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Abstract We present a separation logic specification and verification of
linked lists with views, a data structure from the C5 collection library for
.NET. A view is a generalization of the well-known concept of an iterator.
Linked lists with views form an interesting case study for verification since
they allow mutation through multiple, possibly overlapping, views of the
same underlying list. For modularity, we build on a fragment of higher-
order separation logic and use abstract predicates to give a specification
with respect to which clients can be proved correct. We introduce a novel
mathematical model of lists with views, and formulate succinct modular
abstract specifications of the operations on the data structure. To show
that the concrete implementation realizes the specification, we use frac-
tional permissions in a novel way to capture the sharing of data between
views and their underlying list.

We conclude by suggesting directions for future research that arose
from conducting this case study.

Keywords Separation logic, formal verification, modularity

1 Introduction

Separation logic [Rey02] is a generalization of Hoare logic better suited for reasoning
about heap data in imperative programming. In particular, the logic’s separating con-
junction connective directly supports reasoning about situations where heap-allocated
data can be separated into non-overlapping regions. The challenging applications of
separation logic are therefore those involving partially overlapping data structures.
List iterators provide one example of such structures, and they have been studied
extensively in connection with separation logic [KAB+09, BRZ07, HH08].

Here we investigate the linked list with views (LLWV) data structure from the
C5 library [KS06] of collections for the .NET framework. Where an iterator can be
thought of as marking a current position in a list, a view more generally marks a list
segment, so an iterator is just a special case of a view (of length zero). A list may
have multiple views, the views may overlap, and modifications to the underlying list
show through the views and vice versa; for more details, see Section 2.

Jonas Braband Jensen, Lars Birkedal, Peter Sestoft. Modular Verification of Linked Lists with Views
via Separation Logic. In Journal of Object Technology, vol. 10, 2011, pages 2:1–20.
doi:10.5381/jot.2011.10.1.a2

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2011.10.1.a2
http://dx.doi.org/10.5381/jot.2011.10.1.a2


2 · Jonas Braband Jensen, Lars Birkedal, Peter Sestoft

Hence views provide a much more powerful mechanism than iterators but also
pose new challenges for verification. In particular, the co-dependencies between a
list and its views are typically implemented by cyclic pointer structures, and there
is no “obvious” mathematical model of a linked list with views. We find that this
makes the data structure a challenging and compelling case study for specification
and verification with separation logic and related approaches.

1.1 Related Work

Hoare pioneered the proof method of relating a concrete (object-oriented) implemen-
tation to an abstract (functional, mathematical) implementation [Hoa72]; we use the
same technique here. We also use the concepts of precondition and postcondition,
which are due to Dijkstra [Dij76] and which form the basis for Meyer’s design-by-
contract methodology [Mey92]. However, we do not use class invariants, because they
appear to fall short when, as in the case of linked lists with views, there is no hier-
archical “ownership” relation among the objects making up a data structure [Par07].
Hence our formalization is not immediately expressible in contemporary frameworks
such as the Java Modeling Language [CKLP06] or .NET Code Contracts [FBL10].

The formalization and proof of lists with views, presented in this paper, uses sepa-
ration logic and has many similarities with separation logic formalizations of iterators.
The iterators from the Java standard library seem to be the most popular objects of
study [KAB+09, Par05, HH08, BRZ07]. In contrast to the list views discussed here,
such iterators become invalid after structural modification to the underlying list, and
so it becomes an important part of the specification to capture the protocol that
constrains the permitted order of method calls.

Krishnaswami et al. [KAB+09] use higher-order separation logic to give an elegant
specification of iterators. It allows multiple iterators at the same time, but iterators
are read-only.

Parkinson [Par05] specifies iterators in first-order separation logic, instead using
counting permissions to share the list between multiple iterators. Again, modification
of the list through iterators is not considered.

Haack & Hurlin [HH08] use fractional permissions to give a specification that
allows both multiple iterators and (limited) modification of the list through iterators.
The techniques used to achieve this have similarities to what we present in Section 4.3.

In contrast to iterators, it is always well-defined how views behave after the un-
derlying list is modified.

1.2 Significance for Object-Oriented Languages

The present work focuses on a particular aspect of object-oriented languages: local up-
date (by assignment x.f=e to object fields) combined with sharing (by having multiple
references x and y denoting the same object). This combination means that multiple
surface “names” x.f and y.f denote the same updatable data structure, which makes
object-oriented programs hard to reason about using the basically substitution-based
approach of Hoare logic. This is not just a formal problem, but also a challenge to in-
formal program understanding, as evidenced by the recent emphasis on the virtues of
immutable data; see for instance Josh Bloch’s admonishment “Minimize Mutability”
[Blo08, Item 15].

In this paper we use separation logic to handle the combination of field update
and sharing. We also assume the object-oriented virtue of encapsulation: a client
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Figure 1 – (a) Linked list with one view. (b) Linked list with two 1-item views and one
2-item view.

cannot arbitrarily access the internals of objects on which it operates. This is of
course essential for preservation of invariants and hence for correctness.

On the other hand, we do not address inheritance and virtual methods. Although
these are important and challenging features, we believe they are rather orthogonal
to the formalization here, and related work has devised one way in which to handle
them formally in the context of separation logic [PB08].

1.3 Outline

Section 2 introduces linked lists with views as they are seen from the perspective of
a client, and Section 3 describes how they were implemented in this case study.

We give our specification in Section 4 in a fragment of intuitionistic higher-order
separation logic [BBTS05], using abstract predicates [PB05], such that clients can
be verified without revealing information about the concrete implementation of the
data structure. The overall idea in this approach is to use a predicate L(x, α) that
relates a data structure pointer x in the implementation to a mathematical object α
that models the data structure abstractly. Partial-correctness specifications for each
method f on x are then expressed in terms of this predicate; they are typically of the
form {L(x, α)}x.f(. . .) {L(x, α′)}.

We present the concrete realization of the abstract predicates in Section 5, using
fractional permissions.

Section 6 presents and discusses the alternative models we have considered.
An earlier version of the results in this paper was published at the FTfJP’10

workshop.

2 Linked Lists With Views

The linked list data structure is well known and is a standard example of separation
logic specification and proof. Here we consider linked lists with views, a data structure
designed as part of the C5 collection library [KS06] that provides several new verifica-
tion challenges. A view is a window on a contiguous segment of a list; a list can have
multiple, possibly overlapping, views; see Figure 1 for two examples. An update to
a view affects the underlying list as well as overlapping views; and an update to the
underlying list may affect multiple views. Finally, a view can be slid left and right
along a list, and can be grown and shrunk. A list and its views are closely intertwined,
and the update semantics means that there is no “obviously right” model in terms of
standard mathematical structures such as sequences, trees and sets.
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Figure 2 – Class diagram of the implementation.

But why consider the intricacies of these list views at all? Because views have
several interesting applications. With views, one can give linked lists and array lists
a single common interface, while avoiding the explicit manipulation of internal linked
list nodes and hence raising questions of the list’s structural integrity, yet provide
efficient item access in linked lists, via views instead of item indices.

In fact, a zero-item view is a cursor that points between (or before or after) list
items, and there are n+ 1 distinct zero-item views on an n-item list; whereas a one-
item view is a cursor that points at a list item, and there are n distinct one-item
views on an n-item list. Just for this reason, views may be beneficial even for array
list algorithms where it is often unclear whether an index i is meant to point before,
at, or after the i’th item.

Moreover, a view implements the same interface and supports the same operations
as linked lists and array lists, so “sort this particular list segment” can be decomposed
into “create a view comprising this particular list segment” and “sort the view”. This
orthogonality considerably reduces the number of operations that the list interface
must exhibit: a single “search view” operation replaces “search entire list”, “search
list starting at index i”, “search list starting at index i and ending at item i + n”.
Furthermore, views (and lists) can be looked at “backwards” so “search view” actually
represents 3 · 2 = 6 different search functions. The same holds for other kinds of list
traversal, clearing, shuffling, and so on. Thus views lead to a considerably leaner and
more regular list library design.

Apart from the use as between-item and at-item cursors, and to achieve orthogo-
nality of list operations, our updatable slidable views enable elegant implementation
of some algorithms such as Graham’s point elimination scan when computing a 2D
convex hull [KS06, section 11.3]; here three-item views are called for.

The actual C5 data structures are generic, or parametrically polymorphic, in the
item type. In this paper we assume for simplicity that list items are just integers,
but our proofs do not rely on this fact, and the specification and verification can be
extended using higher-order verification techniques for generics [SBP10].

3 Implementation

A class diagram of the implementation data structures is shown in Figure 2. An
LLWV has class List; it uses a circular doubly-linked list of Node objects internally
to hold the list items. Each node n has a field value that holds the item value; fields
prev and next for the doubly-linked list representation; and fields viewsB and viewsE
that hold references to two singly-linked lists of View objects: a list of those views
that begin just after n and a list of those views that end just before n.

It is an invariant of the data structure that if v.bgn points to n, then n.viewsB
points to a list with next-pointers nextB in which v occurs exactly once; and similarly
for end/viewsE/nextE.
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Figure 3 – Object diagram showing the heap layout of the example LLWV from Fig-
ure 1(b), with two items and three partially-overlapping views. Dashed arrows make
up the list of items, while solid arrows are pointers maintained to support views.

There is a sentinel node, whose value we ignore, at the beginning and end of the
list. In fact, a single Node object can be used as both start sentinel and end sentinel
since the sets of fields used in these two roles are disjoint.

As an example of such a data structure, Figure 3 depicts a possible heap repre-
sentation of the LLWV from Figure 1(b).

The actual code we have verified is not the original C# code from the C5 li-
brary but a Java implementation that has been written from scratch for verification
purposes. It captures the essence of what makes LLWV interesting to verify with-
out containing all the bells and whistles that would make it pleasant to use in an
engineering context. The most important differences are discussed in Section 5.1.

4 Abstract Specification

This section presents a mathematical model of LLWV and specifications of its methods
using abstract predicates. Verification of clients will rely only on these, not on the
actual implementation of LLWV.

4.1 Model

Our specifications will revolve around a predicate L(l, α) that relates a LLWV l (a
pointer in the implementation) to a model “bex-list” α. A bex-list describes the list
items along with all views defined on the list. It seems necessary to join these objects
together in one monolithic model because the behaviour of views is defined such that
a list and its views can affect each other to a great extent.
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The actual definition of the predicate L(l, α) is shown in Section 5 and is used
only when proving an implementation correct. The definition is hidden from clients
to prevent them from depending on implementation details [PB05].

Let View be the class of views. Then bex-lists α, β, γ are defined as follows, where
“::” denotes list construction:

α, β, γ ::= ε
∣∣ B b :: α

∣∣ E e :: α
∣∣ Xx :: α

b, e ⊂
fin

pointers to View

x ∈ Z

Intuitively, B b means that the views in set b begin at this position in the list.
Similarly, E e means that the views in e end at this position in the list, and Xx means
that the item x is stored at this position in the list. Such a list element B b, E e or
Xx is called a bex.

We will always want the bexes to appear in the order B,E,X,B,E,X, . . .. To enforce
this, we define a predicate ord(α, t, t′), where t, t′ ∈ {B,E,X}, expressing that α is an
ordered bex-list starting with a bex of constructor t and ending just before a bex of
constructor t′. Formally, let ord be the least predicate satisfying

ord(ε, t, t)

ord(B b :: α,B, t)⇐= ord(α,E, t)

ord(E e :: α,E, t)⇐= ord(α,X, t)

ord(Xx :: α,X, t)⇐= ord(α,B, t)

Note that we here used the symbols B,E,X both as (unary) constructors and as
(nullary) tags.

Concatenation is defined as usual for cons-based lists and is written αβ. It can be
shown by induction on α that

∃t′. ord(α, t, t′) ∧ ord(β, t′, t′′) ⇐⇒ ord(αβ, t, t′′)

An empty LLWV is modelled by a bex-list B b :: E e :: ε, abbreviated be. A
singleton LLWV is modelled by a bex-list b1e1x1b2e2. In general, a LLWV is modelled
by an ordered bex-list that begins with a B and ends with an E (i.e. just before an
X). We call such lists well-formed. We will also need the notion of the length of a
bex-list α, written |α|. In summary,

wf(α) , ord(α,B,X)

|α| , number of X’s in α

The bex-list may not seem like the most intuitive or obvious construction, but
it will turn out that specification of the public methods on linked lists with views
becomes very simple when using it. Some other models we tried before choosing the
bex-list model are discussed in Section 6.

4.2 Operations on Lists

The List class has methods for the list operations one would expect: insertion, removal,
subscripting, size query, etc. We now discuss the specifications of the most important
operations; Figure 4 gives a summary of all the specifications.
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A simple and typical specification is that of setValue(i, x′), which replaces the item
at index i ≥ 0 in list l by x′:

{ L(l, αxγ) } l.setValue(|α|, x′) { L(l, αx′γ) }

This specification says that, provided list l is described by the bex-list αxγ before the
call, then after the call l.setValue(|α|, x′), list l is described by the bex-list αx′γ. That
is, all list items and views remain the same, except that the item at index i = |α| has
been replaced by x′.

Note how part of the precondition is made implicit by restricting the first method
argument to have the form |α|, instead of an arbitary integer i. Together with the
assertion L(l, αxγ) about the shape of the list, this restriction ensures that the item
index |α| is legal for the list.

The client should not know the exact definition of L, but it is part of the specifi-
cation that L(l, α) implies wf(α).

It is an important detail that pre- and postconditions are both expressed in terms
of equations in bex-lists and their lengths. This makes it easy for sequential client
code to establish that the postcondition of one call implies the precondition of the
next.

Removal and insertion can also be defined just in terms of bex-list equalities and
operations on finite sets. Here, the ] operator is a partial version of set union ∪ that
is defined only for disjoint sets.

{ L(l, αb′ exb e′γ) } l.remove(|α|) { L(l, α(b′ ] b)(e′ ] e)γ) }

{ L(l, αbeγ) } l.insert(|α|, x) { L(l, α(B(b ∩ e))ex(B(b \ e))(E∅)γ) }

Note that they both preserve well-formedness (and therefore ordering) of the bex-list.
The complicated-looking postcondition of insert captures exactly the rules of how
views that begin or end around the point of insertion are affected [KS06, Jen10].

4.3 Operations on Views

A new view is created on a list l by calling l.view, specified in Figure 4. We use the
special variable ret for the return value and use the notation bv to mean the partial
operation b ∪ {v} where v /∈ b.

There is an abstract predicate V(v, α) that is like L for most purposes; it says that
view v is described by the bex-list α. As with L, clients are guaranteed that V(v, α)
implies wf(α). As stated in Figure 4, the methods that work on both lists and views
have identical specifications except that l and L are replaced by v and V in the case
of views. For example, the specification of setValue on a view would be

{V(v, αxγ) } v.setValue(|α|, x′) {V(v, αx′γ) }

The V predicate is not given directly in any method postcondition. Instead, the
client is given a guarantee that the following implication is valid:

L(l, αbvβevγ) =⇒ V(v, bβe) ∗ ∀b′, β′, e′.
[
V(v, b′β′e′) −∗ L(l, αb′vβ′e′vγ)

]
(1)

In words, this expresses that a heap containing a LLWV l with a view v can be
separated into two parts, say, h and h′. Heap h satisfies the V predicate and can
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{ true } new List() { L(ret, (B ∅) (E ∅)) }

The following methods are also available on views, with the same specification except
that l and L are replaced by v and V.

{ L(l, α) } l.count() { L(l, α) ∧ ret = |α| }
{ L(l, αxγ) } l.getValue(|α|) { L(l, αxγ) ∧ ret = x }
{ L(l, αxγ) } l.setValue(|α|, x′) { L(l, αx′γ) }
{ L(l, αbβeγ) } l.view(|α|, |β|) { L(l, αbretβeretγ) }
{ L(l, αb′ exb e′γ) } l.remove(|α|) { L(l, α(b′ ] b)(e′ ] e)γ) }
{ L(l, αbeγ) } l.insert(|α|, x) { L(l, α(B (b ∩ e))ex(B (b \ e))(E ∅)γ) }

Methods specific to views:

{ L(l, αbvβevγ) ∧ αbβeγ = α′b′β′e′γ′ }
v.slide(|α′| − |α|, |β′|)
{ L(l, α′b′vβ′e′vγ′) }

{ L(l, αbvβevγ) ∧ αbβeγ = α′b′β′e′γ′ ∧ |β′| = |β| }
v.slide(|α′| − |α|)
{ L(l, α′b′vβ′e′vγ′) }

{ L(l, αbvβevγ) } v.dispose() { L(l, αbβeγ) }
{V(u, αbvβevγ) } v.dispose() {V(u, αbβeγ) }
{ L(l, αevγ) } v.atEnd(l) { L(l, αevγ) ∧ ret = (γ = ε) }
{ L(l, αbuβevγ) } u.span(v) { L(l, αbu,retβev,retγ) }
{ L(l, bαevγ) } l.span(v) { L(l, bretαev,retγ) }
{ L(l, αbvγe) } v.span(l) { L(l, αbv,retγeret }

Guarantees about predicates:

L(l, α) =⇒ wf(α), V(v, α) =⇒ wf(α),

L(l, αbvβevγ) =⇒ V(v, bβe) ∗ ∀b′, β′, e′.
[
V(v, b′β′e′) −∗ L(l, αb′vβ′e′vγ)

]
Figure 4 – Summary of specifications. The notation bv means b ∪ {v} where v /∈ b.
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thus be used for calling the various methods on views, such as setValue in Section 4.2,
leading to a V-assertion for the same v but with a different bex-list. Heap h′ satisfies
that given any such modified bex-list b′β′e′, if h′ is extended with a heap in which
view v is described by b′β′e′, then this extended heap describes the original list l
except that the sublist delimited by view v has been modified.

The verifier, i.e. the person or heuristic attempting to verify the program, can use
(1) to convert from L to V at any convenient time. To get back to L again, he can use
the separating modus ponens rule: P ∗ (P −∗ Q) =⇒ Q. This is not too different
from how the frame rule is used in separation logic in general; in fact, the following
specification-logic rule follows from (1).

{V(v, bβe) } c {V(v, b′β′e′) }
{ L(l, αbvβevγ) } c { L(l, αb′vβ′e′vγ) }

(2)

In words, if command c changes a view v from bβe to b′β′e′, then if v is a view on some
underlying list l described by αbvβevγ, then c will also change list l to αb′vβ′e′vγ. In
particular, the list “tails” α and γ are unaffected by c.

Hence (2) reads as a kind of frame rule, where α and γ constitute the frame that
is disregarded while verifying c. Like the frame rule, its application happens at the
discretion of the verifier rather than being driven by the program.

Note that (1) is more general than (2) since the conversions between L and V do
not have to follow the nesting discipline of a tree in (1).

5 Verification of Implementation

We saw the implementation of the LLWV data structure in Section 3 and the speci-
fications and guarantees involving the L and V predicates in Section 4. To tie these
together, we must give the definitions of L and V. The I predicate (I as in Items) will
be a key ingredient in this.

We define L as asserting the existence of a sentinel node ns, which marks both the
beginning and ending of the list:

L(l, α) , wf(α) ∗ ∃ns. l.sen 7→ ns ∗ I(ns, ns, α)

For an ordered bex-list α and nodes n and n′, I(α, n, n′) asserts what must hold of a
heap that spans α between n and n′. It does so by a case analysis on whether α is
empty or starts with B, E or X. It is a convenient property of the bex-list model that
no indirection is needed here: the bex-list as seen by the client corresponds so closely
with the heap layout that I can be syntax-directed on α.

Another convenient property is that I admits an excellent correspondence between
separation on the heap and concatenation of bex-lists:

I(n, n′′, αβ) ⇐⇒ ∃n′. I(n, n′, α) ∗ I(n′, n′′, β) (3)

The definition of I and all predicates required by it is shown in Figure 5.
One might easily be tempted to define V(v, α) as

wf(α) ∗ ∃b, β, e. α = bβe ∗ ∃nb, ne. I(nb, ne, bvβev) (4)

Expanding the I predicate will lead to the assertions v.bgn 7→ nb ∗ v.end 7→ ne needed
by methods on the view as a starting points for accessing its items.
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L(l, α) , wf(α) ∗ ∃ns. l.sen 7→ ns ∗ I(ns, ns, α)

I(n, n, ε) , true

I(n, n′′,B b :: α) , IB(n, b) ∗ I(n, n′′, α)

I(n, n′′,E e :: α) , ∃n′. N(n, n′) ∗ IE(n′, e) ∗ I(n′, n′′, α)

I(n, n′′,Xx :: α) , IX(n, x) ∗ I(n, n′′, α)

N(n, n′) , n.next 7→ n′ ∗ n′.prev 7→ n

IB(n, b) , BList(n, b) ∗~
v∈b

v.bgn 7→ n

IE(n, e) , EList(n, e) ∗~
v∈e

v.end 7→ n

IX(n, x) , n.value 7→ x

BList(n, b) , ∃vh. n.viewsB 7→ vh ∗ BSeg(vh, null, b)

BSeg(vt, vt, ∅) , true

BSeg(v1, vt, b
v) , v1 ∈ bv ∗ ∃v2. v1.nextB 7→ v2 ∗ BSeg(v2, vt, b

v \ {v1})

EList,ESeg are defined like BList,BSeg.

Figure 5 – Definition of L and related predicates. The ~ operator is iterated separating
conjunction [Rey02].

But for such a definition of V, Equation (1) will not hold. The issue is that it
permits the asserter of V to write to bgn and end, allowing him to “unhook” the view
from its underlying list and place it somewhere else in memory. The challenge is to
somehow ensure that the sentinel nodes have not changed when it is time to convert
the V predicate back to L.

One way to solve this problem could be to provide clients with the weaker but
often sufficient Equation (2) instead of (1). That could be be proved by induction
over the command c, showing that c will not modify v.bgn or v.end because any
write to these fields would either be denied because the fields are private, or it would
happen through one of the methods of View, whose specifications would have to be
strengthened to guarantee that they do not modify to those fields either.

Clearly, this approach is problematic. It requires reasoning about field access
modifiers in the logic, which has not been formalized in the separation logics found in
the literature to date. It also provides a weaker guarantee to the client, and it lacks
modularity because we cannot add or change methods without invalidating the proof.

To find a definition of V that validates (1), look back to the original issue: the
asserter of V must be able to read the bgn and end fields but not write them. A popular
approach to expressing this is to amend the assertion logic with fractional permissions
[BCOP05, BRZ07, HH08], a technique borrowed from concurrent programming that
turns out to be useful for sequential programs as well [BRZ07, HH08].

In separation logic with fractional permissions, the points-to assertion x.f 7→ a is
extended to read x.f

z7→a, where 0 < z ≤ 1. A permission z = 1 gives read/write access
to the field x.f , while any smaller permission gives read-only access. The assertion

logic is then defined such that the following is valid: x.f
z7→a ∗ x.f z′

7→a ⇐⇒ x.f 7 z+z′

−−−→a.
Now we can give a definition of V that works by modifying (4) to take away half
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List Node View

- value: int

sen bgn, end

views

prev, next

next

underlying

Figure 6 – A class diagram that, compared to Figure 2, more closely resembles the data
structure found in the original C5 library [KS06].

of the permissions to the bgn and end fields:

V(v, α) , wf(α) ∗ ∃b, β, e. α = bβe ∗ ∃nb, ne.[
v.bgn

0.57→ nb ∗ v.end
0.57→ ne −~ I(nb, ne, b

vβev)
]

Here, septraction [CPV07] (−~) is used to “subtract” the permissions on its left side
from those on its right side.

Septraction is not essential for this definition, but it does make it much more
elegant than it would have been otherwise. Since we are using an intuitionistic sep-
aration logic, the standard definitions of septraction developed for classical versions
of the logic do not work. In Appendix A, we describe a definition of septraction that
works in intuitionistic separation logic.

With the above definition of V, Equation (1) can be proved valid – see Appendix B.
It is an important point that the client does not need to know that fractional permis-
sions are being used behind the scenes; clients may reason entirely as if there were no
fractions.

5.1 Discussion

It turns out that (1) and (2) can be generalized to treat more than one view. For
example, given a list with two non-overlapping views v1 and v2, one can mutate those
views independently (V(v1, β1) ∗ V(v2, β2)) and later establish that L holds for their
underlying list and a suitably-modified bex-list.

With the implementation we have discussed so far, this generalization is straight-
forward to prove; see Appendix B. The data structure used in the original C5 code
is different, however: it has a global list of views for the whole LLWV rather than
for each node. This is illustrated in Figure 6. The two implementations are obser-
vationally indistinguishable through their public interface, but the implementation
with a global view-list does not seem to allow defining a V-predicate that admits the
assertion V(v1, β1) ∗ V(v2, β2) for non-overlapping views.

This is because operations on v1 and v2 such as item insertion and removal will
have to traverse the same global list of views; operations to create and dispose views
are even going to modify this list, so it cannot just be shared read-only using fractional
permissions.

Since a separation logic assertion describes concrete heap contents, the validity of
assertions such as (1) depends only on the choice of data structure in the implemen-
tation, not on the code in methods. On the other hand, in object-oriented languages
there is a difference between (a) objects that cannot interfere with each other in any
observable way and (b) objects that have disjoint heap footprints. Clearly, (b) im-
plies (a), but the converse does not hold because of encapsulation: interference can be
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Method S I V F

+List::init X X
+l.count X X
+l.getValue X X X
+l.isEmpty X X
+l.insert X X X2

+l.insertFirst X
+l.insertLast X
+l.remove X X X
+l.removeFirst X
+l.removeLast X
+l.setValue X
+l.span X X
+l.view X X X
−l.getNode X X X
−l.insertNode X X X
−View::init/0 X X
−View::init/2 X X X2

+v.atEnd X
+v.count X X
+v.dispose X
+v.getValue X X X
+v.isEmpty X X
+v.insert X X X

Method S I V F

+v.insertFirst X
+v.insertLast X
+v.remove X X X
+v.removeFirst X
+v.removeLast X
+v.setValue X X
+v.slide/1 X X X
+v.slide/2 X X X
+v.span X X
+v.view X X X
−v.getNode X X X
−v.insertNode X X X
−Node::init X X
−n.addViewB X X X
−n.addViewE X X
−n.insertAfter X X X
−n.moveViewsToB X X X
−n.moveViewsToE/1 X X X1

−n.moveViewsToE/2 X X X
−n.remove X X X
−n.removeViewB X X
−n.removeViewE X X

Notes:
1: Has been verified in the sense that its twin method with b’s instead of e’s has been verified.
2: The body of this method has been verified, but it contains calls to unverified methods.

Table 1 – Overview of what methods have been specified (S), implemented (I), verified
(V), and which would make non-trivial future work (F). Public methods are prefixed
with +, private methods are prefixed with −, and overloaded methods are suffixed
with /n to refer to the n-argument version.

observed only through a data structure’s public methods, whereas the actual sharing
in the heap is described by its (private) fields. In separation logic as we use it here,
assertions about objects that are “observationally separate” cannot be separated by
the ∗ connective, although this connective is critical for reasoning.

Therefore, a guideline for writing code to be modularly verified with separation
logic is to design data structures such that observationally separate parts of the data
structure are also disjoint on the heap, whenever possible.

Finding a good way to lift this limitation is likely to be crucial in reasoning
about real-world code. The ideas presented in the recent work of Dinsdale-Young
et al. [DYDG+10] look promising in this respect. The intuition seems to be that
access to shared data is governed by a protocol, and this protocol can be as simple as
requiring read-only access or perhaps as complex as required to solve this problem.
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5.2 Method bodies

So far we have focused on method specifications and heap layout. To have a complete
verified library of LLWV, one of course needs to write the Java code implementing
each method and prove that it satisfies its specification in a dialect of separation logic
that has been shown sound with respect to the programming language semantics. To
get a feeling for whether the specifications are practically useful, sample client code
should be verified.

Table 1 summarises which methods were specified, implemented and verified, in-
cluding several private methods in class Node that we do not discuss here [Jen10].
The main accomplishment is that List::remove and everything it calls has been veri-
fied. Two sample clients have been verified: an implementation of Bubble Sort, sliding
views of length 2 across the list, has been verified for safety, and a toy example that
uses views to duplicate and increment every list item has been verified for correctness.

Method body proofs were done by hand and are presented as code interleaved
with assertions in [Jen10]. Bex-lists and the most often used lemmas about them
were formalised in the Coq proof assistant.

6 Alternative models

We chose the model and specifications in Section 4 with the following goals in mind.

• The model should admit short and clear specifications: it should be easy to see
whether the intended meaning of an operation is expressed by its specification.

• Sequential composition should be straightforward: postconditions and precon-
ditions should have the same form to make it easy to show that one operation’s
postcondition implies the next operation’s precondition.

• The model should admit local reasoning: effects that are local in the implemen-
tation should also look local in the model.

• The specification should highlight the similarity between lists and views. Lists
and views can be used interchangeably in many situations, so the reasoning in
those cases should also be the same.

We believe that the bex-list model and the corresponding specifications achieve
these goals. For comparison, we will here discuss some alternatives we considered
before settling on bex-lists.

6.1 First Attempt

A straightforward way of modelling lists with views is to separate the model α into
three components (L,B,E): a traditional cons-based list L of items, and maps B and
E assigning to each view the offset in L where the view begins and ends. Formally,

α = (L,B,E) ∈ int list× (View
fin
⇀ N)× (View

fin
⇀ N)

However, models that involve indices seem to lead to specifications that fail with
respect to all four goals listed above. For example, the following attempt to specify
remove, where (·) is list concatenation, leads to a postcondition that requires the
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verifier to reason about subtraction.

{ L(l, (L · x::L′, B,E)) }
l.remove(|L|){
∃B′, E′. L(l, (L · L′, B′, E′)) ∧
B′ = {[v 7→ if j ≤ |L| then j else j − 1]

∣∣ [v 7→ j] ∈ B} ∧
E′ = {[v 7→ if j ≤ |L| then j else j − 1]

∣∣ [v 7→ j] ∈ E}
}

The specification also lacks locality: it is not clear from the specification that the
update only affects the immediate vicinity of x since apparently all indices above x are
decremented; however this reflects a property of the model, not the implementation.

6.2 Second Attempt

The first attempt above can be used as a basis of something better, though. First,
lift the length function of cons-based lists to work for the whole model α = (L,B,E),
defining |α| , |L|. Then define concatenation α1 · α2 of models:

α1 · α2 ,
(
L1 · L2, B1 ] (map (+|L1|) B2),

E1 ] (map (+|L1|) E2)
)

where (Li, Bi, Ei) = αi for i ∈ {1, 2}
and ] is union of maps with disjoint domains.

Note that model concatenation · is associative.
Finally, observe that any model α = (L,B,E) can be written as a concatenation

of four basic building blocks:

ε , (nil, {}, {}) Empty list

x , (x :: nil, {}, {}) Single-item list

[v , (nil, {[v 7→ 0]}, {}) View begins

]v , (nil, {}, {[v 7→ 0]}) View ends

With these ingredients, we can give concise specifications to most methods. In
particular, remove looks much better than in the first attempt, and also more local
and concise than when using bex-lists (Section 4.2):

{ L(l, α · x · γ) } l.remove(|α|) { L(l, α · γ) }

Most other specifications resemble their bex-list cousins. For example,

{ L(l, α · x · γ) } l.setValue(|α|, x′) { L(l, α · x′ · γ) }
{ L(l, α · β · γ) } l.view(|α|, |β|) { L(l, α · [ret · β · ]ret · γ) }

The drawbacks of this model are due to α · β = β · α when |α| = |β| = 0. This
equality allows us to freely re-order views analogously to how the sets b and e in
the bex-list model allow it. However, to correctly specify insert we need a restrictive
variant ◦ of concatenation in the precondition:

{ L(l, α ◦ β) } l.insert(|α|, x) { L(l, α · x · β) }
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Using the normal concatenation operator · in place of ◦ in the precondition would
allow the verifier to “choose” whether a view that begins or ends at the insertion
point would end up to the left or right of the inserted item x. But since those two
outcomes are observably different, such a specification would allow deriving a logical
contradiction.

Instead, we define ◦ to be an (even more) partial variant of concatenation. In-
tuitively, a list that can be written α1 ◦ α2 must have no views that end just before
the first item in α2, and any view that begins just after the last item of α1 must be
empty. Formally,

α1 ◦ α2 , α1 · α2

if ∀v. [v 7→ 0] /∈ E2

and
(
[v 7→ |L1|] ∈ B1 ⇒ [v 7→ |L1|] ∈ E1

)
where (Li, Bi, Ei) = αi for i ∈ {1, 2}

Thus, the specification of insert is only beautiful because it hides its complexity
beneath the definition of ◦. The verifier would have to develop a theory to establish
◦ before every call to insert. But the approach is not very general since ◦ is specific to
the semantics of the insert operation. If some other variant of insert were introduced,
there would have to be another restricted concatenation operator with a corresponding
theory.

The same problem of herding the views onto the desired side of a concatenation
appears if we want to formulate a theorem such as (1), which is crucial for independent
reasoning about views. It is also no longer possible to define L to be as syntax-directed
on α as for bex-lists, which makes it harder to prove the implementation correct.

It was our desire to syntactically restrict where views may begin and end that made
us abandon this model in favour of the bex-lists, which make explicit the grouping of
all views that begin or end at each list position. The specifications that arose from
the “second attempt” model remain more elegant and intuitive, though, and it would
be interesting to investigate whether it could work well if the semantics of LLWV
were changed.

7 Future work

The future work specific to the LLWV data structure includes:

• The semantics of inserting new items in a LLWV [KS06] can easily lead to sur-
prises since nearby views can be affected [Jen10]. Thus, it should be investigated
whether views, and insertion in particular, could be defined differently, and if
so, whether something better than the bex-list model can be found.

• In verifying both the LLWV implementation and sample clients [Jen10], proofs
often required solving equations in ordered bex-lists. The solutions were often
intuitively simple but somewhat laborious to prove formally. It seems likely that
a decision procedure could be developed for a useful fragment of these equations.

• As discussed in Section 2, the “list with views” abstraction can be applied to
both linked lists and array lists. It remains future work to formally verify the
array list case. Also, C5 has a variation of LLWV that uses hash-indexes to
implement operations such as deciding whether a given item resides within a
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given view in constant expected time. Verification of this would surely be a
challenge.

• It might be advantageous to replace the C5 library’s current implementation of
views (mentioned in Section 5.1) with that presented in Section 3, which seems
to have some algorithmic advantages. To support the extension to hash-indexed
lists and views mentioned above, it would need to have distinct start and end
sentinels, though.

• Could some of these ideas be applied to specifying powerful iterators such as
java.util.ListIterator? Java’s list iterators permit more modifications to the list
than iterators studied elsewhere in the separation logic literature, though they
are still less powerful than views.

• It would be interesting to give a specification of LLWV in other recent logics for
shared mutable data structures, e.g., region logic [BNR08], and compare with
the present formulation.

The remaining points concern improvements to the logic motivated by insights
gained from this case study.

• Current dialects of separation logic do not take advantage of the guarantees
offered by memory-safe languages such as Java and C#. As discussed in Section
5.1, separation logic works as if all fields were public; it would be interesting to
integrate reasoning about field access modifiers into the logic.

• Fractional permissions proved useful here, but they seem to be a somewhat
blunt instrument when used in a sequential setting. Their read-only guarantee
can only be applied at the granularity of a field, so it is impossible to express
invariants such as the least significant bit of a field being read-only.

• The original C5 implementation of LLWV employs the System.WeakReference
class to let lists point to their views through references that are ignored by the
garbage collector. Modelling such weak references in separation logic might be
interesting future work.

8 Conclusion

Several things can be done when implementing a data structure to ease verification
with separation logic. When modularity is desired, data should be laid out such
that heap separation coincides with lack of observable interference. Modularity and
local reasoning demand more features from the logic, such as existentially-quantified
predicates and fractional permissions, but in return they lead to cleaner specifications.

The bex-list model was chosen over other candidates because it better satisfied the
goals listed in Section 6. It seems that there is a balance between choosing a model
that is easy to verify and one that is easy to work with for clients: with a model that
directly mimics the heap layout, the implementation will be easier to prove correct,
but clients are likely to find the model unnatural to work with. The bex-list aims to
be a compromise between the two extremes.

Further discussion and subtleties can be found in [Jen10].
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A Septraction

In this appendix we define the septraction operator, −~, which was used in the defi-
nition of V.

A.1 Formal set-up

Our heap model is identical to the model of heaps with fractional permissions in
[BCOP05]:

Heap , ObjId× Field
fin
⇀ Val× {π ∈ Q | 0 < π ≤ 1}

When h1, h2 ∈ Heap we write h1#h2 to say that the composition of h1 and h2 is
defined, and h1 ◦ h2 denotes this composition. There is an ordering on heaps defined
as h1 v h iff ∃h2#h1. h1 ◦ h2 = h.

The separation logic used throughout this article is intuitionistic, meaning that
all formulas satisfy the monotonicity condition: they must continue to hold in any
larger heap [IO01]. Thus, an assertion is a monotone function from heaps to Booleans,
where the Booleans are ordered as false v true.

A.2 The septraction operator

To get an intuitionistic septraction connective that has most of the desirable properties
of its classical cousin [CPV07], we use the following definition.

Definition 1

(P −~ Q) h , ∃h0 v h. ∃h′#h0. Pr P h′ ∧Q (h0 ◦ h′) where

Pr P h , P h ∧ ∀h′ v h. P h′ ⇒ h′ = h �
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Note that this definition satisfies the monotonicity condition since the same sub-
heap h0 continues to exist under any larger heap.

The operator Pr : (Heap
mon
→ 2) → (Heap → 2), where 2 denotes the Booleans, is

Yang’s precising operator (see the discussion of this operator in [Rey08]). In partic-
ular, Pr P h holds if h is a minimal heap such that P h.

To formulate the inference rules for septraction, we need the notion of a strongly
supported assertion:

Definition 2 An assertion P is strongly supported if for any heap h, the set of sub-
heaps of h that satisfy P is either empty or has a least element. �

All the assertions in Figure 5 are strongly supported (modulo a few side conditions;
see [Jen10] for details).

Lemma 1. For strongly supported assertions P ,

Q |= P

Q |= P ∗ (P −~ Q)
and

Q |= P ∗ Q′

P −~ Q |= Q′

where |= denotes entailment among assertions; that is, P |= Q iff for all h, P h
implies Q h.

Proof. Both proofs rely on the fact that if P h then there exists hmin v h such that
Pr P hmin.

A.3 Remark

An alternative to Definition 2 is the following:

Definition 3 An assertion P is weakly supported if for any heaps h1, h2 that are both
subheaps of the same h and both satisfy P , there exists a heap h12 that is a subheap
of both h1 and h2 and satisfies P . �

Definitions 2 and 3 are usually equivalent and therefore used interchangeably
[Rey08], but it turns out that they are not the same when fractional permissions

are used. For example, the assertion ∃z > 0. x.f
z7→ y is weakly but not strongly sup-

ported. This assertion is useful and natural since it represents a read-only points-to
assertion that can be arbitrarily split across ∗.

B Conversions between lists and views

In this appendix we prove Equation (1) and its generalization to multiple views.
For brevity, we abbreviate a bex-list of the form bβe as B and write Bv to mean

bvβev. Recall that the notation bv means b ∪ {v} where v /∈ b.
The following lemma captures the essence of why Equation (1) is valid.

Lemma 2. If ord(α,B,B) and wf(B), then

I(n′1, n2, αB
v) |= V(v,B) ∗

[
V(v,B′) −∗ I(n′1, n2, αB′v)

]
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Proof. The left part expands to I(n′1, n1, α) ∗ I(n1, n2, Bv) for some n1, and it is the
right part of this conjunction that is interesting to us. By Lemma 1, that part entails

v.bgn
0.57→ n1 ∗ v.end

0.57→ n2 ∗ (v.bgn
0.57→ n1 ∗ v.end

0.57→ n2 −~ I(n1, n2, B
v)), where the side

condition on the lemma follows from expanding the I predicate and its constituents.
In that formula, the septraction part is just the definition of V, so we can contract

that and get v.bgn
0.57→ n1 ∗ v.end

0.57→ n2 ∗ V(v,B).
If we can now show that

v.bgn
0.57→ n1 ∗ v.end

0.57→ n2 |= V(v,B′) −∗ I(n1, n2, B′v), (5)

then we have altogether that

I(n′1, n2, αB
v) |= I(n′1, n1, α) ∗ V(v,B) ∗

[
V(v,B′) −∗ I(n1, n2, B′v)

]
,

and since Q′ ∗ (P −∗ Q) |= P −∗ (Q ∗ Q′) we may then join the two I predicates by
Equation (3) to finish the proof.

To show (5), first apply the fact that Q |= P −∗ (P ∗ Q) to get V(v,B′) −∗
(V(v,B′) ∗ v.bgn0.57→n1 ∗ v.end

0.57→n2). On the right of the separating implication, unfold

the definition of V to replace V(v,B′) with v.bgn
0.57→ nb ∗ v.end

0.57→ ne −~ I(nb, ne, B
′v)

for new existentials nb and ne. Since there is an assertion I ′, too long to write out
here, such that I(nb, ne, B

′v) ≡ I ′ ∗ v.bgn 7→ nb ∗ v.end 7→ ne, and we can split the
permissions on v.bgn and v.end in two halves, by the second half of Lemma 1 we can

get I ′ ∗ v.bgn0.57→nb ∗ v.end
0.57→ne. Recall that this is still in separating conjunction with

v.bgn
0.57→ n1 ∗ v.end

0.57→ n2, which lets us conclude that n1 = nb and n2 = ne. Now we
can join the split permissions and contract the I predicate again to get I(n1, n2, B

′v),
which is what we wanted.

In the following, let i ≥ 1 and m ≥ 0. The~ operator binds tighter than ∗.
Lemma 3. If ord(αi,B,B) and wf(Bi) for all i, then

~
i≤m

I(ni, ni+1, αiB
vi
i ) |= ~

i≤m
V(vi, Bi) ∗

[~
i≤m

V(vi, B
′
i) −∗ ~

i≤m
I(ni, ni+1, αiB

′vi
i )
]

Proof. By induction on m. The base case is trivial. For the inductive case, let us first
abbreviate the above formula to read

I(≤ m) |= V (≤ m) ∗ [V ′(≤ m) −∗ I ′(≤ m)]

Thus, we start out with I(≤ m), which entails I(< m) ∗ I(m), and applying the
induction hypothesis to the left part gives us

(
V (< m) ∗ [V ′(< m) −∗ I ′(< m)]

)
∗

I(m). For the remaining part, since Lemma 2 gives us that

I(m) |= V (m) ∗ [V ′(m) −∗ I ′(m)],

then the whole entails I(≤ m) |= V (≤ m) ∗ [V ′(≤ m) −∗ I ′(≤ m)] due to the fact
that (P −∗ Q) ∗ (P ′ −∗ Q′) |= (P ∗ P ′) −∗ (Q ∗ Q′).
Theorem 1.

L(l, α1B
v1
1 · · ·αmB

vm
m γ) |= ~

i≤m
V(vi, Bi) ∗

[~
i≤m

V(vi, B
′
i) −∗ L(l, α1B

′v1
1 · · ·αmB

′vm
m γ)

]
Proof. By Lemma 3 and Equation (3)

Corollary 1. Equation (1) is valid; i.e.,

L(l, αbvβevγ) =⇒ V(v, bβe) ∗
[
V(v, b′β′e′) −∗ L(l, αb′vβ′e′vγ)

]
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