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Abstract CSOM/PL is a software product line (SPL) derived from apply-
ing multi-dimensional separation of concerns (MDSOC) techniques to the
domain of high-level language virtual machine (VM) implementations. For
CSOM/PL, we modularised CSOM, a Smalltalk VM implemented in C,
using VMADL (virtual machine architecture description language). Several
features of the original CSOM were encapsulated in VMADL modules and
composed in various combinations. In an evaluation of our approach, we
show that applying MDSOC and SPL principles to a domain as complex
as that of VMs is not only feasible but beneficial, as it improves under-
standability, maintainability, and configurability of VM implementations
without harming performance.

Keywords Virtual machines, architecture, software product lines, multi-
dimensional separation of concerns

1 Introduction

Implementors working on high-level language virtual machines (VMs) [SN05] typically
face the characteristic problem of intricately intertwined module dependencies. Even
though logical modules such as memory management and emulation engine are perceiv-
able, they can often hardly be identified as such in the code. The interdependencies
lead to partial functionality realisations of logical modules being interwoven with
other logical modules’ code. This, in turn, is due to a lack of modular abstraction
application in the domain of VM implementations.

A second difficulty with VM implementations is that they frequently need to be
tailored to specific needs. Different dimensions of interest are relevant in this regard.
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The particular application domain might call for differently aggressive optimisation.
For instance, Oracle’s HotSpot JVM features two different versions1 optimised for
client- or server-specific applications, which use different just-in-time (JIT) compilers.
The configuration is chosen at VM startup time. The Jikes RVM2 [AAB+99, A+00]
can employ a selection of two different JIT compilers that can moreover be combined
with an adaptively optimising infrastructure [BCF+99].

Other dimensions of interest are, e. g., memory allocation behaviour, calling for
different choices of garbage collectors (GCs) [JL96, BCM04]; availability of CPU cores,
influencing the threading model (native or user-level threads, or hybrid scheduling);
and the target platform, possibly imposing all kinds of limitations on the rest of the
implementation (e. g., VMs for resource-constrained devices). Clearly, all of the choices
have implications on the interactions of the different modules, in turn leading to more
intricate relationships [HAT+09].

Previous work [HAT+09] introduced the notion of service modules to address
module entangling in VMs. A service module is a module with a bidirectional interface—
in the fashion of open modules [Ald05] or XPIs [GSS+06]—that can not only be sent
requests, but that can also exhibit internal situations of interest to the outside. An
initial proposal of an architecture description language (VMADL) was introduced,
along with a proof of concept implementation, supporting the concepts of service
modules at the programming language level.

The characteristics of the second problem suggest to regard the various VM
subsystems and their variations as features in the sense of a software product line
(SPL) [CN02]. SPL development organises the different shapes of a software system
in a particular domain along the lines of a feature model. A feature model comprises
the possible variations in the shapes of the software system’s features in a formalised
way, e. g., as a feature diagram. Such a model represents all members of the resulting
product family. Concrete realisations of the software system, according to choices
made for the different possible variations, are called products. The formalisation allows
for validating configuration choices, and for rejecting conflicting configurations.

This article reports on the results achieved in combining the VMADL approach and
SPL principles and applying them to the VM implementation domain. In particular,
we have applied these principles and techniques to CSOM3 [HHP+10], a VM for
a Smalltalk [GR83] dialect. CSOM is primarily intended for use in teaching, and
consequently focuses on understandability and clarity. It is moderately complex,
featuring a bytecode interpreter and a mark/sweep GC [JL96]. Despite its simplicity,
CSOM exhibits characteristic crosscutting concerns [HAT+09]; increasingly so when
extended with additional or alternative features.

VMADL was used to modularise several extensions to CSOM that were previously
introduced by hand. The extensions were of different kinds—garbage collectors, multi-
threading implementations, optimised representation of integral numbers, and image
persistence—and exhibited different crosscutting characteristics. Encapsulating these
extensions in service modules allowed for turning CSOM into an SPL, which we call
CSOM/PL4, enabling different combinations of modules to be chosen at compile-time.

In summary, the contributions of this paper are as follows.

• We present the first full version and implementation of VMADL. It differs
1java.sun.com/products/hotspot/whitepaper.html
2jikesrvm.org
3www.hpi.uni-potsdam.de/swa/projects/som
4The code and live CD with CSOM/PL are available at www.hpi.uni-potsdam.de/swa/projects/

som/. Due to license regulations, pure::variants cannot be included with the CD image.
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significantly from the proof of concept [HAT+09] in that it has explicit con-
structs and extended support for service module combinations. Moreover, the
proof of concept was replaced with a more stable implementation that applies
AspectC++5 [O. 02], a production-quality AOP extension to C++.

• We show that an approach based on multi-dimensional separation of concerns
at source code level alleviates programming in a complex domain with intricate
crosscutting relationships. The beneficial effect of applying VMADL in the VM
implementation domain consists in making architectural interdependencies ex-
plicit not only at the source code level, but abstractly so, by means of interactions
between bidirectional interfaces.

• We demonstrate how the approach can be used to establish an SPL in this
domain, fostering configuration and variability management as well as code
reuse. The SPL includes combinations of features that were previously applied
in isolation only. The CSOM product line was realised using pure::variants6,
a state-of-the-art tool for SPL development. By virtue of pure::variants, the
CSOM/PL product space is consistently represented as a feature model, and
products can be easily configured and validated. Once a product has been
configured, corresponding build scripts can be generated by the SPL tool.

In the remainder of this paper, we first introduce the CSOM VM in the following
section. In Sec. 3, we sketch the architectural principles at work in CSOM/PL,
and give an introduction to the language VMADL, including a description of its
implementation. The CSOM/PL results and how they were achieved is illustrated in
Sec. 4. The evaluation of the obtained results is described in Sec. 5. Related work is
discussed in Sec. 6, and Sec. 7 summarises the paper and gives future work directions.

2 The CSOM Virtual Machine

CSOM7 [HHP+10] is a VM for a Smalltalk dialect designed for teaching purposes. Its
precursor, SOM (Simple Object Machine) was implemented in Java at the University
of Århus. CSOM is a port of SOM to C done at the Hasso Plattner Institute. There,
CSOM has been used in two graduate courses on virtual machines in 2007 and 2008.

Unlike most Smalltalk VMs, CSOM does not support images [GR83], but instead
relies on text files containing Smalltalk code as input. The Smalltalk application to be
run is passed as a command line parameter when the VM is started. If no application
is given, the VM starts a Smalltalk shell.

The architecture of CSOM is deliberately simple to ease its employment in teaching.
An overview about the architecture is given as block diagram in Fig. 1. The arrows
between modules denote “uses” relationships. The standard implementation features a
Smalltalk parser and compiler, a corresponding object model for representing Smalltalk
entities, a bytecode interpreter, and a mark/sweep GC. The helper library contains
dedicated implementations of data structures used throughout the VM.

The CSOM source code consists of 88 C files (43 .c and 45 .h files) accounting
for 6,725 PSLOC [Par92] spread over seven logical modules represented by the folder
structure of the implementation. The C implementation is accompanied by 568 lines of

5www.aspectc.org
6www.pure-systems.com/pure_variants.49.0.html
7Pronounced “see-som”.
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Figure 1 – Architecture of CSOM.

Smalltalk code in roughly two dozen files constituting its standard library. Additionally,
a test suite and a set of benchmarks are available.

SOM, implemented in Java, exploits object-oriented programming (OOP) concepts
to a large extent, using inheritance and interfaces. Also, the VM-level and language-
level representations of core classes of the SOM Smalltalk standard library have parallel
hierarchies. For instance, the Smalltalk implementation of the Object class is mirrored
by a corresponding class on the VM side. The Smalltalk Array class inherits from
Object, and so does the VM-level representation of Smalltalk arrays. This design is
preserved in CSOM by using a macro-based emulation of OOP constructs in C. It
supports single inheritance and a limited notion of traits [CUL89], which is used to
emulate Java’s interfaces. Late binding is achieved by using a SEND macro to send
messages and parameters to objects. C was preferred over C++ because it provides
full low-level control over object layout in memory, including virtual method table
placement.

As already mentioned, CSOM has been used in teaching over the past few years.
Students have implemented extensions to CSOM to fulfil coursework assignments.
Two alternative multi-threading approaches have been realised. Native threading
uses the pthreads [LB96] library, whereas green threading implements scheduling
and thread management within the VM itself. For memory management, GCs ap-
plying mark/sweep and reference counting [JL96] have been implemented. As an
emulation engine optimisation, a threaded interpreter [Bel73] has been implemented.
Integer representation was optimised using one-based tagged integers [GR83]. Virtual
images [GR83], saving snapshots of application state, were provided for CSOM.

Each of the above was implemented as a stand-alone extension to CSOM. The
separate coursework groups were not concerned with clear modularisation and interop-
erability among the extensions. The implementations are independent of each other,
and represent custom-built products derived from a common code base.

The different extensions exhibit largely different crosscutting characteristics. For
instance, mark/sweep and reference-counting GC both require the structural extension
(“introduction” [KHH+01]) of adding a mark bit or reference count to objects—an
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extension that is external to the actual GC logic. Behavioural crosscutting, however,
is much different: while reference counting requires modifications at practically all
pointer assignments throughout the VM implementation (including implicit ones like
parameter passing), mark/sweep GC is attached only to allocation requests.

Another example is multi-threading. Native threading effectively requires the
interpreter implementation to be thread-safe (i. e., the interpreter’s global state must
be turned into thread-local state). Conversely, green threading implies significant
changes in the interpreter logic itself, as the interpreter is responsible for passing
control to the scheduler, e. g., every 𝑁 bytecode instructions.

All in all, the extensions realised so far constitute an interesting challenge with
regard to modularisation. This holds even more when combinations of the aforemen-
tioned extensions are taken into account, e. g., a version of CSOM that features both
a mark/sweep GC and native threading.

3 Virtual Machine Modularity

In this section, we first summarise the approach to VM modularisation [HAT+09]
whose concepts VMADL implements. We then give an overview of the concrete
language mechanisms necessary to realise the approach. Following some examples,
we discuss the evolution of VMADL from the previous version, motivating its recent
language features. Finally, we describe the VMADL implementation.

3.1 Disentangling VM Architecture

Previous work [HAT+09] investigated the architectures of different VM implemen-
tations, finding that they typically exhibit no clear boundaries between subsystems
perceivable as logical modules. This insight motivated the necessity of an architectural
approach with support for reasoning about high-level modular structures in VM im-
plementations, and led to the proposal fo a first version of VMADL, which this article
extends.

First, we would like to explain the notion of architecture that we adopt. There is
no consensus on a definition for the terms “architecture” and “architectural description
language” (ADL). A wide range of different interpretations of the terms [MT00] exists.
On the one end of the spectrum, there are, e. g., graphical ADLs that enable an easier
comprehension of system architectures to improve communication about systems. On
the other, there are languages proposing formal semantics and tools for analyses, code
synthesis, and run-time support, to allow for a formal evaluation of complex systems.

VM architecture needs to be supported at the source code level. Consequently,
modules and their interactions have to be described at a level that is close to the
implementation language but still supports architectural abstraction in that it expresses
larger-scale interdependencies. At the same time, the implementation language must
not be constrained in its degree of control over low-level details.

VMADL modularises VM implementations into service modules, introducing a
logical module structure into the code. Each service module can span several files
containing source code contributing to the feature the module defines. Service modules
have bidirectional interfaces, i. e., they can not only be sent requests, but can also signal
internal situations of interest to the outside world. Other service modules can attach
to these signals and react to them. These signals are called exposed join points. They
are defined using pointcuts, i. e., they can express complex internal situations whose
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occurrence can trigger reactions in client modules attaching to the exposed interface.
This exposed interface constitutes a module-specific join point model, elements of
which can be quantified over by means of pointcuts.

To achieve these goals, VMADL provides a frame in which an implementation
language and an aspect language can be combined. Consequently, VMADL is essentially
agnostic as far as the particular implementation and aspect languages are concerned: it
adds high-level modularity constructs that coordinate the interaction of the former two.
The first VMADL proof of concept [HAT+09] was applied with C as the implementation
language, and Aspicere2 [AS07] as the aspect language. In the present work, the
implementation language is still C, but AspectC++ [O. 02] is the aspect language.

3.2 VMADL Language Concepts

We now give an overview of the core mechanisms VMADL provides. As already
mentioned, the main concept in VMADL is a service module. Each service module
defines its bidirectional interface using the following constructs:

• Type definitions: Each service module defines a set of types or data structures,
which can be used by other service modules or in module interactions.

• Function definitions: Each service module explicitly exposes a set of functions
constituting its API.

• Join-point definitions: Each service module defines a set of internal situations
that are exposed as join points to other modules. These are tightly coupled to
the implementation of a service module, but abstract away from the concrete
implementation, so that client modules are decoupled.

• Exposed global variables: Service modules define global variables that need
to be exposed to other modules in their interface definition.

• Module dependencies: Required service modules are stated explicitly.

• Structured interface and refinement: Service module interfaces provide
structured named sections which allow later cross-cutting refinement (cf. Sec. 3.3).

• Startup and shutdown phases: In complex systems like VMs, the phases
of initialisation and termination introduce strong coupling and ordering re-
quirements. To facilitate expressing those, service modules can provide specific
functions and join points that are only accessible during these phases.

An architectural description also needs to define service module interactions.
VMADL’s combiners provide architectural-level implementation fragments describing
all interactions that exceed API-like usage. Service modules depending on another
service module can use the interface of that module in their implementation. Other
forms of interactions, like advising join points, are expressed using combiners. They
provide the following constructs:

• Combined pairs of service modules: A combiner always describes the
interaction between a specific pair of modules which are explicitly named.

• Module dependencies: If combiners require other service modules to enable
the interaction of the given pair of modules, these are stated explicitly.
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• Advice: A combiner specifies advice to join points exposed by other service
modules.

• Startup and shutdown phases: Similar to the service modules themselves,
interactions can be specified that are only relevant during initialisation and
termination phases.

Since VMADL is explicitly meant to be used on top of a set of implementation
languages, these languages themselves need to fulfil some requirements to enable the
desired degree of modularisation. The requirements are as follows:

• Data type refinement: Feature combinations in SPL development may re-
quire the definition of feature-specific, i. e., service module-specific, changes to
types defined by particular modules. These are expressed using the underlying
implementation language as part of the type definitions of a service module.

• Control over object layout: Specific to VMs is the requirement to have
precise control over the layout of data structures in memory. Mechanisms like
GCs need to be able to make certain assumptions about this, requiring modules
to be able to put constraints on their refinements of data types.

3.3 VMADL: A Walkthrough

This overview of VMADL uses abbreviated actual code from the CSOM/PL imple-
mentation (cf. Sec. 4) to introduce the various features. A complete example of two
service module definitions and their combination is given in App.A.

Lst. 1 introduces service module definitions. Four such modules are defined, and
the Interpreter and VMCore module definitions demonstrate that the API is simply
defined by declaring the corresponding C function. VMObjects declares a dependency
on ObjectModel using the require keyword. The listing also demonstrates how join
point exposition is achieved by using AspectC++ definitions: the VMObjects module
exposes the initializer pointcut, which matches whenever a C function matching
the name _VM%_init is executed. Note that require is used to express mandatory
relationships between modules explicitly. This ensures that the resulting configuration
includes all mandatory service modules.

1 service Interpreter {
2 void Interpreter_start(void);
3 }
4 service VMCore {
5 void Universe_set_global(_VMSymbol*, _VMObject*);
6 }
7 service ObjectModel { ... }
8 service VMObjects {
9 require ObjectModel;

10 expose {
11 pointcut initializer() = "void _VM%_init(...)";
12 }
13 }

Listing 1 – Service module definition in VMADL.

The specification of service module interactions is illustrated in Lst. 2. A combiner
allows implementing module interactions at the same architectural level as service
modules, but without requiring a direct modification of the module definitions. This
separation enables developers to describe module interactions at a well-defined place in
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the source code, which in return enables an easier recognition of module relationships
and dependencies. Furthermore, a combiner becomes part of the system only if all
modules it refers to are part of the product configuration.

1 combine GCMarkSweep, VMObjects {
2 advice execution(VMObjects::initializer())
3 : around() {
4 gc_start_uninterruptable_allocation();
5 tjp->proceed();
6 gc_end_uninterruptable_allocation();
7 }
8 }
9 combine Image, VMCore {

10 advice execution("void Universe_set_global(...)") && args(name, value)
11 : after (_VMSymbol* name, _VMObject* value) {
12 // register key for symbol
13 SEND(globals_dictionary_symbols, addIfAbsent, name);
14 }
15 }

Listing 2 – Definition of service module interactions.

The first combiner in Lst. 2 avoids GC runs during object initialisation by attaching
an around advice to the initializer join point exposed by the VMObjects module.
The second shows an advice using join point context information. It establishes
management of a symbol table saved along with the Smalltalk virtual image.

When implementation languages such as C or C++ are used, the VM implemen-
tation most likely uses preprocessor macros. From a feature-oriented perspective,
preprocessor macros are problematic, since they cannot be refined in a composable way.
However, their use cannot always be avoided. In the case of CSOM, whose implemen-
tation emulates object-orientation in C, macros are used to realise message sending.
The implementation of 1-based integer tagging (cf. Sec. 4.2) requires a redefinition of
the SEND macro.

To enable some form of refinement, we use named sections as demonstrated in
Lst. 3. While named sections are meant to structure and document interface definitions,
they also support refining interface definitions. The listing shows how the SEND macro
is defined in the SendMacro named section in the ObjectModel service module, and
also its redefinition in the TaggedIntOne service module.

1 service ObjectModel {
2 SendMacro {
3 #define SEND(O,M,...) ({ typeof(O) _O = (O); (_O->_vtable->M(_O , ##__VA_ARGS__)); })
4 }
5 }
6 service TaggedIntOne {
7 #include <tagged-int-one/tagged-int-one.h>
8 replace ObjectModel.SendMacro {
9 #define SEND(O,M,...) ({

10 typeof(O) _Org = (typeof(O))(O); \
11 typeof(_Org) _O = \
12 (typeof(_Org))(INT_IS_TAGGED(_Org) ? VMInteger_Global_Box() : _Org); \
13 (_O->_vtable->M(_Org, ##__VA_ARGS__)); })
14 }
15 }

Listing 3 – Named section replacement.
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3.4 ClassDL

As stated in Sec. 3.2, VMADL requires the implementation language to provide
mechanisms for data type refinement and explicit control over object layout. Since we
used C as an implementation language, these features were not directly available.

Thus, we introduced ClassDL as a language orthogonal to VMADL, which provides
us with the necessary flexibility to describe crosscutting refinements of classes in our
OOP emulation. ClassDL is merely a simple layer on top of C that provides notation
to define classes and traits. From ClassDL definitions, the necessary implementation
details like structure definitions for object layout and virtual method tables, including
code for their initialisation, are generated. The ClassDL notation used to define fields
conforms to field definitions in C structures. Respectively, method definitions conform
to function declarations.

To support structural changes in service module combinations, an additional
keyword was introduced to refine classes or traits from other modules. Within the
scope of our case study, it was necessary to add methods and fields to existing classes
due to the structural crosscutting exhibited by some features (cf. Sec. 2). For method
introductions, simple definitions are given like in a normal class definition. As object
layout must be controllable at a fine level of granularity—in particular, the order of
fields in objects is important—, a field can be defined with an additional predicate
specifying the position with respect to another field. These language constructs are
sufficient to modularise the features under consideration.

1 service VMObjects {
2 class VMObject {
3 size_t num_of_fields
4 pVMObject fields[0]
5 }
6 trait VMInvokable : VMObject {
7 pVMSymbol signature
8 pVMClass holder
9 void invoke(pVMFrame)

10 }
11 class VMArray : VMObject {}
12 class VMMethod : VMArray, VMInvokable {
13 pVMSymbol signature
14 pVMClass holder
15 bytecode_t get_bytecode(intptr_t)
16 void set_bytecode(intptr_t, bytecode_t)
17 void invoke_method(pVMFrame)
18 }
19 }
20 service GCRefCount {
21 refine VMObject {
22 intptr_t gc_field { before fields[0] }
23 }
24 }

Listing 4 – ClassDL object layout definitions.

Lst. 4 shows some ClassDL examples. It first presents how object layouts and
interfaces for classes and traits defined in the VMObjects service module are specified.
It then shows how the reference-counting GC extends object layout in a controlled way
by inserting the reference count field before the fields array responsible for storing
actual object slots.

We would like to point out once more that ClassDL is entirely orthogonal to
VMADL. Also, ClassDL is purely declarative: method implementations are not
given. It replaces C headers but relies on the implementation given in C source files
(cf. Sec. 3.6).
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ClassDL’s sole purpose is to add the required capabilities of data type refinement
and control over object layout to the used implementation language. Had CSOM
been implemented in a different language with dedicated support for object-oriented
modularisation and heterogeneous crosscutting, ClassDL would probably not have
been necessary.

3.5 Evolution of VMADL

As already mentioned, the first version of VMADL was introduced [HAT+09] as a
proof of concept. The version of VMADL presented here is has evolved beyond a mere
proof of concept into a robust tool chain.

From a language point of view, three concepts were added. First, combiners
were introduced to enable a clear separation between service module interfaces and
service module interactions. This allows for a clearer modularisation and avoids
polluting base modules with optional functionality. In the proof of concept, service
module interactions were defined in service module definitions themselves, prohibiting
definitions of interaction facets when introducing new service modules.

Second, VMADL as presented here introduces explicit module relationships using
the require keyword. The reason for this is twofold. On the one hand, it documents
relationships between service modules on an architectural level. On the other, it
enables the tool chain to select required code fragments automatically.

The third feature introduced in VMADL presented here is the concept of named
sections. While it is useful for documentation purposes, it also enables crosscutting
refinement of service module interfaces, especially if the underlying implementation
language lacks sufficiently powerful mechanisms.

3.6 The VMADL Tool Chain

The VMADL tool chain reuses standard tools wherever possible and introduces a
custom compiler only to process the actual VMADL/ClassDL source code. We now
give an overview of the work flow for the user, implementation details, and relevant
limitations of the current tool chain as a whole.

Workflow An overview of the interaction of the involved tools, compilers, and
artifacts is given in Fig. 2. As discussed in Sec. 4, pure::variants is used to build the
feature model which is represented at the source code level by the different VMADL
modules. Based on the feature model, the developer can select a product configuration.
Pure::variants gives the set of selected service modules to the make-based build system.
The build system in return invokes the different compilation steps to process the source
artifacts and select the required implementation fragments to generate a binary for
the desired configuration. It needs to be noted that pure::variants is optional. Users
relying on their ability to select non-conflicting feature combinations can enter the
make command line resulting from applying pure::variants themselves.

To ease development with the tool chain, it adheres to the standard conventions of
the GNU Compiler Collection in terms of interface and error reporting. Thus, the
VMADL compiler gives feedback to the user in the normal error format known from
GCC. This enables IDEs like Eclipse and Xcode to parse warnings and errors and
display them in line with the code, as is done for normal GCC error messages.

Furthermore, debugging is facilitated by utilising the standard #line preprocessor
pragma, which enables compatible IDEs to debug directly on the original source file
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Figure 2 – VMADL tool chain overview

instead of the preprocessed intermediate version produced by the VMADL compiler.

Implementation The VMADL compiler is implemented in Java and uses ANTLR
grammars to generate parsers for VMADL and ClassDL. Furthermore, it uses a sim-
plified grammar for C to parse function definitions. The main purpose of the compiler
is to preprocess the VMADL definitions and generate the actual implementation files
for C and Aspect C++.

Pure::variants creates a simple build script containing a command line to invoke
make. The VMADL compiler is parameterised with those. The main input for the
compiler are thus a set of *.vmadl files containing the definition of service modules
and combiners. These files are parsed and checked for consistency. Required VMADL
modules are loaded on demand based on the initially given list of service modules.
The simple C parser is used to parse the C implementation files and verify that all
functions are available that have been defined in the ClassDL definitions.

When the consistency check fails, the error is reported back to the user immediately.
In case it passes, the VMADL compiler will generated AspectC++ .ah files with all
advice and pointcut definitions provided in the service modules. Furthermore, it will
generate C header files that define the functions, types, and variables exported by a
service module. The implementation of service modules is not provided inline with
their definition, but comes as additional C files.

In addition to these VMADL specific implementation files, the ClassDL compiler
(part of the VMADL compiler), generates a set of headers and C files defining the
C representation of the defined classes and traits. The header files are split in two
parts. The first header for each service module contains forward declarations of
the necessary structs, i. e., type information for the class, and the second header
contains the definition of the actual structs representing the classes/traits and their
virtual method tables. Furthermore, a single common implementation file is generated,
containing the virtual method table initialisers.

The compilers do not place any restrictions on file names or implementation file
arrangement for the normal C code itself. The only requirement is that the compiler
be able to identify the VMADL definitions based on names used for service modules.

This gives freedom to the VM implementation about how to arrange the different
artifacts, e. g., how to implement a service module with actual C code. Furthermore,
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a VMADL file may contain a service module definition along with combiners, or just
one or more combiners. Hence, it is possible to specify a newly arisen combination in
a single new file without having to touch already existing ones.

For convenience, the compiler verifies that the selected source tree contains an
implementation for every function defined as a member of a class/trait. Otherwise,
the developer would be notified about such an inconsistency only at link-time.

In the final step, the generated files are processed by the AspectC++ and C++
compilers to create the resulting CSOM binary. This final step works on the result
of the previous preprocessing step; thus, all transformation/adaptations defined in
VMADL—redefinition of named parts in service modules and modifications to classes—
have already been applied at that point and are consistently visible to the compilers.

Practical Limitations The main limitation of the current tool chain is that it
does not enforce consistency of feature model and implementation artifacts. Thus,
it is possible that implementation and model get “out of sync” and valid or invalid
configurations are not properly reflected by the model. We would like to note, though,
that the tool chain is primarily a language processor, not a feature modelling tool.

Other limitations stem from the fact that C and AspectC++ have been used as
implementation languages. As mentioned before, ClassDL could be replaced with
another language (e. g., C++) since its sole purpose is to provide a conceptual model
of classes and traits that can be the target of refinements by other service modules.

The current status of the AspectC++ implementation raises two relevant issues.
The first is a limitation of AspectC++ regarding functions with variable argument
lists. This is currently not fully supported by AspectC++; thus, our experiments had
to avoid using this feature for functions that constitute interesting join-points.

Another AspectC++ characteristic is more critical, especially with regard to the
performance-sensitive field of VM implementations. The issue is with advice that
access and modify return values of advised functions. Here, the current state of C++
compiler optimisations fails to provide adequate performance for complex situations
like interpreter loops. The workaround of replacing return values with reference
parameters is not ideal, but allows avoiding performance impacts resulting from advice
usage. However, this is a limitation of some of the elements of the current tool chain,
but not of the overall approach of VMADL.

4 A Virtual Machine Product Line

This section presents CSOM/PL. The first part discusses the product line’s feature
model, possible configurations, representation using pure::variants, and overall ben-
efits of our approach. Subsequently, we discuss the language-level concepts used to
modularise CSOM’s features.

4.1 The CSOM/PL Feature Model

With the proof of concept implementation of VMADL [HAT+09], it was possible to
use the implementation of explicit memory management, mark/sweep and reference-
counting GC, and green as well as native threads for a case study. Each of these
features was implemented as a mere add-on to CSOM; no feature combinations were
provided. Some of the CSOM versions composed using the VMADL proof of concept
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Figure 3 – The CSOM/PL feature model as realised by the current implementation.

were less robust than the CSOM extensions with the same features that were coded
by hand.

In contrast, the present VMADL implementation enabled us to achieve significantly
better results. On the one hand, we were able to use, in addition to the features
mentioned above, implementations of Smalltalk virtual images, 1-based tagged integers,
and threaded interpretation. On the other hand, feature combinations were achieved
that were not even existent in hand-coded form before.

Figure 4 – A concrete CSOM/PL configura-
tion in pure::variants.

Fig. 3 shows a feature diagram repre-
senting the current status of CSOM/PL.
As usual with feature diagrams, boxes
represent particular features, with the
root representing the product line in
question. Inner nodes denote features
that can be realised in different ways;
leaves indicate concrete shapes of cer-
tain features. The connections between
features in the diagram point out de-
pendencies. Mandatory features are rep-
resented by lines with a filled circle at
the end; lines for optional features have
an empty circle. An arc between lines
indicates an alternative.

Each of the 14 concrete features in
Fig. 3 has been realised as a VMADL
service module, and all of the achieved
product line instances have been re-
alised using VMADL combiners. The
latter not only make it possible to cre-
ate actual CSOM/PL products, but also
make the architectural relationships be-
tween the features (cf. Fig. 1) explicit
at the source code level. Based on the
given module names (cf. Sec. 3.6), the
VMADL compiler decides which interac-
tions are actually required to instantiate
a given product, and generates code only
for those. More detailed descriptions of
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the various feature implementations are given below.
The feature diagram exhibits a constraint imposed on virtual images: they require

combination with the mark/sweep GC as they are not compatible with reference
counting. This is due to the Image feature’s relying on all objects being laid out in a
single contiguous memory area, a property that is not guaranteed by explicit memory
management and reference counting. The feature diagram also excludes combinations
of virtual images with multi-threading. This is simply because the Image feature
was not adapted for thread safety. Note that these combinations are, in principle,
achievable but require some more implementation effort (cf. Sec. 7).

The feature model has been realised in software using pure::variants, an industry-
strength tool for variability modelling and management. It features a model editor,
product configurator, validity checker, and a rich generator infrastructure. Fig. 4 shows
a screenshot from the product configuration view, where the entire feature model tree
of CSOM/PL has been expanded.

In the figure, yellow circles with an “F” denote features. An exclamation mark
indicates a mandatory feature; a question mark, an optional feature; a green “X”,
conflicting features. Unboxed ticks denote automatic selection, tick boxes indicate
possible configuration choices. Double green arrows next to feature circles mean that
these features have dependencies, and hence, consequences for the overall configuration
if selected. The various “Descriptor” nodes contain text fragments that are used to
assemble the list of parameters passed to the make script generated from a configuration.

The selected configuration represents a CSOM VM with a threaded interpreter,
mark-sweep GC, one-tagged integer representation, virtual images, and no multithread-
ing support. The mark-sweep GC has been selected automatically by pure::variants as
the Image feature was included in the product.

From such a product configuration, the SPL tool generates a one-line build script
that is used to drive CSOM/PL Makefile configuration (cf. Sec. 3.6). For the example
given in Fig. 4, the resulting make invocation would look like this: make threaded
marksweep int-one image.

4.2 Feature and Product Implementations

We will now give brief examples of how VMADL was used to implement the CSOM/PL
features as service modules, and how those were combined to instantiate products.
Note that the CSOM “base implementation” did not have to be adapted to meet the
needs of any of the extensions that were added. All combinations could be expressed
using the abstraction capabilities of VMADL and the embedded aspect language,
AspectC++. Throughout this section, we only give brief examples. A more elaborate
example is given in the appendix. It shows the definition of the native multi-threading
service module (NativeThreads) and its combination with the Interpreter and
GCMarkSweep modules. This combination was chosen because it significantly influences
the involved service modules.

Memory Management The three different service modules representing concrete
memory management features each have a particular implementation of a common
interface. The explicit memory management service module, simply falling back
to malloc and supporting no garbage collection, does not provide any additional
functionality but relies on the interfaces offered by VMCore and VMObjects.

The mark/sweep GC implementation is almost transparent to the explicit memory
management service module which acts as an underlying base module. Only few parts
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are adapted in other service modules by refinement or combiners. An example is given
in Lst. 5 for the introduction of a mark field into the VMObject by a ClassDL refine
statement. It inserts the mark field before the first field containing a member slot.

1 service GCMarkSweep {
2 refine VMObject {
3 int gc_field { before fields[0] }
4 }
5 }
6 combine GCMarkSweep, VMObjects {
7 advice execution(VMObjects::initializer()) :
8 around() {
9 gc_start_uninterruptable_allocation();

10 tjp->proceed();
11 gc_end_uninterruptable_allocation();
12 }
13 }

Listing 5 – Combine Mark/Sweep with VMObjects.

Furthermore, a combiner describes how the GCMarkSweep and VMObjects service
modules interact, introducing a guard for object initialisation. This avoids dangling
pointers resulting from partially initialised objects which could be caused by a GC
run during object creation. The corresponding code is shown in lines 6–13 in Lst. 5.

The modularisation of the reference-counting GC (GCRefCount) is, at first, quite
similar, as the example in Lst. 6 illustrates. A refine statement introduces a field for
the reference count in the VMObject class of the VMObjects service module. Other
than with mark/sweep GC, the nature of reference counting demands a high number of
interactions with other modules, since almost every assignment of an object reference
has to be tracked. Thus, combiners have to be defined for all service modules the
reference-counting GC has to be used with. These combiners are typically straightfor-
ward. They increase the reference count of the new object before the actual execution
and decrease the reference count of the old value afterwards.

1 service GCRefCount {
2 refine VMObject {
3 int gc_field { before fields[0] }
4 }
5 }
6 combine GCRefCount, VMObjects {
7 advice execution(VMObject::set_field(self, idx, val)) : around(self, idx, val) {
8 pVMObject old_val = self->fields[idx];
9 gc_inc_reference_counter(val)

10 tjp->proceed();
11 gc_dec_reference_counter(old_val);
12 }
13 advice execution(VMObject::set_class(self, idx, val)) : around(self, idx, val) {
14 pVMObject old_val = self->clazz;
15 gc_inc_reference_counter(val)
16 tjp->proceed();
17 gc_dec_reference_counter(old_val);
18 }
19 ...
20 }
21 combine GCRefCount, Interpreter {
22 advice Interpreter::unwind_stack() : before() {
23 pVMFrame frame = Interpreter_get_frame();
24 gc_inc_reference_counter((pVMObject)frame);
25 }
26 ...
27 }

Listing 6 – Combine Reference Counting with VMObjects.
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Multi-Threading From the modularisation perspective, green threading is quite
undemanding. The service module GreenThreads interacts with the Primitives
service module to register primitives for the Scheduler class and with the VMCore
service module to enable the shell to use threads as well. Another combiner is used
to adapt the Interpreter service module to signal when it reaches a safe point in
execution to allow thread pre-emption as shown in Lst. 7.

1 service Interpreter {
2 expose {
3 pointcut safe_points() = execution("void send(...)");
4 }
5 }
6 combine GreenThreads, Interpreter {
7 advice Interpreter::safe_points() : before() {
8 ++scheduler_return_count;
9 Scheduler_insert_scheduler();

10 }
11 }

Listing 7 – Pre-emption for green threads.

Some additional combiners are necessary to support the combined usage of multi-
threading with the different GCs. For configurations using GCMarkSweep, the combiner
implements an extension to the GC’s mark phase to add the Scheduler-internal list
of available threads to the GC’s root set. Were this not done, all but the currently
running thread would not be regarded as live objects. The case is similar for reference
counting: assignments to Scheduler data structures have to be handled like all other
assignments to ensure reference counts are updated correctly.

For NativeThreads, the changes are more fundamental than for green threads
(cf. Sec. 2). The major task is to achieve thread-local execution of interpreters by
adapting the global frame pointer to be a thread-local one. Since most service modules
are implemented without global state, this adaptation need is very low.

The aforementioned assignment adjustments were done to enable the combination
of the NativeThreads and GCRefCount service modules. With GCMarkSweep, this is
more challenging. The scheme that was implemented in the feature combination found
in CSOM/PL is a stop-the-world solution [JL96]. This is implemented entirely inside
a combiner (cf. App.A) and will therefore become part of an instance of the CSOM
product line only if both service modules—mark/sweep GC and native threads—are
chosen.

Execution Engine Interaction with the two possible interpreters is realised us-
ing the common Interpreter service module interface. The threaded interpreter
(InterpreterThreaded) requires some interaction with other service modules; e. g., a
combination with the VMObjects service module achieves the translation of method
bytecodes into threaded code [Bel73] after method assembly by the Smalltalk compiler.
Bytecode index handling is also adapted. The original design implies a local bytecode
index in every VMFrame object. For threaded interpretation, this needs to be changed,
since it relies on a global pointer to the bytecode handler executed next.

Integer Representation When integers are implemented as “ordinary” objects, i. e.,
boxed integers, there is no difference between sending a message to an Integer instance
or to another object: the virtual method table (VMT) is accessed and the message
implementation resolved. Conversely, tagged integers do not have a multiple-slot
representation in memory, and do not reference a VMT. Instead, a global “surrogate
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object” exists via whose VMT messages sent to tagged integers are dispatched.
In CSOM, adopting this change is challenging because sending messages to objects

is realised via C macros, which cannot normally be redefined. However, as VMADL
features named sections (cf. Sec. 3.3), redefining the SEND macro infrastructure is done
by providing a replacement for the corresponding named section in the ObjectModel
service module. For this case study, we used one-based tagging as in Smalltalk-80
[GR83].

Image Persistence The Smalltalk virtual images implementation in the Image
service module relies predominantly on the abilities of ClassDL to refine classes and
add methods. This is used to update references after loading an existing image. The
change in the startup process of the VM to load an image instead of initialising the VM
from source files is done by simple adaptations of initialisation routines implemented
with a service module combination.

4.3 Feature Generalisation

The intertwined nature of VM implementations usually leads to ad-hoc defined inter-
faces. As can be seen from the previous section, this tendency exists also for service
modules. However, once a number of features requires a certain set of interfaces and
events, it becomes beneficial to generalise these features.

In VMs, a common problem is the interaction of all modules with GC logic.
The characteristics for different GC approaches differ especially when it comes to
performance characteristics. Thus, a VM product line should be able to provide
different GC algorithms for specific purposes.

The major concern for many GC types are read and write barriers. Thus, the VM
needs to make it explicit for the GC when values are read from the heap or stored into
it. Also important are references stored in registers, on the stack, or in other globals
that are not immediately known to the GC.

What we have seen above for the reference-counting GC are typical write barriers:
on every write, the reference count of the old and new values have to be adapted.
Furthermore, there are a couple of write barriers for storing into temporary locations
on the stack necessary to be able to track the correct reference counts and avoid
premature reclamation. Read barriers are very similar, but are not discussed here.
One example of a GC algorithm using a read barrier is the pauseless GC [CTW05].
Here, the value of each reference that is read has to be checked and possibly updated.

With VMADL, concepts like read/write barriers can be reified and generalised on
the architectural level. Instead of leaving the responsibility to the reference-counting
GC to identify the points where reads/stores constitute a relevant event for a barrier,
the service modules themselves can make these explicit. For example, see the pointcut
in Lst. 8 which aggregates the relevant writes of VMObjects.

1 pointcut Interpreter::object_store() =
2 execution(VMObjects::set_field(...))
3 || execution(VMObject::set_class(...))
4 || ...

Listing 8 – Generalised Write Barrier for the VMObjects.

This leads to the desired modularisation, since now the GC modules need only
architectural-level information about the event, and a service module can expose this
through appropriate pointcuts.
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Name Selected Optional Features

Base Switch/Case Interpreter Explicit Memory
RefCount Switch/Case Interpreter RefCount GC
Mark/Sweep Switch/Case Interpreter Mark/Sweep GC
Green Switch/Case Interpreter Green Threads
Native Switch/Case Interpreter Native Threads
Image Switch/Case Interpreter Mark/Sweep GC Image
Tagged Ints Switch/Case Interpreter Mark/Sweep GC One Tagged Ints
Threaded Threaded Interpreter Mark/Sweep GC

Table 1 – CSOM/PL configurations used for evaluation (cf. Fig. 3)

5 Evaluation

Having turned a set of hand-crafted extensions to a base system into a set of cleanly
encapsulated service modules forming an SPL, there are two points of view from which
the results should be evaluated. First of all, it is important to assess the impact of
modularisation and combination on performance. This is especially interesting in the
domain of VM implementations, where performance is crucial. CSOM has a set of
benchmarks (cf. Sec. 2) that can be used to evaluate the performance of hand-crafted
extensions versus automatically combined products. The second perspective is that of
code complexity. We have evaluated the source code by applying several metrics to it,
also considering modularity improvements.

The hand-crafted CSOM variants were the results of student course-work, as noted
in Sec. 2. These variants are used as the baseline for comparison. The derived VMADL-
based product line is kept as close to the hand-crafted versions as possible. To avoid
invalidating the results, the code bases have been synchronised to remove differences
in functionality and execution semantics. The differences in the source code were
minimised. The VMADL-based implementation uses configurations corresponding to
the hand-crafted versions. The following section uses the selected optional service
modules to indicate the exact configuration. For example, Green is the configuration
including the (mandatory) base system and the green-threads feature, while Base is
the base system without any optional service modules, i. e., the simplest possible VM
configuration with a minimal feature set.

Below, we elaborate on the performance and code complexity assessments, and
conclude the section with a discussion of our approach.

5.1 Virtual Machine Performance

Performance measurements were run on a 8-core workstation with two Intel Xeon E5520
processors (2.27GHz clock rate, 16 hyperthreads overall, 8MB cache) and 8GB RAM.
The operating system was Ubuntu Linux 10.10 with a 64-bit kernel (version 2.6.38-11)
and 32-bit user land. The used compilers were GNU C++4.5.1, and ac++ 1.0/ag++ 0.8
for AspectC++. The C++ compiler flags used were -m32 -O3 -flto, i. e., to compile
for 32 bit, with the highest optimisation level, and link-time optimisation turned on.
The used benchmarks originate from the original SOM implementation and are a set
of micro-benchmarks and kernels. They are listed with a brief description in Tab. 2.

For the performance evaluation, we followed the suggestions of Georges et al.
[GBE07]. The benchmarks were executed using ReBench8 on an idle machine. Each
benchmark was executed 100 times to ensure statistical confidence in the results. Each

8https://github.com/smarr/ReBench

Journal of Object Technology, vol. 10, no. 12, 2011

https://github.com/smarr/ReBench
http://dx.doi.org/10.5381/jot.2011.10.1.a12


CSOM/PL · 19

Micro-benchmarks Kernels

IntegerLoop pure loop over integers Bounce physics simulation
Fibonacci standard tree-recursive Queens eight queens puzzle
Dispatch method dispatch Storage n-ary tree creation
Loop nested loops Sieve simple prim sieve
Sum object modification in loops Towers Towers of Hanoi
List linked list creation/traversal BubbleSort standard sort
Recurse self-recursive calls QuickSort standard sort

TreeSort binary search tree

Table 2 – Benchmarks used for performance evaluation

benchmark was executed in a dedicated CSOM instance. The benchmark runtime was
measured without VM startup time. To reduce result variation, all benchmarks were
executed on exactly the same core, and we regard only single-threaded benchmarks.

Measurements were run for pairs of CSOM versions with the same features. We
compare the hand-crafted implementations with the corresponding CSOM/PL con-
figuration generated from VMADL service modules. This allows us to assess the
performance impact of using VMADL on a single CSOM/PL product. We did not
run performance measurements for feature combinations for which no hand-crafted
VM exists as they cannot provide any insight on overheads induced by VMADL. Each
measurement pair for a given benchmark and feature set was used to calculate the
performance ratio of the VMADL-based version divided by the hand-crafted version.
Thus, the ideal result would be a factor of 1, indicating identical performance properties.
A runtime factor higher than 1 indicates an overhead induced by our approach.

The performance comparison results are displayed in Fig. 5. For each CSOM
configuration, the relative performance of the VMADL version to the hand-crafted build
is shown as an accumulation over all benchmarks. The individual benchmark results
are left out for brevity; they neither show statistically relevant outliers nor diverging
behaviour. The used graph is a standard box plot and indicates the distribution of
the measurements. The desired result of 1 is indicated by a dashed line.

The first box, average, represents the average performance of all particular bench-
mark runs for all configurations. It shows that adopting VMADL does not entail a
statistically significant overall impact on performance. On average, the benchmarks
take, on the VMADL versions of CSOM, only about 99.18% of the runtime they
take on the hand-crafted versions. However, with a standard deviation of 3.3% the
difference is not significant.

Half of the VMADL-generated products exhibit small improvements. Only the
Tagged Ints, Native, and Threaded configurations exhibit minor performance
degradations of less than 2%. Since these performance changes are within the limit
of the performance changes observed for the other experiments as well, we attribute
them to the effects of compiler heuristics. The woven code produced by AspectC++
introduces additional complexity for optimisations; so does the code organisation, in
terms of C implementation files changed between the hand-crafted and the VMADL
version. Thus, we assume those performance differences to be caused by differently
applied compiler optimisations. This assumption was tested by running the benchmarks
with other optimisation flags and compiler versions. The result is that the different
configurations have different optimal compiler settings, fluctuating within the 2%
margin around the factor 1.

Note that there are currently restrictions with regard to the reliability of compiler
optimisations and certain AspectC++ constructs. As mentioned in Sec. 3.6, the used
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Figure 5 – Accumulated relative performance over all benchmarks of VMADL versions to
hand-crafted feature combinations.

C++ compiler does currently not reliably optimise advised code modifying return
values. To achieve a performance neutral implementation, performance critical parts
on the interpreter loop had to be refactored to use reference parameters.

5.2 Source Code Complexity

To assess source code complexity, we applied several metrics. Notice that only the
actual CSOM/PL source code was regarded. For some of the extensions, e. g., multi-
threading, the Smalltalk libraries had to be extended as well, providing APIs for the
new features. As those do not belong to the VM as such, they were not regarded.

The metrics were applied to the entire corpus of CSOM source code including
all extensions. Hand-crafted versions represented reference values, to which results
obtained from service module source code were put in relation.

Lines of Code Results The physical source lines of code (PSLOC) [Par92] metrics
counts all lines of code that are not empty and do not solely consist of comments.
Applying VMADL resulted in a moderate increase of 2.1% (143 lines) in PSLOC, which
must be accounted to the use of combiners as they add a declarative yet somewhat
more verbose syntax. It needs to be noted that this value is adjusted as it does not
account for the effect of also using ClassDL. The employment of ClassDL resulted in
a decrease of 738 PSLOC. As we want to assess the sheer effect of VMADL, we elided
the ClassDL effect.

Modularity Results To determine feature locality and modularisation, we identified
changed implementation modules as well as modified functions and structures at the
sub-module level. CSOM’s base configuration Base was compared to RefCount,
Mark/Sweep, Green and Native. Moreover, CSOM’s Mark/Sweep configuration
was compared to Image, Tagged Ints, and Threaded. That way, it was possible
to determine, by feature, how many lines of code were added or modified, and how
many files and function or structure definitions were affected. The results allow a
comparison of hand-crafted and VMADL implementations.

Results from the modularity metrics are shown in Tab. 3. The table details the
impact on the level of lines of code, files, and language. The impact on lines of code is
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Lines of Code
Added Removed Changed (new) Changed (old)

HC VMADL HC VMADL HC VMADL HC VMADL

RefCount 455 564 3 0 31 0 35 0
Mark/Sweep 541 788 4 0 68 0 32 0
Green 352 390 0 0 13 0 5 0
Native 1033 702 0 0 7 0 3 0
Image 3375 2429 30 0 94 0 133 0
Tagged Ints 222 296 0 0 33 0 23 0
Threaded 1447 1001 6 0 96 0 71 0

Total sum 7425 6170 43 0 342 0 302 0

Files Functions & Structs
Added Modified Modified

HC VMADL HC VMADL HC VMADL

RefCount 2 3 14 0 37 0
Mark/Sweep 0 3 22 0 35 0
Green 4 3 6 0 9 0
Native 14 5 10 0 20 0
Image 6 11 38 0 85 0
Tagged Ints 1 3 10 0 29 0
Threaded 9 7 10 0 31 0

Total sum 36 35 110 0 246 0

Table 3 – Modularity metrics results. Comparing hand-crafted (HC) vs. VMADL

represented as newly added lines, removed lines, and changed lines. Changed lines are
split into new and old, representing the amount of modification as reported by GNU
diff. That is, the lines in a chunk of changes in the base version (old) compared to
the changes in the final version (new). The numbers for changed lines do not include
added and removed lines.

The changes on file level correspond better to modules than the fine-grained lines
of code metrics and are given here with the number of new and changed files. For the
intermediate level, we report the number of changed functions or structure definitions
to give a better indication of the number of semantic changes.

The table clearly shows that hand-crafted implementations exhibit a larger (more
than 1,000 lines) implementation overhead. Since we did not change the inner mod-
ularisation of service modules, the number of added files remains constant, while
eliminating crosscutting changes and thus reducing implementation overhead. Thus,
the VMADL approach yields excellent modularity: while hand-crafting involves a
large number of modifications in existing code, using VMADL and service modules
merely implies introducing new files, which contain all of the newly introduced code.

In a nutshell, this means that VMADL supports real modularity: extensions are
not invasive in any way; they are completely encapsulated in dedicated files, which in
turn results in a unified source base for the whole CSOM/PL.

5.3 Discussion and Conclusions

Modularity An approach can be called “modular” [Par72] if “separate groups [can]
work on each module with little need for communication”, “drastic changes [can be
made] to one module without a need to change others”, and “it [is] possible to study
the system one module at a time”. More recent elaborations on modularity, such as
those by Meyer [Mey97], add more detail to these criteria but basically imply the
same.
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As interfaces are at the core of the VMADL approach, the benefits usually brought
about by them are also benefits of VMADL. Communication among development
groups can take place in terms of the interfaces of service modules. As long as changes
to modules do not affect their interfaces, other modules do not have to be changed.
When semantically meaningful sets of join points are exposed and given appropriate
names (cf. Lst. 1), it is even possible to change their definition (i. e., pointcut) without
having to change a client. In fact, it might even be the case that the details of a
module interaction change, but the modules themselves do not have to be modified as
the interaction is specified in a VMADL combiner.

Studying a system as complex as a VM one module at a time is usually hard.
Having a clear separation of the various services into distinct modules helps in this
process as it clarifies module boundaries. In this regard, VMADL combiners, keeping
the entire specification of service interactions in one place and referring to interfaces,
certainly provide stronger means than simple constructs like macros or certain design
patterns [Lad10, pp. 17ff]9 usually mentioned when discussing MDSOC.

One might criticise that combiners sometimes need to refine particular pieces
of service modules to enable the interaction they specify. While this might come
across as a violation of modularity, we would like to note that such intrusions are well
encapsulated and strictly confined to the interaction at hand. They apply only in the
setting described by the respective combiner and have no effect in other interactions
not occurring in the same product configuration.

VMADL’s name suggests a strong tie to the VM implementation domain. In
fact, the name stems from the primary purpose the language was developed for.
Consequently, VMADL can, in spite of its name, be used in other implementation
domains as well. As shown, it can prove useful in C/C++ projects that have the
potential to grow into a software product line.

JIT Compiler Integration The simplicity of CSOM, most notably the lack of a
JIT compiler, gives rise to the question of how such a feature could be integrated using
the VMADL mechanisms. Using VMADL constructs, it is not possible to directly
reason about exposed and other join points in machine code generated at run-time.
However, it is possible to use VMADL to express that JIT compiler code generating
code corresponding to such join points be instrumented accordingly.

Consider the example of combining a JIT compiler and reference-counting garbage
collector. Provided the JIT compiler exposes internal situations such as “generating
pointer assignment” and “generating code for parameter passing”, the reference counting
GC module can interact by requesting the generation of reference counter adjustments
along with the actual assignments.

SPL Tooling Utilisation of SPL tool support in CSOM/PL is less extensive than
it might be expected: pure::variants is only used for feature model representation,
product configuration and validation, but not for generating large amounts of source
code required to build the product. Instead, there exist various cleanly separated
modules with explicit bidirectional interfaces mapping directly to product line features.

Conclusions From the results in the three different areas of interest described
above, and from the considerations on Parnas’ modularity criteria, we conclude that
using VMADL is fruitful. Its employment has no negative impact on performance.

9Also, www.ibm.com/developerworks/java/library/j-aopwork15/.
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It supports actual modularity. The lines of code count increases slightly, but for
the greater good of module interdependencies’ being made explicit in the code. The
subjective impression of developers is that VMADL makes working with the CSOM
source code more comfortable.

Finally, the strong modular characteristics of the product family code base enabled
by VMADL result in an excellent direct mappability of product configurations to
source code. This, in turn, significantly reduces the effort required to establish a
collection of code fragments as input to the complex SPL generator infrastructure.

6 Related Work

In the field of VM implementations, various projects have attempted to tackle the large
complexity that is typical of the domain. Still, the strong focus on both architecture
and modularity that we have adopted has not been chosen by any of them. Hence,
the results from these projects do, however significant in their own right, not bring
about the same improvements in terms of modularity and architecture perception at
the source code level as ours.

The PyPy project [RP06] focuses on tool-chain based VM development. The core
idea is to swap out implementation complexity to dedicated tools that are applied at
certain times during VM code generation. The PyPy VM is implemented in Python
at a very high level, allowing developers to use the object-oriented abstraction and
dynamic language mechanisms that Python offers. Implementation takes place without
regarding the fact that the ultimate VM will have a GC component. The GC is added
later automatically during code transformation steps of the tool chain.

PyPy thus hides away the complexity of interactions between VM run-time and
memory management, easing development significantly. While this is appreciable, it
comes at a certain cost. The interpreter and other parts of the VM are represented
by code actually describing a VM implementation, whereas memory management is
represented by code that describes VM implementation transformations. There are
two different kinds of abstraction at play in this setting, with memory management
being extraneous to the actual VM. The goal we pursue with VMADL, conversely, is
to give VM developers full control over all features at the same level of abstraction.
VMADL supports this approach by providing bidirectional interfaces and combiners
that allow for dealing with complex interdependencies.

Metacircular VM implementations generally benefit from the modularisation tech-
niques offered by the implemented language directly. The Jikes RVM [AAB+99, A+00]
and Maxine10 are Java VMs implemented in Java.

Jikes is a magnificent platform for VM implementation research and supports
a wide variety of choices among, e. g., GC implementations and JIT compilers. It
makes use of code generation11 to complete Java source file stubs for various features
prior to compile-time. Memory management is performed by MMTk [BCM04], which
encapsulates GC complexity, but introduces hardwired interactions between GC logic
and the VM, in either code base, leading to the kind of crosscutting concerns typical
for the VM implementation domain. To summarise, Jikes realises variability by
template-based code generation, as opposed to VMADL, which achieves the same
using declarative means at the programming language level. Also, Jikes does not
support disentangling the way VMADL does.

10labs.oracle.com/projects/maxine
11jikesrvm.org/Building+the+RVM
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Maxine tries to improve modularity with the language features12 offered by Java 5.
Interfaces are used to encapsulate features, and a build-time configuration mechanism
decides about feature implementations. Even though all feature interactions are done
via interfaces, dependencies between feature implementations are not as obvious as
with VMADL, since interactions are still scattered. Furthermore, the implementation
does not achieve modularisation at the same degree as it would be possible with
MDSOC techniques.

ClassDL was inspired by feature-oriented programming [Pre97, ALRS05]. Refining
a previously defined class in the context of a specific feature effectively supports
heterogeneous crosscuts. VMADL thus combines aspect- and feature-oriented ap-
proaches [ALS06] in a more architecture-aware manner, e. g., by making module
relationships explicit in declarations using requirement statements.

VMKit [GTL+10] is called a “substrate” for implementing VMs. It provides a
common foundation that implementations of different instruction sets and programming
languages can build upon. The substrate includes memory and thread managers as well
as a JIT compiler. Implementing a VM on top of it involves providing certain callbacks
to the substrate, and mappings from ISA or programming language constructs to the
substrate’s abstractions. VM implementation is thus significantly simplified.

While VMKit supports variability to the extent that implementation of different
languages is simplified, it restricts choices offered at the substrate level. For instance,
LLVM [LA04] is used as the JIT compiler infrastructure, and MMTk [BCM04] as the
memory manager. The latter provides particularly good variability, but the overall
degree of control over feature variation is coarse-grained, compared to our approach.

Compared to other ADLs, VMADL is most closely related to ArchJava [ACN02].
Like ArchJava, VMADL makes system architecture explicit in the source code it-
self. Other languages like WRIGHT [AG97] or Rapide [LV95] separate architecture
description from actual implementation, which is problematic, since it implies the
need to keep both synchronised. VMADL’s bidirectional interfaces are related to
principles found in nesC [GLvB+03], an extension to C designed to structure systems
into components with clear boundaries. The interfaces used in nesC declaratively
describe component interactions using events and callbacks.

In contrast to VMADL, ArchJava assumes a dynamic architecture and multiple
component instances at run-time. Components provide communication ports, and
connections are explicit. This is similar to VMADL combiners but provides lower flexi-
bility, since connections need to be explicit in component implementations. VMADL’s
combiners support module combinations at the interface level without changing their
implementations. By using a pointcut language, our approach is more flexible.

MDSOC techniques offer various opportunities for building SPLs. Alves et
al. [AMC+07] describe a methodology which uses aspect-oriented techniques to extract
an SPL from an existing code base. The approach is similar to what we have done to
create CSOM/PL on the basis of the different extensions available. Compared to it,
we do not use additional aspects for the evolution to be able to add new products to
the SPL, instead we chose to bring the adaption to an architectural level and describe
it by means of module interaction.

One of the application areas of FeatureC++ [ALRS05] is the implementation of
SPLs [RSSA08]. It regards feature composition as refinement of a basis implemen-
tation. Feature modules are represented as (aspectual) mixin layers defining such
refinements. Conversely, VMADL service modules are complete implementations of

12java.sun.com/developer/technicalArticles/releases/j2se15langfeat/
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features composed with others by connecting interfaces. VMADL does not as much
regard the single features as crosscutting concerns as their orchestration, which it
makes explicit in combiners.

Figueiredo et al. [FCS+08] investigated the influences on stability as an important
SPL property. Their results suggest that SPLs decomposed with AOP are more stable
regarding adaptions in optional or alternative features. We assume similar benefits for
an SPL built with VMADL.

VMADL currently expresses explicit interactions between service modules. Some
languages for modelling variability at an architectural level include constructs to
model other types of relationships as well. One example in the field of product lines
is the Variability Modelling Language [LSGF08]. This language is meant to be used
on a more conceptual level and not embedded into the implementation. It aims to
describe variability orthogonally to architectural descriptions. This approach would be
beneficial to describe, for instance, service modules as alternatives. In addition to the
variability already described with VMADL, some of the concepts of this language could
be used to provide advanced means for the configuration of instances of CSOM/PL.

7 Summary and Future Work

We have presented CSOM/PL, a virtual machine product line implemented in C,
AspectC++, and VMADL, and optionally representing the feature model with
pure::variants. VMADL, an implementation of which is one of this work’s contributions,
surpasses previously achieved modularisation in the VM implementation domain. It
supports modular abstraction by means of service modules with bidirectional interfaces.
Using VMADL allowed us to implement several CSOM Smalltalk VM features in
combinable isolated modules—features that were previously realised as hand-crafted
extensions. This also facilitated devising a product line. The evaluation shows that
performance is not harmed, and that source code modularity is significantly improved.

Regarding SPL tool support, VMADL represents a valuable tool that can be used
to introduce modular SPL development in languages lacking inherent modularity
support. Moreover, VMADL provides direct mappings from feature models to source
modules, reducing the complexity of code preparation for consumption by generators.

Some perceivable feature combinations have not been realised yet (cf. Sec. 4.1). This
is not because they are impossible to achieve; it is a matter of providing more service
module interfaces and combinations. Our ongoing work is concerned with moving
towards the goal of dropping all constraints shown in Fig. 3 that are not conceptually
necessary. For instance, threading together with virtual images could be realised as
well as virtual images independent from a particular garbage collection technique.

Performance measurements have shown that fine-grained control over feature
application order is important. We will investigate how to make such control available
in VMADL declarations without introducing uncalled-for complexity.

The ClassDL extension was necessary because CSOM, including its particular OOP
emulation, is implemented in C, and because this led to a lack of declarative means for
class (re)definitions. An implementation in C++, combined with AspectC++ and/or
FeatureC++, would have eliminated this need. In fact, a port of CSOM to C++ has
been done and is considered for future research in disentangling VM architecture.

We also hope to transfer our results to other, more complex, VM implementations
to gain more insights into the modularisation of full-scale VM implementations. Part
of the ongoing work in the Maxine project at Oracle Labs is investigating this.
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A VMADL Example

service NativeThreads {
    require Memory;
    require VM;
    require VMObjects;
    require Interpreter;
    #include <pthread.h>
    extern pthread_key_t tsg_frame, tsg_thread;
    pVMMutex  VMMutex_new(void);
    void*     VMThread_get_safe_global(pthread_key_t);
    void      VMThread_set_safe_global(pthread_key_t, void*);
    class VMMutex : VMObject {
        pthread_mutex_t  embedded_mutex_id
        pthread_mutex_t* get_embedded_mutex_id()
        void             lock()
        void             unlock()
        bool             is_locked()
    }
    class VMSignal : VMObject { ... }
    class VMThread : VMObject { ... }
}

combine NativeThreads, Interpreter {
    advice execution("void Interpreter_set_frame(...)") && args(value) : around(_VMFrame* value) {
        VMThread_set_safe_global(tsg_frame, value);
    }
    advice execution("_VMFrame* Interpreter_get_frame()") : around() {
        pVMFrame frame = (pVMFrame)VMThread_get_safe_global(tsg_frame);
        *tjp->result() = frame;
    }
}

combine NativeThreads, GCMarkSweep {
    require Interpreter;
    #include <pthread.h>
    bool stop_the_world;
    pthread_mutex_t mtx_do_collect;
    pthread_mutex_t mtx_gc_structure;
    advice execution("void gc_collect()") : around() {
        if (pthread_mutex_trylock(&mtx_do_collect) == 0) {
            stop_the_world = true;
            wait_for_all_threads();
            tjp->proceed();
            signal_proceed_to_all_threads();
            pthread_mutex_unlock(&mtx_do_collect);
        }
    }
    advice Interpreter::safe_point_in_execution() : before() {
        if (stop_the_world) {
            gc_mark_reachable_stack_objects();
            wait_until_gc_completed();
        }
    }
    advice call("% pthread_exit(...)") : before() { dec_thread_count(); }
    advice call("% pthread_create(...)") : before() { inc_thread_count(); }
    advice execution("void Universe_exit(int)") : before() { signal_exit_to_gc_thread(); }
    advice GCMarkSweep::reserve_and_get_entry() : around() {
        pthread_mutex_lock(&mtx_gc_structure);
        tjp->proceed();
        pthread_mutex_unlock(&mtx_gc_structure);
    }
    advice GCMarkSweep::split_and_reserve_entry() : around() {
        pthread_mutex_lock(&mtx_gc_structure);
        tjp->proceed();
        pthread_mutex_unlock(&mtx_gc_structure);
    }
}

Note: the code displayed
here was abbreviated. Irrelevant 
parts are not shown.

required interfaces
from other service modules

here starts the definition
of the NativeThreads service 
module interface, including 
ClassDL definitions

the interpreter needs to be
executed thread-locally; thus, its 
global state variables have to be 
made thread-safe

the stop-the-world GC scheme
is implemented entirely in this service 
module combination

this advice guarantees
stop-the-world semantics:
– try to acquire a lock; if this fails, a GC run
   has already been requested in another 
   thread
– when the lock was acquired, signal all 
   threads and wait until they have stopped 
   at a safe point; then proceed with the 
   collection
– finally, signal all threads to continue

safe point: suspend thread 
execution, mark all stack objects, 
and wait for the signal to continue 

management: counting
threads, and ensuring GC 
structures are thread-safe
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