JOURNAL OF OBJECT TECHNOLOGY

Published by ETH Zurich, Chair of Software Engineering, () JOT 2010
Online at http://www. jot.fm.

Using a Situational Method
Engineering Approach to Identify

Reusable Method Fragments from the
Secure TROPOS Methodology

Graham Low® Haralambos MouratidisP
Brian Henderson-Sellers®

a. University of New South Wales
b. University of East London
c. University of Technology, Sydney

Abstract Situational method engineering (SME) has as a focus a repos-
itory of method fragments, gleaned from extant methodologies and best
practice. Using one such example, the OPF (OPEN Process Framework)
repository, we identify deficiencies in the current SME support for security-
related issues in the context of agent-oriented software engineering. Specifi-
cally, theoretical proposals for the development of reusable security-related
method fragments from the agent-oriented methodology Secure Tropos are
discussed. Since the OPF repository has already been enhanced by frag-
ments from Tropos and other non-security-focussed agent-oriented software
development methodologies, the only method fragments from Secure Tro-
pos not already contained in this repository are those that are specifically
security-related. These are identified, clearly defined and recommended
for inclusion in the current OPF repository of method fragments.

Keywords Secure software engineering, Secure Tropos, Situational method
engineering, Method fragments.

1 Introduction: Acquisition of New Method Fragments

It is well recognized, within the Agent-Oriented Software Engineering (AOSE) commu-
nity, that appropriate methodologies are needed for the development of multi-agent
systems e.g. [13, 44, 53|. These need to have a quasi-formal underpinning in terms of,
say, a metamodel, ontologies and grammars, and be developed with agent-oriented
concepts such as goals, plans and capabilities in mind. Towards this direction, a large

Graham Low, Haralambos Mouratidis, Brian Henderson-Sellers. Using a Situational Method Engineering
Approach to Identify Reusable Method Fragments from the Secure TROPOS Methodology. In Journal
of Object Technology, vol. 9, no. 4, 2010, pages 91-125. Available at
http://www.jot.fm/contents/issue_2010_07/article5.html

http://www.jot.fm/copyright.html
http://www.jot.fm
http://www.jot.fm/contents/issue_2010_07/article5.html
http://www.jot.fm/contents/issue_2010_07/article5.html
http://www.jot.fm/contents/issue_2010_07/article5.html

94 . G. Low, H. Mouratidis, B. Henderson-Sellers

number of metamodels and ontological foundations have been developed to support
the description of AOSE methodologies (see for instance various collected chapters
in [25]). A software development methodology may be packaged as a single entity,
often “branded” (i.e. given a name) for commercial reasons. Alternatively, it could
be constructed from pieces: “method fragments” — as proposed in the approach
of situational method engineering (SME) — the subset of method engineering that
deals specifically with the merging of situational constraints and method construction
techniques [28].

Situational method engineering (SME) [9, 35, 47, 49, 51, 56] is a subdiscipline
of IT that focusses on the creation of software development methodologies from
method fragments — methodologies that are applicable to one highly specific situation
(Figure 1). This is in contrast to the more “traditional” (in the literature) approach of
attempting to create a one-size-fits all, hard-wired methodological package for industry
usage. SME focuses on how to identify and document fragments from existing sources,
including best practice in industry; how to store these method fragments and ensure
their quality; and how to construct a method(ology)! for a specific situation from these
pieces (method fragments). Since each situational method uses method fragments
from a single repository, a.k.a. methodbase [9], it follows that the method fragments
can then be used in more than one methodology construction effort [29] and thus fulfil
the criterion of methodological reuse [47].

Methodbase
ak.a.
repository

Selection and Assembly
of Method Fragments

Situationally- into Situational Method

specific
characteristics

Figure 1 — In SME, fragments are retrieved from the methodbase (or repository) and com-
bined with project characteristics in the creation of a situationally specific method.

A common means of obtaining method fragments is to decompose existing method-
ologies [22, 48]. The unit of decomposition is specified by a metamodel that defines,
for example, all the characteristics to formally describe a fragment, such as a task,
a technique, a role etc. That is, each fragment is conformant to an element in the
methodology metamodel. Consequently, new fragments are compatible, at least in
form, to pre-existing fragments in the method repository. Metamodels have strong
connections to ontologies e.g. [21] and provide the abstract syntax for a method
description language. Since each meta-element provides a clear definition for each
kind of method fragment, compatibility is further encouraged in terms of granularity
(of the generated method fragment), pre- and post-conditions for each fragment and
application guidelines, the last giving information regarding the methodological source
of the fragment and hence its underlying rationale or mindset. However, fragment

1We treat “method” and “methodology” as synonyms in this paper (see [34]).

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 95

contents can never be guaranteed as being compatible — indeed, such compatibility
is not necessarily desirable since a method repository contains method fragments
relevant to various paradigms and approaches e.g. agent-oriented, object-oriented,
ER-focussed. It is therefore at the construction phase (for a new method) that these
paradigmatic consistencies must be ensured — probably the most difficult challenge
within the SME approach at present. Combined, these attributes of a metamodel-
underpinned SME approach, together with practical experience e.g. [3, 30, 57], assist
the method engineer in creating a complete and consistent methodology (see also [10]).
However, despite its strong theoretical underpinning, SME has had little penetration
to date in industry. This is probably because its biggest drawback is perceived to
be the difficulty and expense of method construction — especially in comparison to
purchasing an off-the-shelf, shrink-wrapped methodology. What is typically forgotten
is the potentially large cost of customizing (usually by deletion) such a comprehensive
methodology to the more meagre requirements of a particular situational context.

To date, SME experiences have been largely in the object-oriented, business
information systems area (see, for example, [29]). We believe it is equally important
to apply the SME ideas to agent-oriented development and to identify and document
fragments from existing AOSE sources. Initial work in this area (see Chapter 13 in
[25]) considered the identification and documentation of fragments from a number
of AOSE methodologies. In that work, to guide the decomposition, an existing
metamodel-underpinned repository of method fragments (OPEN Process Framework
(OPF) [17]) was utilized. Nevertheless, this work did not consider an important aspect
of multi-agent systems, that of security. As argued in recent research [41] in the
agent-oriented software engineering community “security plays an important role in
the development of multi-agent systems and is considered as one of the main issues to
be dealt for agent technology to be widely used outside the research community”. It is
also recognized by recent research [16, 38] that security should be considered from the
early stages of the development process and security requirements should be defined
in parallel with the system’s requirements specification. Considering security and
functional requirements together throughout the development stages helps to limit the
impact of conflict between them by identifying it early in the development process.
Contrariwise, adding security concerns as an afterthought increases the chance of
conflict. A solution to this kind of problem requires an in-depth study of the system,
its organization and its properties. Thus, a considerable amount of money and valuable
time is needed. It is therefore important that a repository of method fragments to
support the development of multi-agent systems cannot be considered as complete
without the inclusion of security-related method fragments.

In this paper, we synergistically combine the SE sub-disciplines of agents, SME
and security and focus on the identification for inclusion in the OPF repository of
security-related method fragments from an existing AOSE source, that source being
the Secure Tropos agent-oriented methodology [37, 42]. An important feature of the
chosen Secure Tropos methodology is that security requirements of the system under
development can be traced back to early requirements. Therefore, the developers can
understand why specific security-related requirements need to be introduced to the
system as well as their impact on other functional requirements of the system. This
provides a well structured approach to developing secure multi-agent systems where
security is considered from the early stages of the development process.

In Section 2, we give a brief overview of both the OPF and Secure Tropos. In
Section 3, we identify method fragments from Secure Tropos that have no counterpart

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

06 . G. Low, H. Mouratidis, B. Henderson-Sellers

in the current contents of the OPF repository and are therefore proposed for addition
to this repository. Section 4 discusses related work and Section 5 concludes the paper.

2 Brief Overviews of OPF and Secure TROPQOS
2.1 OPF

We propose using an existing SME-based framework for both the metamodel and
storage capabilities. OPEN (Object-oriented Process, Environment and Notation)
[17] is just such an established approach for developing software within the method
engineering paradigm. Within the OPEN approach, the most relevant element is the
OPF (Figure 2), which comprises a metamodel, recently updated to be conformant
with ISO/IEC 24744 [32], that defines all the methodology elements at a high level of
abstraction plus a repository that contains instances of those metalevel concepts (i.e.
method fragments) supplemented by a set of construction guidelines.

OPEN
OPF Metamodel
Repository of
method fragments
Construction guidelines
OPF-compatible OPF-compatible
notations tools

(Optional) Metamodel

extensions

Figure 2 — OPEN consists not only of the OPEN Process Framework but also OPF-
compatibles notations and tools as well as potential extensions to the metamodel.

Each element in the OPF repository is a method fragment conformant to its
corresponding definitional element in the metamodel. The major elements in the OPF
metamodel are Work Units (with subtypes of Process, Task and Technique), Work
Product and Producer — see Figure 3. A Task is defined as being the smallest unit of
work that can be managed in a project (this definition additionally being in agreement
with the terminology of the Project Managers’ Body of Knowledge). Often it is useful
to group together several Tasks into a Process? (previously called an Activity in the
OPF), which provides a large scale definition of what must be done. Processes are not
used for project management or enactment because they are at too high an abstraction
level but are useful for giving a broad view of the overall methodology. A technique is
a procedure used to accomplish a specific task.

2Here using ISO/TEC 24744 terminology.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments . 97

Producer
performs produces
cr\elatsts

evaluates

] Work
WorkUnit iterates | Product
[F maintains
Process Task Technique

Figure 3 — The three major metatypes in the OPF metamodel together with the three
major subtypes of WorkUnit

As seen in Figure 3, these components interact; for example, producers perform
work units, work units maintain work products and producers produce work products.
Tasks and work products are linked via actions which have constraints associated with
them. The Constraint metaclass has subtypes of PreCondition and PostCondition
(Figure 4). These two constraint types are thus available for enforcing consistency and
completeness in the constructed methodology. (Other pairs of instances of element
types can be similarly linked providing integration to the otherwise independent
method fragments in the repository.)

Task Action WorkProduct
Constraint
\ I
PreCondition PostCondition

Figure 4 — Actions link Tasks and Work products. Actions have associated Constraints, of
two types.

Each of the elements in the metamodel has attributes that determine the fields
that need to be completed for each method fragment (see Figure 5 for one such
example). As noted earlier, the information in each fragment may be obtained from
decomposition of an existing methodology — it could also be created “bottom up” by
making a new fragment conformant to the metamodel element, as in Figure 5, but
where the information comes not from a single pre-existing methodology but from a

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

08 . G. Low, H. Mouratidis, B. Henderson-Sellers

composite of best practice ideas.
TECHNIQUEKIND NAME: Role rotation

Purpose: Encourage participation of team
members; Balance workload amongst team
members.

Description: The roles assigned to team members

Techni Kind can be rotated amongst these members during

echniquelin the course of a team’s shared task or during the

name lifetime of the team. For example, the role o

“Task Facilitator” may be assigned to different
purpose team members in different tasks of the team.
g Role rotation can form positive interdependence
descrlptlon between team members. It discourages
mincapabi]itylevel domination by one person — a problem common
in less-structured teamwork, and gives all
members an opportunity to experience and
learn from the different positions.

It may be useful to give the rationale for role
rotation practice to team members before they
join the team.

Minimum capability level: 1

Figure 5 — (a) metamodel for Task and (b) exemplar task fragment conforming to meta-
model.

Situational method engineering is then applied in the sense of identification of
appropriate method fragments from the repository, within a given situational context
(Figure 1), followed by their assembly into a full methodology. Using guidelines, such as
ensuring that all output work products (except the deliverable code) are used elsewhere
in the constructed method as inputs to some other task, and taking into account all
local variables such as skills level, organizational capability level and security levels,
a usable and quality methodology can be constructed for application on a specific
project or organization i.e. situational method engineering [11].

2.2 Tropos

In this section, we first describe the base methodology of Tropos e.g. [5] and then
discuss the extensions made in the published literature that have created Secure Tropos
[42]. The Tropos methodology |5, 6, 12, 20, 46] was designed to support agent-oriented
systems development, with a particular emphasis on the early requirements engineering
phase. Recently, it has been recast in the MDA context [45]. In particular, Tropos
aims to:

e raise the conceptual level of Requirements Engineering techniques, so that formal
and semiformal languages and representations can be used from the very early
stages of requirements elicitation and analysis.

e provide and support the system architecture and definition of the system function-
ality with a set of “social-oriented” notions —to be used alongside the traditional
system-oriented concepts— that allows for an easier mapping of the require-
ments provided in terms of social and organizational needs —as provided by
Requirements Engineering— into the characteristics (functional, architectural,
and design-oriented) of the system-to-be.

Tropos aims to fulfil these aims by adopting two specific strategies. First of all,
it pays attention to the activities that precede the specification of the prescriptive
requirements, such as understanding how and why the intended system can meet

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 99

the organizational goals (Late Requirements Analysis). Even before this phase, it
is important to understand and analyse the organizational goals themselves (Early
Requirements Analysis). In this, Tropos is largely inspired by the Eric Yu’s i* framework
for requirements engineering, which offers actors, goals and actor dependencies as
primitive concepts. The i* framework has been presented in detail by Yu [59] and
has been related to different application areas, including requirements engineering,
business process reengineering and software processes. Secondly, Tropos uses Al-
derived mentalistic notions such as actors (or agents), goals, soft-goals, plans, resources
and intentional dependencies in all the phases of software development, from the first
phases of early analysis down to the actual implementation. Tropos also includes
descriptions of Work Products and several Techniques such as Means-FEnd Analysis,
useful in requirements engineering [25].

One of the main advantages of the Tropos methodology is that it captures not
only the what and the how, but also why a piece of software is being developed.
This, in turn, allows for a more refined analysis of the system dependencies and, in
particular, for a much better and uniform treatment not only of the system functional
requirements, but also of its non-functional requirements.

The Tropos methodology is mainly based on four phases [5]:

Early Requirements Analysis aims at defining and understanding a problem by
studying its existing organizational setting.

Late Requirements Analysis describes the system-to be, in the context of its
operational environment.

Architectural Design deals with the definition of the system global architecture in
terms of subsystems.

Detailed Design specifies each architectural component in further detail, in terms
of inputs, outputs, control and other relevant information.

A crucial role is given to the early analysis of requirements that precedes prescriptive
requirements specifications. In particular, as noted above, aside from the understanding
of how the intended system will fit into the organizational setting, and what the system
requirements are, Tropos also addresses the analysis of why the system requirements are
as they are, by performing an in-depth justification with respect to the organizational
goals.

Thus, the stakeholder intentions are modelled as goals which, through a goal-
oriented analysis, eventually lead to the functional and non-functional requirements of
the system-to-be. In Tropos, early requirements are assumed to involve social actors
who depend on each other for goals to be achieved, tasks to be performed and resources
to be furnished. Tropos includes actor diagrams for describing the network of social
dependency relationships among actors, as well as goal diagrams for analysing goals
through a means-ends analysis in order to discover ways of fulfilling them. These
primitives have been formalized using intentional concepts from Al, such as goal, belief,
ability and commitment [50].

2.3 Secure Tropos: security-related concepts

The basic Tropos methodology was not conceived with security in mind and, as a
result, it therefore fails to adequately capture security requirements [40]. In particular,
the methodology demonstrates limitations with respect to security in its process as
well as in its concepts. For example, the process of integrating security and functional
requirements throughout the whole range of the development stages is quite ad hoc;
the concept of a soft goal used in Tropos to capture security requirements fails to

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

100 . G. Low, H. Mouratidis, B. Henderson-Sellers

adequately capture some of the associated security constraints [37, 42]; and the lack of
definition of the Tropos concepts with security in mind makes the distinction between
security and other requirements difficult. Therefore, the basic Tropos methodology
was enhanced to better model security during the development process of a multi-agent
system [41] — albeit the resultant Secure Tropos is a single methodological entity
not espousing SME concepts. The Secure Tropos extension introduces two types of
extensions to the Tropos methodology: extensions related to the concepts of the Tropos
methodology and extensions related to the development process of the methodology.
As part of the first type of extension, the concept of constraint was introduced and
extended with respect to security and the Tropos concepts of dependency, goal, task,
resource and capability were extended with security in mind. With respect to the
second type of extension, Secure Tropos introduces the notions of a security analysis
relevant, firstly, to the system environment and, secondly, to the system itself. The
impact of these security issues on design is also a process-focussed addition. At a
low level of process detail, Secure Tropos introduces into Tropos tasks relevant to
the detailed, security-focussed analysis of actors, dependencies and references, to
any necessary delegation and internal consistency checking as well as impacts on
architectural style and how to deal with potential attacks. However, implementation
of these Tasks by means of Techniques is not explicitly defined (see further discussion
in Section 3.4).

The next sub-sections aim to describe briefly these extensions, which are candidates
for new method fragments and/or enhancements to pre-existing method fragments.

2.3.1 Constraint and security constraint

Constraints can represent a set of restrictions that do not permit specific actions
to be taken or prevent certain objectives from being achieved and more often [55]
are integrated in the specification of existing textual descriptions. Because of its
importance in the system development, the concept of constraint has been introduced
to the Tropos methodology as a separate concept and the metamodel of the Tropos
modelling language has been extended by introducing the construct for modelling
constraints [37].

A security constraint is captured through a specialization of constraint, defined as a
restriction related to security issues, such as privacy, integrity and availability, that can
influence the analysis and design of a multiagent system under development by restrict-
ing some alternative design solutions, by conflicting with some of the requirements of
the system or by refining some of the system’s objectives. It is worth mentioning that
there are no specific techniques to identify when developers should stop searching for
security constraints; this depends on developer and stakeholder satisfaction that all the
appropriate security constraints are modelled in the developed models. Nevertheless,
the methodology provides information and a number of additional models, such as the
security reference diagram model (see later — Figure 17), to assist developers and
stakeholders in identifying the appropriate security constraints. Security constraints
do not represent specific security protocol restrictions, which should be not be specified
until the implementation of the system. However, they do contribute to a higher level
of abstraction that allows for a generalized design free of models biased to particular
implementation languages.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 101

2.3.2 Secure dependency

A secure dependency [37] introduces security constraint(s) that must be fulfilled for
the dependency to be satisfied. Graphically, security constraints are modelled, using
i* notation, as illustrated in Figure 6; as clouds within which the description of the
(security) constraint is shown. Both the depender and the dependee must agree for
the fulfilment of the security constraint in order for the secure dependency to be
valid. That means the depender expects that the dependee will satisfy the security
constraint(s) and also that the dependee will make an effort to deliver the dependum
by satisfying the same security constraint(s). Secure Tropos defines three different
types of secure dependency. In a depender secure dependency (see Figure 6-a), the
depender depends on the dependee and the depender introduces security constraint(s)
for the dependency. In a dependee secure dependency (see Figure 6-b), the depender
depends on the dependee and the dependee introduces security constraint(s) for the
dependency. In a double secure dependency, the depender depends on the dependee and
both the depender and the dependee introduce security constraints for the dependency.
Both must satisfy the security constraints introduced to achieve the secure dependency

(see Figure 6-c).

a) Depender Secure Dependency

Depender D) B—| I—{Dependse

b)Dependee Secure Dependency

c)Double Secure Dependency

Figure 6 — Secure dependencies.

s

= - P ™
. ", 0 .
Be | (noem] (stled
Bcure e
Resource \ v \Eapahmt!:'f

Legend. Note: This legend is also applicable to Figures 12, 13, 16

2.3.3 Secure entities

The term secure entity is used in Secure Tropos to represent a secure goal, a secure task
or a secure resource. A secure goal represents the strategic interests of an actor with
respect to security. Secure goals are mainly introduced in order to achieve possible
security constraints that are imposed on an actor or that otherwise exist in the system.
However, a secure goal does not specifically define how the security constraints can be
achieved, since alternatives can also be considered. The precise definition of how the

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

102 . G. Low, H. Mouratidis, B. Henderson-Sellers

secure goal can be achieved is given by a secure task. A secure task is defined as a
task that represents a particular way of satisfying a secure goal. A secure resource can
be defined as an informational entity that is related to the security of the multi-agent
system. A secure capability represents the ability of an actor/agent to achieve a
secure goal, carry out a secure task and/or deliver a secure resource. The graphical
representation of the Tropos entities has been extended to permit modelling of secure
entities.

2.3.4 Secure Tropos: security modelling processes (activities)

There are three main aims when considering security issues throughout the development
stages of a multiagent system: firstly to identify the security requirements of the
system; secondly to develop a design that meets the specified security requirements;
and thirdly to validate the developed system with respect to security. With the above
in mind, the security-oriented process in Secure Tropos is one of identifying the security
requirements of the multiagent system, transforming these requirements to a design
that satisfies them and validating the developed system with respect to security.

The first step (which takes place during the early and late requirements) in the
proposed security-oriented process aims to identify the security requirements of the
system. Security requirements are identified by employing modelling processes such as
security constraints, secure entities and secure capabilities modelling. In particular,
the security constraints imposed on the system and the stakeholders are identified and
secure entities, which guarantee the satisfaction of the identified security constraints,
are imposed on the actors of the system.

The second step in the process (during architectural and detailed design) consists
of identifying a design that satisfies the security requirements of the system, as well
as its functional requirements. To achieve this, agents are identified with the aid
of the Tropos modelling techniques and then secure capabilities that guarantee the
satisfaction of the security entities identified during the previous step are allocated to
the agents. It is worth mentioning that, in this stage, different architectural styles
might be used to satisfy the functional requirements of the system. However, there
should be an evaluation of how each of these architectural styles satisfies the security
requirements of the system. Although, in general, this is left to the developers, a
process that is based on the measure of satisfiability [19] can be employed to determine
whether, for example, a mobile agent or a client server architecture is more likely to
satisfy the security requirements of the system under development.

The third step of the process is the validation of the developed solution. The
Secure Tropos process allows for two types of validation: a model validation and design
validation. The model validation involves the validation of the developed models (for
example, the goal diagram or the actor diagram) with the aid of a set of validation
rules [37]. It is worth mentioning that the validation rules are divided into two
different categories: the inner-model rules and the outer-model rules. The first allows
the validation of each model individually, whereas the second allows the validation
of the consistency between the different developed models. The inner-model rules
allow developers to validate the relationships between the components of the different
security-related models, such as the relationship between the security features and
the threats in the security reference diagram; to validate the consistency between the
same components that appear in more than one model, such as a security constraint
that appears in the actors’ model as well as in the goal model; and to validate the
consistency when delegation of components between actors takes place.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 103

The design validation aims to check the developed solution against the security
policy of the system. A key feature of Secure Tropos that allows us to perform such a
validation is the fact that the same secure concepts are used throughout the various
development stages. Moreover, the definition of these concepts allows us to provide
a direct mapping between them, and therefore to be able to validate whether the
proposed security solution satisfies the security policy.

3 Method Fragments in Secure TROPOS

In this section, we analyse Secure Tropos by decomposing it (as an existing methodol-
ogy) into method fragments for process (cycles, phases), work units (processes a.k.a.
activities, tasks and techniques) and work products (models and diagrams)®. Each
of these is first identified from Secure Tropos. For each methodology fragment kind,
we analyse the pre-existing Secure Tropos textual descriptions in the context of the
fields supplied directly from the attributes of the relevant metamodel element (see
example in Figure 7); although there is some subjectivity in delineating fragments,
the metamodel attributes impose clear constraints on both content and format. We
then evaluate whether the pre-existing support in the OPF repository is adequate or
whether the identified method fragment needs to be added. It is highly unlikely that
these additional fragments will require any modification to the metamodel, since the
elements in that are at a high conceptual level [33].

Template
+name Task Kind
Name: Elicit requirements
Purpose: To develop and refine a formal
and stable requirements specification.

Description: Requirements are to be
WorkUnitK ind elicited from clients, domain experts,
marketing personnel and users. Usual

+purpose _ <
. . sub-tasks include defining the problem,

“+mincapabilitylevel evaluating existing systems, establishing

user requirements, establishing
distribution requirements and establishing

database requirements.
TaskKind Minimum capability level: 1
+description

Figure 7 — Metamodel fragment showing attributes (left hand side) which are then given
values in the fragment (right hand side) that has been generated from these metamodel
elements.

It should be noted that all Work Units (Processes, Tasks and Techniques) have a
field to express the minimum capability at which this work unit is appropriate. This is
in accordance not only with the metamodel but also the tenets of ISO15504. However,
at the time of writing, ISO 15504 does not support security issues so we have omitted
this field in the descriptions below. It is likely that the value, once determined, will
be at minimum capability level of at least two. We have agreed to contribute and

3In this section, for ease of reading we omit the “-kind” suffix on fragment names.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

104 . G. Low, H. Mouratidis, B. Henderson-Sellers

participate in a proposed revision to ISO 15504 in the near future in the determination
of appropriate minimum capability levels for such security-related fragments. In terms
of space limitations, we list primarily those new fragments and do not list or discuss
those already present in the OPF repository (with a few important exceptions).

3.1 Fragments for lifecycle elements

Secure Tropos adopts the Tropos methodology’s iterative and refinement lifecycle
where a model of the system is incrementally refined and extended from a conceptual
level to executable artefacts. This is already fully supported in the OPF repository
and, consequently, this research identifies no new fragments in this category.

3.2 Fragments for processes

The metamodel fragment for ProcessKind is shown in Figure 8. However, it should be
noted that, typically, the field of minimum capability level is omitted.

Template

+name

i

WorkUnitKind
+purpose
+mincapabilitylevel

ProcessKind

+description

Figure 8 — Metamodel fragment for ProcessKind.

Three additional process fragments are required to support Secure Tropos: security
analysis of system environment, security analysis of the system and secure system
design. During the first process, the impact with respect to security that the envi-
ronment has on the system-to-be is analysed. During the second process, the system
is analysed with respect to security issues and its security requirements are defined.
During the third process, an architecture of the system is defined that satisfies the
security requirements of the system. Moreover, the proposed design is tested against a
number of attack scenarios to identify whether the components of the system have
enough capabilities to withstand such attacks. The definitions of these three fragments
are as follows:

Name Security analysis of system environment

Purpose To analyse the impact, with respect to security, that the environment has
on the system under development.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 105

Description The environment in which the system under development will be
situated is analysed in terms of stakeholders, their intentions and any associated
security concerns.

Name Security analysis of the system

Purpose To analyse the system, with respect to security issues, and to define the
system’s security requirements

Description A thorough analysis of the system (and its internal and external com-
ponents) takes place and the system’s security requirements are identified. (Typically,
this process utilizes work products created during the security analysis of the system
environment.)

Name Secure system design

Purpose To define the architecture of the system according to its security require-
ments.

Description The architecture of the system is defined and tested against a number
of attack scenarios to identify whether the components of the system have enough
“capabilities” to withstand such attacks.

3.3 Fragments for tasks

Each task fragment gleaned from Secure Tropos is ensured to be conformant to the
OPF metamodel element called Task (strictly TaskKind: Figure 9), so that consistency
of form is achieved both between new fragments and with existing OPF method
fragments in the repository. Source information and any information to help the
method engineer in the method construction are stored in the method fragment by
virtue of the metaclasses of Source and Reference (Figure 10). As there is no current
support in the OPF repository for any of the twelve tasks gleaned from Secure Tropos,
we propose their addition to the repository. Their definitions are listed below:

Template

+name

i

WorkUnitK ind
+purpose
“+mincapabilitylevel

TaskKind

+description

Figure 9 — Metamodel fragment for TaskKind.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

106 . G. Low, H. Mouratidis, B. Henderson-Sellers

Methodology
Element

Source >l Reference

Figure 10 — For each element in the methodology, a reference can be associated, together
with details of the source

Name Analyse actor security

Purpose To consider the security of each actor in terms of security constraints and
secure entities.

Description This task enables developers to analyse in detail any abstract security
constraints documented in the security-enhanced goal diagram as shown in Figure 19.
This, in turn, allows an in-depth understanding of the implications of each security
constraint on the actor(s), usually resulting in the identification of new security
constraints and secure entities.

Name Analyse actor security balance

Purpose To analyse the actors in order to identify any potential bottlenecks with
respect to security. Description During this task, critical actors (with respect to
security) are identified and a thorough analysis takes place to identify whether actors
are overloaded and in danger of not satisfying the security constraints and goals that
are assigned to them. This is documented in the security-enhanced goal diagram as
shown in Figure 19.

Name Analyse system security

Purpose To analyse in depth the security of the system.

Description This task enables developers to analyse in detail abstract security
constraints that have been documented in the system security-enhanced goal diagram.
This, in turn, allows an in-depth understanding of the implications of each security
constraint on the system, which usually results in identifying new security constraints

and secure entities.

Name Analyse system security balance

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 107

Purpose To analyse the system in order to identify any potential bottlenecks with
respect to security.

Description During this task, the system is analysed (with respect to security) in
order to identify if the system is overloaded and if it is in danger of not satisfying the
security constraints and goals that are assigned to it.

Name Consider secure dependencies

Purpose To introduce all security constraints that must be fulfilled for the depen-
dency to be satisfied.

Description Both the depender and the dependee must agree for the fulfilment of
the security constraint in order for the secure dependency to be valid. That means that
the depender expects the dependee to satisfy the security constraint(s) and also that
the dependee will make an effort to deliver the dependum by satisfying the security
constraint(s). The secure dependencies are documented in the security-enhanced actor
diagram as shown in Figure 18.

Name Delegate security constraints

Purpose To delegate security constraints to the system, in order to allow the
definition of its security requirements.

Description During the early requirements analysis, a number of security constraints
are identified and imposed on the actors. The actors are then responsible for the
satisfaction of these security constraints. During the late requirements analysis, a
number of these security constraints are delegated, from the actors, to the system.
This is mainly the case when an actor cannot satisfy the security constraint (or the
corresponding secure dependency restricted by the security constraint) on their own
and they depend on the system to assist them in satisfying the security constraint.
Therefore, the system assumes responsibility for satisfying them.

Name Develop a secure system structure
Purpose To consider the security of the overall system structure.

Description During this task the developer reasons, with respect to security, about
the overall system structure. In particular, the system is decomposed and actors are
provided with secure capabilities to allow them to satisfy the secure goals of the system.
The main aim is to make sure that the system structure supports all the security
requirements. Typically, secure goals, tasks and resources are analysed with the aid of
three possible Techniques: means-end analysis, contribution analysis and AND/OR
decomposition. In particular, means-end analysis aims at identifying secure tasks and
resources that provide a means for achieving a secure goal. Contribution analysis
permits developers to identify secure goals that contribute positively or negatively to
the secure goal being analysed and AND/OR decomposition provides a division of a
secure goal and/or task into sub-goals and sub-tasks respectively.

Name Ensure consistency of security process

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

108 . G. Low, H. Mouratidis, B. Henderson-Sellers

Purpose To identify potential inconsistencies and to refine the system in such a
way that these inconsistencies are corrected.

Description It is important that the security process employed is in accord with
the consistency rules defined by the Secure Tropos methodology [37] and that any
inconsistencies are identified and rectified. The Secure Tropos set of consistency rules
helps developers to check: (i) the relationships between the components of the different
security-related models, such as the relationship between the security features and
the threats in the security reference diagram; (ii) the consistency between the same
components appearing in more than one model, such as a security constraint that
appears in the security-enhanced actors model as well as in the security-enhanced goal
model; and (iii) the consistency when delegation of components between actors takes
place.

Name Model security references

Purpose To identify the security needs of the system under development; any
problems related to the security of the system, such as threats and vulnerabilities; and
also possible solutions to the security problems.

Description Developers need to consider the security features of the system under
development; the protection objectives of the system; the security mechanisms and
also the threats to the system’s security features. Security features represent security-
related attributes that the system under development must demonstrate. Protection
objectives represent a set of principles or rules that contribute towards the achievement
of the security features. These principles identify possible solutions to the security
problems and usually they can be found in the form of the security policy of the
organization. Security mechanisms represent standard security methods towards
satisfying the protection objectives. Threats represent circumstances that have the
potential to cause loss; or problems that can put the security features of the system in
danger.

Name Realize the secure design

Purpose To develop a design that meets the security requirements of a multi-agent
system.

Description During this task, developers review the system structure and identify
whether extra security-related components are needed to realize the security-related
functionalities of the system. Secure Tropos defines a security patterns language (for
details of the language see [43]) for MAS that enables developers to select a number
of design components and structures that realize the security requirements identified
during the requirements stage of the Secure Tropos methodology. The process involves
developers identifying a security-related problem, searching the pattern language for a
pattern that provides a solution to that problem and applying the pattern to their
design. Patterns used can be specified with the aid of the Secure Tropos modelling
language and therefore developers are able to include them in their security-focussed
models without any modification.

Name Select a secure architectural style

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 109

Purpose To explore various architectural designs for the system and select one that
supports the required security level.

Description During this task, developers explore various architectural designs for
the system by evaluating them against its security requirements. The degree to which
different architectural styles contribute to the various system security requirements is
established and an evaluation takes place that aims to identify the architectural style
that satisfies most of the system’s security requirements. The resultant recommended
secure architectural style is documented using an architectural style selection diagram.
In detail, developers model the various non-functional requirements of the system,
its security requirements and a number of secure tasks that the system needs to
fulfil in order for the security requirements to be satisfied. Then, a number of
architectural styles are defined along with their characteristics and developers evaluate
the satisfiability degree (e.g. using the Satisfiability Analysis Technique) to which each
characteristic meets the system’s security tasks, and therefore its security requirements.
The architectural style that mostly satisfies the system’s security requirements is
selected.

Name Test against potential attacks
Purpose To test the system under development against potential security attacks.

Description During this task, the developed models of the system are evaluated
against potential security attacks. In doing so, Secure Tropos defines Security Attack
Scenarios. Potential Attackers are analysed and their goals and tasks are identified.
Potential attacks are then evaluated against the system’s resources (identified during the
previous stages of the development process) along with the system’s secure capabilities
that might provide countermeasure(s) for the identified attacks. Security Attack
Scenarios can be documented in Security Attack Scenarios Diagrams as shown in
Figure 16.

3.4 Fragments for techniques

The techniques required in Secure Tropos are not explicitly stated. Consequently,
again based on the metamodel element (TechniqueKind, Figure 11), we had to identify
appropriate technique fragments from the OPF repository that could be modified
to suit the security aspects of Secure Tropos or else identify areas where no such
fragments pre-exist and therefore had to be formulated from the textual description in
Secure Tropos and recast in the form dictated by the metamodel (see Figure 4). Our
analysis resulted in indentifying ten new techniques and two existing techniques that
required modification (for details see below).

Name Criticality analysis

Purpose To explore the impact that each actor has on the security of the system.
Description Different security constraints can have different impacts on the security
of the system. As a result, different actors of the system might impact the security of

the system differently according to what security constraints they have had imposed
upon them. The developer needs to explore the impact that each actor has on the

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

110 . G. Low, H. Mouratidis, B. Henderson-Sellers

Template

+name

WorkUnitKind

+purpose
+mincapabilitylevel

TechniqueKind

+description

Figure 11 — Metamodel fragment for TechniqueKind.

security of the system. To do so, a technique based on the measure of security criticality
is employed that allows developers to define how critical each security constraint is
for the overall security of the system. The details of such method can be found in [7]
but, in short, the calculation of the criticality of the system starts with consideration
of the secure dependencies identified in the security-enhanced actor diagram. A
value is then assigned for each security constraint (for example, see Figure 18 and
the criticality value “5” assigned to the “Obtain OP Personal Information” secure
dependency. Assigned criticality values are derived from a combination of a close
study of the system’s environment and discussion with the stakeholders. In the case of
an open secure dependency (a dependency that has no security constraints attached
to it), a value of zero is assigned. The range of values used in this assessment can be
defined by the evaluator e.g. values restricted to the range 1-5, where 1 = very low,
2 = low, 3 = medium, 4 = high, 5 = very high. In addition, a maximum value of
criticality should be defined for each actor to take into account the actor’s abilities,
their available time and their responsibilities within the organization [7].

Name Complexity analysis

Purpose To analyse how complex it is for each actor to achieve the security con-
straints he/she has been imposed.

Description Security complexity helps to design sub-systems to support actors
that might be in danger of not achieving some security constraints that have been
imposed on them; an undesirable situation that endangers the overall security of the
system. Complexity analysis is based on the measures of security complexity and
system complexity, where the former is the effort required by an actor to achieve a
particular security constraint and the latter is the effort required from the dependee
for achieving the dependum [18]. These two cases are differentiated since an actor’s
security complexity may be high, even if the system complexity is low. On the other
hand, there might be cases where an actor’s security complexity might be low but the
system complexity is high. In such a case, it may not be possible to achieve all the
security constraints imposed on the system. Thus, by taking into consideration both

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 111

system and security complexity, the developer can identify more precisely the degree
of achievement of the security complexity. Similar to criticality analysis, complexity
analysis assumes that complexity (system and security) can obtain integer values
within the range 1-5, where 1 = very low, 2= low, 3=medium, 4=high, 5=very high.
Also similarly to criticality, a maximum value of (overall) complexity is defined for each
actor [7]. Complexity analysis is documented in the security enhanced goal diagram
(see for example Figure 19).

Name Security Models Consistency

Purpose To check the security process and the produced security models for consis-
tency.

Description Consistency validation may be undertaken by manual cross-referencing,
i.e. developers manually evaluate the security aspects of the models and compare
them against a number of consistency rules that have been defined (e.g. [37]). The
rules are expressed in a natural language and they can be applied more than once
when checking the models and the process. Consistency rules can be divided into
inner-model rules, which help to check the consistency within a model, and outer model
rules, which help to check the consistency across the different models of a process.
In particular, developers use the identified set of consistency rules to: (i) check the
relationships between the components of the different security-related models, such as
the relationship between the security features and the threats in the security reference
diagram; (ii) check the consistency between the same components thar appear in more
than one model, such as a security constraints that appear in the actors’ models as
well as in goal models; (iii) and check the consistency when delegation of components,
between actors, takes place.

Name Satisfiability analysis

Purpose To select among alternative architectural styles using as criteria the non-
functional requirements of the system under development.

Description Satisfiability analysis is based on an independent probabilistic model
that uses the measure of satisfiability proposed in [19]. Satisfiability represents the
probability that a non-functional requirement will be satisfied. Therefore, the analysis
involves the identification of specific non-functional requirements and the evaluation
of different architectural styles against these requirements. The evaluation results in
contribution relationships from the different architectural styles to the probability of
satisfying the non-functional requirements of the system. To express the contribution
of each style to the satisfiability of each non-functional requirement of the system, a
weight is assigned. Weights take a value between 0 and 1.

Name Security Constraints modelling

Purpose To identify security constraints imposed on the actors and add to existing
actor diagrams.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

112 . G. Low, H. Mouratidis, B. Henderson-Sellers

Description Security constraints imposed on the actors are identified and docu-
mented using security-enhanced actor diagrams (see for instance Figure 18). Security
constraints can be categorized into actor-imposed and environment-imposed. The first
category includes security constraints imposed by one actor on another as part of a
secure dependency. Such constraints are typically identified by analysing the security-
related concerns that an actor might have as part of the dependency. For instance,
when actor A depends on actor B to obtain some information, if that information is
sensitive to actor B, then most likely actor B would introduce a security constraint to
ensure that the information is not abused. The second category involves security con-
straints imposed by the environment. Such security constraints are typically identified
by analysing security policies, laws, rules or regulations that are relevant to the system
and its stakeholders. The results of the security constraints identification analysis is
documented in a security-enhanced actor diagram (see Figure 18 for an example of
such diagram).

Name Secure goal introduction
Purpose To identify secure goals related to security constraints.

Description Developers examine the security constraints imposed on individual
actors and documented in the security-enhanced goal diagram, and identify any
related secure goals that assist in satisfying those security constraints. The process
of identifying secure goals is similar to the process used in goal-oriented approaches
and involves techniques such as means-end analysis [5]. However, such techniques
are combined with a number of security-related techniques such as attack trees [52]
and security reference diagrams [37]. The Secure Goal Introduction analysis enables
developers to refine the goals of an actor to allow the satisfaction of a security constraint.
In some cases it is necessary to decompose security constraints into more detailed
security constraints. In doing so, the AND decomposition technique is employed. The
decomposed constraint is called the “root” constraint, and its satisfaction is implied if
and only if all the security sub-constraints are satisfied. Identified secure goals are
documented in a security-enhanced goal diagram.

Name Identification of security attack scenarios

Purpose To identify the goals and intentions of possible attackers; to identify a set
of possible attack scenarios to the system; to determine whether the system copes
with such attacks.

Description Security attack scenarios aim to identify the goals and the intentions of
possible attackers. This information allows developers to identify a set of possible attack
scenarios to the system. These scenarios can then be subjected to simulated attacks
to determine how the system copes. By analysing the goals and the intentions of the
attackers, the developer obtains valuable information that helps in the understanding
not only how the attacker might attack the system but also why an attacker wants
to attack the system. This leads to a better understanding on how possible attacks
can be prevented. In addition, the application of a set of attacks to the system
contributes towards the identification of attacks that the system might not be able
to cope with, thus leading to the re-definition of the agents of the system and the
addition of new secure capabilities to the system to assist in the protection from these

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 113

attacks. Documentation is in the form of an attack testing diagram and/or enhanced
secure Tropos actor diagrams [39]. “In particular, an attacker is depicted as an actor
who aims to break the security of the system. The attacker intentions are modelled
as goals and tasks and their analysis follows the same reasoning techniques that the
Tropos methodology employs for goal and task analysis. For the purpose of a security
attack scenario, a differentiation takes place between internal and external actors of
the system. Internal actors represent the core actors of the system whereas external
actors represent actors that interact with the system. Such a differentiation is essential
since it allows developers to identify different attacks to resources of the system that
are exchanged between external and internal actors of the system.” (direct quotation
from [39]). An example of an attack testing diagram is shown in Figure 16.

Name Security constraint assignment
Purpose To identify the goals of an actor that are restricted by security constraints.

Description Using the information documented in the security-enhanced actor
diagram(s), developers further analyse each security constraint that has not been
delegated and assign these security constraints to goals of the actor that are restricted
by it (the security constraint). This is done in three steps. Firstly, developers need
to further analyse the goals of an actor using the Tropos/i* goal analysis techniques
[5]. Secondly, they identify the security constraints (from those that an actor has
been imposed) that restrict one or more goals of the actor. There is no specific way
recommended to assist developers to identify what goals each security constraint
restricts since this mainly depends on the developer. However, support is provided,
if required by the developers, in the form of the security reference diagram [37] and
security patterns [43] Thirdly, developers document that assignment with the aid of
restriction links (e.g. using the Secure Tropos modelling language). The resultant
from these three steps can be illustrated in a security constraint assignment diagram
as shown in Figure 12.

Pravide
General i
.racmmne 5 P B_._ —
A T -~

.
.

Provide
Fatient

Regstricts

Figure 12 — Security constraint assignment.

Name Security constraint delegation

Purpose To identify cases where constraint delegation takes place.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

114 . G. Low, H. Mouratidis, B. Henderson-Sellers

Description Security constraints are imposed on an actor either during the security-
enhanced actor analysis or during the security-enhanced goal analysis. When a
security constraint is imposed on an actor, that actor is responsible for the security
constraint satisfaction. However, it might be the case that an actor delegates a security
constraint that has been imposed on it to another actor. Therefore, during the security
constraint delegation technique, developers identify cases where constraint delegation
takes place. There are two possible cases where a security constraint delegation
is necessary: either because the actor that imposed the security constraint cannot
satisfy the security constraint on its own or because one of the goals of the actor
that a security constraint restricts is delegated to another actor and therefore the
corresponding security constraint also needs to be delegated. Hence, the developer
needs to consider both the security-enhanced actor diagram and the security-enhanced
goal diagrams for each actor and identify any of the above cases. An example of
the second case is shown in Figure 13 where a Patient actor depends on his/her
general practitioner to Receive Care. A security constraint is imposed on the General
Practitioner to Keep Patient’s Data anonymous as part of the secure dependency
“receive care”. However, the General Practitioner delegates responsibility for one of the
sub-goals corresponding to the “receive care” goal to the Nurse through the “Provide
Patient Care” dependency. As a result, the Keep patient’s data anonymous security
constraint is delegated to the Nurse.

. Provide
; General B_J
Patlent = R%Caerge Practitioner = Pé%?én

Figure 13 — Security constraint delegation.

Name Security reference diagram construction
Purpose To construct, manually or automatically, a security reference diagram.

Description A security diagram transformation system can assist developers to
construct effectively a security reference diagram. It is based on the graph transforma-
tion system introduced by [1] and the analysis proposed for Tropos’ actor and goal
diagrams by [4]. The graph transformation system supports the progressive derivation
of the security reference diagram through subsequent, increasingly precise versions
of it, according to the application of a set of rules to the diagram. To automate the
construction of the diagram, an algorithm has been defined that identifies the nodes
of the security reference diagram by applying the defined rules. In particular, the
algorithm initially identifies the nodes related to the security features of the diagram;
the threats related to the drawn security features; the protection objectives applicable
to the security features; the security mechanisms for the drawn protection objectives
and then any identified security sub-mechanisms [37].
For the two technique fragments that require modification, we propose:

Name Secure capability modelling

Purpose To identify secure capabilities of the system’s actors to guarantee the
satisfaction of the security constraints.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 115

Description Secure capabilities can be identified by considering dependencies that
involve secure entities in the extended, security-enhanced actor diagram. When
identified, the secure capabilities are further specified in terms of plans of particular
actors of the system. This is an extension to the pre-existing OPF Technique fragment
“Capabilities identification” [26].

Name Secure patterns employment
Purpose To employ a pattern language to develop a secure design.

Description To assist developers in developing a secure design, a pattern language
that contains a number of security patterns can be employed. The pattern language
consists of a roadmap that shows the dependencies between the patterns and points
from one pattern to other patterns that the developer might want to consult once
the first pattern has been applied. As patterns are applied, parts of the system are
defined and later refined with the application of consecutive patterns of the language.
This is an extension to the pre-existing OPF Technique: Pattern recognition [31].

3.5 Fragments for work products

All work products of Secure Tropos are represented either using i* or using UML
notation with minor extensions. Five work products are identified resulting in three new
work product fragments, detailed below and conformant to the metamodel fragment
of Figure 14, being added to the repository: security reference diagram, security-
enhanced actor diagram and architectural style selection diagram. Two existing work
products in the repository require extension: security-enhanced actor diagram and
security-enhanced goal diagram.

Template

+name

i

WorkProductKind

+description

Figure 14 — Metamodel fragment for WorkProductKind.

Name Architectural style selection diagram Description: This diagram (Figure 15)
uses Tropos-like notation and is used to model architectural styles, security properties
and security requirements of the system under development and the different contri-
butions that each architectural style has on the security properties and the security
requirements of the system [42]. In this diagram, a hexagon represents a security
solution, while an emboldened cloud represents a non-functional requirement of the
system. Links represent contributions and weights represent the degree of satisfiability
[37] of the architectural style (for example Client/Server — Mobile Agents) to the
various nodes.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

116 . G. Low, H. Mouratidis, B. Henderson-Sellers

e oy
Consent \
(8) Check (8) Check
\ 1
\

Wobile ~
- Agents,

Figure 15 — Example Architectural Style Selection Diagram (from [37]).

Name Attack testing diagram

Description This diagram models possible attackers, the resources that are attacked
and the agents/actors of the system related to the attack (Figure 16). In particular,
an attacker is modelled as an agent/actor and its intentions are modelled as goals and
tasks. Attacks are depicted as dash-lined links, called attack links, which contain the
“attacks” tag, starting from one of the attackers’ goals and ending on the attacked
resource. Moreover, the system’s agent/actor secure capabilities are modelled and
links are employed to indicate which of these capabilities help towards the prevention
of the attackers’ goals.

et
Is S
aSAP
P = ™, |: Guard ,)
uthenticatol ‘\r_,/
. Za
—
? System
ACCESS
System Request
(S) ACcess
uthentication Clearance
Details -
. S
RS e e '(Macker)_,
AN d 3 Y s ..
T k -7 e N
b1 N - ~
M atiyeks”
“attacks atacks A -
= ~ \\\ "’ \\
R N “I l\
(Social) R .
Worker R .]
T ; L :
- — Y K ~ :
- e ; ‘
SN b ‘ll
aftacks ! '
a ' ~._Hel s{_;”-"> :
A o i
A S, Lo --7 T ~. ‘
g Changs Z' | < .
rx‘:mgrapm \ ~. ‘
wAlgorthm/ [N Svcstgetm J
o ' Hel ' P Atcess n
S R]
4 5 EL-—-mwT=" ¢ k
for b | :
YConsent’ p . I
! . . ,

Figure 16 — Example Security Reference Diagram.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 117

Name Security reference diagram

Description The security reference diagram is a graph that consists of a set of
labelled nodes and a set of labelled directed edges, each of which connects a pair of
nodes (Figure 17). Formally, this is represented as a special case of a labelled directed
diagram. To control the non-deterministic derivation process during the construction
of the security reference diagram, priority rules have been defined [37] and should be
used by the developer.

Eavesdropping

Password

Sniffing

ACLESS
Contral

Cryptograph
(Privacy)

Infarmatian
o

ACCESS
Control List:

Biomentrics
Passwaords

Decryption
Digital
Signatures

Figure 17 — Example Attack Testing Diagram (from [37]).

Security Protection Sacuri
Feature (OHJECTWE) <Mechangm

Legend

Name Security-enhanced actor diagram

Description This is a Tropos style diagram. There is already a work product
fragment in the OPF Repository for the (Tropos) actor diagram [26]. This, however,
needs extension in order to support the additions suggested by Secure Tropos. In
particular, the security-enhanced actor diagram models any secure dependencies and
the appropriate security constraints imposed on the network of actors modelled in
the actor diagram. An example of a security-enhanced actor diagram is shown in
Figure 18.

Name Security-enhanced goal diagram

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

118 . G. Low, H. Mouratidis, B. Henderson-Sellers

Benefits
Agency

Bceive

Maintajn
Good
Health

Ohtain
OF

Receive
Financial
Support

Older
FPerson

FPersonal
nformatio

Obtain
Clinical

RE&D
Agency Infarmation

Figure 18 — Example of a security-enhanced actor diagram (after [7].)

Description This is a Tropos style diagram. It extends the Tropos goal diagram
(previously incorporated into the OPF repository: [26]) by modelling the analysis of
security constraints, the introduction of secure goals and secure tasks according to
the techniques described above. An example of a security-enhanced goal diagram is
shown in Figure 19.

4 Discussion

As we noted in Section 1, situational method engineering revolves around the duality
of a metamodel and instances generated from and/or conformant with one of the
elements in that metamodel. These instances are the method fragments that are
stored in a method repository. Since the underpinning metamodel is standardized
[33], it is unlikely that any changes will be necessary to the metamodel when we add
new technologies such service orientation or the like — so long as we keep within the
overall software development domain. (Clearly if we move to system development or
manufacturing processes, the methodology metamodel required will necessarily be
different.)

In contrast to the metamodel, the repository of fragments is highly likely to

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 119

Froyide ™

Medical
Information '
far

Figure 19 — Example of a security-enhanced goal diagram (after [7]).

need further additions when new methodologies are analysed from the viewpoint of
fragments and SME. However, as more and more methodologies are examined, the
incremental additions to the repository are anticipated to decrease — within a specific
paradigmatic view (e.g. object-oriented methodologies, agent-oriented methodologies).
This means that there is likely to be a reasonable chance of achieving a near closure
such that further analysis will not reveal any new method fragments [23]. With OPF,
this has already been done for several areas of computing including agent technology.
Analysis of non-security-related agent-oriented methodologies is nearly complete. This
paper is the first attempt to add security concerns to those agent-related fragments
already stored in the repository.

The concerns of this paper have been to analyse how the contents of the existing
OPF repository of software development fragments needs to be enhanced when new
ideas regarding security are introduced from the Secure Tropos methodology. This
analysis has led to our identification of three new processes, 12 new tasks, 10 new
techniques and three new work products, together with some recommended extensions
to existing method fragments in the OPF repository. When other security-related
methodologies (or part-methodologies) can be analysed (see below), we may anticipate
reaching some sort of completeness with regard to security-related fragments for
constructing agent-oriented methodologies. As demonstrated [22] for non-security
AOSE methodologies, this is reflected in the decreasing number of new fragments
identified in the analysis of subsequent AOSE methodologies i.e. when the repository
is complete, the analysis of any additional methodological approaches identifies zero
new candidates for addition to the methodbase.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

120 . G. Low, H. Mouratidis, B. Henderson-Sellers

It should be noted that, within the repository, method fragments are essentially
independently defined. Upon abstraction of these from the repository as part of the
construction of a new, situationally-specific methodology, they need to be connected
in a meaningful way. While the formal underpinning theories to do this are still
lacking in the SME literature (S. Brinkkemper, p.c., 2005), there is some assistance
by means of classes in the metamodel that provide such linkages. For example, the
OPF approach has a metaclass called Action to permit the linking of task fragments
with work product fragments, a metaclass called WorkPerformance to link work unit
fragments and producer fragments etc. A second gap in the literature is that of quality
assessment [24, 54] — both for the constructed methodology in terms of internal
consistency and appropriate fit to the contextual situation (the “S’ in SME) and also
in terms of how it works on real software development projects. In the latter case,
there is some minimal literature on industrial case studies e.g. [27].

As a further step towards a true “validation”, it becomes possible, with these
method fragments newly added to the OPF repository, not only to reconstruct Secure
Tropos but, much more importantly, to include some, or all, of the newly identified
security-related method fragments into other agent-oriented methodologies making
their identification more widely useful. This kind of enhancement has been done in the
non-secure agent environment by adding Tropos method fragments to the Prometheus
approach (see Chapter 13 in [25]). It also means that the newly added Secure Tropos
method fragments are available for users of other methodologies built from OPF
method fragments, thus permitting the addition of security concerns to any of the
other, already supported agent-oriented methodologies. Below, we discuss how two
well known and important agent-oriented software engineering methodologies, Gaia
and MaSE, could benefit from using the fragments identified in this paper.

During the analysis stage of the Gaia methodology [58, 60], the security reference
diagram could be constructed to assist in the identification of permissions and the
security requirements of the system could be identified taking into consideration the
identified roles and their permissions. In doing so, the “Security Reference Diagram
Construction” and the “Analyse Actor Security” task can be employed. Then during
the design stage, the “Realize the secure design” task can be used to help in the
aggregation of the roles to agents, and the architectural style of the system could be
identified using the proposed “Select an architectural style” task. Finally, security
attack scenarios could be developed using the agents, services and acquaintance models
of Gaia and with the aid of the “Test against potential attacks” task and “Identification
of security attack scenarios” technique.

The MaSE methodology [14, 15] starts its requirement analysis by capturing the
system’s goals. As such, a number of the identified fragments can be employed to
assist developers to develop a security requirements identification activity, which can
be integrated within the analysis stage of the MaSE methodology. For instance, the
“Secure goal introduction” technique could be employed together with the “Security
constraint assignment” technique. The fragments that support the “Security analysis
of the system” process could be employed during the assembling agent classes activity,
whereas the fragments that support the selection of the architectural style according to
the security requirements of the system could be integrated within the system design
activity.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 121

4.1 Related Work

Although security issues have been addressed in general (e.g. application to SOA in
[8]), to the best of our knowledge, this is the first effort to identify and document a set
of security-related fragments for multi-agent systems. Moreover, there is little reported
research?® into defining security-related agent-oriented methods and methodologies. As
stated earlier, Secure Tropos is the only agent-oriented methodology that enables devel-
opers to consider security throughout the full development lifecycle from requirements
to design and testing. However, the literature provides some agent-oriented methods
that only focus on specific development stages, and especially in requirements. We now
briefly review this related work with a view to identifying additional security-related
fragments. Liu et al. [36] have presented work to identify security requirements
during the development of multiagent systems. In this work, security requirements
are analysed as relationships amongst strategic actors, such as users, stakeholders and
potential attackers. These authors propose three different kinds of analysis techniques:
agent-oriented, goal-oriented and scenario-based analysis. Agent-oriented analysis is
used to model potential threats and security measures, whereas goal-oriented analysis
is employed for the development of a catalogue to help towards the identification of
the different security relationships on the system. Finally, scenario-based analysis is
considered to be an elaboration of the other two kinds of analysis. This work is based
on existing modelling techniques, and security issues are represented and reasoned
about without special notations and constructs. As such, we cannot identify security
specific fragments.

The ST* approach [61] has also been proposed as a security-related extension to
i*. That work uses the concepts of trust and delegation to analyse security issues.
Nevertheless, it is only applicable to the Requirements Engineering stage and therefore
it does not fully support the development of multi-agent systems. Indeed, very recent
work [38] has tried to integrate the SI* approach with the Secure Tropos methodology.
This integration is not yet finalized. However, once the integration is finalized, we plan
to investigate this work further and explore the possibility of identifying additional
security fragments, derived from non-agent contexts yet potentially useful to extend
the support for security issues in AO methodologies such as Secure Tropos. Huget
[32] has proposed a new agent-oriented methodology called Nemo, which is claimed
to support security. However, security is not considered as a specific model but it is
included within the other models of the methodology. From the current description of
this methodology in the literature, security seems to be considered quite superficially,
and no specific security-related processes, techniques and /or work products are defined.
Therefore, unless the methodology is further developed and more attention is paid to
its security dimension, no additional security-related fragments can be identified.

5 Conclusions and Future Work

In the work presented here, we have analysed the Secure Tropos methodology and we
have identified a number of method fragments to be added into the OPF repository
and a number of existing method fragments that need enhancement. Secure Tropos
provides a new domain beyond the agent-oriented methodologies already analysed and

4 Although a number of efforts have been reported in the literature that consider security as part
of the software engineering development process, these are not specialized for agent-oriented systems
and therefore we do not review them in this section. Interested readers can review [38].

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

122 . G. Low, H. Mouratidis, B. Henderson-Sellers

thus it is not surprising that such a significant number of new method fragments have
been found in this study.

Future work includes the ratification of a secure, agent-oriented methodology
constructed using these new security-related fragments (together with other pre-
existing ones, of course) on a real project. Such empirical work is challenging and
relies on a research methodology such as action research [2] and the slow build-up of a
number of such “case studies” — unfortunately, statistical approaches are completely
impossible and uptake by industry of secure agent-oriented systems is extremely rare.

Clearly there are other agent-related domains that are outside of standard AO
methodologies. As well as security, another obvious domain extension is in methodolo-
gies for the design of mobile agent systems. This will be a topic of future work, as
will assessing the likely closure in both this and the security domain analysed in this

paper.

Acknowledgments This is contribution number 09/06 of the Centre for Object
Technology Applications and Research.

References

[1] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske, D.
Plump, A. Schurr, G. Taentzer, Graph Transformation for Specification and
Programming, Science of Computer Programming 34 (1999) 1-54.

[2] D. E. Avison, F. Lau, M. Myers, P. A. Nielsen, Making academic research more
relevant, Communications of the ACM 42(1) (1999) 94-97.

[3] M. Bajec, D. Vavpoti?, M. Krisper, Practice-driven approach for creating
project-specific software development methods, Information and Software Tech-
nology 49(4) (2007) 345-365.

[4] P. Bresciani, P. Giorgini, The Tropos Analysis Process as Graph Transforma-
tion System, Workshop on Agent-oriented methodologies at OOPSLA 2002
(Seattle, WA, USA, 2002).

[5] P. Bresciani , P. Giorgini, F. Giunchiglia, J. Mylopoulos, A. Perini, TRO-
POS:An Agent Oriented Software Development Methodology, Journal of Au-
tonomous Agents and Multi-Agent Systems 8(3) (2004) 203-236.

[6] P. Bresciani, P. Giorgini, H. Mouratidis, On Security Requirements Analysis
for Multi-Agent Systems, 2nd International Workshop on Software Engineering
for Large-Scale Multi-Agent Systems SELMAS 2003 (Oregon, USA, 2003).

[7] P. Bresciani, P. Giorgini, H. Mouratidis, G. Manson Multi-Agent Systems and
Security Requirements Analysis. in: C Lucena, A Garcia, A Romanovsky, J
Castro, P Alencar (eds) Advances in Software Engineering for Multi-Agent
Systems, LNCS2940 (Springer-Verlag, Berlin,2004) 35-48.

[8] R. Breu, M. Hafner, F. Innerhofer-Oberperfler, F. Wozak Model-Driven Se-
curity Engineering of Service Oriented Systems. in: Information Systems and
e-Business Technologies, 5 (Springer Berlin Heidelberg,2008) 59-71.

[9] S. Brinkkemper, Method Engineering: Engineering of Information Systems

Development Methods and Tools, Information and Software Technology 38(4)
(1996) 275-280.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Reusable Method Fragments - 123

S. Brinkkemper, M. Saeki, F. Harmsen, Assembly techniques for method engi-
neering, Advanced Information Systems Engineering, Proceedings 10th Interna-
tional Conference, CAiSE’98 (Pisa, Italy, 1998) 381-400.

S. Brinkkemper, M. Saeki, F. Harmsen, Meta-Modelling Based Assembly Tech-
niques for Situational Method Engineering, Information Systems 24(3) (1999)
209-228.

J. Castro, M. Kolp, J. Mylopoulos, Towards Requirements-Driven Information
Systems Engineering: The Tropos Project, Information Systems 27 (2002) 365-
389.

M. Cossentino, S. Gaglio, A. Garro, V. Seidita, Method fragments for agent
design methodologies: from standardisation to research, Int. J. Agent-Oriented
Software Eng. 1(1) (2007) 91-121.

S. A. Deloach, Multi-agent Systems Engineering: A Methodology and Lan-
guage for Designing Agent Systems, Proceedings Agent-Oriented Information
Systems 99 (AOIS’99) (Seattle, WA, USA, 1999).

S. A. Deloach, M. Kumar Multi-agent Systems Engineering: An Overview
and Case Study. in: B Henderson-Sellers, P Giorgini (eds) Agent-Oriented
Methodologies, (IDEA Group Publishing,2005) 236-276.

P. Devanbu, S. Stubblebine, Software Engineering for Security: A roadmap,
Proceedings of the 22nd International Conference on Software Engineering.
Track on the Future of Software Engineering (Limerick -Ireland, 2000).

D. G. Firesmith, B. Henderson-Sellers, The OPEN Process Framework
(Addison-Wesley, London, 2002).

M. Garzetti, P. Giorgini, J. Mylopoulos, F. Sannicolo, Applying Tropos
Methodology to a real case study: Complexity and Criticality Analysis, Pro-
ceedings of the Second Italian workshop on “WOA 2002 dagli oggetti agli
agenti dall’informazione alla conoscenza” (Milano-Italy, 2002).

P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. Sebastiani, Reasoning with
Goal Models, Procs. 21st International Conference on Conceptual Modelling
(ER2002) (Tampere, Finland, 2002) 167-181.

P. Giorgini, A. Perini, J. Mylopoulos, F. Giunchiglia, B. P., Agent-Oriented
Software Development: A Case Study, Thirteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE01) (Buenos Aires,
Argentina, 2001).

C. Gonzalez-Perez, B. Henderson-Sellers An ontology for software development
methodologies and endeavours. in: C Calero, F Ruiz, M Piattini (eds) Ontolo-
gies in Software Engineering and Software Technology, (Springer-Verlag,2006)
123-152.

A. F. Harmsen, Situational Method Engineering. Moret Ernst & Young, Ams-
terdam, The Netherlands, 1997

B. Henderson-Sellers, Evaluating the feasibility of method engineering for the
creation of agent-oriented methodologies, Proceedings Multi-Agent Systems
and Applications IV. 4th International Central and Eastern European Con-
ference on Multi-Agent Systems, CEEMAS 2005 (Budapest, Hungary, 2005)
142-152.

Journal of Object Technology, vol. 9, no. 4, 2010

http://www.jot.fm/contents/issue_2010_07/article5.html

124 . G. Low, H. Mouratidis, B. Henderson-Sellers

[24] B. Henderson-Sellers, Some quality issues for conceptual models, Dagstuhl
seminar 08181, http://kathrin.dagstuhl.de/08181/Materials2/ (2008).

[25] B. Henderson-Sellers, P. Giorgini (eds) Agent-Oriented Methodologies. (Idea
Group, Hershey, USA, 2005).

[26] B. Henderson-Sellers, P. Giorgini, P. Bresciani Enhancing Agent OPEN with
concepts used in the Tropos methodology. in: A Omicini, P Pettra, J Pitt (eds)
Engineering Societies in the Agents World IV. 4th International Workshop,
ESAW 2003, LNAI 3071 (Springer-Verlag, Berlin,2004) 328-345.

[27] B. Henderson-Sellers, A. Qumer, Using method engineering to make a tradi-
tional environment agile, Cutter IT Journal 20(5) (2007) 61-74.

[28] B. Henderson-Sellers and J. Ralyté, Situational Method Engineering: State-
of-the-Art Review, Journal of Universal Computer Science, 16(3), 424-478,
http://www. jucs.org/jucs_16_3/situational_method_engineering_state,

(2010).

[29] B. Henderson-Sellers, M. Serour, T. Mcbride, C. Gonzalez-Perez, L. Dagher,
Process construction and customization, J. Universal Computer Science 10(4)
(2004) 326-358.

[30] B. Henderson-Sellers, M. K. Serour, Creating a dual agility method - the value
of method engineering, J. Database Management 16(4) (2005) 1-24.

[31] B. Henderson-Sellers, A. Simons, H. Younessi, The OPEN Toolbox of Tech-
niques (Addison-Wesley Longman, Harlow (Essex), UK, 1998).

[32] M.-P. Huget, Nemo: An Agent-Oriented Software Engineering Methodology,
OOPSLA Workshop on Agent-Oriented Methodologies (Seattle, USA, 2002).

[33] ISO/IEC 24744. Software Engineering — Metamodel for Software Development
Methodologies, ISO, Geneva, 2007.

[34] N. Jayaratna, Understanding and Evaluating Methodologies: NIMSAD, a Sys-
tematic Framework (McGraw-Hill, New York, 1994).

[35] K. Kumar, R. J. Welke Methodology Engineering: a Proposal for Situation-
Specific Methodology Construction. in: Ww Cotterman, Ja Senn (eds) Chal-
lenges and Strategies for Research in Systems Development, (John Wiley &
Sons, Chichester, UK,1992) 257-269.

[36] L. Liu, E. Yu, J. Mylopoulos., Analyzing Security Requirements as Relation-
ships Among Strategic Actors, 2nd Symposium on Requirements Engineering
for Information Security (SREIS’02) (Raleigh, North Carolina, 2002).

[37] H. Mouratidis, A Security Oriented Approach in the Development of Multia-
gent Systems: Applied to the Management of Health and Social Care Needs of
Older People in England, Thesis, Department of Computer Science, University
of Sheffield, 2004.

[38] H. Mouratidis, P. Giorgini, Integrating Security and Software Engineering:
Advances and Future Vision (IDEA Group Publishing, 2006).

[39] H. Mouratidis, P. Giorgini, Security Attack Testing (SAT)—testing the security
of information systems at design time, Information Systems 32(8) (2007) 1166-
1183.

Journal of Object Technology, vol. 9, no. 4, 2010

http://kathrin.dagstuhl.de/08181/Materials2/
http://www.jucs.org/jucs_16_3/situational_method_engineering_state
http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 125

[40] H. Mouratidis, P. Giorgini, G. Manson, Integrating Security and Systems Engi-
neering: Towards the Modelling of Secure Information Systems, 15th Interna-
tional Conference on Advance Information Systems (CAiSE) (Velden - Austria,
2003) 63-78.

[41] H. Mouratidis, P. Giorgini, G. Manson, Modelling Secure Multiagent Systems,
AAMAS’03 (Melbourne, Australia, 2003) 859-866.

[42] H. Mouratidis, P. Giorgini, G. Manson, When security meets software engineer-
ing: A case of modelling secure information systems, Information Systems 30(8)
(2005) 609-629.

[43] H. Mouratidis, G. Weiss, P. Giorgini, Modelling Secure Systems Using An
Agent Oriented Approach and Security Patterns, International Journal of Soft-
ware Engineering and Knowledge Engineering (IJSEKE) 16(3) (2006) 471-498.

[44] J. Pavon, J. Gomez-Sanz, R. Fuentest The INGENIAS Methodology and
Tools. in: B Henderson-Sellers, P Giorgini (eds) Agent-Oriented Methodolo-
gies, (IDEA Group Publishing, 2005) 236-276.

[45] L. Penserini, A. Perini, A. Susi, J. Mylopoulos, High variability design for soft-
ware agents: Extending Tropos, ACM Transactions on Autonomous and Adap-
tative Systems 2(4) (2007) 16-27.

[46] A. Perini, P. Bresciani, P. Giorgini, G. Giunchiglia, J. Mylopoulos, A Knowl-
edge Level Software Engineering Methodology for Agent Oriented Program-
ming, Proceedings of the Fifth International Conference on Autonomous
Agents (Montreal, Canada, 2001).

[47] J. Ralyte, Towards situational methods for information systems development:
engineering reusable method chunks, Procs. 13th Int. Conf. on Information
Systems Development. Advances in Theory, Practice and Education (Vilnius,
Lithuania, 2004) 271-282.

[48] J. Ralyté, C. Rolland, An Approach for Method Reengineering, Proceedings
of the 20th International Conference on Conceptual Modelling, ER2001 (Yoko-
hama, Japan, 2001) 471-484.

[49] J. Ralyté, C. Rolland An assembly process model for method engineering. in:
Kr Dittrich, A Geppert, Mc Norrie (eds) Advanced Information Systems Engi-
neering, LNCS2068, (Springer-Verlag, Berlin,2001) 267-283.

[50] A. S. Rao, M. P. Georgeff, BDI agents: from theory to practice, First Inter-
national Conference on Multi Agent Systems (San Francisco, CA, USA, 1995)
312-319.

[61] C. Rolland, N. Prakash, A. Benjamen, A Multi-Model View of Process Mod-
elling, Requirements Engineering Journal 4(4) (1999) 169-187.

[52] B. Schneier, Secrets and Lies: Digital Security in a Networked World (John
Wiley & Sons, New York, NY, 2000).

[63] V. Seidita, M. Cossentino, S. Gaglio, Using and Extending the SPEM Spec-
ifications to Represent Agent Oriented Methodologies, AOSE2008 (Estoril,
Portugal, 2008).

[54] V. Shekhovtsov, On conceptualization of quality, Dagstuhl seminar 08181,
http://kathrin.dagstuhl.de/08181/Materials2/ (2008).

Journal of Object Technology, vol. 9, no. 4, 2010

http://kathrin.dagstuhl.de/08181/Materials2/
http://www.jot.fm/contents/issue_2010_07/article5.html

126

[55]

[56]

[57]

[58]

[59]

[60]

[61]

G. Low, H. Mouratidis, B. Henderson-Sellers

E. Steegmans, J. Lewi, M. D’haese, J. Dockx, D. Jehoul, B. Swennen, S. Van
Baelen, P. Van Hirtum EROOS Reference Manual Version 1.0. in:(Department
of Computer Science, K.U.Leuven. 1995) 176.

K. Van Slooten, B. Hodes, Characterizing IS development projects, IFIP TCS8
Working Conference on Method Engineering: Principles of method construc-
tion and tool support (London, 1996).

V. Waller, R. B. Johnston, S. K. Milton Development of a situation informa-
tion systems analysis and design methodology: a health care setting. in: Z
Irani, Od Sarikas, J Llopis, R Gonzalez, J Gasco (eds) European and Mediter-
ranean Conference on Information Systems 2006 (EMCIS2006). Brunel Univer-
sity, West London. 2006) 8pp.

M. Wooldridge, N. R. Jennings, D. Kinny, The Gaia Methodology for Agent-
Oriented Analysis and Design, Autonomous Agents and Multi-Agent Systems
(The Netherlands, 2000) pp 285-312.

E. Yu, Modelling Strategic Relationships for Process Reengineering, PhD The-
sis, Department of Computer Science, University of Toronto, 1995.

F. Zambonelli, N. Jennings, M. Wooldridge, Developing Multiagent Systems:
the Gaia Methodology, ACM Transactions on Software Engineering and
Methodology 12(3) (2003) 417-470.

N. Zannone, A Requirements Engineering Methodology for Trust, Security,
and Privacy, PhD Thesis, Department of Information and Communication
Technology, University of Trento, 2007.

About the authors

Graham Low is Professor of Information Systems at The Univer-
sity of New South Wales. Graham’s research focuses on the imple-
mentation and adoption of new technologies by the IS/IT industry
such as methodological approaches to agent oriented information
systems design; and management of the information systems design
and implementation process. E-Mail: g.low@unsw.edu.au

Haralambos Mouratidis is Principal Lecturer in Secure Sys-
tems and Software Development at the School of Computing, I'T
and Engineering ad the University of East London. His research
interests focus on secure information systems development and
agent oriented software engineering. He is Editor in Chief of the
International Journal of Computer Science and Secure Systems and
he has published more than 80 papers. Email: haris@uel.ac.uk

Journal of Object Technology, vol. 9, no. 4, 2010

mailto:g.low@unsw.edu.au
mailto:haris@uel.ac.uk
http://www.jot.fm/contents/issue_2010_07/article5.html

Reusable Method Fragments - 127

Brian Henderson-Sellers is Director of the Centre for Object
Technology Applications and Research and Professor of Information
Systems at University of Technology, Sydney (UTS). He is author
of ten books on object technology and is well known for his work
in OO methodologies (MOSES, COMMA and OPEN) and in OO
metrics. He was recently awarded a DSc degree by the University
of London for his work in object-oriented methodology. E-Mail:
brian@it.uts.edu.au

Journal of Object Technology, vol. 9, no. 4, 2010

mailto:brian@it.uts.edu.au
http://www.jot.fm/contents/issue_2010_07/article5.html

	Introduction: Acquisition of New Method Fragments
	Brief Overviews of OPF and Secure TROPOS
	OPF
	Tropos
	Secure Tropos: security-related concepts
	Constraint and security constraint
	Secure dependency
	Secure entities
	Secure Tropos: security modelling processes (activities)

	Method Fragments in Secure TROPOS
	Fragments for lifecycle elements
	Fragments for processes
	Fragments for tasks
	Fragments for techniques
	Fragments for work products

	Discussion
	Related Work

	Conclusions and Future Work
	About the authors

