
Journal of Object Technology
Published by ETH Zurich, Chair of Software Engineering, © JOT 2010

Online at http://www.jot.fm.

Inferring design patterns using the ReP
graph

Tushar Sharmaa Dharanipragada Janakirama

a. Distributed and Object Systems Lab, Computer Science & Engineer-
ing department, Indian Institute of Technology-Madras, Chennai-36,
India.
http://dos.iitm.ac.in/index.shtml

Abstract Periodic refactoring of a large source code often becomes a ne-
cessity especially for long-lived projects. In order to increase maintainabil-
ity and extensibility of such projects, design pattern based refactoring can
be seen as an emerging alternative. Manual inspection of source code to
find candidate spots where patterns can be introduced is time consuming.
Therefore automated tools can help in identifying candidate spots where
patterns can be introduced. The level of source code abstraction plays
an important role for building such tools. We propose a new abstrac-
tion for object oriented source code that is named as “Refactoring Pattern
(ReP) Graph” to realize an effective design pattern based refactoring tool.
The ReP graph abstracts the source code information thereby making the
process of design pattern inference easier. The proposed tool identifies
candidate spots in a given source code to introduce design patterns.

Keywords design pattern, design pattern inference

1 Introduction

Maintenance becomes the longest phase in the software development life cycle, es-
pecially for large and long-life projects. A software system becomes a candidate for
refactoring when extensibility and maintainability issues are experienced during fea-
ture addition or bug fixing sessions. In such cases, the pattern based refactoring helps
the developer to extend the software system with ease.

The process of finding candidate spots in a given source code where specific design
patterns can be introduced to make the overall design better is known as design
pattern inference. A related but different term is design pattern detection. In case of
detection, the patterns are detected when they already exist in the underlying code.
On the other hand, inference looks for the available intent-aspect to restructure the
code into pattern based code. Software quality attributes such as maintainability,
extensibility and understandability might be improved by introducing the inferred
patterns into the code.

Tushar Sharma, Dharanipragada Janakiram. Inferring design patterns using the ReP graph. In
Journal of Object Technology, vol. 9, no. 5, 2010, pages 95–110. Available at
http://www.jot.fm/contents/issue_2010_09/article5.html

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dos.iitm.ac.in/index.shtml
http://www.jot.fm/contents/issue_2010_09/article5.html
http://www.jot.fm/contents/issue_2010_09/article5.html


96 · Tushar Sharma et al.

The abstraction level of the source code plays an important role in the process of
inferring design patterns from a given source code. Class diagrams provide design level
abstracted view, however they may lack the useful information required to identify
refactoring opportunities. At the same time, full source code might be voluminous
and may have information overload. Therefore, a proper abstraction can lead to an
effective design pattern inferring technique.

There are attempts to achieve pattern based refactoring such as “Refactoring to
Patterns” [K.05] which provide handful of tips on how to refactor code to design
patterns based code. Nevertheless analyzing huge software systems manually is a
tedious and time consuming job. An automated tool can analyze the code and point
out the refactoring opportunities.

In essence, a technique for inferring patterns to refactor a given source code is
required to improve the quality of a software system. Given a source code as input,
the technique must be able to identify candidate spots where specific patterns can be
introduced. The candidate spot should point out the class(es)/method(s) where the
pattern can be applied. Additionally, the technique itself must be extensible in terms
of pattern rule base, so that inclusion of addional rules for pattern identification is
feasible at a later stage.

The rest of the paper is organized as follows. Section 2 introduces the pattern
graph, ReP graph and respective notations. Section 3 describes the inferring process
using the ReP graph. Section 4 presents summary of an analysis done on various open
source projects. Section 5 discusses related work, section 6 summarizes contribution
of this paper and finally we conclude in section 7.

2 ReP Graph

The work presented in this paper is based on the concepts of design structures and
pattern graph proposed by Janakiram et.al. [JAG+00]. The design structure concept
is explained in brief here to make the rest of the paper understandable.

2.1 Design structures and pattern graph

Design patterns are community accepted solutions to recurring design problems [GHJV95].
Furthermore, a finer level fundamental abstraction is defined which is used to describe
design patterns. These abstractions are known as design structures. Every design
pattern is a composition of one or more design structures [MS05].

The new abstraction can be used to view the entire design of a software system. A
design diagram built from the design structures is defined as a pattern graph. Pattern
graph [JAG+00] is derived from UML class diagram and interaction diagram. The
pattern graph uses the following notation to represent the source code information.
Classes are represented by rounded rectangles and these rectangles have 3 partitions.
These partitions describe number of template methods (T), hook methods (H) and
rigid methods (R) in the class(es). A hook method is declared in a class and defined in
its subclass. A method which calls at least one hook method is known as a template
method, while a rigid method is declared and defined in a same class. These methods
are chosen to define the design structures and pattern graph because these methods
form a minimal set by which structure, behavior, and rationale of design patterns can
be captured and described.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


Inferring design patterns using the ReP graph · 97

A set of classes, which differs only in definition of hook methods is treated as a
single node and is represented only once in a pattern graph. A client class is a class,
which makes use of a pattern for getting its services. A rounded rectangle without
partitions is used to represent a client node. One-to-one and one-to-many associations
are depicted by a dashed line arrow and a solid line arrow respectively. A gate node
is used to capture inheritance and polymorphism. Every gate node is associated with
a set of classes called a receive-set (from objects it receives messages) and a set of
classes called a send-set (to objects it sends messages).

An illustrative example is presented here to understand notations of the pattern
graph. Figure 1 shows a class diagram and a corresponding pattern graph for the
composite pattern [GHJV95]. The Leaf class with its base class Component is repre-
sented by a pattern graph node (T1, H1, R1). Similarly, the Composite class with its
base class is represented by another pattern graph node. The Client class is calling
either a Composite or a Leaf object based on an instantiated object. This polymor-
phic behavior is captured by a gate node. The Composite class has a one-to-many
aggregation relationship with its base class which is shown by a solid line from the
second pattern graph node to the gate node.

Figure 1 – Class diagram and pattern graph for the composite pattern

In essence, design structures and pattern graph can be defined as follows:
Design Structures: A set of T, H and R methods with their interactions are

defined as design structures.
Pattern Graph: A design diagram in which design entities are represented by

design structures is known as a pattern graph.

2.2 The ReP graph

The inferring process requires source code level information, which is not present in
a pattern graph. Hence, the pattern graph by itself is not useful in the refactoring
context. The proposed solution, Refactoring-Pattern (ReP) graph is an extension of
the pattern graph (described in section 2.1). The ReP graph abstracts the source code
information and exposes them in terms of fundamental constructs. These fundamental
constructs are defined from program entities such that they capture intent-aspect
of one or more design patterns. These constructs are used to form design pattern
inference-rules. The information contained within these constructs can be accessed
by a set of APIs provided with the ReP graph.

In essence, a ReP graph consists of:

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


98 · Tushar Sharma et al.

ReP Graph Constructs Description

THR (T, H and R methods) Template, hook and rigid
method information

Containment, association List of various relationships
and create lists among classes
Condition, A condition, a condition within
condition-within-condition, a condition, a condition within
condition-within-function a function
Create-within-condition, A create list within
create-within-function a condition/function
Condition-alt-path-list A list of alternate paths

for a condition
Updated-var-list-by-condition, Updated variable lists
updated-var-list-by-function by condition/function
Function-called, Called function list
passed-params and passed parameters

Table 1 – A brief list of ReP graph fundamental constructs

1. ReP nodes: Each ReP node represents a set of classes of an inheritance tree.
A new level of abstraction is achieved using these nodes. A super class and
its sub classes are represented by one ReP node; provided hook method(s) are
defined on these classes and there is no association relation among these classes.
A gate node is used to manage inheritance and polymorphism where association
relations exist among a super class and its sub-classes.

(a) Fundamental constructs: Fundamental constructs are basic building
blocks, which can be combined together to form a meaningful inference-
rule. Each ReP node consists of a few fundamental constructs. These
constructs capture source code information such as inheritance, aggrega-
tion, association, T/H/R method calls, conditions, and create instruc-
tions. Moreover, composite information such as create-within-condition
and condition-within-condition is also supported by the provided constructs.
The inference-rules are written using these constructs determine a candi-
date spot for a design pattern. A brief list of the ReP constructs is given
in Table 1.

(b) Accessor APIs: Inference-rules use information contained within ReP
graph constructs. The ReP graph provides a set of APIs to access the ReP
graph constructs.

2. ReP edges: ReP nodes are connected to each other either by solid lines (1:n
relationship) or dotted lines (1:1 relationship).

A ReP graph can be defined as follows:
ReP graph: ReP graph is an extended pattern graph, which consists of ReP nodes

and edges. Each ReP node consists of a set of fundamental constructs, which can be
accessed using provided accessor APIs. ReP edges connect ReP nodes by solid/dotted
lines.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


Inferring design patterns using the ReP graph · 99

Design Pattern ReP constructs

Abstract Factory Create-within-condition
Bridge Inheritance-depth, THR
Builder Create, Function-called, Passed-params
Composite Containment, Function-called
Decorator Function-called, THR
Facade Association, Function-called
Observer Association, Updated-var-list-by-function,

Function-called, Passed-params
Singleton THR, Member-variables
State Condition, Condition-alt-path-list,

Function-called, Updated-var-list-by-condition
Strategy Condition, Condition-alt-path-list,

Function-called

Table 2 – Design patterns and corresponding ReP fundamental constructs to infer them

3 Inferring patterns using the ReP graph

The motivation of the proposed work is to infer design patterns in a given source code.
The work introduces design pattern at appropriate places (i.e. candidate spots) in the
source code to make the source code more maintainable, extensible and understand-
able. The proposed work offers a new abstraction level for the source code, which
makes the process of design pattern inference easier and flexible. The ReP graph cap-
tures the required source code information in terms of fundamental constructs. These
constructs are used to detect the intent-aspect of design patterns within a given source
code. Table 2 shows some of the GoF patterns [GHJV95] and the corresponding set
of constructs used to infer these patterns.

A tool “Refactor-it” is developed to realize this idea. The tool accepts source code
of a program as input, identifies fundamental constructs and stores them in a ReP
graph. In order to identify the intent-aspect of design patterns; inference-rules are
written for the patterns. The tool infers design patterns by executing inference-rules
on the ReP graph. The output of the tool shows candidate spots with applicable
patterns.

3.1 Architecture of the design pattern inferring tool

The method to generate the ReP graph and then using it for inferring design patterns
comprises of three steps:

1. Generate Abstract Syntax Tree (AST)

2. Generate ReP graph

3. Infer design patterns

As shown in Figure 2, the first step uses an appropriate parser to generate Abstract
Syntax Tree (AST) of a given software system. The tool employs Code-inspector
[Cod] to generate an AST. The Code-inspector provides a set of APIs to access the
generated AST. API Abstraction Layer (AAL) exposes a set of higher level useful

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


100 · Tushar Sharma et al.

Figure 2 – System architecture of the design pattern inference tool

methods (such as get-all-classes, get-all-methods) to access the AST. The AAL uses
APIs provided by the Code-inspector to extract the information from the AST. ReP
graph generator collects required source code level information using the AAL and
puts them into a ReP graph.

The ReP graph can be accessed by the accessor API set provided with the ReP
graph. Inference-rules are written using these APIs for inferring design patterns. User
can extend this rule base with his/her rules for additional patterns. These rules are
evaluated on the generated ReP graph and an output consisting of a set of candidate
spots is generated. A candidate spot is reported wherever the ReP graph satisfies an
inference-rule of a design pattern. A candidate spot provides information about the
inferred site (class(es) and/or method(s)), the inferred pattern and roles of the design
pattern played by existing program entities.

3.2 ReP graph generation

As shown above in Figure 2, ReP graph generator (RGG) uses the AAL to extract
the required source code information and generates ReP graph for a given software
system. The RGG uses an algorithm to generate a ReP graph which is given as below
in Listing 1.

A top-level class is a class, which do not have any super-class in a given source
code. The RGG retrieves all top-level classes and maintains a corresponding top-level
ReP node list. Classes belong to an inheritance tree form a working-class-list. The
RGG derives an expression (i.e. ReP graph expression) from inter-class relationships
among classes of the working-class-list. This expression indicates number of required
ReP nodes, classes belong to each ReP node, and number of required gate nodes to
represent the inheritance tree. A partial ReP graph is created using the ReP graph
expression. Fundamental constructs of each ReP node are populated with information
discovered from the source code. The process is repeated for each of the top-level class
to create and populate the complete ReP graph.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


Inferring design patterns using the ReP graph · 101

//Function: generate-rep-graph
//i/p params: AST
//o/p type: list of ReP nodes
generate-rep-graph (AST)
{
//get all top-level classes
top-level-class-list = AAL.get-top-level-class-list(AST)
top-level-rep-nodes = null
//create rep graph for each top level class
do while (top-level-class-list.empty() != true)
{
cur-class = top-level-class-list.getItem()
//get all derived classes from cur-class
working-class-list = AAL.get-inheritance-tree(AST,cur-class)
//get rep-graph expression based on inter-class relationship
rep-graph-expression = get-rep-graph-expression(AST,
working-class-list)

//create rep-graph for the working-class-list
partial-rep-graph = create-rep-graph(rep-graph-expression)
//find the source code constructs and populate the rep-graph
populate-construct-info(AST, partial-rep-graph)
//remove the processed class from the list
top-level-class-list.remove(cur-class)
//add the created rep-graph to the top-level list
top-level-rep-nodes = top-level-rep-nodes +

get-top-rep-node(partial-rep-graph)
}

//connect nodes of one inheritance tree to other
connect-rep-nodes(top-level-rep-nodes)
return top-level-rep-nodes

}

Listing 1 – Algorithm to generate ReP graph.

3.3 Inferring using the ReP graph: An example

An illustrative example is presented to explain various steps of the inferring process.
Here, Figure 3 shows a partial UML class diagram for the example program. Classes
Button and Window along with their subclasses define product hierarchies and class
Display is creating a family of these product-objects based on a condition.

The design pattern inferring tool accepts this program as an input and generates
an AST with help of the Code-inspector. The generated AST is analyzed and funda-
mental constructs from the source code are identified. The tool then populates the
ReP graph with these constructs.

The intent-aspect of a design pattern is translated into an inference-rule using
the accessor APIs provided by the ReP graph. For example, the intent-aspect of the
abstract factory design pattern [GHJV95] should satisfy the following clauses:

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


102 · Tushar Sharma et al.

Figure 3 – UML class diagram for considered example

1. There is a condition which has at least two alternate paths.

2. Every alternate path should have at least two Create constructs and the number
of Create constructs in each path must be equal.

3. The objects created in each alternate path must have siblings in all other alter-
nate paths.

Listing 2, as given below, shows the algorithm to identify the above said intent-
aspect of the abstract factory design pattern. The algorithm maps the intent-aspect
of the pattern to create-within-condition construct.

//Function: rule-abstract-factory
//i/p params: rep-node
//o/p type: boolean
rule-abstract-factory(rep-node)
{
//get all function object list for the rep node
func-obj-list = get-function-objects(rep-node)
do(for all func-obj in func-obj-list)
{
//get all condition objects
cond-obj-list = get-condition-nodes(func-obj)
do(for all cond-obj in cond-obj-list)
{
//get all alternate path objects list
alt-obj-list = get-alt-path-list(cond-obj)
if(alt-obj-list.length() < 2)

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


Inferring design patterns using the ReP graph · 103

return false
cur-top-list = null
do(for all alt-obj in alt-obj-list)
{
//get create object list
create-obj-list = get-create-list(alt-obj)
if(create-obj-list.length() < 2)

return false
//check for the inheritance hierarchy
if(cur-top-list == null)
cur-top-list = get-top-list(create-obj-list)

else
if(not(match-inh-hierarchy(cur-top-list,create-obj-list)))
return false

}
report-abstract-factory(func-obj, cond-obj)
}

}
}

Listing 2 – Algorithm for inference-rule to identify intent-aspect of the Abstract Factory
pattern

Accessor APIs provide an interface to access a ReP graph. Inference-rules use
these APIs to specify the intent-aspect of design patterns. The rules for the standard
patterns are written using these APIs and made available with the tool. User may
extend this rule base by writing rules for additional patterns. All aforementioned
inference-rules are implemented in LISP using ReP graph constructs.

Once the ReP graph is generated, the tool fires inference-rules on the ReP graph.
In the example considered, create-within-condition construct is identified which sat-
isfies the intent-aspect of the abstract factory design pattern.

A partial ReP graph as shown in Figure 4.a corresponds to the illustrative con-
sidered in Figure 3. The figure is showing the intent-aspect for the abstract factory
pattern. Figure 4.b shows the resultant ReP graph for the abstract factory pattern.
This resultant diagram shows transformed ReP graph, which can be obtained by
introducing the inferred abstract factory pattern into the inferred site.

The result of the inferring process is a set of candidate spots. Each candidate
spot reports not only the inferred site (concerned class(es) and/or method(s)) and
the inferred pattern but also various roles of the inferred design pattern assigned
to various program entities. In this example, client and product roles are identified
and reported in the candidate spot (as given in Listing 3). The information of the
candidate spot is provided in XML format, therefore a transformation engine can take
it as input and transform the code.

4 Summary of analysis

The tool “Refactor-it” is employed against various open source projects to check the
usability of the tool. The projects considered are Jnet-lib [Jne], Astro [Ast], Chess
[Che], Notepad [Nota], Free Framework [Fre] and Notepad++ [Notb]. Here, the cho-
sen projects are as small as 10 classes (Astro) and as big as 120+ classes (Notepad++).

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


104 · Tushar Sharma et al.

Figure 4 – ReP graph showing (a) intent-aspect of Abstract factory pattern and (b) its
corresponding resultant ReP graph

Projects/ D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Design Pattern

Chess 1 1
Astro 2
Jnet-library 4 1 1 1 2
Notepad 1 1 2 1 1
Free 1 2 2 2 1
Framework
Notepad++ 2 2 11 5 2 1 1

Table 3 – Summary of analysis

The tool reported various applicable patterns at appropriate places. The summary of
the analysis is presented in Table 3. Please note that patterns D1 to D10 in the table
refer to abstract-factory, composite, state, strategy, observer, bridge, facade, builder,
singleton and decorator design patterns respectively.

The tool may produce false positive/negative instances occasionally due to seman-
tics of the source code. In order to observe false negative/positive instances; results
reported by the tool are verified by manual inspection. Most of patterns inferred
manually coincide with patterns inferred by the tool. A summary of inferred patterns
and corresponding false negative/positive instances are listed in Table 4.

Table 4 shows that one instance each of state and singleton pattern are reported
as false-negative. This can be justified as follows:

• The inference-rule for the state pattern conveys that a condition variable of a
switch-case block (or if-elseif ladder) should be modified within every conditional
case. In one specific instance, the condition variable changed within all but one
conditional cases. Therefore, it is not reported by the tool. However, application
semantics suggest applicability of the state pattern.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


Inferring design patterns using the ReP graph · 105

<CandidateSpot>
<InferredPattern>Abstract Factory </InferredPattern>
<InferredSite>
<class>Display</class>
<function>CreateProducts</function>

</InferredSite>
<Roles>
<Role>
<RoleName>Client</RoleName>
<Class>Display</Class>

</Role>
<Role>
<RoleName>Product</RoleName>
<Class>Window</Class>

</Role>
<Role>
<RoleName>Product</RoleName>
<Class>Button</Class>

</Role>
</Roles>

</CandidateSpot>

Listing 3 – XML output of a candidate spot

• The singleton pattern intent states that if all methods of a class are static
and the member variable count is not zero then the class is a candidate for a
singleton pattern. During the manual analysis; a class was found with all but
one static method. The tool did not report this class as a singleton candidate
because of the non-static method. However, a deeper look revealed that the
non-static method was an obsolete method and not called from the rest of the
code. Therefore the class is a candidate for the singleton pattern.

Similarly, there are false-positive instances of the observer and strategy pattern.
This can be reasoned as follows:

• The inference-rule of the observer pattern suggests that if two or more objects
are interested in a change of one subject then the observer pattern can be
implemented. In this case, there are two observers for a subject; hence, the
tool inferred observer pattern. But, the source code semantics suggest that the
number of observers is very unlikely to increase. Therefore, the instance can be
considered as a false-positive inference.

• According to the strategy pattern intent, if every case of a conditional block
has number of statements greater than a threshold value; it can be reported
as a strategy pattern candidate. In one particular instance, the number of
such conditional cases is greater than 15. The tool identified the instance as a
candidate for strategy pattern. But introducing strategy pattern in such cases
may lead to a subclass explosion (in this case more than 15 classes need to be
introduced). Therefore the strategy pattern might not be the most suitable
pattern in this case.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


106 · Tushar Sharma et al.

Design Pattern Total number of False positive False negative
inferred instances instances instances

Abstract Factory 2
Composite 5
State 9 1
Strategy 13 1
Observer 8 1
Bridge 2
Facade 6
Builder 2
Singleton 3 1
Decorator 1

Table 4 – Number of false positive/negative instances in analyzed projects

From the above discussion, we can deduce that false positive/ negative instances
reported by the tool are well justified. In summary, the tool is able to infer design
patterns with reasonable efficiency.

5 Related work

Many prior attempts have been made to refactor a given software system by intro-
ducing design patterns. Some of the closely related attempts are JIAD [RJ04], SQPR
[SS03], [HHHL03], [GAA01], [JLB02] and [KJ09].

SPQR [SS03] defined elemental design patterns as a base concept on which more
complex and large design patterns can be built. Their approach focuses on identifi-
cation of design patterns and their isotopes, while our approach focuses on inference
of design patterns. A similar attempt is made by Heuzeroth et.al. [HHHL03], they
proposed a method to detect design pattern instances automatically using static and
dynamic analysis.

An approach to automatically discover distorted forms of a design pattern is pro-
posed by Yann et.al. [GAA01]. Their approach is applicable if patterns are employed
in a distorted form, while our approach can infer patterns if intent-aspect of patterns
exist within a given source code.

Sang-Uk et.al. [JLB02] proposed an automated approach to refactor a given source
code in which an inference-rule and refactoring strategy is defined for each of the
supported design patterns. Their strategy assumes that the need to introduce a
design pattern arises when a design spot evolves frequently. Hence, their strategy
compares two versions of a program to identify a candidate spot. This can result
into a high number of false-negative instances, if some design deficiencies exist in the
original design itself and most of the design is not evolving frequently. Our approach
does not make such assumption; thus is free from such deficiencies.

An inference strategy is proposed by Vinay et.al. [KJ09] to introduce design
pattern abstractions in C code. The strategy proposed inference-rules specific to a
procedural language, therefore is not suitable for object oriented software systems.

The most similar work from literature is JIAD [RJ04]. The proposed work out-
performs JIAD and related attempts, which can be argued as follows:

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


Inferring design patterns using the ReP graph · 107

1. There are multiple ways to implement an intended logic. Therefore, a rule
written to identify an intent-aspect should be able to adapt itself with the im-
plementation. The ReP graph constructs abstract the implementation details
so that a user can write rules without worrying about low level implementa-
tion logic. For example, the condition construct abstracts all type of supported
condition statements (e.g., if and switch); the create-within-condition construct
abstracts all create statements (such as new, malloc) within all condition state-
ments. Further, provided abstractions work beyond a local scope (e.g., a vari-
able can be set in a condition block directly by an assignment statement or by
a setter method). These multiple ways to set a variable is abstracted by the
updated-var-list-by-condition construct.

Apart from facilitating a user to write rules without worrying about low-level
implementation details; the abstraction increases the cover of inference-rules.
This extended cover results in a less number of false-negatives. This abstraction
is missing from JIAD and other similar attempts.

2. There might be multiple intent-aspects for a design pattern. Normally, a de-
fault inference-rule is provided, which covers the most usual case. But, while
observing the source code a user may figure out other intent-aspects for the de-
sign pattern. The proposed work offers fundamental constructs and an API set
to write additional inference-rules easily. It enables the user to write alternate
inference-rules for a design pattern; thus increases the possibility to find more
pattern candidates than JIAD.

3. Project specific settings (such as classes to exempt from analysis) can be speci-
fied using the proposed work. This feature not only avoids extra processing but
also may avoid the possibility of false-positives.

6 Contributions

The contributions from the proposed work can be summarized as below:

1. The ReP graph introduces a new abstraction of source code. It captures relevant
information in the form of fundamental constructs; leaving out the voluminous
details of the source code, which eases the design pattern inferring process.

2. The proposed solution provides a framework for inferring design patterns. The
framework maintains a rule-base of inference-rules. Each inference-rule maps
a combination of fundamental constructs to a design pattern intent-aspect. A
set of accessor APIs is provided to infer a pattern using the ReP graph. The
inference-rules are written using these accessor APIs.

3. ReP graph captures the essence of patterns in terms of design structures and
their interactions. Design structures can be considered as building blocks of
design patterns. Therefore, they can be used not only to infer patterns but also
to detect the existing patterns.

4. Extensibility is another important aspect; the proposed approach supports in-
clusion of inference-rules for additional patterns.

Journal of Object Technology, vol. 9, no. 5, 2010

http://www.jot.fm/contents/issue_2010_09/article5.html


108 · Tushar Sharma et al.

7 Conclusions

In summary, the ReP graph captures the relevant information in the form of funda-
mental constructs leaving out unnecessary voluminous details of a given source code.
The information stored in these constructs is accessible by a set of accessor APIs pro-
vided with the ReP graph. Generation of ReP graph and detecting candidate spots
for design patterns can be achieved using the proposed technique. The set of acessor
APIs can be used to specify the intent-aspect of any design pattern. New rules for
patterns can be written easily using the provided set of accessor APIs and can be
added to the inference-rule base.

The ReP graph can be used to measure the quality attributes of an object oriented
software system. The quality attributes before and after the code transformation can
be compared to evaluate the effectiveness of the transformation. The proposed work
can also be used to establish goal oriented quality measures.

References

[Ast] Astro. http://mhuss.com/AstroLib/AstroCpp.zip.

[Che] Chess. https://www.pscode.com/vb/scripts/ShowCode.asp?
txtCodeId=6337&lngWId=3.

[Cod] Code-inspector. Siemens Corporate Research Princeton, USA.

[Fre] Free framework. http://www.ebleda.com/opensource/ffw.php.

[GAA01] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Using design patterns
and constraints to automate the detection and correction of inter-class
design defects. In TOOLS ’01: Proceedings of the 39th International
Conference and Exhibition on Technology of Object-Oriented Languages
and Systems (TOOLS39), page 296, Washington, DC, USA, 2001. IEEE
Computer Society.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1995.

[HHHL03] Dirk Heuzeroth, Thomas Holl, Gustav Högström, and Welf Löwe. Auto-
matic design pattern detection. In IWPC ’03: Proceedings of the 11th
IEEE International Workshop on Program Comprehension, page 94,
Washington, DC, USA, 2003. IEEE Computer Society.

[JAG+00] D. Janakiram, K. N. Anantharaman, K. N. Guruprasad, M. Sreekanth,
S. V. G. K. Raju, and A. Ananda Rao. An approach for pattern ori-
ented software development based on a design handbook. Ann. Softw.
Eng., 10(1-4):329–358, 2000.

[JLB02] Sang-Uk Jeon, Joon-Sang Lee, and Doo-Hwan Bae. An automated refac-
toring approach to design pattern-based program transformations in java
programs. In APSEC ’02: Proceedings of the Ninth Asia-Pacific Soft-
ware Engineering Conference, page 337, Washington, DC, USA, 2002.
IEEE Computer Society.

[Jne] Jnet library. http://www.nullsoft.com/free/jnetlib/.

[K.05] Joshua K. Refactoring to Patterns. Addison-Wesley, 2005.

Journal of Object Technology, vol. 9, no. 5, 2010

http://mhuss.com/AstroLib/AstroCpp.zip
https://www.pscode.com/vb/scripts/ShowCode.asp?txtCodeId=6337&lngWId=3
https://www.pscode.com/vb/scripts/ShowCode.asp?txtCodeId=6337&lngWId=3
http://www.ebleda.com/opensource/ffw.php
http://www.nullsoft.com/free/jnetlib/
http://www.jot.fm/contents/issue_2010_09/article5.html


Inferring design patterns using the ReP graph · 109

[KJ09] Viany Kumar Reddy K and D. Jankiram. Design pattern abstraction in
c. Technical report, Technical report IITM-CSE-DOS-2006-09.

[MS05] Rajashree MS. Quality estimation model for software development.
Technical report, Ph.D. thesis,2005.

[Nota] Notepad. https://www.pscode.com/vb/scripts/ShowCode.asp?
txtCodeId=840&lngWId=3.

[Notb] Notepad++. http://notepad-plus.sourceforge.net/.

[ON99] M. O’Cinnéide and P. Nixon. A methodology for the automated intro-
duction of design patterns. In ICSM ’99: Proceedings of the IEEE In-
ternational Conference on Software Maintenance, page 463, Washington,
DC, USA, 1999. IEEE Computer Society.

[RJ04] J. Rajesh and D. Janakiram. Jiad: a tool to infer design patterns in
refactoring. In PPDP ’04: Proceedings of the 6th ACM SIGPLAN in-
ternational conference on Principles and practice of declarative program-
ming, pages 227–237, New York, NY, USA, 2004. ACM.

[SS03] Jason McC. Smith and David Stotts. Spqr: Flexible automated design
pattern extraction from source code. Automated Software Engineering,
International Conference on, 0:215, 2003.

Journal of Object Technology, vol. 9, no. 5, 2010

https://www.pscode.com/vb/scripts/ShowCode.asp?txtCodeId=840&lngWId=3
https://www.pscode.com/vb/scripts/ShowCode.asp?txtCodeId=840&lngWId=3
http://notepad-plus.sourceforge.net/
http://www.jot.fm/contents/issue_2010_09/article5.html


110 · Tushar Sharma et al.

About the authors

Tushar Sharma is currently pursuing Master of Science (MS) by
research under Prof. D. Janakiram from Distributed and Object
Systems Lab, Department of Computer Science and Engineering,
Indian Institute of Technology (IIT), Madras.

His research interests include object oriented design, design
patterns and refactoring. His MS thesis is focusing on design
structures and their use in refactoring object oriented software

systems. He can be reached at 000.tushar@gmail.com.

Dharanipragada Janakiram is currently a professor in the De-
partment of Computer Science and Engineering, Indian Institute
of Technology (IIT), Madras, India.
He obtained his Ph.D degree from IIT, Delhi. He heads and co-
ordinates the research activities of the Distributed and Object
Systems Lab at IIT Madras. He has published over 30 interna-
tional journal papers and 60 international conference papers and
edited 5 books. His latest book on Grid Computing has been
brought out by Tata Mcgraw Hill Publishers in 2005. He served
as program chair for 8th International Conference on Management
of Data (COMAD). He is the founder of the Forum for Promotion
of Object Technology, which conducts the National Conference
on Object Oriented Technology (NCOOT) and Software Design
and Architecture (SoDA) workshop annually. He is the princi-
pal investigator for a number of projects which include the grid
computing project from Department of Science and Technology,
Linux redesign project from Department of Information Technol-
ogy, Middleware Design for Wireless Sensor Networks from Hon-
eywell Research Labs and A Mobile Data Grid Framework for
Telemedicine from Intel Corporation, USA.
He has taught courses on distributed systems, software engineer-
ing, object-oriented software development, operating systems, and
programming languages at graduate and undergraduate levels at
IIT, Madras. He is a consulting engineer in the area of software
architecture and design for various organizations. His research
interests include distributed and grid computing, objects technol-
ogy, software engineering, distributed mobile systems and wireless
sensor networks, and distributed and object databases. He is a
member of the IEEE, the IEEE Computer Society, the ACM, and
a life member of the Computer Society of India.
He can be reached at djram@iitm.ac.in. See also www.cs.iitm.
ac.in/~djram.

Journal of Object Technology, vol. 9, no. 5, 2010

mailto:000.tushar@gmail.com
mailto:djram@iitm.ac.in
www.cs.iitm.ac.in/~djram
www.cs.iitm.ac.in/~djram
http://www.jot.fm/contents/issue_2010_09/article5.html

	Introduction
	ReP Graph
	Design structures and pattern graph
	The ReP graph

	Inferring patterns using the ReP graph
	Architecture of the design pattern inferring tool
	ReP graph generation
	Inferring using the ReP graph: An example

	Summary of analysis
	Related work
	Contributions
	Conclusions
	Bibliography
	About the authors

