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Abstract Model transformations are at the heart of Model-Driven Soft-
ware Development (MDSD) and, once composed in transformation chains
to MDSD processes, allow for the development of complex systems and
their automated derivation. While there already exist various approaches
to specify and execute such MDSD processes, only few of them draw focus
on ensuring the validity of the transformation chains, and thus, safe com-
position of transformations. In this paper, we present the TraCo compo-
sition system, which overcomes these limitations and evaluate and discuss
the approach based on two case studies.
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1 Introduction

Model-Driven Software Development (MDSD) [VS06, RS06] is an approach to soft-
ware development that uses models as its main artefacts where different concerns
of the desired software product are described at various levels of abstraction. The
overall ideas of MDSD are to transform these abstract models into more concrete
models, which can then be used to generate implementation (i.e., source code) or re-
lated artefacts and to transform models into other representations on the same level of
abstraction. What exactly the models describe and how they are processed by trans-
formations is described in a transformation chain, an MDSD process. This process
can for example describe the derivation of a dedicated software product for different
platforms—similar to what has been proposed by the Object Management Group
(OMG) in its Model-Driven Architecture (MDA) [Obj03]. In Software Product Line
Engineering (SPLE) [PBvdL05, CN02], such processes can be used to describe how
variability in models is resolved in possibly multiple stages and various transformation
steps to create a dedicated product of the Software Product Line (SPL).

MDSD processes usually consist of multiple steps that range from loading and
storing of models to performing transformations and generating artefacts. Many of
those (e.g., loading models, performing transformations, . . . ) are often reused between
projects which requires modularisation of the steps into reusable units. Existing work
in this direction, e.g. MWE [MWE11] and UniTI [VAB+07], allows for defining and
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executing custom MDSD processes and reusing common parts across different of such
processes.

Although these frameworks provide many benefits for defining MDSD processes,
such as stepwise refinement, and are already widely used in industry and academia,
they also bear the difficulty of making those transformations work together correctly.
The resulting models or implementation artefacts of an MDSD process are only valid if
all input models and parameters are valid and each single transformation step receives
valid input data and produces valid output data. By validity is thereby meant, the
conformance of the input and output data to their corresponding metamodels and
their well-formedness rules. Additionally, every transformation step needs to work as
intended to ensure validity of the produced output. Because of the many intermediate
models it can be very hard to trace a single error in the final product to the input
model or the transformation that originally caused that error. Furthermore, there
are many heterogenous transformation technologies that are used in combination,
suit different use cases and behave differently. This causes additional difficulties
when composing multiple steps in such an MDSD process. We observed that existing
technologies to describe and execute those processes lack concepts and functionality
to ensure the correct interaction between the different transformation steps.

This paper is an extended version of [HKA10] where we present TraCo, a Transfor-
mation Composition framework for safe composition of transformations. The goal is
to allow the description, composition, and execution of heterogeneous transformation
processes, while providing mechanisms for ensuring validity of these processes, which
is checked both statically while developing MDSD processes and dynamically while
executing them. By composition is meant, the chaining of transformation steps into
complex transformations.

The remainder of the paper is structured as follows. Section 2 presents existing
work in the area of model transformation and composition of transformation steps.
Section 3 presents the conceptual basis for TraCo, introduces the underlying compo-
nent model and describes the composition of transformation steps. The implemen-
tation of TraCo is outlined in Section 4. In Section 5, we present three case studies
and discuss the applicability of the approach. Section 6 summarises the paper and
presents directions for future work.

2 Background

In this section existing approaches to model transformation are presented. In the
scope of this paper, we are interested in approaches that are used to define basic
transformation steps (i.e., transformations that are not built by composing multiple,
possibly heterogenous, transformations) and composite transformations that are the
result of composing basic or composite transformations. First, a short overview of
approaches to model transformation is given. Next, we present existing approaches
for defining and executing MDSD processes and highlight important criteria that led
to the solution presented in this paper.

2.1 Basic Transformation Approaches

In [CH06], Czarnecki and Helsen present an in-depth classification of various trans-
formation approaches regarding multiple criteria. What is visible from this classi-
fication is, that there exist a plentitude of approaches, ranging from direct manip-

Journal of Object Technology, vol. 10, 2011

http://dx.doi.org/10.5381/jot.2011.10.1.a7


Safe Composition of Transformations · 3

ulation (e.g., with Java), operational (e.g., QVT Operational [Obj08] or Kermeta
[Ker11]), relational (e.g., QVT Relational [Obj08], MTF [IBM04], or AMW [Fab07]),
template-based (e.g., model templates [CA05] or FeatureMapper [HKW08]), to ap-
proaches based on concepts of graph transformation (e.g., AGG [Tae03] or VIATRA2
[VB07]). All these approaches require specific input models and parameterisation
for transformation and provide approach-specific means to constrain this input data.
Furthermore, transformations specified using these approaches often lack a formally
specified interface which would foster reuse and is key to safe composition of such
transformations.

2.2 Composite Transformation Approaches

In the following, we present five approaches for composing basic transformations to
composite transformations and highlight important properties of those approaches.

2.2.1 Modeling Workflow Engine

The Modeling Workflow Engine (MWE) [MWE11] is a workflow-based declarative,
externally configurable generator engine. An XML-based workflow definition config-
ures the MDSD process by sequentially listing the calls to WorkflowComponents that
need to be executed including their parameterisation. openArchitectureWare (oAW)
provides simple components for loading and saving models, but also exposes languages
for certain tasks through specific components, like validating models using the Check
language and performing model-to-text transformations using the Xpand template
language. Each component in a workflow is implemented in a Java class, identified
by its class name, and parameterised through one or more tags. The parameter tag
names correspond to names of properties of the component class and use its accessor
methods. That means that Java classes effectively form the specification and imple-
mentation of the components. Using an extended convention for accessor methods,
it is easily to distinguish in, out, and inout parameters, work with collection types
and perform typing of the parameters against Java types.

Slots that are parameterised by models are not explicitly specified and typed
against metamodels. MWE does not provide means to specify constraints for input
and output models—although this can be realised using the Check language which
is similar to the Object Constraint Language (OCL). In order to provide the level of
validation desired for safe composition of transformations, Check components need to
be used before and after each component instantiation. This separates the contract
from the component. Putting the constraints and the component into a separate
workflow voids the specification of the component. Using a workflow as part of another
workflow is also possible. This is done by including the workflow using a reference to
the file in which the workflow is defined. It is possible to explicitly define parameter
values or simply pass the complete state of the outer workflow to the inner. However,
it is not possible to specify the parameters of a workflow explicitly. That means, that
knowledge about parameter values given to the inner workflow are solely based on
any documentation or comment bundled with the workflow.

2.2.2 UniTI

In [VAB+07], Vanhooff et al. present UniTI, a system specifically designed for defin-
ing and executing composed transformation processes. They identify the shortages
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of existing transformation systems, especially the lack of precise and complete spec-
ifications, and provide means to solve these shortcomings. The approach is based
on a metamodel that is used to define transformation specifications that can con-
tain multiple input and output parameters. Typing of parameters is done through
ModelingPlatforms and parameter-specific constraints. Transformation specifica-
tions and ModelingPlatforms are stored in library elements (TFLibrary). In contrast
to MWE workflows, UniTI follows a data-driven design. It introduces execution ele-
ments for specific transformation steps conforming to a transformation specification,
actual parameters (TFActualParameter) for every formal parameter and connectors
(Connector) that connect output and input parameters of different transformation
steps. Using this structure it is possible to build non-sequential transformation pro-
cesses. It is also possible to check whether connections between input and output
parameters are valid, because both are typed. Every actual parameter directly links
to a model. This model link can either be manually defined—in order to set the
input and output models of the transformation chain—or will be automatically set
for intermediate models.

Although UniTI provides mechanisms for ensuring the validity of transformation
chains (including a precise specification of components, explicit model typing and
additional constraints), it lacks an important element. It is not possible to define
constraints ranging over multiple parameters, as it is required to express contract
conditions (especially if cross-relationships between models exist). So although each
single input model can be checked for consistency, the whole input including all models
cannot be checked. Similarly, the output cannot be checked for consistency withh the
input.

2.2.3 MDA Control Center

In [Kle06], Kleppe presents MDA Control Center (MCC), another approach that
supports composition of transformation. Kleppe defines different components that
form a composed transformation such as Creators (for reading input), Finishers
(for storing output) and Transformers. MCC also provides ModelTypes as a means
to describe the type of a model. Finally, different means for composing components
are provided. First, sequences of two strictly ordered components are possible, where
the output of the first is the input of the second. Secondly, parallel combination
is allowed, where multiple components take the same input models and the output
models are returned as a combined list containing them. Finally, a choice combination
is offered that contains multiple components in an ordered list. Every component’s
condition in this list is tested using the input models and the first components, whose
condition is met, is executed or none, if all conditions fail.

Although not further elaborated, MCC does not seem to put more than a reference
to the concrete metamodel implementation into the ModelType concept. Also, the
ModelTypes are not directly used in the definitions of the components. They are,
however, used in the script language that is used to combine multiple components.
This implies that typing of parameters of a component is only done against Java
classes. The framework itself does not provide the possibility of defining further
constraints on model types. Other conditions such as pre- or postconditions are not
available in the specification as well.
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2.2.4 AM3

In [ABBJ06], Allilaire et al. present their vision on modelling in the large. Their
work is in the context of the AM3 Megamodelling Eclipse project [ATL11] which pro-
vides means for resource management (i.e., a repository for models and metamodels),
inter-model navigability, and transformation execution. The latter supports transfor-
mation execution specification, effective launching of those specifications, means for
traceability, and execution recording. Transformation specification is usually done by
defining transformations in the ATLAS Transformation Language (ATL) [JAB+06].
Composition of single transformations to composite transformation is supported via a
dedicated editor page, where different sub-transformations can be composed to form
a CompositeTransformation. Furthermore, the approach also supports connectors
between transformations that can have multiple values via the MultiConnector con-
cept. In [VJBB09], Vignaga et al. present an approach that addresses typing in AM3
and by that, provides means for ensuring type conformance for the artefacts involved
in transformations chains.

However, the current status of the work does not allow for the specification of
additional constraints that must be fulfilled for the input and output of transformation
steps. Also checking the validity of transformation specifications at design time is not
supported.

2.2.5 Wires*

In [RRGLR+09], Rivera et al. present Wires*, a system for orchestrating ATL model
transformations. They provide a graphical editor for their orchestration language and
a corresponding data-flow based engine for the execution of the complex transforma-
tions. Wires* provides both sequential and parallel execution of ATL transforma-
tions, composition of complex transformations, and offers means for conditional and
repeated execution of ATL transformations.

The approach does not yet provide any means for the specification of constraints
on the input or output models and is restricted to ATL transformations. As a con-
sequence, similarly to AM3, checking the validity of transformation specifications at
design time is not supported.

2.3 Summary

The analysis of existing basic transformation approaches has shown, that many hetero-
geneous technologies exists and many of them only offer basic means for the specifica-
tion of external interfaces, their typing, and pre- and postconditions. Only some tech-
nologies offer references to actual metamodels and additional constraints for model
types. None of the technologies offer explicit contract constraints, that span all input
and output parameters.

In the second part of this section, we presented and discussed five concrete ap-
proaches for defining and executing composed MDSD processes. In Table 1, we give
an overview of important properties of these technologies. All of the technologies pro-
vide explicit specifications for the components used in a composed process, although
MWE lacks specifications for sub-processes. UniTI, and to a lesser extent MCC, dif-
fer from MWE in that they concentrate solely on model transformations. The only
parameter type in UniTI is the model parameter, and thus, it is not possible to pa-
rameterise components with native values (e.g., paths to input data). MCC allows
this for the special components Creator and Finisher in a specific way. In contrast
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to that, MWE operates solely on non-model parameter values like strings, numbers,
and class references. Models are only addressed through their respective slot name.
Where UniTI components cannot receive native values required for parameters, MWE
lacks any typing of model parameters. Only UniTI allows more precise specifications
using additional constraints, that can be defined to further restrict model types.

The properties of parameters of components used in a composed process also
differs between the different technologies. Where UniTI and MCC only support input
and output direction, MWE also supports the inout direction. Additionally, they
allow multi-valued parameters (which must be supported by the actual transformation
technology as well). Again, only UniTI allows to define additional constraints for
parameters.

None of the technologies provides the possibility to define contracts for compo-
nents to ensure the consistency and validity of their input and output data. Despite
the fact, that UniTI’s constraints for model types and parameters allow to precisely
express what kind of model is required, they cannot be used to check consistency
across different models. Also, none of the technologies provide additional tool sup-
port for design-time validation of MDSD processes in order to identify errors as early
as possible in the development process. Besides the metamodel-based specification
of components and MDSD processes, we consider contracts for components and ex-
tended means for validation as the main requirements for a system that ensures safe
composition of transformations.

3 Approach

In this section we conceptualise the framework for safe composition of transforma-
tions as a composition system. According to [Aßm03], a composition system consists
of a component model, a composition language, and a composition technique. The
analysis of existing model transformation technologies in Section 2 showed that a key
requirement for safe composition of transformation steps is a dedicated component
model, which allows the complete and precise definition of transformation specifica-
tions. In addition, a composition language is required, which allows explicit definition
of composition recipes and, thus, composed transformation processes. The composi-
tion technique expands on these concepts by defining how the composition is actually
performed. To ensure safe composition, extensive checks for validation of those pro-
cesses need to be performed statically and dynamically.

3.1 Component Model

The component model defines the concepts that can be used to describe arbitrary
basic transformation steps that can be used in an MDSD process.

Figure 1 depicts the metamodel of our component model which is defined us-
ing Ecore [SBPM08]. It constitutes the actual language to specify components and
model types. According to this metamodel, a Library consists of multiple Compo-

nentSpecifications and ModelTypes. A Library collects reusable or project-specific
ComponentSpecifications.

A ComponentSpecification has a name1, multiple PortSpecifications, pre-
and postconditions and its actual implementation definition. PortSpecifica-

tions have a name, a type and multiple Constraints. The Type might have Con-

1The metaclass Nameable was omitted from the metamodel figures to improve clarity.
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className : EString
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implementation
1

Figure 1 – Metamodel of the Component Model.

straints and is either a ModelType, which references an EMF-based metamodel
declaration, or a NativeType, which references a Java type. Currently, no means for
subtyping of ModelTypes are provided.

The pre- and postconditions of a component are realised using Constraints. The
OclConstraint uses a user-defined OCL expression to check the input and output
models for consistency. OclFileConstraint references a file containing OCL expres-
sions. The JavaConstraint metaclass represents constraints implemented in Java.
This initial set of constraint types can be easily extended to support other constraint
languages.

The ImplementationProvider of a component consists of the identifier of its im-
plementation provider and ImplementationParameters. The implementation class
is not referenced directly, but is made available using a registry of implementation
providers. These implementations can be technology-specific adapters or custom com-
ponent implementations. In contrast to the component implementations, this adapter
may enforce a more strict and more well-defined interface on the target classes.

3.2 Composition Language

The presented component model describes the structure of single components. On top
of this component model, a dedicated language is provided, which allows the descrip-
tion of composed transformations. This language introduces additional constructs
necessary to use and connect components described using the component model.

Figure 2 depicts the metamodel of the composition language. Referenced parts
of the component model are coloured grey. According to the metamodel, a Process

consists of ComponentInstances, ExternalPortInstances and Connections. A Com-

ponentInstance is an instance of a component specified using the component model.
This instance references its ComponentSpecification. Additionally, it may con-
tain Parameters to parameterise non-model ports. ComponentInstances have Port-

Instances that are instances of the ComponentSpecification’s PortSpecifica-

tions. PortInstances and ExternalPortInstances can be connected using Con-

nections. They may both be the source and target of a Connection, although it is
not allowed to connect two ExternalPortInstances. ExternalPortInstances have
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1 externalPort

Figure 2 – Metamodel of the Composition Language.

a name by which they can be identified and parameterised. The type and direction of
the port is inferred from the connection and the opposite port.

Figure 3 depicts an abstract view on transformation components, their interface,
and how multiple components are connected to build transformation chains.

3.3 Composition Technique

The composition technique describes the mechanisms necessary to perform the com-
position of multiple components and execute them. For the developed composition
system a black-box composition is used. That means that components only commu-
nicate with each other through their ports. The implementation, the implementation
parameters and pre- and postconditions are hidden within the component itself and
cannot be changed by the composition process.

The execution of a composed transformation process is data-flow based. Any
transformation component is executed as soon as it has received data on all its in-
ports. In case the component does not have any in-ports, it is considered ready for
execution. Any component is only executed once. If there are multiple components
ready for execution they are executed in parallel. After a components execution is
finished, its output models are transferred to other components via connections. If
all components were run exactly once, the process is terminated. Figure 4 depicts the
different states in TraCo component execution.

The execution of a transformation component consists of the invocation of its
implementation. This implementation may be a technology-specific adapter which
initialises and invokes the actual transformation module. After that, the adapter will
extract any generated output models from the transformation module and provide
them as the component’s output models.

In case a component’s execution is aborted due to errors or in case it did not
generate models for all output ports, the process is aborted. If a component’s imple-
mentation does not terminate after a global user-defined timeout, this is considered
an error as well.
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Component

Adapter

Transformation
Implementation

Port

<<refers to>>

Parameter

Connector

Figure 3 – Transformation components and their composition.

3.4 Validation

Besides the specification and execution of MDSD processes, we want to ensure the
consistency and validity of the constructed processes. This is done by performing
validation checks for both intra-component and inter-component consistency.

3.4.1 Intra-Component Consistency

Intra-Component Consistency covers consistency within a single component. This
especially includes the implementation of a component, which can consist of a single
Java class or an adapter and the actual transformation module. The pre- and post-
conditions can also be used to ensure internal consistency to a certain degree. In the
following, we describe the various checks performed either statically or dynamically
to ensure intra-component consistency.

Consistency of Component Specification Component specifications must be
valid and complete. This includes its naming, a reference to an existing com-
ponent implementation and correct naming and typing of all its port specifi-
cations. Additionally, valid port directions have to be specified. This can be
checked statically for a single component specification.

Consistency of Implementation Parameterisation If a component implemen-
tation requires parameters (e.g., references to resources) to make the actual
implementation work, the component implementation has to check the com-
pleteness and validity of those parameters. This can be checked statically for a
single component specification by the component’s implementation.

Consistency Between Specification and Adapted Transformation If a spec-
fific transformation technology is adapted by the framework, the consistency
between the component specification and the technology-dependent specifica-
tion can be checked as well. The level of detail regarding consistency at this
level depends on the implementation technology. The more complete and pre-
cise the provided specification is, the more checks can be performed, e.g., if the
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Component instance  Connector  

Port  

1. Not ready

Input and output models
 

2. Not ready 3. Ready

4. Prepare 5. Execute 6. Commit

Figure 4 – States in execution of a TraCo component.

technology-depended specification exposes all its required parameters to the
outside, the system can check whether all of those are bound to in-ports of the
component specification. This can be checked statically for a single component
specification by the components implementation.

Consistency of the Transformation Module An adapter implementation
can use arbitrary specific transformation technologies. Depending on the con-
crete technology, there may be means to check the actual implementation for
consistency (e.g., checking a transformation script for errors). The level of de-
tail again depends on the amount of information provided. This can be checked
statically for a single component specification by the components implementa-
tion.

Ensuring Component Contracts The contract of a component, consisting of pre-
and postconditions, defines a specific behaviour of the component under certain
preconditions. Whether or not this promise holds is hard to check statically
against the transformation implementation, because it requires a formal alge-
bra for the underlying implementation technology, which may be Java code and
arbitrary transformation technology and may also depend on the concrete in-
put provided. Furthermore, it is difficult to determine whether the contract
is violated because of an invalid original input or an erroneous component im-
plementation. At runtime, however, these constraints can be checked against
actual input and output models.

Ensuring Implicit Assumptions Even if an MDSD process is completely speci-
fied, implicit assumptions on the behaviour of component implementations are
drawn. In the given composition system we assume that a component always
terminates, produces no errors and outputs data on all output ports. If any of
these conditions fail, the process needs to be aborted after a user-defined time-
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out. This can be checked dynamically on a single component instance by the
framework. However, ensuring that a component always terminates cannot be
checked by the framework, but the framework can detect whether a component
is working longer as expected by the component developer and can report this
as error to the user.

Consistency of Type Specifications Native types must have a name and must
reference an existing Java type. Model types must also have a name and must
reference a valid and existing metamodel. Additional constraints must be valid
constraints. This can be checked statically for a single type definition.

3.4.2 Inter-Component Consistency

Inter-Component Consistency covers consistency of the interactions between com-
ponents within a composed transformation process. All elements including compo-
nent instances, connectors, parameters, and external ports need to be checked for
consistency in different ways. We identified the following checks that ensure inter-
component consistency of a composed transformation process.

All Ports Connected Check A component instance must have all its ports con-
nected either by connectors or parameters. For in ports, there must be exactly
one incoming connection or exactly one parameter. For out ports, one outgoing
connection and for inout ports exactly one incoming connection or parameter
and exactly one outgoing connection is required. This can be checked statically
for each component instance. Optional ports are currently not supported.

Connection Structure Check It has to be ensured that any connection has a valid
port instance as source and as target. These port instances must refer to valid
ports of a component specification and must have a valid direction. The source
port must have a direction of out or inout, the target port of in or inout.
This implies that source ports may not be in ports and target ports may not
be out ports. This can be checked statically for each connection.

Connection Type Check This ensures the correct typing between source and tar-
get ports of connections which can be checked statically for each connection.

No Cycles Check A cycle is a connection between any of a components output
ports to any of its input ports (also across multiple components). Although
these compositions are structurally valid, they need to be avoided, as there is
no way to invoke any component involved in the cycle due to missing inputs.
This can be checked statically for each connection.

Inout Port Type Semantics Check Inout ports have special semantics where it
is assumed that the type of data going into this port is the same type of data
coming out of it. In order to improve typing for succeeding components it is
possible to predict the type of the outgoing data: It will be the same as the type
of data going into this port, which was originally the output of the preceding
component. It is, thus, possible to check whether the type of the port connected
to the outgoing inout port is the same as the type of the port connected to the
incoming inout port. This can be checked statically for each inout port.

External Port Connection Check External ports are the connection points of a
composed transformation process to other components. They do not perform
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any action on their own. That is why an external port must be connected to
exactly one port of one component. It is not possible to connect two different
external ports, without any transformation component in between. Also, an
external port must be connected to exactly one component. This can be checked
statically for external ports and connections.

Parameters Check The parameters are constant-value connectors that are used
to parameterise non-model input ports of a component. Similar to other con-
nections, it has to be checked whether they are connected to a valid port of a
component and whether they are correctly typed. This can be checked statically
for each parameter.

Runtime Type Check Types of all input and output models can be checked dy-
namically independent from the component implementation or transformation
technology.

Runtime Constraint Check Additional constraints may be defined with the type
or port specification. These constraints are checked dynamically for each port
when it receives or outputs data.

4 Implementation

Building upon the definition of the composition system, we implemented TraCo as a
set of Eclipse plug-ins based on the Eclipse Modeling Framework [SBPM08]. Figure 5
depicts the overall architecture of TraCo. The current implementation consists of tool-
ing to visually build and maintain component libraries and composed transformation
processes and an execution environment that performs the actual transformations.
These tools also integrate the mechanisms for ensuring intra-component and inter-
component consistency as described in Section 3.4. The checks are enforced by the
metamodel structure, many of them by dedicated OCL constraints, or programmatic
constraints implemented in the component implementations. An example OCL con-
straint for checking whether each Connection has its sourcePort and its targetPort
set is listed below.

context Connection inv tracoSourceAndTargetSet:
not self.sourcePort.componentInstance.oclIsUndefined() and
not self.targetPort.componentInstance.oclIsUndefined()

All errors that are determined statically or dynamically are collected and reported to
the developer.

Based on the component model presented in Section 3, an EMF-based editor has
been generated and extended by means for easy creation of component specifications
(based on wizards) and validation of such specifications. We have also defined a basic
set of component specifications and types in the TraCo Standard Library (TSL),
which includes components to load and store models and type definitions for common
native types and model types.

A visual editor is provided, that allows for specifying MDSD processes by instanti-
ating components from TraCo libraries. Again, this editor performs validation on all
elements participating in such a process and reports possible errors to the developer.
In addition to the visual editor, TraCo features a textual editor for specification of
complex transformation chains. This editor is generated using the textual concrete
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Traco Diagram *.traco.diagram

Graphical Composition

Traco Editor *.traco.editor

Component Specification

Traco UI *.ui

Execution Tool
Traco Validation *.validation

Traco Runtime *.runtime

Implementation Registry and Composition Technique

Traco Language *.traco

Component Model and Composition Language

* de.tudresden.traco

Figure 5 – TraCo Architecture.

syntax tool EMFText [HJK+09] and provides advanced editor features such as syntax
highlighting, code completion, quick fixes, and instant error reporting.

A TraCo process can be executed via Eclipse’s run configuration dialog. This
dialog takes the actual TraCo process as input and the TraCo execution environment
performs the invocation of the process and the execution of all referenced components
as described in Section 3.3.

Our current experience with TraCo is with using EMF-based models and we de-
signed the tool to fit nicely in the EMF modelling landscape. However, neither the
transformed models nor the adapted transformation techniques are limited to the
Ecore technological space.

5 Evaluation

We evaluated TraCo based on two case studies performed as student projects, where
the students specified transformation components and developed chains of transfor-
mations for a given transformation problem. Furthermore, we realised a case study
for feature-based customisation of MDSD tool environments using TraCo.

5.1 Case Studies

The first project consisted of the de-facto standard of transformation examples, where
a UML class model was transformed to a Relational model. While this project did
not provide any new insights regarding the creativity in the field of model transforma-
tions, it gave enough motivation to develop the TSL and provided helpful information
regarding usability of the tool (ranging from the demand for wizard-based component
instantiation to the way how errors are reported to the developer).

The second project was a more complex MDSD scenario where a Java-based issue
management system was developed. The students developed multiple EMF-based
Domain-Specific Languages (DSLs) that were used to describe the domain model, the
user interface, actions and navigation, and the internal application state. Further-
more, this issue management system was designed as an SPL where the focus was
more on platform variability than on functional variability (although it also had three
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functional variation points). On platform level, variability between SWT and JSP for
the presentation layer, Java and EJB3 on the business layer, and local storage and
EJB3 on the persistence layer was required.

We developed a two-staged MDSD process, where platform variability was resolved
on the first stage and the actual implementation was generated in various steps on
the second stage. To express the variability regarding platform decision, we used our
SPL tool FeatureMapper [HKW08, HcW08] and mapped features or combinations of
such from a platform variability feature model to the respective transformation com-
ponent instances and connections of a TraCo process. Figure 6 depicts the overall
process where component instances that are used for a specific variant of the software
are annotated with a respective shape symbol.2 To perform the feature-based trans-
formation of the TraCo process in TraCo, we developed a dedicated FeatureMapper
component for TraCo which required a TraCo process, a mapping definition and a
concrete feature selection as input and produced a TraCo process specific to a concrete
platform selection.

This specific process model contained several component instances ranging from
loading and storing of models, over feature-based transformation of DSL models and
model-to-model transformations with ATL, to model-to-text transformations with
MOFScript [Old06].

The feature-based transformation of models was performed on all DSL input mod-
els, hence, specifying this transformation as a reusable component was worthwhile.
In the overall process, which consists of 32 component instances, this component was
reused for each of the 5 DSL models. In addition, this component was also reused for
the process on stage one, where the TraCo process itself was transformed and after
that executed via a dedicated TraCo component.

In the MOST research project3, TraCo was used to derive different variants for
MDSD tool environments [WZAK10]. In MOST, an MDSD tool environment con-
sists of heterogeneous combinations of different variants of architectural components
that form the actual tool environment. These components address software process
guidance, support for a specific development method, automation of repetitive tasks,
and the ontology technology used. The degree of variability in combining the differ-
ent variants of the architectural components for tool environments was modelled in
a feature model consisting of 28 features. To actually derive a product of this tool
product family (i.e., a specific tool environment) TraCo was used in combination with
the FeatureMapper SPL tool. Dedicated TraCo components were used to perform the
composition of the concrete variant and to perform semantical analysis on the created
tool environment.

Figure 7 depicts the derivation process for MDSD tool environments. The pro-
cess component is parameterised by a feature model by which the variability in tool
environments is described. The mapping model relates features or combinations of
features from this model to architectural components. The variant model represents
a concrete feature selection and, thus, a concrete product of the tool product fam-
ily. The product derivation component interpretes these parameters and composes a
specific MDSD tool environment.

2FeatureMapper actually uses colours to visualise the mapping between feature expressions and
component instances.

3http://most-project.eu/
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Figure 7 – MDSD Tool Environment derivation process.

5.2 Discussion

The three case studies showed to a certain extent, that it is possible and feasible to
create and manage multi-staged MDSD processes with the developed TraCo frame-
work. This does not imply that this observation can be directly generalised to other
development efforts. However, as we will see, a number of observations reflect the fact
that improved means for validation of complex transformation processes result in safer
transformation chains, so there is some tentative grounds for careful generalisation.

The composition system and its supplemental tools made it possible to incorporate
heterogeneous transformation technologies including ATL, MOFScript, and feature-
based transformation using FeatureMapper. The validation features on component-
specification level helped at identifying and fixing erroneous specifications. This also
included the detection of component specifications that mismatch with their corre-
sponding transformation modules (which was the case when transformation modules
were refactored).

Similarily, for the transformation processes, the extended means for validation
proved to be helpful at identifying and fixing type errors, yet unconnected ports or
ports that did no longer exist because of changes in the component specification.
The definition of constraints and contracts using OCL enabled us to more precisely
specify expected input and output data. As an example, the transformation for the
SWT user interface required unique identifiers on model elements, but the DSL itself
did not enforce this. By defining an additional transformation to augment model
elements with generated identifiers and providing an additional precondition to the
model transformation, we were able to create a reusable transformation component
without putting more bloat to the original transformation—while still maintaining
integrity of the whole transformation.

The preconditions also helped when working with multiple input models in trans-
formations. For example, some transformations rely on the consistency between two
given input models. Any state variable referenced in the first model (in this case the
user interface model) must be declared in the second model (in this case the applica-
tion state model). Similarly, the transformations of action models require consistency
of references to state variables as well. Especially in the context of multiple possible
variants of the source models—as a result of feature-based transformation—the pre-
conditions help to quickly identify consistency errors. We observed, that the reasons
for these errors were not always inconsistent models, but also incorrect mappings
of features to DSL model elements. In addition, we also noticed another issue when
working with multiple variants specified in one model. Some constraints can no longer
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be applied without taking the mapping information into account, e.g., when compo-
nents have multiple incoming connections for the same port which is not allowed in
a single-variant scenario and detected by TraCo’s validation mechanisms. They can,
however, be used to ensure consistency of a specific process variant.

6 Conclusion

In this paper, we presented TraCo, a framework for safe composition of transforma-
tions. First, we analysed existing work in this field and derived requirements for TraCo
from our observations. In addition to metamodel-based specification of components
and MDSD processes, we identified contracts for components and means for valida-
tion of component specifications and MDSD processes as the main requirements for a
system that ensures safe composition of transformations. Second, we conceptualised
a composition system (consisting of the modules component model, composition lan-
guage and composition technique) for TraCo and presented a classification of checks
that can be performed to ensure intra-component and and inter-component consis-
tency, thus, resulting in a system that allows for safe composition of transformations.
We outlined TraCo’s implementation and presented three case studies, followed by a
discussion of the applicability of the approach.

In the future, we want to further evaluate TraCo and possibly integrate the con-
cepts developed in this work with existing approaches, preferably MWE. On imple-
mentation level, means for debugging TraCo processes are planned.
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