket booking data stored in a centralized database that is not
visible to COSMOD. However, the component accesses and possibly updates this
database during the execution of its active methods. It is very difficult to simulate
all possible states of this database by repeated executions of the cycle method se-
quences of the partial state model of this component. In such situations, it is not
always possible for COSMOD to detect all the states and transitions. Therefore, it
detected all the states, but could not detect many transitions of this component.
In case study 10, the elevator component had several symmetric states which were
different but could not be distinguished by COSMOD and merged. As a result, very

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 97

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

few number of its states and transitions could be detected by COSMOD.

The component libMember (case study 5) requires repeated call to its methods in
its various states. As discussed earlier (on page 92), it is very difficult to determine
the repetition factor r . However, while applying the COSMOD algorithm, we used
the knowledge about the application that might use this component. In this case,
COSMOD detected all its states and transitions by setting r = maximum number
of books a library member is permitted to borrow at a time.

Effectiveness of the COSMOD algorithm in detecting the states and transitions
in these cases depends on the following three factors (i) Effectiveness of the input
data (parameter values) generation algorithm (ii) The exact number of times the
cycleMethod Sequences are invoked (iii) The number of symmetric states that are not
distinguishable from the other symmetric states because their target states match
for each active method. Such states are considered as indistinguishable states by
COSMOD.

A Critical Analysis of the Results

There can be three types of methods of a component (i) methods requiring no input
parameter (ii) methods requiring input parameters whose values can be enumera-
ted, such as boolean types (only possible values are true and false), fixed (possibly
short) length strings and other enumerated types (iii) methods with input parame-
ters (such as integer, float, arrays, structures, etc) for which enumeration of values
is not possible or enumeration may result in too many values to be handled. COS-
MOD can effectively generate the state models for components containing methods
of types (i) and (ii) only. This is reflected by accurate state and transition extraction
by COSMOD in Table 1 (given on page 97). Thus, the COSMOD can satisfactorily
be used for generating the state models of these type of components. However, if
the state model of the component contains many symmetric states some of which
cannot be proved different (non-equivalent) by observing the target states on invo-
cations of their common active methods, then many different symmetric states may
be regarded as equivalent states by COSMOD and merged (or left out) together
resulting in an incomplete state model as happened in case of case study number 10
of Table 1.

For components containing methods of type (iii), some of the parameter value
combinations may not be generated during repeated invocations of such a method.
It may cause certain execution paths of the method code left uncovered even after
repeated executions of the method with different parameter values. As a result,
certain states of the component may not be reached and our COSMOD algorithm
may generate only a partial state model of the component. Therefore, effectiveness
of our approach for components containing methods of type (iii) is dependent on
the effectiveness of the algorithm used for generation of data for input parameters
of method executions.

98 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

4 COMPARISON WITH RELATED WORK

4 COMPARISON WITH RELATED WORK

Research work addressing state model extraction of components have scarcely been
reported in the literature. Due to unavailability of any directly comparable work,
we compare our work with the reported work on state model extraction using code
and other design artifacts.

Whaley et al [17] proposed multiple submodels of a component interface. Each
submodel was a sliced FSM that represented valid sequences of the methods which
access the same member field. A state in a submodel was a method that could
produce a side-effect (that is, modify some attribute values). The model also shows
which side-effect free methods were callable by which side-effect producing method.
An instance of the component was considered to be in a state represented by a
method that was called last at that point of time. They detected illegal method
call sequences by static analysis of the source code of the component and extracted
the submodels by executing the instrumented byte code. These submodels, however,
may not represent the behavior of the component in its different states where a state
has a more generic semantics rather than being represented by a method. Further,
as this approach is based on analysis of the source code, its usability is restricted to
the components whose source code is available.

In [15], Xie et al extracted sliced object state machines (OSMs) for components
by invocation of methods with generated parameter values. States of the ISM were
considered to be comprised of the values of the member fields of the component.
The huge number of states resulting due this were sliced (abstracted) by considering
only one member field at a time that produced a sliced ISM. Further, they proposed
two more ways of abstraction of object states in [16]. One was observer abstraction
approach that represented a state of an object by the return values of observer
(non void) methods. In another abstraction, they defined a state in terms of the
combinations of various branch coverages achieved by different methods calls. Each
of the three abstractions produces different slicing of ISM and represents the object
behavior from a specific perspective. In contrast to the sliced OSMs of Xie and
sliced FSMs of Whaley, our generated state model shows the aggregate behavior of
a component as is observable externally.

Lorenzoli et al [21] proposed a technique to generate behavioral models of soft-
ware systems in the form of extended FSMs (FSMs) by monitoring software execu-
tions. Their definition of EFSM is similar to the FSM used in COSMOD in which
transitions are annotated by method names, input parameters and a predicate (we
called it guard conditions) in terms of parameter values and program variables with
difference that COSMOD assumes that local and global variables of a software com-
ponent are not visible, and therefore, not the part of guard conditions of the FSM
generated by COSMOD.

Work reported in [1, 3, 5, 6, 7] propose techniques for automatic generation of
state models of object-oriented programs through static and/or dynamic analysis

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 99

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

of the source code. Yu et al [5] refactored the source code based on the program-
mer’s comments and constructed the state model based on a static analysis of the
refactored code. Systa et al [3] instrumented the source code of an object-oriented
program, executed the program and, based on the analysis of a log file, generated
typical use case scenario diagrams. They construct the state diagram using the
scenario diagrams in which the object participates. Kung et al [7] generated the
state diagram through symbolic executions[8] of the class methods and observing
the changes to the values of the member variables. The approaches of Gupta [6] and
Tonella et al [1] to generate statecharts of objects are similar to Kung’s approach.
Gupta [6] used class method contracts (CMCs) which are pre-conditions and post-
conditions of method invocations together with other constraints (called invariants)
that are to be satisfied at all times by all instances of the class. This method works
satisfactorily for object-oriented programs consisting of many different data types,
such as strings, object references, etc. However, availability of CMCs is a stringent
requirement, severely restricting the applicability of Gupta’s method. Tonella’s [1]
and Kung’s [7] symbolic execution approaches work well for simple programs.

Most of the above methods are based on analysis of source code. As a result,
those approaches cannot be used in an obvious way to extract the state model of
black-box components. The methods used in [15, 16] do not use source code. Ho-
wever, each of their sliced OSMs generated for a component present only a specific
aspect of the state behavior and differ from the generic behavioral view of com-
ponents. Our approach analyzes the behavior of a component as can be observed
externally, and synthesizes the state model without any reference to its source code.

5 CONCLUSION

The source code for off-the-shelf components are usually not available. Therefore,
most of the related work cannot directly be used for state model discovery of black-
box components. We perform repeated service invocations and analyze the com-
ponent behavior to synthesize the state model. Our experimentation shows that our
approach is able to generate only partial models for components having methods
taking parameter values from large domains. However, it is more effective in ge-
nerating the state models of components containing methods that either take no
parameter or their parameters assume a small set of discrete values.

Our generated model is essentially an FSM which may need to be converted
to a statechart representation if required. The identified states are, at present,
being manually assigned meaningful names. We are now investigating assignment
of meaningful names to states through intelligent inferencing based on the names of
the triggering methods.

100 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

5 CONCLUSION

References

[1] Tonella, P., and Potrich, A.: “Reverse Engineering of Object-Oriented Code”,
Springer-Verlag, Berlin, Germany, 2005.

[2] Binder, R.V.: “Testing Object-oriented Systems: Models,Patterns, and Tools”,
Addison-Wesley Longman Publishing Co, Inc, Boston, MA, 1999.

[3] Systa, T., and Koskimies, K.: “Extracting state diagrams from legacy sys-
tems”, In Proc. of Workshop on Object-Oriented Technology, Lecture Notes in
Computer Sc, Springer-Verlag, London, 1997, Vol. 1357, pp. 272-273.

[4] Harel, D.: “Statecharts: A visual formalism for complex systems”, Science of
Computer Programming, 1987, Vol. 8(3), pp. 231-274.

[5] Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., and Leite, J.
C. S. P.: “Reverse Engineering Goal Models from Legacy Code”, In Proc. of
the 13th IEEE International Conference on Requirements Engineering (RE’05),
IEEE Computer Society, 2005, pp. 363-372.

[6] Gupta, A.: “Unit Testing of Object Oriented Programs”, PhD. Thesis, CSE
Dept, IIT Kanpur, India, 2007, pp. 127-149.

[7] Kung, D., Suchak,N., Hsia, P., Toyoshima, Y., and Chen, C.: “On Object State
Testing”, In Proc. of IEEE COMPSAC’94, IEEE Computer Society Press, 1994,
pp. 222-227.

[8] Clarke, L.: “A system to generate test data and symbolically execute pro-
grams”, IEEE Transaction on Software Engineering, 1976, Vol. 2(3), pp. 215-
222.

[9] Wagner, F., Schmuki, R., Wagner, T., and Wolstenholme, P.: “Modeling Soft-
ware with Finite State Machines: A Practical Approach”, CRC Press, 2006.

[10] Holcombe, M., and Ipate, F.: “Correct Systems - Building Business Process
Solutions”, A volume in the Applied Computing Series, Springer-Verlag. 1998.

[11] Gao, J. Z., Tsao, H. S. J., and Wu, Y.: “Testing and Quality Assurance for
Component-based Software”, Artech House publication, Norwood, USA, 2003.

[12] Ramachandran, M.: “Testing software components using boundary value ana-
lysis”, In Proc. of the 29th Conference on EUROMICRO, 2003, pp. 94-98.

[13] Cai, K., Chen, T. Y., Li, Y., Ning W., and Yu, T. Y.: “Adaptive testing
of software components”, In Proc. of the 2005 ACM Symposium on Applied
Computing, Santa Fe, New Mexico, 2005, pp. 1463-1469.

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 101

EXTRACTING STATE MODELS FOR BLACK-BOX SOFTWARE COMPONENTS

[14] Suman, R. R.: “State Model Extraction of Software Components by Analy-
zing Their External Behavior”, Technical Report No 01/2009, CSE dept, IIT
Kharagpur, India.

[15] Xie, T., and Notkin, D.: “Automatic extraction of sliced object state ma-
chines for component interfaces”, In Proc. of the 3rd Workshop on Specification
and Verification of Component-Based Systems at ACM SIGSOFT 2004/FSE-12
(SAVCBS 2004, Oct. 2004), pp. 39-46.

[16] Xie, T., Martin, E., and Yuan, H.: “Automatic extraction of abstract-object-
state machines from unit-test executions”, In Proc. of the 28th International
Conference on Software Engineering, ICSE ’06, Shanghai, China, May 2006,
pp. 835 - 838.

[17] Whaley, J., Martin, M. C., and Lam, M. S.: “Automatic extraction of object-
oriented component interfaces”, In Proc. of the International Symposium on
Software Testing and Analysis, 2002, pp. 218-228.

[18] Johnson, D. B.: “Find all the elementary circuits of a directed graph”, SIAM
Journal on Computing, Vol. 4(1), 1975, pp. 77-84.

[19] Liu, H., and Wang, J.: “A new way to enumerate cycles in graph”, In Proc. of
the Advanced international conference on telecommunications and international
conference on Internet and web applications and services, 2006, pp. 57-59.

[20] Gallagher, L., Offutt, J., and Cincotta, A.: “Integration testing of object-
oriented components using finite state machines”, Software Testing, Verification
and Reliability, Vol. 16(4), Jan 2006, pp. 215 - 266.

[21] Lorenzoli, D., Mariani, L., and Pezze, M.: “Automatic Generation of Software
Behavioral Models”, ICSE ’08. ACM/IEEE 30th International Conference, May
2008, pp. 501-510.

[22] Suman, R. R. and Mall, R.: “State model extraction of a software component
by observing its behavior”, ACM SIGSOFT Software Engineering Notes Vol.
34(1), Jan. 2009, pp. 1-7.

ABOUT THE AUTHORS

Rajiv R. Suman is a PhD student in the Department of Computer Science and
Engineering at Indian Institute of Technology (IIT), Kharagpur. He can be reached
at rrsuman@cse.iitkgp.ernet.in and rrsuman2001@yahoo.com.

R. Mall is a Professor in the Department of Computer Science and Engineering,
Indian Institute of Technology (IIT), Kharagpur. He has published over 100 refereed

102 JOURNAL OF OBJECT TECHNOLOGY VOL 9, NO. 3

mailto:rrsuman@cse.iitkgp.ernet.in
mailto:rrsuman2001@yahoo.com

5 CONCLUSION

research papers and has authored two books. He is a member of the domain experts
board of the International Journal of Patterns (IJOP). He was the general chair
of IEEE Indicon 2004 and program chair for CIT 2005. He was also a program
committee member for a large number of international conferences. His current
research interests include analysis and testing of object-oriented pro- grams. He can
be reached at rajib@cse.iitkgp.ernet.in.

Srihari Sukumaran is a Senior Researcher at GM India Science Lab, Bangalore.
He can be reached at srihari.sukumaran@gm.com.

Manoranjan Satpathy is a Staff Researcher at GM India Science Lab, Bangalore.
He can be reached at manoranjan.satpathy@gm.com.

VOL 9, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 103

mailto:rajib@cse.iitkgp.ernet.in
mailto:srihari.sukumaran@gm.com
mailto:manoranjan.satpathy@gm.com

