
JOURNAL OF OBJECT TECHNOLOGY
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Keyword- and Default-
Parameters in JAVA

Joseph (Yossi) Gila Keren Lenza

a. Department of Computer Science
Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel

Abstract Overloading is a highly controversial programming language mech-
anism by which different methods of the same class are allowed to bear the
same name. Despite the criticism, JAVA programmers make extensive use of this
mechanism—not just because it is available, but also because the language does
not provide an alternative for defining multiple constructors, and because it is
useful for expressing similarity of services provided by a class.

In a previous paper we argued that more than 60% of the overloading cases
are “justifiable” and that in 35% of the cases overloading is used for emulating
a default arguments mechanism. Based on these results, this paper argues that
most “justifiable” uses of overloading are better done with a combination of
keyword parameters and default parameters parameter definition mechanisms,
and describes our extension of the JAVA compiler which adds these two features
to the language.

Keywords ...

1 Introduction

Unlike C++ [Str97], C# [AA10] and ADA [TD97], methods in JAVA [AG96] cannot declare
default values for their formal parameters. Overloading is available as a substitute: A default
argument can be emulated by introducing a new method bearing the same name which
invokes the original with an appropriate value for this argument. For example, method
getInteger(String) in the JAVA’s standard Integer class, supplies a default argument
to the more general getInteger(String, Integer) method:
public static Integer getInteger(String nm) {
return getInteger(nm, null);

}

For the class’s author, this emulation of default parameters means a blown up inter-
face with extra code to document and maintain. In this example, the three-lined function
getInteger(String) incurs a 28-lines documentation overhead toll. For the class’s client,
this practice requires familiarity with different versions of essentially the same method, and

Joseph (Yossi) Gil, Keren Lenz. Keyword- and Default- Parameters in JAVA. In Journal of Object
Technology, vol. 11, no. 1, 2012, pages 1:1–17. doi:10.5381/jot.2012.11.1.a1

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2012.11.1.a1
http://dx.doi.org/10.5381/jot.2012.11.1.a1
http://dx.doi.org/10.5381/jot.2012.11.1.a1

2 · Joseph (Yossi) Gil, Keren Lenz

understanding of the subtle semantics of overloading, and its not so trivial interaction with
overriding [BS07], in order to make sure that the intended method is indeed invoked.

Overloading is a highly controversial language construct [Mey01]. When used correctly it
allows to capture similarity between different methods and to emphasize the fact that several
different methods represent the same conceptual operation. However, it has the potential of
being abused, by assigning the same name to conceptually different methods. As a result,
several style guides 1 all but completely forbid the use of overloading.

In this paper we discuss two language features: keyword arguments and default arguments,
and argue that their use in tandem reduces the use of overloading and enhances readability
and maintainability of the code. Attaching names to parameters in the invocation command
highlights their meaning, and reduces the need to examine lengthy documentation. The
combination of keyword parameters and default values allows one to specify the actual
parameters in any order while omitting any subset of the parameters that have default values.

This combination is used in several programming languages including PYTHON [Lut96]
and LISP [Gra95]. C# designers recognized the advantages of the combination, and a
mechanism that supported named and optional parameters was added to version 4.0 of the
language2.

After arguing for the merits of this combination, we describe our JAVA language exten-
sion supporting it. The extended compiler is available for download at the following address:
http://ssdl-wiki.cs.technion.ac.il/wiki/index.php?title=Call_by_Name_Java_Extension. With
the extension, every subset of the formal parameters may be assigned default values. A default
value is either a constant or an expression involving method calls, data members and other
formal arguments, which is evaluated at the scope of the declared method. The dependency
between the formal arguments may even be circular, under some constraints.

Our extension allows a programmer to supply actual arguments either (i) positionally, i.e.,
in the order of the formal parameters, (ii) in a keyword based fashion, where each argument
is preceded by the name of the formal parameter, or, (iii) in a mixed style by which a prefix
of the actual arguments is specified positionally, while the remainder is specified by name.
We identify the difficulties of interaction of this mechanism with inheritance, and explain
how to deal with these while preserving the compatibility principle of Meyer [Mey92] and
Liskov [LW94].

Outline. The remainder of this paper is organized as follows. Sec. 2 motivates the use
of keyword arguments with default values as a substitute for overloading. Sec. 3 describes
how the distinction between operands and options is supported using keyword and default
arguments. Sec. 4 presents a JAVA language extension that supports keyword and default
arguments and describes its implementation. Sec. 5 surveys related work, highlighting the
arguments against and for keyword arguments. Sec. 6 concludes.

2 Solving the hardship of overloading in JAVA

In this section we argue that one of the most common uses of function name overloading
in JAVA is for the emulation of a default parameters mechanism. We then emphasize the
advantages of keyword parameters and default values over the practice of using overloading.

In previous work [GL10] we studied the use of overloading in JAVA programs. In this
research we used sampling techniques to estimate the prevalence of various overloading
patterns in JAVA code. We found that overloading is extensively used in JAVA programs – 35%
of all constructors and 14% of all methods are overloaded.

1http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
2http://msdn.microsoft.com/en-us/library/dd264739.aspx

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

Keyword Default Parameters in JAVA · 3

In addition, we developed a taxonomy of overloading patterns and applied it to a large
corpus of JAVA programs. We found that most uses of overloading are “justifiable”, that
is, overloading is typically not abused. Fig. 1 presents the results of the study with respect
to distribution of overloading sets of methods (a) and constructors (b) by the categories of
the taxonomy. The X axis in both graphs of the figure stretches a spectrum of overloading
categories, ranging from ad-hoc patterns, in which overloading is coincidental, to systematic
patterns, in which overloaded methods are semantically cohesive.

For brevity, we do not discuss the categories in details here, but just outline their description.
We refer the reader to our previous paper [GL10] for a full explanation of each category. The
INTRINSIC category represents overloading sets in which methods are semantically and
sometimes syntactically related. The POTENTIAL category is similar in that it can be brought
into the INTRINSIC category with minimal effort. PEER-CALLERS are overloading instances
in which a method calls its peer, but it is not clear whether it can be rewritten in the INTRINSIC
form. On the dividing line, we find PLACEHOLDERS, in which all methods in the set are
not implemented. That is, methods in this category either have an empty body or do nothing
but throw an exception or return a trivial value. The overloading kind can fall into any other
category, depending on the implementation in the inheriting class or classes, therefore this
category is “neutral”. The ACCIDENTAL category, refers to cases in which no peer calls
occurred, and no other relationship between peers could be identified.

 0

 10

 20

 30

 40

 50

 60

Accidental Placeholders Peer-callers Potential Intrinsic

P
e
rc

e
n
ta

g
e

 o
f

M
e

th
o
d

 C
o

h
o

rt
s

13%

3%

8%

19%

57%

 0

 10

 20

 30

 40

 50

Accidental Placeholders Peer-callers Potential Intrinsic

P
e

rc
e
n

ta
g
e

 o
f
C

o
n

s
tr

u
c
to

r
C

o
h
o

rt
s

37%

0% 0%

17%

46%

(a) (b)

Fig. 1 – Spectrum of systematic overloading in method sets (a) and constructor sets (b)

As can be seen in the figure, there is a clear tendency towards more systematic use of
overloading in method sets. This tendency is less strong in constructor sets, but still, 63% of
the constructor sets fall into systematic categories.

We further broke down the INTRINSIC category into subcategories, and found that the most
common use of overloading in JAVA is for the emulation of keyword and default arguments:
41% of the method sets and 43% of the constructor sets in the INTRINSIC category follow this
pattern. We found that the addition of a keyword and default arguments mechanism to the
language could eliminate overloading in about 35% of the cases.

Having stressed that a keyword parameters and default values mechanism could replace
a substantial portion of the cases of overloading, we now discuss the benefits of such a
mechanism. Consider for example JAVA class Point depicted in Fig. 2.

In the example, variables x and y are optional and have 0 as default values. To realize
this, the constructor is defined twice and the second definition passes the default values to
the first, which does the actual work. In JAVA, overloading is mandatory in the definition of
multiple constructors, since programmers are not free to name constructors as they please— all
constructors of a given class must bear its name. In a typical class, there are many constructors

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

4 · Joseph (Yossi) Gil, Keren Lenz

class Point {
private int x, y;

public Point(int x, int y) { this.x = x; this.y = y; }
public Point() { this(0,0); }
// ...

}

Fig. 2 – A JAVA class representing a two-dimensional point.

that forward their work to each other, and to super-classes as well. For example, in order to
support the option that the y parameter is optional, another constructor has to be added. Such
a constructor is likely to be implemented by invoking the first constructor of Fig. 2.

This is a cumbersome solution for the simple problem of realizing an optional default
value. For each possible combination of optional arguments, an additional method must be
provided. This situation is even more typical with constructors than with ordinary methods.
To quote a JAVAWorld article [Smi98]

“With JAVA, the language design for constructors is quite elegant—so elegant,
in fact, that it’s tempting to provide a host of overloaded constructors. When
the number of configuration parameters for a component is large, there can be a
combinatorial explosion in constructors, ultimately leading to a malady known as
constructor madness. . .

Named parameters together with default values, offer a simple substitute. The host of methods
(or constructors) doing nothing other than forwarding to other methods of the same name, but
still carrying the price tag of extra documentation, interface bloat, and maintenance issues, can
be replaced by a single method with appropriate defaults.

This is the case, for example, with those constructors of the JRE’s standard implementation
of class String in charge of creating a String object from a byte array.
public String(byte bytes[]){
this(bytes, 0, bytes.length);

}
public String(byte bytes[], int offset, int length){

/∗ ... ∗/
}
public String(byte bytes[], String charsetName){
this(bytes, 0, bytes.length, charsetName);

}
public String(byte bytes[], int offset, int length, String charsetName){

/∗ ... ∗/
}
public String(byte bytes[], Charset charset) {
this(bytes, 0, bytes.length, charset);

}
public String(byte bytes[], int offset, int length, Charset charset){

/∗ ... ∗/
}

Fig. 3 – Overloading and forwarding as substitute to default arguments in the constructors of
String.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

Keyword Default Parameters in JAVA · 5

Fig. 3 demonstrates the process of forwarding while supplying defaults among the six
overloaded constructors: the first constructor in the figure, String(byte[]), gives default
value to the offset and length parameters while calling the second constructor whose sig-
nature is String(byte[], int, int); the same two arguments are given the same default
values in the call of the third constructor, String(byte[], String), to the fourth construc-
tor, String(byte[], int, int, String), and in the call of the penultimate constructor,
String(byte[], int, Charset), to String(byte[], int, int, Charset), the last
constructor.

A calling mechanism featuring parameter defaults is more than just syntactic sugar for
method overloading; it can deal with the situation in which several arguments are of the same
type—a situation which baffles JAVA’s overloading mechanism. In class Point of Fig. 2 for
example, we see a constructor in which both x and y default to 0, but it is impossible to declare
constructors for the situations in which either x or y are missing, by adding both
Point(int x) { this(x,0); }

and
Point(int y) { this(0,y); }

to the set of constructors of class Point. These two constructors definitions are contradictory
since plain JAVA uses parameter types (and these types only) for resolving overloading
ambiguities. The situation is slightly better with methods, whose name can be changed to
support a variety of argument combination. With the same Point example, an attempt to
define a variety of move methods by writing e.g.,
move(int x) { /∗ ... ∗/ }
move(int y) { /∗ ... ∗/ }
move(int x, int y) { /∗ ... ∗/ }

will be rejected by the compiler due to the overloading problem, but with methods (as opposed
to constructors), the method name can be changed to circumvent the ambiguity hurdle:
moveX(int x) { /∗ ... ∗/ }
moveY(int y) { /∗ ... ∗/ }
move(int x, int y) { /∗ ... ∗/ }

Method renaming addresses ambiguity but fails to capture the similarity between the three
varieties of move—each method must be documented, implemented and maintained separately.
The alternative offered by default values and keyword parameters is depicted in Fig. 4.
class Point {
private int x, y;

public Point(int x = 0, int y = 0) {
this.x = x; this.y = y;

}
public void move(int x = 0, int y = 0) {
this.x += x; this.y += y;

}
// ...

}

Fig. 4 – An implementation of class Point with keyword parameters and default values.

Note that in this case a default arguments mechanism, as in C++, is not enough. Such a
mechanism does not provide any way to omit the x value. An elegant way to achieve this is by
using a combination of keyword and default arguments.

Another overloading difficulty which finds a more elegant solution with named pa-

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

6 · Joseph (Yossi) Gil, Keren Lenz

rameters is that of passing a null value. Class String contains eight versions of the
static method named valueOf which accept a single parameter. The parameter types
are boolean, char, char[], double, float, int, long, and Object. The documenta-
tion of the valueOf(Object) method states that this method returns null if the passed
in object is null. However, the call String.valueOf(null); surprisingly throws a
NullPointerException. The reason for this is that this call invokes the version taking
char[], as this is the most specific method.

This difficulty in inferring the chosen method can be resolved by using keyword parameters,
where the name of the null parameter is explicitly specified.

3 Support for operands and options

Recall the famous distinction between operands—the (usually few) values on which a sub-
program operates and (the usually many) options—which set the mode of operation [Mey82].
With a keyword argument calling scheme, the designer places operands first on the formal
parameter list, allowing them to be called positionally. Options follow in an arbitrary order,
with appropriate defaults (See also an ADA style guide3 that makes recommendations in this
spirit, without making the explicit distinction between operands and options.)

Consider for example a method m taking two operands and n options as depicted in
Fig. 5(a). With the suggested language extension, this method can be rewritten (Fig. 5(b)) to

class A {
void m(
String operand1,
int operand2,
O1 opt1, O2 opt2,...,
On optN) {
// ...

}
}

class A {
void m(
String operand1,
int operand2,
O1 opt1 = defaultExp1,
...

On optN = defaultExpN) {
// ...

}
}

(a) (b)

new A().m(
"Restaurant", 42,
opt17 := E, opt3 := E′);

(c)

Fig. 5 – (a) definition of a method taking two operands and n options using plain JAVA syntax, (b) its
rewrite with our language extension, and (c) an example of how this method might be called with
this extension.

highlight the distinction between operands and options.
Fig. 5(c) demonstrates a call to method m with "Restaurant" and 42 as operands, while

setting opt17 to the expression E and opt3 to the expression E′.
The use of overloading would have required 2n versions of method m; with each of these

versions, there is a need to lift the burden of deciding on, and then remembering the order of
parameters. And, in the example, it is not even clear that a call such as
m("Restaurant", 42, E, E′);

3http://archive.adaic.com/docs/style-guide/83style/html/sty-05-02.html#5.2.3

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

Keyword Default Parameters in JAVA · 7

would have carried enough information to pinpoint the correct overloaded version of m.
The distinction between options and operands penetrated EIFFEL [ISE97]’s standard

library, which uses a variety of means [Mey94, 89–92] to avoid passing options as arguments
to methods. These means include the placement of setters and getters for shared or per-object
option fields within the class, passing values for options to the class constructor, and, in the
case of boolean options, writing two distinct versions of the main operation. Fig. 6(a) shows
how class A, the class enclosing method m can be rewritten to include setters for each of the
options that this method takes. Fig. 6(b) demonstrates how these setters are used for setting
the options.
class A {
void m(String operand1, int operand2) {

// ...
}
O1 opt1 = defaultExp1;

...
On optN = defaultExpN;
A setOption1(O1 value) {
opt1 = value; return this;

}
...

A setOptionN(On value) {
optN = value; return this;

}
}

(a)
new A()
.setOption17(E).setOption3(E′).m("Restaurant", 42);

(b)

Fig. 6 – (a) defining setters for options for the method of Fig. 5, and (b) using these in a concrete call
equivalent to Fig. 5(c).

Clearly, the version using our language extension is shorter and clearer, not only on the
supplier side, but also, and more importantly, on the client side.4 Still, Eiffel’s approach is a
viable alternative if a number of methods defined in a class share options, in which case, a
client would only need to learn once how to use these options. In the case that settings of these
options tend to be the same in distinct call sites, the Eiffel approach might be preferred.

An even more viable alternative in this case is of using arguments objects [Nob00] as
depicted in Fig. 7(a). Fig. 7(b) shows how an arguments object is used while calling this
method. Again, the arguments object alternative is longer and not as direct as using a keyword
arguments calling scheme.5

4 A JAVA extension for keyword and default arguments

This section describes the design and implementation of a JAVA language extension to support
an expressive, yet easy to use, defaults mechanism. Our extension features:

4Even the number of tokens in each call is smaller; the overhead in terms of token count of setting m options by
the EIFFEL approach is 4m, compared to 3m using the proposed language extension.

5As indicated e.g., by the 5+4m token-count overhead for setting m options with the arguments object alternative.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

8 · Joseph (Yossi) Gil, Keren Lenz

class Options {
O1 opt1 = defaultExp1;

...
On optN = defaultExpN;
Options setOption1(O1 value) {
opt1 = value; return this;

}
...

Options setOptionN(On value) {
optN = value; return this;

}
}

(a)
new A().m("Restaurant", 42,

new Options()
.setOption17(E)
.setOption3(E′)

);

(b)

Fig. 7 – (a) defining an arguments object class for the method of Fig. 5, and (b) using it in a concrete
call equivalent to Fig. 5(c).

1. Default arguments—a denotation that a parameter is optional and for supplying a default
value for it. This default value is either a constant or an expression, evaluated at the scope
of the declared method. Such an expression may involve other parameters, methods and
fields of the class in which the method was defined, and any other entities defined at the
scope of the declared method.

2. Keyword arguments—a mechanism that allows clients to provide arguments in an
invocation as name/value pairs. Because each argument is named, the arguments can be
supplied in any order; the binding of actuals to formals is carried out automatically by
the compiler.

3. Extended invocation syntax, in which the list of actual arguments to a method has two,
possibly-empty, parts:

(a) Positional Arguments List, in which arguments are supplied in the order they are
defined, followed by

(b) Keyword-Based Arguments List, in which each argument is prefixed with the name
of the formal parameter.

This invocation syntax makes it possible for an invocation style which is either entirely
positional, entirely keyword based, or mixed.

In C++ a parameter with no default cannot follow a defaulted parameter, and, the default
value’s expression can not use other formal parameters, non-static data members and functions.
In our extension, just as in C++, the initialization expression is computed in the context of
the declared method, however, it may involve any function calls and data members access, as
long as these are recognized in this context. This makes default value expressions equivalent

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

Keyword Default Parameters in JAVA · 9

to full-blown methods, with the right scoping and late binding properties. Moreover, thanks
to keyword-based invocation, in our defaults mechanism the initialization expression may
involve values of other parameters to this method and the dependency may be circular. We
may declare a method in an Interval class such as:
public void setInterval(
int left = right - width,
int width = 0,
int right = left + width) {

// ...
}

where the left parameter depends on the right parameter and vice versa. All we require is
that if certain parameters are omitted from an invocation, they could be computed from the
supplied arguments.

The above definition supports a full positional specification of all parameters,
setInterval(1, 7, 8);

just as a full keywords based call
setInterval(width := 7, left := 1, right := 8);

Both forms allow omitting arguments with defaults: In the partial positional based call
setInterval(1, 7);

the defaults mechanism will complete the other parameter, setting right to 8. Similarly, in
the partial- keyword-based call
setInterval(left := 1);

the defaults engine will set width to zero and right to 1. The circular defaults dependency,
i.e., having both left depend on right and right depend on left is never a problem. If
one of these arguments is missing, its value is computed based on the other. It is however
illegal to invoke setInterval while omitting both left and right.

The dependency relationships between parameters are static, determined at compile time.
Thus, in the definition
public void f(int a, int b, int c = (b != 0) ? a : -1) {

// ...
}

the c parameter always depends on the a parameter, even though the a value may not be used
in the computation of the c value.

4.1 Methods with Default Arguments

4.1.1 Declaration

For each method with default parameters, our modified JAVA compiler computes the set of
calling patterns, that is, those subsets of the formal arguments from which the remaining
arguments can be computed. Every calling pattern with the exception of the pattern including
all parameters, is realized as an auxiliary method computing the remaining arguments and
then invoking the original method. This method represents the calling pattern in which all
arguments are specified. The names of these auxiliary methods are a mangled encoding of
(i) the name of the original method, (ii) the types of arguments to the original method, and
(iii) the positions of the arguments taking part in the calling pattern.

In the setInterval example above every subset of the parameters which includes either
left or right is a proper calling pattern making a total of six calling patterns. We have
therefore five auxiliary methods, whose mangled names and signatures are

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

10 · Joseph (Yossi) Gil, Keren Lenz

1. setInterval.int.int.int_0(int)

2. setInterval.int.int.int_2(int)

3. setInterval.int.int.int_0_1(int, int)

4. setInterval.int.int.int_1_2(int, int)

5. setInterval.int.int.int_0_2(int, int)

Such names are possible since the JAVA virtual machine does not require method names to be
valid JAVA identifiers. In fact, we insist on using invalid JAVA identifiers to avoid clashes with
other user defined names.

The generation of the auxiliary methods is carried out in the parsing phase of the compiler
so that these methods are being attributed and type checked as if they appeared in the source
code.

The current implementation does not warn the user if a calling pattern of one method
collides with a calling pattern of another method. (This situation happens only if the two
methods have the same name, that is, in case of overloaded methods.) For example, the
function call Y.g(a :=3) is ambiguous if class Y is defined as in Fig. 8.
class Y {
static void g(int a, int b = a) {
System.out.println("Two arguments");

}
static void g(int a) {
System.out.println("One argument");

}
}

Fig. 8 – Two method definitions leading to an ambiguous calling pattern

The compiler does not warn against such a possibility while compiling class Y, although
it correctly refuses to make the ambiguous call. Other ambiguous situations may occur due
to the combination of positional call and default parameters. In the above example, the call
Y.g(17) is also ambiguous, and this ambiguity would not have been removed if the first
argument of one of the functions was renamed.

The preferred order of evaluation of initialization expressions is left-to-right. That is,
whenever two arguments can be computed based on the known values of other arguments,
then the method realizing a calling pattern computes first the argument occurring first in the
parameters list. In other words, the basic step executed repetitively by a method realizing
a calling pattern is computing the leftmost computable argument. For example, consider
method f defined by
void f(int x = y+3, int y = 0; int z = 1){

// ...
}

and its parameter-less invocation f();. The missing arguments are scanned from left to right.
The first argument, x, can not be computed until the value of the y parameter is obtained.
Therefore, the y parameter is first computed. Next, the remaining missing arguments (that
is, x and z) are scanned again from left to right. In this iteration parameter x can be computed
based on the value of y as computed in the previous iteration. The order of evaluating the
arguments is therefore y followed by x and finally z.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

Keyword Default Parameters in JAVA · 11

4.1.2 Default parameters and inheritance

An overriding method might change the names of the formal parameters, but still in a method
invocation the binding of parameters is done by their name in the static type, as depicted in
Fig. 9.
class X {
boolean equals(Object x) { /∗ ... ∗/ }
// ...

}
class Y extends X{
boolean equals(Object y) { /∗ ... ∗/ }
// ...

}

Fig. 9 – Overriding a method while changing a parameter name.

In this figure method equals declared in class X is overridden in class Y while the name
of the parameter is changed. With this hierarchy, the following invocation of equals is legal:
X x1 = new Y();
x1.equals(x := new Y());

since the compiler looks for matching methods based on the static type of the receiver.
An overriding method may also change the initialization expression of a parameter provided

that the set of legal calling patterns is not reduced, that is, the set of auxiliary methods of the
overridden method is contained in the set of auxiliary methods of the overriding method.

For example,the following overriding of the method setInterval is legal:

public void setInterval(
int left = 0,
int width = 0,
int right = 0) {
/∗ ... ∗/ }

The set of auxiliary methods generated by the compiler for the overriding method contains
that of the original method. However, a method declared as

public void setInterval(
int left,
int width = 0,
int right = left+width) {
/∗ ... ∗/ }

is not a legal overriding of the same method setInterval since a calling pattern which omits
left is a proper pattern for the original method but not for the overriding method. In this case
the compiler issues an error regarding the incompatible default values.

4.1.3 Invocation

When it encounters a method invocation, a JAVA compiler first computes the set of all applicable
methods and then looks for the most specific method among all applicable methods. We had
to modify these steps in order to support methods with default arguments.

When checking the applicability of a method to a method invocation with keyword
arguments, the actual parameters are reordered to match the order of the currently checked
method. The usual applicability check is applied to the reordered parameters. For example
consider the invocation f(’a’,s:="",x:=1);

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

12 · Joseph (Yossi) Gil, Keren Lenz

f(char t,int x,String s){...}

f(char u,Object s,int x){...}

Fig. 10 – Two overloaded method definitions.

When this invocation is tested against the first method of Fig. 10 the actual parameters
are reordered so that ’a’, which is an unnamed parameter, remains the first in the list, then 1,
which corresponds to the second formal argument and finally "", which corresponds to the
formal argument named s. When the same invocation is tested against the second declaration
in the figure, the order of the actual parameters is ’a’ followed by "" and then 1.

Not only methods whose names are identical to the name of the invoked method are
applicable. The applicability test is also applied to mangled methods generated from a method
declaration whose name matches that of the invoked method.

Finding the most specific method is done by comparing pairs of methods. Each comparison
eliminates the least specific one. Before the comparison our modified compiler sorts all
formal parameters of the two methods for which the corresponding actual arguments in
the invocation are named, by lexicographic order of their names and then applies the usual
selection algorithm. For example, both methods declared in Fig. 10 are applicable for the
invocation above. Therefore, their arguments are reordered so that the first argument, which
is unnamed in the invocation, remains as is, the second one is s and finally x. Since these
methods differ only in the second argument, and String is a subtype of Object, the first
method is more specific than the second one.

4.2 Constructors with Default Arguments

4.2.1 Declaration

The JAVA virtual machine requires every constructor to have the special internal method name
<init>. Consequently, the method for realizing the different auxiliary methods, that is, using
mangling, can not be applied for constructors. Therefore, we encode the difference between
auxiliary constructors in the types of the formal parameters of these constructors rather than
in their names. Every calling pattern of a constructor accepts, in addition to a subset of the
original constructor arguments, a designated first argument whose type encodes the specific
subset that this calling pattern represents. The auxiliary types are inner classes, residing in the
constructor’s enclosing class, generated by the compiler during the parsing of a constructor
with default values. For example, a constructor of an Interval class declared as:
public Interval(int left = right - width,

int width = 0,
int right = left + width) {

/∗ ... ∗/
}

has, just like the setInterval method above, six calling patterns and five auxiliary construc-
tors whose signatures are:

1. Interval(JTC.int.int.int_0,int)

2. Interval(JTC.int.int.int_2,int)

3. Interval(JTC.int.int.int_0_1,int,int)

4. Interval(JTC.int.int.int_1_2,int,int)

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

Keyword Default Parameters in JAVA · 13

5. Interval(JTC.int.int.int_0_2,int,int)

As can be seen, the first parameter of each of the auxiliary constructors encodes both the
types of the parameters in the original constructor and the positions of the parameters of the
calling pattern. All the auxiliary types implement a common interface in order to distinguish
auxiliary constructors from user defined ones, and their names start with a “JTC” prefix which
stands for Java Type of Constructor.

The body of an auxiliary constructor, just like the body of an auxiliary method, is composed
of missing parameters initialization followed by an invocation of another constructor. This
pattern is not valid in the JAVA language, which dictates that a constructor invocation can only
be the first statement in a constructor body however, this requirement is not enforced by the
JVM, where a constructor invocation can follow other instructions.

4.2.2 Invocation

The process of choosing a constructor to invoke is similar to method invocation, that is, com-
puting all applicable constructors and then selecting the most specific one. When computing
applicable constructors, the modified compiler first examines each of the user defined con-
structors. This step is similar to computing applicable methods and includes reordering of the
actual parameters. In order to examine the auxiliary constructors, a dummy null argument is
prepended to the actual parameters to be matched against the distinguishing formal parameter.

Selecting the most specific constructor is similar to selecting the most specific method,
however, if one of the compared constructors contains a distinguishing formal parameter this
parameter is ignored in this stage.

5 Related Work

The case for- (and against-) keyword and default arguments was previously made in the
literature. In this section, we review this historical scholarly discussion, and then briefly
discuss the contemporary relevance of these, mostly historical arguments.

As early as 1976 Hardgrave [Har76] urged language designers to make the “additional
effort to include keyword parameter technique in their languages” on the basis of the enhanced
readability of this technique (with thoughtful selection of parameter names) and its flexibility
in supporting changes to the order of parameters. The author, who was the first to argue for this
language extension, also suggested a mechanism for supplying compile-time constant default
values to parameters whose values are seldom “different from the standard”, and argued that
these defaults should relieve clients from the chore of repetitively supplying values to these
special arguments.

Three difficulties with default- and keyword- based invocation mechanisms were identified
by Hardgrave: (i) unnecessary verbosity, which reaches an extreme in the case of single
parameter- methods; (ii) compile time performance decrease, since the compiler has to bind
each actual argument to a formal parameter; (iii) unintentional parameter omission may go
undetected since the default values would be used.

In 1977, Francez [Fra77] noticed that that keyword-based calling mechanism can be used
to reflect not only the name of the formal parameter an argument is bound to, but also the kind
of binding, that is, “call by value” vs. ”call by reference” vs. ”call by name”. His work even
included a concrete proposal for extending the keyword based notation to make this distinction.
A year later, Parkin [Par78] drew the proponents’ attention to the fact that keyword based calls
may lead to an undesirable confusion between the invoking- and the invoked- scope.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

14 · Joseph (Yossi) Gil, Keren Lenz

In 1982, Ford and Hansche [FH82] claimed that the keyword based method requires
a “somewhat cumbersome coding required in the actual parameter list”. The authors also
disliked the practice of writing e.g., p(,a,,c,,,c,,,x,,); to denote missing parameters
with defaults in the positional method. Instead, they proposed extending the syntax already
present for supplying formatting options to PASCAL [Wir71]’s builtin write procedure call,
to user defined subprograms.

Two years later, Winkler [Win84] included keyword based calls to subprograms among his
proposed additions and improvements to ISO-Pascal, while noting an interesting difficulty in
passing subprograms as parameters to other subprograms. The mechanisms however did not
make it into the language, nor to C [KR88] or OBERON [WR92], languages which may be
perceived by some as PASCAL’s successors.

Interestingly, ADA designers, observing [IBFW81, Chap. 8.3] that the positional scheme
suffers from the disadvantage that

“. . . with more than three or four parameters it is hard to follow the text.”

decided to include in their language a keyword based calling scheme arguing that it “provides
especially high readability”. This calling scheme was used alongside with the “almost
universal” positional calling mechanism. These four scholars also made the case for allowing
both mechanisms in tandem arguing that

“Clearly in many contexts the order of parameters is either highly conventional
(as for coordinate systems) or immaterial (as in MAX(X,Y)). Hence ADA admits
both conventions. The classical positional notation may be used whenever the
programmer feels that keyword parameters would add verbosity without any gain
in readability.”

ADA thus allowed mixed positional- and keyword-based- calling mechanism, which was
further enriched, as in our JAVA extension, with a default parameter facility which together
provide “a high degree of expressivity and readability”.

The “selectors” of keyword methods of SMALLTALK [Gol84] and of OBJECTIVEC [Cox86],
e.g., the two arguments at: put: selector, resemble keyword-based- calling scheme.
The similarity is superficial since the invoker may not change the order of parameters, and
at: put: is entirely different from the selector put: at:. Indeed, earlier versions
of the language [KG76] did not even insist on using a keyword in front of every parameter,
allowing invocations such as
displayFrame put ’hi there’ at 150 100

In the course of years, several languages in common use, including PERL [Wal94],
PYTHON and Transact-SQL stored procedures, have adopted a keyword-based calling scheme.
Some of the historical arguments, for- and against- keyword based calling are clearly defunct
now: the overhead in compilation time is negligible; Parkin’s comment on the confusion of
scopes is not as relevant with the growing tendency of using small scopes; The syntax of
Ford and Hansche failed to spike enthusiasm; and, the verbosity of keyword-based calls is
addressed by the growing understanding that if keyword based parameter passing is allowed,
it should be in addition to the positional scheme.

The arguments that stayed are that keyword-based calls are, when used appropriately, more
flexible, more readable, and more expressive. Indeed, a recent internet page6 continues the
debate, reiterates these arguments, also points out that despite disagreement whether it is easier
to remember parameters based on their name and their position, such memorization is totally

6http://c2.com/cgi/wiki?KeywordParameterPassing

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

Keyword Default Parameters in JAVA · 15

irrelevant with modern development environments. Similarly, such environments minimize the
effort of maintaining the correctness of an invocation in the face of changes to the parameter
names or to their order.

The third disadvantage pointed by Hardgrave, that is the risk of unintentionally omitting
parameters, is still applicable. However, undetected semantic mistakes may occur in positional
invocations as well, for instance, when switching two arguments of the same type in a method
invocation.

This combination is used now in several programming languages including PYTHON, LISP
and MESA as well as C# 4.0. However, to the best of our knowledge, there was no study of
the confusion and abuse that this combination may create.

6 Conclusions

In this paper we argued that there is a clear and present need for an inherent support of keyword
and default arguments in JAVA. We based our claim on previously published work, in which it
was determined that the most frequent use of overloading is for simulating defaults arguments;
this use pattern occurring in about a third of the cases in which overloading is used.

We discussed the advantages of a designated keyword and defaults mechanism in JAVA
over the existing solution of method overloading in terms of code length, implications on
documentation, maintenance and client’s learning curve, and flexibility in handling situations
in which several arguments are of the same type.

We bring a proof of concept implementation of keyword and default arguments in JAVA.
Our implementation, which does not impinge on the runtime environment, allows supplying
defaults to any subset of the formal parameters, and admits method invocations in a positional
style, nominal style (i.e., where the role of parameters is determined by prefixing these with
their name rather than their position in the arguments list), or mixed style. We argue that this
extension may address the famous options-operands dilemma well.

Although such a mechanism can drastically reduce the amount of overloading in JAVA
code, it raises its own questions of abuse and confusion. For example, the interaction of default
arguments and overloading may lead to confusing semantics and ambiguity. Fig. 8 depicts
a situation in which an ambiguous method call may occur. The solution we chose in our
extension is to report an error for the ambiguous call. C#’s implementation is different, giving
precedence to methods that have no default arguments. In both cases the interaction of default
arguments and overloading makes the code confusing and hard to maintain.

There are other choices made in our extension which are different from C#. For example,
the evaluation order of the arguments. Our implementation scans the arguments by the order
in which they appear in the method definition, while arguments are evaluated in their order in
the method invocation in C#. This difference is significant if evaluating the arguments has
side effects.

The implementation of named and optional arguments in C# differs from our extension
also by the restrictions imposed on initialization expressions. While in C# only constants may
be used as default values, our extension is more flexible, allowing method invocations, data
members access and other formal arguments to be used in initialization expressions.

Our design choice of extending the language without modifying the JVM requires the
creation of synthetic methods and types. While this implementation approach is sometimes
used in JAVA compilers (e.g., enums introduce additional types, bridge methods are generated
by the compiler to support return type covariants), it may effect runtime tools such as profilers
and debuggers, and confuse programmers that use reflection.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a1

16 · Joseph (Yossi) Gil, Keren Lenz

The effect of the language extension on performance should be measured. We expect that
the extension carries a performance penalty during compilation, mainly due to parameters
reordering done for method binding. But, of course a comprehensive benchmark is required to
measure the performance effect both on compilation time and on execution time.

References

[AA10] J. Albahari and B. Albahari. C# 4.0 in a Nutshell. O’Reilly Media,
2010. Available from: http://books.google.co.il/books?id=
VENrFSQFco8C.

[AG96] Ken Arnold and James Gosling. The Java Programming Language. The Java
Series. Addison-Wesley, Reading, Massachusetts, 1996.

[BS07] Antoine Beugnard and Salah Sadou. Method overloading and overriding cause
distribution transparency and encapsulation flaws. Journal of Object Technology,
6(2):31–46, 2007. doi:10.1145/1141277.1141608.

[Cox86] Brad J. Cox. Object-Oriented Programming - An Evolutionary Approach.
Addison-Wesley, Reading, Massachusetts, 1986.

[FH82] Gary Ford and Brian Hansche. Optional, repeatable, and varying type parameters.
SIGPLAN Not., 17(2):41–48, 1982. doi:10.1145/947902.947906.

[Fra77] Nissim Francez. Another advantage of keyword notation for parameter com-
munication with subprograms. Communications of the ACM, 20(8):604–605,
1977.

[GL10] Joseph Gil and Keren Lenz. The use of overloading in java programs. In Theo
D’Hondt, editor, Proc. of the Twenty Fourth European Conference on Object-
Oriented Programming (ECOOP’10), volume 6183 of Lecture Notes in Com-
puter Science, pages 529–551, Maribor, Slovenia, June21–25 2010. Springer-
Verlag. doi:10.1007/978-3-642-14107-2_25.

[Gol84] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment.
Addison-Wesley, Reading, Massachusetts, 1984.

[Gra95] Paul Graham. ANSI Common LISP. Prentice Hall, 1995.

[Har76] W. T. Hardgrave. Positional versus keyword parameter communication
in programming languages. ACM SIGPLAN Notices, 11(5):52–58, 1976.
doi:10.1145/956003.956008.

[IBFW81] J. Ichbiah, J. Barnes, R. Firth, and M. Woodger. Rationale for the design of the
Ada programming language. Cambridge University Press, New York, NY, USA,
1981. doi:10.1145/956653.956654.

[ISE97] ISE. ISE EIFFEL The Language Reference. ISE, Santa Barbara, CA, 1997.

[KG76] A. Kay and A. Goldberg. Smalltalk-72 instruction manual. Technical Report
SSL-76-6, Xerox Corporation, Palo Alto, California, 1976.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Software Series. Prentice-Hall, Inc., second edition, 1988.

[Lut96] Mark Lutz. Programming PYTHON. O’Reilly, first edition, October 1996.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping.
ACM Trans. on Prog. Lang. Syst., 16(6):1811–1841, 1994. doi:10.1145/
197320.197383.

Journal of Object Technology, vol. 11, no. 1, 2012

http://books.google.co.il/books?id=VENrFSQFco8C
http://books.google.co.il/books?id=VENrFSQFco8C
http://dx.doi.org/10.1145/1141277.1141608
http://dx.doi.org/10.1145/947902.947906
http://dx.doi.org/10.1007/978-3-642-14107-2_25
http://dx.doi.org/10.1145/956003.956008
http://dx.doi.org/10.1145/956653.956654
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.5381/jot.2012.11.1.a1

Keyword Default Parameters in JAVA · 17

[Mey82] Bertrand Meyer. Principles of package design. Communications of the ACM,
25(7):419–248, July 1982. doi:10.1145/358557.358565.

[Mey92] Bertrand Meyer. Applying design by contract. IEEE Computer, 25(10):40–51,
1992. doi:10.1109/2.161279.

[Mey94] Bertrand Meyer. Reusable Software The Base Object-Oriented Component
Libraries. Prentice Hall Object-Oriented Series. Prentice-Hall, Inc., 1994.

[Mey01] Bertrand Meyer. Overloading vs. object technology. Journal of Object-Oriented
Programming, pages 3–7, 2001.

[Nob00] James Noble. Arguments and results. The Comp. J., 43(6):439–450, 2000.
doi:10.1093/comjnl/43.6.439.

[Par78] Rodney Parkin. On the use of keywords for passing procedure parameters.
SIGPLAN Not., 13(7):41–42, 1978. doi:10.1145/953863.953870.

[Smi98] Jerry Smith. Avoid ’constructor madness’. JavaWorld: IDG’s magazine for the
Java community, 3(11), 1998. Available from: http://www.javaworld.
com/javaworld/javatips/jw-javatip63.htm.

[Str97] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts, third edition, 1997.

[TD97] S. Tucker Taft and Robert A. Duff, editors. Ada 95 Reference Manual, Lan-
guage and Standard Libraries, International Standard ISO/IEC 8652: 1995(E),
volume 1246 of LNCS. Springer-Verlag, 1997.

[Wal94] Larry Wall. The Perl Programming Language. Prentice Hall Software Series.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1994.

[Win84] J. F. H. Winkler. Some improvements of ISO-Pascal. SIGPLAN Not., 19(7):65–78,
1984. doi:10.1145/948596.948604.

[Wir71] N. Wirth. The programming language Pascal. Acta Inf., 1:35–63, 1971.

[WR92] N. Wirth and M. Reiser. Programming in Oberon—Steps Beyond Pascal and
Modula. Addison-Wesley, Reading, Massachusetts, 1992.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.1145/358557.358565
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1093/comjnl/43.6.439
http://dx.doi.org/10.1145/953863.953870
http://www.javaworld.com/javaworld/javatips/jw-javatip63.htm
http://www.javaworld.com/javaworld/javatips/jw-javatip63.htm
http://dx.doi.org/10.1145/948596.948604
http://dx.doi.org/10.5381/jot.2012.11.1.a1

	Introduction
	Solving the hardship of overloading in Java
	Support for operands and options
	A Java extension for keyword and default arguments
	Methods with Default Arguments
	Declaration
	Default parameters and inheritance
	Invocation

	Constructors with Default Arguments
	Declaration
	Invocation

	Related Work
	Conclusions
	Bibliography

