
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Efficient Retrieval and Ranking of
Undesired Package Cycles in Large

Software Systems

Jannik Lavala Jean-Rémy Falleria Philippe Vismarab

Stéphane Ducassec

a. Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
http://sphere.labri.fr

b. LIRMM, UMR5506 CNRS - Université Montpellier 2, France
http://www.lirmm.fr/
MISTEA, UMR729 Montpellier SupAgro - INRA, Montpellier, France

c. RMoD, Inria Lille Nord Europe, France
http://rmod.lille.inria.fr

Abstract Many design guidelines state that a software system architec-
ture should avoid cycles between its packages. Yet such cycles appear
again and again in many programs. We believe that the existing ap-
proaches for cycle detection are too coarse to assist developers to remove
cycles from their programs. In this paper, we describe an efficient algo-
rithm that performs a fine-grained analysis of cycles among application
packages. In addition, we define multiple metrics to rank cycles by their
level of undesirability, prioritizing cycles that are the more undesired by
developers. We compare these multiple ranking metrics on four large and
mature software systems in Java and Smalltalk.

Keywords software architecture; software re-engineering; package cycle;
package dependency.

1 Introduction

Large object-oriented software projects are usually structured in packages (or mod-
ules). A package is primarily used to group together related classes which define a
functionality of the system. Classes belonging to the same package should be built,
tested, versioned, and released together. Martin consequently proposed to see the
package as the software release unit [Mar02]. Considering a package as a unit, a
package dependency is a dependency representing multiple class dependencies from
a package to another. There are multiple kinds of class dependency. We consider in

Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse. Efficient Retrieval and Ranking
of Undesired Package Cycles in Large Software Systems. In Journal of Object Technology, vol. 11,
no. 1, 2012, pages 4:1–24. doi:10.5381/jot.2012.11.1.a4

http://www.jot.fm/copyright.html
http://www.jot.fm
http://sphere.labri.fr
http://www.lirmm.fr/
http://rmod.lille.inria.fr
http://dx.doi.org/10.5381/jot.2012.11.1.a4
http://dx.doi.org/10.5381/jot.2012.11.1.a4
http://dx.doi.org/10.5381/jot.2012.11.1.a4

2 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

this paper three kinds: inheritance, interface and references, presented in details in
Sect. 3.2.2.

Design guidelines state that cyclic dependencies between packages should be avoided
[Par78, Mar02]. Indeed, packages depending cyclically on each other are to be un-
derstood, tested, released, or deployed together. Sometimes, dependencies appear
during the development process and form cycles between packages that do not need
to evolve together. We name them undesired cycles because they make the program
less modular. In contrast, some packages evolve and are released together, they could
be involved in a cycle that is desired. We explain in detail the concept of package
cycle in Sect. 2.2.

Several tools and approaches have been developed over the years [Vai04, MT07b,
SJSJ05, LDDB09] to help the developers to detect and/or remove cycles. Yet, an
exhaustive experimental study [MT07a] shows that in a lot of programs, classes are
involved in huge cyclic dependencies. It seems therefore plausible that the way cycles
are detected is not sufficient to help developers to address them.

We claim that the existing approaches have two main issues. First, some focus on
cycles between classes, when cyclic dependencies at the package level should have the
priority. Indeed classes are not deployment units, and a lot of cycles among classes are
due to the associations, being thus totally expected. Second, and most important,
existing approaches are all based on the same algorithm by Tarjan [Tar72]. This
algorithm finds the maximum sets of packages depending (directly or indirectly) on
each other, called strongly connected components (SCC) in graph theory. Within a
SCC, a package is in cycle with all other packages, and there can be multiple cycles
in one SCC. In our experience, we have seen software systems with a single huge
SCC containing dozens of packages. For example, ArgoUML has a SCC containing
38 packages. The above algorithm becomes useless in such cases as it does not provide
further information to understand and remove the cycles.

A dependent problem which is not well addressed in current approaches is ranking
cycles so that the most “undesired” ones are given top priority for removal. Indeed,
not all cyclic dependencies have the same importance. In a system of packages where a
hierarchy can be extracted from the naming conventions (as in Java), a cycle between
ui and core packages should be avoided as it hampers reuse and deployment of the
system. On the contrary, a package such as ui.internal can be in cyclic dependency
with ui without serious consequences, since they both implement the same function-
ality. We further discuss these issues as well as the prevalence of package cycles in
four Java programs in Sect. 2.

Our approach advocates the decomposition of a SCC in multiple short cycles
covering all dependencies of the SCC. Computed short cycles usually involves two to
four packages. They are therefore easy to understand and to remove, if necessary.
Developers can iterate over a set of short cycles and assess them one by one rather
than dealing with the single large set of packages contained in the SCC. Moreover,
our approach is able to rank the extracted cycles, prioritizing the ones that are the
more undesired.

In this paper, we present two major contributions to assist developers in under-
standing and removing cyclic dependencies in software systems:

• First, we present an efficient algorithm that decomposes a SCC. This algorithm
retrieves a set of short cycles that covers all dependencies of the SCC. It has a
polynomial time and space complexity (Sect. 3.1).

• Second, we introduce new metrics that measure the level of undesirability of a

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 3

cycle. The diameter metric needs a package containment tree, the weight-based
metric is based on the number of class dependencies, and the diameter-weight-
based metric is an average of the two previous metrics. We evaluate them on
real software systems.

We expand on our previous work [FDL+11] in two ways. First, we propose multiple
ranking metrics: the diameter metric was already presented in our previous work,
the two new metrics: weight-based metric and diameter-weight-based metrics are
presented in Sect. 3.2.2 and Sect. 3.2.3 respectively. Second, our approach is validated
against four large and mature programs in Java (Sect. 4).

2 Motivation

This section presents a small study showing why the SCCs are not fine-grained
enough to assist developers in understanding and removing cycles in large programs
(Sect. 2.1). Then, it explains using an example why some cycles among packages can
be desired by their developers (Sect. 2.2).

2.1 Limitation of the main cycle detection algorithm

Most of the approaches perform cycle detection by using an algorithm [Tar72] that is
capable of finding the maximum sets of packages that depend (directly or indirectly) on
each others. Such a set of packages is called, in the graph theory, a strongly connected
component (SCC). In a SCC, each package is in cycle with all other packages, and
cycles exist only among the packages of a same SCC. To remove package cycles, it
is therefore necessary to remove several dependencies among the packages of a given
SCC. We believe that the SCCs are not fine-grained enough to help the developer to
understand and remove the undesired dependencies in their programs. Indeed, they
indicate which packages are involved in cyclic dependencies, but they can not explain
how. Whenever a SCC contains only a few packages, it remains possible to visualize
the dependencies between them and to remove the cycles. On the other hand, when
a SCC contains a lot of packages, it does not help the developer at all. Indeed, if
it contains dozens of packages, it becomes hard to understand how packages connect
with each other to create the SCC.

To show that mature and large programs can contain huge SCCs, we performed
a small experiment. We selected four mature and medium-sized Java programs: Ar-
goUML1, JEdit2, Choco3 and AntLR4. On these programs we computed: #P the
number of packages, #LSCC the size of the largest SCC and LSCCR: the ratio of
packages in the largest SCC.

Tab. 1 shows that the programs we selected contain large SCCs. In ArgoUML the
largest SCC contains almost half of the packages (see the LSSCR measure). Worse,
in JEdit almost two thirds of the packages are in the largest SCC, whereas the total
number of packages is not too large. Apart from AntLR, the size of the largest SCC
in the programs of our corpus will make their understanding hard (see the #LSCC
measure).

1http://argouml.tigris.org
2http://www.jedit.org
3http://www.emn.fr/z-info/choco-solver
4http://www.antlr.org

Journal of Object Technology, vol. 11, no. 1, 2012

http://argouml.tigris.org
http://www.jedit.org
http://www.emn.fr/z-info/choco-solver
http://www.antlr.org
http://dx.doi.org/10.5381/jot.2012.11.1.a4

4 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

Program #P #LSCC LSCCR

ArgoUML 0.28.1 79 38 48%
JEdit 4.3.1 29 18 62%
Choco 2.1.0 147 38 26%
AntLR 3.2 31 7 23%

Table 1 – Measures among packages and package cycles on the Java programs. #P is the
number of packages, #LSCC the size of the largest SCC and LSCCR the ratio of
packages in the largest SCC.

2.2 Desired and undesired cycles

In the introduction, we stated that not every cycle should be removed. In fact, we
believe that a significant proportion of the cycles among packages are desired by the
developers. To show this, let us take the example of the JFace5 main widget library
used in the Eclipse development environment. A large effort has been devoted to
its design by several software design experts. We therefore assume that the cycles
present in JFace are not accidental. Package jface.text is dedicated to the text wid-
gets. This package provides classes such as TextViewer. Package jface.text.hyperlink
is dedicated to the management of textual hyperlinks. In JFace, there is a cycle
between jface.text and jface.text.hyperlink. The TextViewer class is able to display
texts containing hyperlinks and therefore jface.text depends on jface.text.hyperlink.
Also, jface.text.hyperlink uses a lot of classes and interfaces defined in jface.text. For
instance a hyperlink is able to trigger text events and therefore depends on the Tex-
tEvent class, which is defined in the jface.text package. Therefore jface.text.hyperlink
depends on jface.text. In this case, the complexity of the hyperlink motivates its iso-
lation in package jface.text.hyperlink. Yet it is not necessary to break the cycle with
jface.text as it would make no sense to release one without the other.

More generally, in several languages such as Java, a package can contain other
packages, leading to a package containment tree. It is usual that when a package
is too large (i.e., contains too many classes), it is split in several sub-packages. In
this case it is very likely that cycles exist between these sub-packages. These sub-
packages are highly coupled, which does not represent a poor design but is necessary
for readability [TSWW11].

3 Our Approach

In this section, we present our two contributions:

• First, we present an efficient algorithm that decomposes a SCC. This algorithm
retrieves a set of short cycles that covers all dependencies of the SCC. It has a
polynomial time and space complexity (Sect. 3.1).

• Second, in Sect. 3.2, we introduce new metrics that evaluate the level of un-
desirability of a cycle. Each metric is based on a characteristic of the package
architecture. One metric, called diameter, is based upon the distance between

5http://wiki.Eclipse.org/index.php/JFace

Journal of Object Technology, vol. 11, no. 1, 2012

http://wiki.Eclipse.org/index.php/JFace
http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 5

packages involved in the cycle (Sect. 3.2.1). A second metric is based on the num-
ber of class dependencies between packages involved in the cycle (Sect. 3.2.2).
A third metric is computed based on the two previous metrics (Sect. 3.2.3).

3.1 A new cycle retrieval algorithm

3.1.1 Intuition of our algorithm

To explain better the intuition of our new algorithm, let us first introduce a sample
class diagram, shown in Fig. 1. From this class diagram, we extract the directed graph
shown in Fig. 1. This graph shows the dependencies between the packages, therefore
we call it a package dependency graph. On this graph, the SCCs are rounded by
dashed circles.

In the previous section, we stated that the algorithm that computes SCCs is not
fine-grained enough to help the developers to understand and remove cycles from their
programs. Fortunately, another algorithm from the graph-theory literature is able to
perform a fine-grained analysis of cycles in a directed graph [Tar73]. It computes
the set of elementary cycles. A cycle is elementary if no node (here no package)
appears more than once when enumerating the sequence of nodes in the cycle. For
instance, in our sample graph of Fig. 1, this algorithm finds the six elementary cycles
shown in Fig. 1. Figuring out if an elementary cycle should be removed or not is
straightforward, it only requires to decide if the dependencies involved in the cycle are
correct. The fact that the elementary cycle is short eases this decision. Unfortunately,
the number of elementary cycles in a directed graph can be exponential. For instance
the algorithm of [Tar73] spent one hour on each program presented in Tab. 1 without
terminating. Therefore, this algorithm does not scale on programs composed of many
packages.

We introduce a new algorithm that still computes elementary cycles in a SCC but
that retrieves only a polynomial number of them, reducing time and space complexity.
Indeed, some elementary cycles can be seen as redundant. In Fig. 1, cycle C5 is not
useful if we consider cycles C1 and C4. Indeed, the dependencies covered by C5 have
already been covered by the two other cycles, C5 contains more dependencies than C1
or C4. We reduce the number of cycles by selecting only a subset of the elementary
cycles, ensuring that each dependency of the SCC is covered by at least a cycle. Still,
to get all dependencies covered in Fig. 1, it is possible to select cycles C2, C3, C6,
and either C1 and C4, or the cycle with more dependencies C5. We assume that the
more dependencies a cycle contains, the harder it is to understand, because it requires
the analysis of many dependencies. Therefore our final solution is to select for each
dependency one of the shortest cycles going through the dependency.

3.1.2 Mathematical model

A package dependency graph G is a couple (P,E) with P a set of nodes (the packages)
and E a set of edges (dependencies between the packages). An edge is a couple
(s, t) ∈ P 2 where s is the source and t the target package. There is an edge from a
package s to a package t iff a class of s uses a class of t. We denote a path in G by
a sequence of nodes, written this way: (a, b, c), where every node has an edge to its
successor. We denote a cycle by such a sequence of nodes: x→ y → z, the last node
being implicitly linked to the first one.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

6 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

PA

A1

PB

B1

PC

C1

PD

D1

PE

E1

A2

B2

D2

E2

A3

PF

F1PG

G1

PH

H1

PA
PC

PB

PDPE
PF

PGPH

SCC 1

SCC 2

SCC 3
PA

PB

PC

PDPE

PA

PB

PA

PB

PDPE

PB

PD

PB

PC

PD

C1

C2

C3

C4

C5

PH

PG
C6

Figure 1 – A sample class diagram (left), the corresponding package dependency
graph (midde, the dashed lines round the SCC) and the elementary cycles for this
graph(right).

3.1.3 Details of our algorithm

To understand the algorithm, it is important to notice that cycles exist only among
the nodes of the same SCC. Also, the set of SCCs of a directed graph is a partition
of its nodes. Therefore as a preliminary step to our algorithm, we retrieve the SCCs
from the directed graph using the algorithm of [Tar72], remove the inter-SCCs edges,
then run our algorithm on each SCC containing more than two nodes (SCCs of size
one cannot contain a cycle). The SCCs of size two contain only one cycle involving
the two nodes. Therefore on the graph of Fig. 1, only SCC 1 is considered by our
algorithm, while SCC 2 is discarded and SCC 3 directly leads to the creation of the
cycle pG → pH . In the following, we therefore focus on what happens in a SCC of size
greater than two. To find shortest cycles, we use the well-known breadth-first search
(BFS) algorithm. This algorithm can be used to find the shortest path between two
nodes in a graph where the edges are unweight. A SCC has the following property: for
each possible pair of nodes x, y of the SCC, there is a path from x to y and from y to
x. A simple algorithm to find a shortest cycle for every edge of a strongly connected
graph is therefore to perform for each edge (x, y) ∈ E a BFS from target node y going
back to source node x. Indeed since there is an edge from x to y, this edge is already
the shortest path from x to y. Since we are in a SCC, it is mandatory that at least a
path exists from y to x. A shortest path from y to x (found by the BFS) concatenated
with the edge (x, y) would therefore be a shortest cycle in which this edge is involved.

The only problem of this simple algorithm is that it requires a BFS for each edge
of the graph. Since there are fewer nodes than edges in a strongly connected graph,
it would be better to perform a BFS only for each node of the graph. The idea is
therefore to gather the parents A = {y ∈ P |(y, x) ∈ Γ−P (x)} of a node x, and perform a
BFS from x until all its parents y ∈ A are found. This way, only one BFS is performed
for each node. The pseudo code of this optimized version is given in Algorithm 1. To
avoid the retrieval of identical cycles, we consider that two cycles are equals if the
first is a cyclic permutation of the second. For instance c → a → b = a → b → c.
To have a fixed order to represent the cycles and compare them efficiently, we always
place the lowest node (using the lexicographic order) at the beginning of the cycle.
We call this operation normalize. For instance normalize(c→ a→ b) = a→ b→ c.

Let us see how this algorithm works on SCC 1, shown in Fig. 1. Remember that
the edge from pC to pF has been deleted because it is an inter-SCCs edge. The set
of nodes is P = {pA, pB , pC , pD, pE}. We start with an empty set of cycles: C = {}.
Here are the steps followed by our algorithm:

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 7

Algorithm 1: Our cycle retrieval algorithm
Data: A strongly connected package dependencies graph G = (P,E)
Result: A set of shortest cycles C
begin
C ← {} ; // the set of cycles
for x ∈ P do

V← {} ; // the set of the visited nodes
A← {z ∈ P |(z, x) ∈ E} ; // the set of the x parents
x.bfs_parent← ∅ ; // the path followed by the BFS
Q← (x) ; // a queue, initialized with x
/* BFS from x that stops when all parents of x are found */
while size(A) > 0 do

p← pop(Q); // removes the first element of Q
B← {z ∈ P |(p, z) ∈ E} ; // the set of the p children
for y ∈ B do

/* if y has not been visited or put on the stack */
if y 6∈ V ∪Q then

y.bfs_parent← p;
push(Q, y) ; // adds y at the end of Q

/* if a parent of x is reached */
if y ∈ A then

c← () ; // the list of the nodes of the cycle
i← y;
/* builds the cycle */
while i 6= ∅ do

add(c, i);
i← i.bfs_parent;

/* adds the cycle to the set of cycles */
normalize(c);
if c 6∈ C then C ← C ∪ {c};
remove(A, y) ; // removes y from A

V ← V ∪ {p} ; // p is now visited

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

8 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

1. The first node being picked up is pA. Therefore, A = {pE}. The BFS starting
from pA will find pE by the following path: (pA, pB , pD, pE). Since C is empty,
the cycle C1 = pA → pB → pD → pE is added to C. C = {C1}.

2. The second node being picked up is pB . A = {pA, pD}.

• The BFS started from pB will find pA by the following path: (pB , pA).
This cycle is normalized to C2 = pA → pB and added to C. C = {C1, C2}.
• The BFS started from pB will find pD by the following path: (pB , pD).

The cycle C3 = pB → pD is added to C. C = {C1, C2, C3}.

3. The third node being picked up is pC . A = {pB}. The BFS starting from pC will
find pB by the following path: (pC , pD, pB). After normalization, it becomes
C4 = pB → pC → pD and it is added to C. C = {C1, C2, C3, C4}.

4. The fourth node being picked up is pD. A = {pB , pC}.

• The BFS started from pD will find pB by the following path: (pD, pB).
This cycle is normalized to C3 and therefore is not added to C. C =
{C1, C2, C3, C4}.
• The BFS started from pD will find pC by the following path: (pD, pB , pC).

This cycle is normalized to C4 and therefore is not added to C. C =
{C1, C2, C3, C4}.

5. The fifth and last node picked-up is pE . A = {pD}. The BFS starting from pE
will find pD by the following path: (pE , pA, pB , pD). This cycle is normalized to
C1 and therefore is not added to C. C = {C1, C2, C3, C4}.

Finally, we have C = {C1, C2, C3, C4}. We can notice that in contrast to the enu-
meration of all elementary cycles (see Fig. 1), the cycle pA → pB → pC → pD → pE
is not retrieved by our algorithm. This is expected since our algorithm, as previously
explained, select for each dependency of a SCC one of the cycle with the lesser number
of dependencies going through it.

3.1.4 Complexity of Algorithm 1

Let n = |P | be the number of nodes and m = |E| be the number of edges. In the
worst case, we pick-up a different cycle for every edge, the maximum number of cycles
is therefore m. We split the computation of the worst-case time complexity in three
parts: most time spent in the pre-processing step (finding the SCCs), most time spent
in the BFSes, and most time spent to add the cycles in the cycle set. Since we work
with strongly connected graphs, we have m ≥ n.

1. The worst case time complexity of the algorithm that computes the SCCs in
the pre-processing step is O(n+m) [Tar72].

2. The worst case time complexity of a BFS in a graph is O(n + m). Since we
perform a BFS for every node of the graph, it leads to a O(n(m+n)) complexity
for the BFSes.

3. The addition of a cycle in the set of cycles can be done in O(n× log(n)) using
appropriate data structures (like a self-balancing binary search tree). In the
worst case, we try to add the same cycle involving all packages for each edge.
Therefore the worst case time complexity for the additions is O(m×n× log(n)).

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 9

Since m ≥ n, the overall complexity of our algorithm is O(m × n × log(n)). Since
the number of packages in a program cannot be too large (we consider 1, 000 pack-
ages as a fair upper-bound), this complexity is perfectly acceptable to be applied at
development-time (for an immediate feedback) as well as maintenance-time (for an
in-depth architecture assessment). This analysis is confirmed by the running times
measured on the programs evaluated in Tab. 4.

3.2 Undesired cycles ranking metrics

In the previous section, we showed how we efficiently retrieve cycles from a package
dependency graph. Unfortunately, there can be many cycles, especially in a large
and complex program. A developer is not going to inspect manually all the cycles,
because it is a tedious and time-consuming task. Moreover, a significant amount of
these cycles is probably desired, like we have seen in Sect. 2. To assist in understanding
and removing the cycles, it is critical to propose the cycles that are the most undesired.

This is the purpose of the three following hypotheses and ranking metrics presented
in the following subsections.

• First, we assume that if a cycle involves packages that are far away in the
package containment tree, it is very plausible that the cycle is undesired. We
compute the diameter metric based on this hypothesis (Sect. 3.2.1). Note that
this metric was introduced in our previous work [FDL+11].

• Second, we consider that if a dependency between two packages is caused by
only few dependencies between their contained classes, it is very plausible that
the dependency has been introduced accidentally. We propose the weight metric
based upon this assumption in Sect. 3.2.2.

• At last, the combination of the two previous metrics might provide a more
fine-grained ranking. We propose this metric in Sect. 3.2.3.

To order the cycles, the following rules are applied to each ranking metric:

• Each ranking metric is a function R : C → R+ where C is the set of shortest
cycles, retrieved by the algorithm presented in Sect. 3.1.

• The cycles are ranked from highest to lowest value of R, except for the weight-
based metric (Sect. 3.2.2) ranked from lowest to highest.

• If two cycles have an equal ranking value, the number of packages contained
in the cycle is used to rank the cycles (the fewer packages it has, the higher it
is ranked). If two cycles have an equal ranking value and number of packages,
they are ranked using the lexicographic order.

In the rest of the section, we detail our metrics.

3.2.1 Diameter metric

To define the diameter metric, we assume that packages are named using a convention
defining a containment tree. This is the case in many languages such as Java, C#,
Ruby, or PHP.

To illustrate the phenomenon described in Sect. 2, let us imagine the sample
package containment tree shown in Fig. 2. In this package tree, let us imagine a cycle

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

10 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

root

ui

ui.dialogui.widget

ui.dialog.wizard

core

core.util core.collection

depth 0

depth 1

depth 2

weight: 1

weight: 0.5

weight: 0.25

Figure 2 – A sample package containment tree, with the value associated to the edges.

between ui.dialog.wizard and ui. It is common that a class in a package uses classes
of its parent packages. It is also possible that in the parent package, several classes
depend on the classes of the sub-packages (such as factory classes). In our example,
ui.dialog.wizard is likely to use several classes defined in ui, like the class Widget. It is
also likely that ui furnishes a factory class to create wizards (such as WizardFactory),
that uses the different wizards defined in ui.dialog.wizard. In this case this cycle
would be totally desired since the developer would neither use nor deploy ui without
ui.dialog.wizard. In contrast, let us imagine a cycle between core and ui. Although
the dependence from ui to core is normal, it is unlikely that a package such as core
requires ui to be used or deployed. The cycle is strongly undesired.

To order the cycles, we use the package containment tree to define a distance
between two packages: for instance the number of edges required to go from a package
to the other package. We assume that the further away are the packages involved in a
cycle, the more undesired the cycle is. Unfortunately, with this definition of distance,
the packages ui.dialog.wizard and ui are at the same distance from each other as core
and ui (two edges). To deal with this problem we add a second assumption: the
farther away the common ancestor between two packages is from the root of the tree,
the less the distance between them is significant. For instance, the common ancestor
between ui.dialog.wizard and ui is ui, while the common ancestor between core and
ui is root.

To deal with the two previously described assumptions, we define a function that
assigns a high value to the edges close to the root and a low value to the edges far
from the root. The value of an edge depends on its depth. For an edge e at depth
d, the value w(e) = 1

2d . In Fig. 2 we can see the weight associated to edges. For
example the two edges ui → root and core → root have a weight equals to 1. The
distance between two packages δ : P 2 → R+ is then equal to the sum of the values of
the edges that lead in the shortest path from the first package to the second one. For
instance δ(core, ui) = 2, δ(ui.widget,ui.dialog) = 1 and δ(ui.dialog.wizard, ui) = 0.75.

We can now define our metric that indicates the level of undesirability of a cycle,
called diameter (denoted by D). It is defined as the worst possible distance between
two packages contained in the cycle. More formally, let C be a cycle, and let P (C) be
the set of packages contained in the cycle, D(C) = max({δ(x, y)|x, y ∈ P (C), x 6= y}).
Let us imagine that there is the following cycle: ui → ui.widget → core. The
diameter of this cycle is D(ui → ui.widget → core) = 2.5 because δ(core, ui) =
2, δ(ui,ui.widget) = 0.5 and δ(core, ui.widget) = 2.5. We also have: D(ui →
ui.widget → ui.dialog) = 1 because δ(ui, ui.widget) = 0.5, δ(ui, ui.dialog) = 0.5 and
δ(ui.dialog, ui.widget) = 1.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 11

ui

ui.widget

core

h = 3, i = 10, r = 10

i = 2, r = 1

h = 1,
i = 10,
r = 10

h = 11,
i = 9,
r = 6

h: inheritance
i: in interface
r: reference

Figure 3 – A sample package architecture, with the weight associated to the edges.

3.2.2 Weight-based metric

It is common that multiple packages are highly dependent on each other, because they
represent the same module in the software architecture. For instance, the study of
Taube-Schock el al. [TSWW11] shows that a high coupling does not always represent
a poor design, and some high coupling might be necessary for a good design. In
this case, cycles between highly coupled packages are desired. To avoid suggesting
removal of these cycles, we will search for cycles involving packages that have the
fewest dependencies between them, using a ranking metric called weight.

To define the weight metric, we assume that a package dependency is a collection
of class dependencies. We consider three kind of class dependencies to compute our
metric. Inheritance (h) represents an inheritance relationship between two classes.
Interface (i) between classes a and b means that b is publicly available in a (for
instance by being the return type of a public method). This kind of dependency is
originally defined in [MT07a]. Finally we call reference any other kind of dependencies
between two classes (such as method invocation or attribute access). Let us take the
sample package architecture with class dependencies shown in Fig. 3. In this package
graph, a cycle between ui.widget and ui is desired. In our example, the dependencies
ui → ui.widget and ui.widget → ui have high weights (respectively, 21 and 26 class
dependencies). In this case, the packages are highly coupled and the cycle desired.
The cycle between core and ui has a dependency with a weight equal to 3, which is 7
times lower than the other dependencies in the example. This cycle is undesired, the
core package should not depend on the ui package.

To order the cycles, we define a weighting function ω : P 2 → R+ that assigns
a high score to the edges representing lots of class dependencies and a low score to
the edges representing few class dependencies. The score of an edge depends on the
number of class dependencies. For an edge e from a package pA to a package pB with
xh inheritances, xi interfaces and xr references, weighted respectively with wh, wi, and
wr, the score between pA and pB is the aggregation ω(pA, pB) = wh.xh+wi.xi+wr.xr.
For any packages without class dependencies px and py, we set ω(px, py) =∞.

We can now define a metric based on this formula, denoted by Weq, with wh =
wi = wr = 1. It is defined as the smallest possible score between two packages
contained in the cycle. More formally, let C be a cycle, and let P (C) be the set of
packages contained in the cycle. Weq(C) = min({ω(x, y)|x, y ∈ P (C), x 6= y}). In
our example, Weq(core → ui) = 3, and Weq(ui → ui.widget) = 21. As previously
explained, we assume that the smaller the score, the more undesired it is.

We also define another variation of this metric by assuming that the different

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

12 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

kinds of dependency have not the same importance. We consider indeed that an
inheritance is a very strong dependency that has probably not been used accidentally.
Interface is also a strong dependency. On the other, the odds that a reference is
accidental are higher. Therefore, we define three weight coefficients to compute a
weight metric that increases the weight, with a decreasing order of magnitude, of (in
order): inheritances, interfaces and references. We call this metricWexp and we choose
wr = 101, wi = 102, and wh = 103. We choose these values to clearly differentiate
each kind of class dependency.

3.2.3 Diameter-Weight-based metric

The two previous metrics are based on the assumption that (i) the higher the diameter,
the more the cycle is undesired, and (ii) the less the weight, the more the cycle is
undesired. We assume that combining these two metrics provides a better ranking
metric of undesired cycles. Based on the two previous metrics, we compute a new
metric denoted by Z. It is defined as a combination of the worst possible distance
and the smallest possible weight between two packages contained in the cycle.

Let us take the sample package structure shown in Fig. 3 in the context of Fig. 2.
In this package graph, a cycle between ui.widget and ui is desired: the weights of
edges are high related to the other edges and the distance value is minimal. The cycle
between core and ui has a dependency with a weight equals to 3, which is a low value
compared to the other edges, and the distance value is higher that the one between
ui.widget and ui. This cycle is undesired.

Let C be a cycle, let P (C) be the set of packages contained in the cycle. To
combine δ and ω in a single metric, we normalize their values in the [0, 1] interval.
They are normalized as follows. δn(x, y) = δ(x,y)

∆ where ∆ is the maximum value of
δ(a, b) for any package a and b. Similarly, ωn(x, y) = ω(x,y)

Ω where Ω is the maximal
value of ω(a, b) for any edge (a, b) in E and ωn(x, y) = 1 if (x, y) 6∈ E. Finally, δn
and ωn are combined in Z(C) = max({ δn(x,y)+(1−ωn(x,y))

2 |x, y ∈ P (C), x 6= y}). For
the computation of ω, we use the values wr = 101, wi = 102, and wh = 103. We
select these values because the results of Wexp are better than the ones of Weq in our
experiments (see Sect. 4).

4 Validation

We evaluate our approach on four large programs with an experiment involving
their maintainers. Our approach can be used both at development-time and at
maintenance-time. Nevertheless, we believe that it is harder to understand and re-
move a cycle at maintenance-time, because it is necessary to remember the past design
decisions that led to its creation.

To show that our approach is useful we take the use-case where a developer uses
our approach on his software at maintenance-time. We use the algorithm described
in Sect. 3.1.3 to extract the cycles and rank them using each metric presented in
Sect. 3.2.

4.1 Preparation of the data

We performed experiments on four different programs. These applications have
enough package dependencies to be useful for our study: at least 20 packages and

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 13

50 package dependencies.
It can be noted that all these systems have cycles. This section presents the four

studied systems and provides some useful metrics like number of packages and number
of dependencies. All these metrics are available in Table 2.

RESYN-Assistant

RESYN-Assistant6 is a Java program targeting the domain of organic chemistry. It
includes several algorithms for perceiving molecular graphs according to their topolog-
ical, functional and stereo-chemical features. The development of RESYN-Assistant
started in 1996 at the LIRMM institute. The development team was composed of four
persons: two researchers in computer-science, one PhD student in computer science
and one PhD student in chemistry. Because of the turnover within the development
team, and because it has mostly been developed by students having different research
objectives, its architecture has decayed since the initial version. This system was
already studied in our previous work. RESYN-Assistant has 313 classes distributed
in 33 packages. There are 1886 class dependencies and 241 package dependencies.

Geco

Geco7 is a Java desktop application to manage orienteering races, including registra-
tion of competitors, punch checking, and computation of results. It was developed
over the course of three years by a single developer. Although it’s a spare time project,
some attention is given to the quality of the code and especially to the dependency
between packages to maintain a clean architecture. Geco has 198 classes distributed
in 23 packages. There are 1344 class dependencies and 93 package dependencies.

Kalimucho

Kalimucho8 is a platform for dynamic QoS-driven deployment/reconfiguration of ap-
plications. It allows dynamic deployment and dynamic reconfiguration of applications
on desktop computers, laptops and mobile devices with Java and/or Android, depend-
ing on the external context (bandwidth, lightness, energy, etc.). The development of
Kalimucho started in 2009 at the LIUPPA institute. The Kalimucho project was
accepted as a Mobile and Embedded project by Sun Microsystems, which offer two
experimentation. The development team was composed of one PhD student and one
researcher in computer science. The architecture has evolved since the initial ver-
sion according to the different additions of new functionalities. Kalimucho has 118
classes distributed in 30 packages. There are 538 class dependencies and 130 package
dependencies.

Herdsman

Herdsman is a tool for automating the analysis of the evolution of software ecosystems.
The framework incorporates a database connection that allows us to get all relevant
information obtained thanks to several mining tools, and provides a unified way for
visualizing software communities evolution. Visualization tools are integrated to get
a first quick overview of the evolution of different aspects of the software project
under study. The tool is extensible to accommodate and different types of input and

6http://www.lirmm.fr/~vismara/resyn
7http://www.geco.webou.net/geco/index.html
8http://Java.net/projects/kalimucho

Journal of Object Technology, vol. 11, no. 1, 2012

http://www.lirmm.fr/~vismara/resyn
http://www.geco.webou.net/geco/index.html
http://Java.net/projects/kalimucho
http://dx.doi.org/10.5381/jot.2012.11.1.a4

14 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

Characteristics RESYN-Assistant Geco Kalimucho Herdsman

Number of classes 313 198 118 242
Number of class dep. 1886 1344 538 1033
Number of packages 33 23 30 42
Number of package dep. 241 93 130 121

Table 2 – Characteristics of the studied system.

output, depending on the needs of the user. Herdsman has 242 classes distributed in
42 packages. There are 1033 class dependencies and 121 package dependencies.

4.2 Experiment

4.2.1 Dependency extraction

We extract the dependencies between classes from the Java byte-code of each program.
To extract them, we use the Apache BCEL9 library. With BCEL, we extract most of
the dependencies between the classes, but some of them can be missed since it relies
only on a static analysis of the code. The main issues are the following.

1. If a method is overridden, the dependency extracted using BCEL is always to
the class that defines the method. But in reality the dependency could be to a
subclass. For instance A, B and C are in three different packages, B is a subclass
of A and B overrides a method M in A. An invocation of M in class C would be
reported by BCEL as a dependency between C and A. However there could be
a dependency between C and B, which would only be revealed by flow analysis
of the code.

2. If a static member of a class is accessed without using a variable declaration,
the dependency to the class can be overlooked by BCEL.

3. All dependencies caused by the use of the Java reflexion layer cannot be detected
by BCEL. In each case, the dependencies extracted by BCEL are a subset of
the real dependencies.

The first issue has no effect on our approach since method overriding will not
prevent packages to be compiled, tested and deployed separately. The two last issues
can affect our approach since packages using this kind of dependencies have to be
compiled, tested and deployed together. As previously seen, some existing cycles
are not detected by our tool, but every cycle detected by our tool is a real cycle.
The amount of missed cycles depends on amount of use of the previously described
mechanisms in the programs.

4.2.2 Experiment description

When using our approach to extract package cycles, one expects that the most un-
desired cycles will be ranked first and that the desired cycles will be ranked last.
One also expects that our approach will extract short cycles, which are easier to
understand than the long ones. To validate this, we set up the following experiment.

9http://jakarta.apache.org/bcel

Journal of Object Technology, vol. 11, no. 1, 2012

http://jakarta.apache.org/bcel
http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 15

For each program, we ask maintainers to evaluate all package dependencies with
the three values undesired, desired, unknown. We provided a software calledDepsView10

to ease the extraction and the evaluation. A tutorial for the user is available on the
wiki on DepsView’s homepage. The software shows a list of all the package dependen-
cies of the analyzed system. In addition, it provides a view that eases the understand-
ing of the dependencies by showing the underlying class dependencies. The package
dependency evaluation is independent of the cycle retrieval. This process provides a
high objectivity of the developers about the cycles, because this software does not
show if a dependency is in a cycle or not.

For each program, we compute and rank the cycles. First, we compute the distri-
bution of the cycle sizes, to ensure that short cycles are retrieved. We then compare
the maintainer answers to our algorithm results. To that extent, we count how many
cycles in the k first ranked by the algorithms are undesired, and how many of the k
last cycles are desired. We consider that an undesired cycle is a cycle with at least one
undesired package dependency. A desired cycle is a cycle with no undesired depen-
dency. Note that a desired cycle can contain unknown dependencies. In our study,
the unknown dependencies are considered as not undesired

Using this information, we compute the precision over the k first cycles FPk =
|undesiredk|

k , where undesiredk is the number of undesired cycles in the top k cycles
rated by the approach. In our experiment, we compute FP10. This measure will show
if our ranking metrics are able to rank highly undesired cycles. But it could be the
case that there are only undesired cycles in the programs of our experiment. In this
case, any ranking algorithm would have a good precision. To ensure the fact that
our ranking metrics are able to rank low the desired cycles, we will also compute the
precision over the k last ranked cycles LPk = |desiredk|

k , where desiredk is the number
of desired cycles in the low k cycles rated by the approach. In our experiment, we
compute LP10. If both FP10 and LP10 are close to 1, it means that our ranking
metrics are useful.

We compute these values for all of the unwanted cycles taking metrics presented
in Sect. 3.2. It provides four results for (i) the diameter ranking D, (ii) the weight
ranking with equal weightingWeq, (iii) the weightWexp, and (iv) the diameter-weight
ranking Z.

4.3 Results

4.3.1 Maintainers evaluation

The first step of our experiment was to ask maintainers to qualify package dependen-
cies of their programs with the values undesired, desired, unknown. Tab. 3 provides
the results of this evaluation. All the studied programs have undesired dependencies.
Geco and Kalimucho have few undesired dependencies (e.g., 6 and 4 respectively)
which means that the package design is well structured. Resyn-Assistant and Herds-
man have more undesired cycles. There is only one SCC in each software, and the
minimal size is 10 for Geco. It means that it is necessary to decompose the SCC for
a better understanding of the cycles.

4.3.2 Finding the cycles

Our algorithm finds 306 cycles in 9 milliseconds on RESYN-Assistant (mean time
computed over 10 runs on a 2.2GHz Intel Core i7), 87 cycles in 3 milliseconds on

10http://popsycle.googlecode.com

Journal of Object Technology, vol. 11, no. 1, 2012

http://popsycle.googlecode.com
http://dx.doi.org/10.5381/jot.2012.11.1.a4

16 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

Characteristics RESYN-Assistant Geco Kalimucho Herdsman

Undesired dependencies 17.02% 6.45% 3.08% 19%
Desired dependencies 80.08% 93.55% 93.08% 81%
Unknown dependencies 2.9% 0% 3.84% 0%

Number of SCC > 1 1 1 1 1
SCC max. size 29 10 17 20

Table 3 – Characteristics of the dependencies evaluated by maintainers.

Characteristics RESYN-Assistant Geco Kalimucho Herdsman

Number of short cycles 306 27 56 66
Number of undesired cycles 259 27 5 37

Time to find cycles (ms) 9 3 4 5

Table 4 – Results of our retrieval algorithm.

Geco, 121 cycles in 4 milliseconds on Kalimucho, and 98 cycles in 5 milliseconds on
Herdsman. The time to compute cycles is low enough to be performed during the
software development and integrated in the environment. The number of short cycles
shows that a ranking metric is clearly needed to avoid to look at all cycles when
re-engineering (Tab. 4).

The distribution of the cycle sizes is shown in Fig. 4. The largest cycles are of
size 7, which is manageable. The majority of the cycles are of size 2, 3 or 4, which is
totally suited for an easy understanding of the cycles. In comparison with the size of
the unique SCC, the size of the cycles found by our algorithm is significantly smaller.

4.3.3 Precision using our different metrics

The program Geco is special because all the short cycles are undesired (see in Tab. 4).
It means that the precision of FP10 takes the value 1.0, and the precision of LP10

takes the value 0.0. For the other systems, the best algorithm is the one with the
higher precision. We compute the precision of each algorithm on the 10 first cycles
and on the 10 last cycles of the provided list.

Fig. 5 and Fig. 6 show the precision over the 10 first and last cycles respectively. We
see that the weight-based ranking metricWeq does not provide good results. Precision
of the diameter metric D is good for the four programs. It means that the first ranked
cycles were, as expected, undesired. The majority of the last ranked cycles were, as
expected, desired. Applied on Kalimucho, our metric does not show good results for
FP10 measure. It is due to the low number of undesired cycles (5 on the 56). It is
clearly difficult to find them. The precision of the weight-based metric Wexp is good
but a bit lower than the precision of the metric D. This metric considers inheritance
more important than the other dependencies by weighting it with 103. It means that
package dependencies composed with inheritance are desired. The results ofWexp are
better than results of Weq for the four programs. It validates the postulate of the
metric that inheritance is more desired than the other dependencies and would not be
removed by engineers. Finally, the precision of the diameter-weight-based metric Z
is good for the four programs. The FT measure is 1.0 for Herdsman, which is better

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 17

Resyn−Assistant

Size of the cycle

N
um

be
r

of
 c

yc
le

s

2 3 4 5 6 7

0
20

40
60

80
10

0
12

0

Geco

Size of the cycle

N
um

be
r

of
 c

yc
le

s

2 3 4 5 6 7

0
5

10
15

20

Kalimucho

Size of the cycle

N
um

be
r

of
 c

yc
le

s

2 3 4 5 6 7

0
5

10
15

20

Herdsman

Size of the cycle

N
um

be
r

of
 c

yc
le

s

2 3 4 5 6 7

0
5

10
15

20

Figure 4 – The distribution of the cycle sizes in the four programs.

than the other metrics.
To conclude, the results show that ordering cycles by minimal weight (Weq and

Wexp) is not a good strategy. The diameter D provides good results, even if we
compute an average with the weight (Z). It means that the package architecture in
the studied programs depends on the containment tree.

The comparison of D and Z does not provide any conclusion because depending
to the analyzed software, Z is more precise than D, less precise than D and equally
precise as D. The conclusion is that Z is not superior to D. We cannot conclude that
the metric Z improves the approach.

4.4 Discussion

4.4.1 Threats to validity

The methods we use to extract the dependencies extract only a subset of them, as
explained in Sect. 4.2.1. It is possible that at runtime several additional dependencies
exist, leading to more cycles. This phenomenon could change the precision or recall
computed in the article. Another threat to validity is that each dependency is eval-

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

18 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

D Weq Wexp Z

Resyn−Assistant − FP10

Ranking Metric

P
re

ci
si

on

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D Weq Wexp Z

Kalimucho − FP10

Ranking Metric

P
re

ci
si

on

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D Weq Wexp Z

Herdsman − FP10

Ranking Metric

P
re

ci
si

on

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5 – The precision of FP10.

uated by only one developer. The developers may have made mistakes. This threat
to validity can be avoided by making evaluation by multiple developers and verifying
that the evaluation is the same for each of them. Unfortunately, it was not possi-
ble in our experiment because the programs had only one main developer available.
Finally, the number of studied software applications is also a threat to validity. A
population of four programs cannot provide statistically significant results. Results
could be different for programs with different characteristics than the ones we chose.

5 Related Work

Several tools and approaches have been introduced over the years to deal with the
problem of cyclic dependencies among packages and classes in a software system.
These approaches can be roughly classified as follows: 1) approaches working at the
package level, 2) approaches working at the class level, 3) approaches using graph
theory algorithms and 4) approaches based on dependency matrix algorithms.

As a general rule, these approaches are concerned by detecting and reporting cycles
using Tarjan SCC algorithm [Tar72] or some simpler algorithms. Such approaches

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 19

D Weq Wexp Z

Resyn−Assistant − LP10

Ranking Metric

P
re

ci
si

on

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D Weq Wexp Z

Kalimucho − LP10

Ranking Metric

P
re

ci
si

on

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D Weq Wexp Z

Herdsman − LP10

Ranking Metric

P
re

ci
si

on

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6 – The precision of LP10.

do not scale to programs involving large SCCs because they do not provide a deep
analysis of how such SCCs arise and how to remove cycles in a SCC. In contrast, our
approach computes the information necessary to understand SCCs through subsets
of elementary cycles, and is able to rank cycles by their level of undesirability.

Mudpie [Vai04] is a reporting tool to detect cyclic dependencies between packages
in Smalltalk. The paper reports on a single case study performed on packages of
the Refactoring Browser in Smalltalk. Classycle11 is a reporting tool which detects
SCC both at class and package level. Classycle proposes some metrics to characterize
cycles but no formal definitions are proposed and their goal is unclear. Both tools
rely on Tarjan SCC algorithm for detection of cycles, which make them impractical
to analyze large SCCs.

PASTA [Hau02] is a tool for analyzing the dependency graph of Java packages.
It focuses on detecting layers in the graph and consequently provides two heuristics
to deal with cycles. One views packages in the same SCC as a single package. The
other heuristic selectively ignores some dependencies until no more cycle is detected.
Thus, PASTA reports on these undesirable dependencies which should be removed to

11http://classycle.sourceforge.net

Journal of Object Technology, vol. 11, no. 1, 2012

http://classycle.sourceforge.net
http://dx.doi.org/10.5381/jot.2012.11.1.a4

20 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

break cycles. The paper reports on a case study analyzing the Java core package with
effective results. It would be interesting to compare the heuristics for undesirable
dependencies with our distance metric for undesired cycles.

JooJ [MT07b] is an approach to detect and remove cyclic dependencies between
classes. The principle of JooJ is to find statements creating cyclic dependencies di-
rectly in the code editor, allowing the developer to solve the problem as it appears.
It computes the SCC using Tarjan to detect cycles among classes. It also computes
an approximation of the minimal set of edges to remove in order to make the depen-
dency graph totally acyclic. This NP-complete problem is called minimum feedback
arc set in the literature. It highlights therefore the minimum number of statements
that one needs to remove to suppress all class cycles. However, no study is made to
validate this approach: it is possible that the selected dependencies are in fact not to
be removed. With the same idea, Ozone [LDA10] is an approach to suggest package
layers to reengineers facing the presence of cyclic dependencies. This approach pro-
poses an organization of packages (even in presence of cycles) in multiple layers by
removing dependencies that are considered as undesired. This approach can be run
automatically, it also supports human inputs and constraints.

Byecycle12 is an Eclipse plugin to visualize dependencies at class level. It detects
and colors in red dependencies involved in cycles. By construction, a set of red edges
highlights SCC in the visualization. However, the tool does not provide further help
for cycle analysis.

JDepend13 is a tool for Java which checks Martin’s principles [Mar02] for package
design. In particular, it checks that the package dependency graph is acyclic. Con-
trary to other approaches, this tool does not detect and retrieve packages in SCCs,
but simply reports for each package whether there is a cycle in its transitive depen-
dency graph. For example, with packages A and B in cycle and package C depending
upon A, JDepend reports that C depends on a cycle. It can become overwhelming
if many packages depend on the same cycle (as each will report separately the cycle)
yet is not exhaustive as the tool stops as soon as a cycle is detected (not reporting all
cycles in the dependency graph).

Dependency Finder14 is a set of command line tools to analyze compiled Java code
with a focus on dependency graph. One tool detects cycles but at class level only.
The algorithm used is not described, although it seems to report elementary cycles.

Regression and Integration Testing domain provides approaches to find the best
solution to remove cycles between entities. Le Traon et al. [LTJJM00], Briand et
al. [BLW01], Tai and Daniels [TD97] propose models to break Strongly Connected
Components (SCC). The goal of this kind of algorithm is to minimize stub creation.
Le Hanh et al. [HATJ01] propose an experimental comparison of four approaches
to break SCC for stub minimization. The goal is to find the best candidate that
can remove cycles to build an integration order. As our algorithm, some approaches
propose the differentiation of the kind of dependencies to avoid removing inheritance
relationships [KGH+96, TD97].

Dependency structural matrix [SDE91] is an approach developed for process anal-
ysis. It visualizes dependencies between some elements (tasks, processes, modules)
using the adjacency matrix representation. Several algorithms are defined on the de-
pendency matrices. The main step, called matrix partitioning, has a similar output

12http://byecycle.sourceforge.net
13http://clarkware.com/software/JDepend.html
14http://depfind.sourceforge.net

Journal of Object Technology, vol. 11, no. 1, 2012

http://byecycle.sourceforge.net
http://clarkware.com/software/JDepend.html
http://depfind.sourceforge.net
http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 21

to SCC in a directed graph. Dependency matrices rely on visualization to understand
cycles. They make direct cycles easy to spot but indirect cycles are hard to under-
stand with this approach. Lattix [SJSJ05] and eDSM [LDDB09] are two adaptations
of dependency matrix to the visualization of package dependencies. They highlight
cycles in SCC and can be used as a starting point to understand the architecture
of the system. However, due to their limitations in visualizing indirect cycles, they
do not benefit from our work which decomposes SCCs in direct and indirect cycles.
Instead, we view our work as complementary with DSM as a high level tool and other
tools for fine-grained analysis of cycles. Some other approaches propose to recover
software structure and visualize the organization of classes and files [MM06]. To un-
derstand the complexity of large object-oriented software systems and particularly the
package structure, there are some visualization tools [DGK06, DL05, BDL05, LSP05].
Package Blueprint [DPS+07] shows the communications between packages.

Dong and Godfrey [DG07] propose an approach to study dependencies between
packages and to give a new meaning to packages with (i) characterization of external
properties of components, (ii) usage of resource and (iii) connectors. It helps the
maintainers to understand the nature of package dependencies.

Lungu et al. [LLG06] propose a collection of package patterns to help reengineers
to understand large software system. They propose to recover architecture based on
package information and an automatic process to recover defined patterns. Then they
propose a user interface to interact with the package structure. This approach is useful
to understand the behavior of a package in the system. It can provide information
about the position of a package in a layered organization.

6 Conclusion and Future Work

In this article, we presented two contributions that assist the developers to understand
and remove the cycles among packages of a large software system.

• First, we presented an efficient algorithm that decomposes a SCC. This algo-
rithm retrieves a set of short cycles that covers all dependencies of the SCC. It
has a polynomial time and space complexity.

• Second, we introduced new metrics that evaluate the level of undesirability of
a cycle. These metrics are based upon the two characteristics of packages: the
notion of distance between packages involved in the cycle (called diameter), and
the notion of dependency weight. We showed that the diameter provides good
results for ordering package cycles by undesirability.

Since our algorithm has a low complexity, it can be applied at maintenance-time
as well as at development-time, preventing cycles before they become too large. We
validate our approach on several case-studies on mature real-world programs in Java.
It shows that our approach has a practical interest and is easy to adapt to various
object languages.

We plan to work on adapting and applying our tool to legacy procedural lan-
guages like C or ADA, because we believe that cycles are frequent in legacy code.
An approach able to help the developers to remove some of them would ease the
maintenance effort spent on these systems.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a4

22 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

References

[BDL05] Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi
treemaps for the visualization of software metrics. In SoftVis ’05: Pro-
ceedings of the 2005 ACM symposium on Software visualization, pages
165–172, New York, NY, USA, 2005. ACM. doi:10.1145/1056018.
1056041.

[BLW01] L.C. Briand, Y. Labiche, and Yihong Wang. Revisiting strategies for
ordering class integration testing in the presence of dependency cycles.
In Software Reliability Engineering, 2001. ISSRE 2001. Proceedings.
12th International Symposium on, pages 287 – 296, nov. 2001. doi:
10.1109/ISSRE.2001.989482.

[DG07] Xinyi Dong and M.W. Godfrey. System-level usage dependency analysis
of object-oriented systems. In ICSM 2007. IEEE Comp. Society, 2007.
doi:10.1109/ICSM.2007.4362650.

[DGK06] Stéphane Ducasse, Tudor Gîrba, and Adrian Kuhn. Distribution map.
In Proceedings of 22nd IEEE International Conference on Software
Maintenance (ICSM ’06), pages 203–212, Los Alamitos CA, 2006.
IEEE Computer Society. Available from: http://scg.unibe.ch/archive/
papers/Duca06cDistributionMap.pdf, doi:10.1109/ICSM.2006.22.

[DL05] Stéphane Ducasse and Michele Lanza. The Class Blueprint: Vi-
sually supporting the understanding of classes. Transactions on
Software Engineering (TSE), 31(1):75–90, January 2005. Available
from: http://scg.unibe.ch/archive/papers/Duca05bTSEClassBlueprint.pdf,
doi:10.1109/TSE.2005.14.

[DPS+07] Stéphane Ducasse, Damien Pollet, Mathieu Suen, Hani Abdeen, and
Ilham Alloui. Package surface blueprints: Visually supporting the
understanding of package relationships. In ICSM ’07: Proceedings
of the IEEE International Conference on Software Maintenance,
pages 94–103, 2007. Available from: http://scg.unibe.ch/archive/papers/
Duca07cPackageBlueprintICSM2007.pdf.

[FDL+11] Jean Rémi Falleri, Simon Denier, Jannik Laval, Philipe Vismara, and
Stéphane Ducasse. Efficient retrieval and ranking of undesired package
cycles in large software systems. In Proceedings of the 49th Interna-
tional Conference on Objects, Models, Components, Patterns (TOOLS-
Europe’11), Zurich, Switzerland, June 2011.

[HATJ01] Vu Le Hanh, Kamel Akif, Yves Le Traon, and Jean-Marc Jézéquel.
Selecting an efficient oo integration testing strategy: An experimen-
tal comparison of actual strategies. In Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming, ECOOP ’01, pages
381–401, London, UK, UK, 2001. Springer-Verlag. Available from:
http://portal.acm.org/citation.cfm?id=646158.679879.

[Hau02] Edwin Hautus. Improving java software through package structure
analysis. In IASTED International Conference Software Engineering
and Applications, 2002.

[KGH+96] David C. Kung, Jerry Gao, Pei Hsia, Yasufumi Toyoshima, and Cris
Chen. On regression testing of object-oriented programs. J. Syst.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.1145/1056018.1056041
http://dx.doi.org/10.1145/1056018.1056041
http://dx.doi.org/10.1109/ISSRE.2001.989482
http://dx.doi.org/10.1109/ISSRE.2001.989482
http://dx.doi.org/10.1109/ICSM.2007.4362650
http://scg.unibe.ch/archive/papers/Duca06cDistributionMap.pdf
http://scg.unibe.ch/archive/papers/Duca06cDistributionMap.pdf
http://dx.doi.org/10.1109/ICSM.2006.22
http://scg.unibe.ch/archive/papers/Duca05bTSEClassBlueprint.pdf
http://dx.doi.org/10.1109/TSE.2005.14
http://scg.unibe.ch/archive/papers/Duca07cPackageBlueprintICSM2007.pdf
http://scg.unibe.ch/archive/papers/Duca07cPackageBlueprintICSM2007.pdf
http://portal.acm.org/citation.cfm?id=646158.679879
http://dx.doi.org/10.5381/jot.2012.11.1.a4

Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems · 23

Softw., 32:21–40, January 1996. Available from: http://portal.acm.org/
citation.cfm?id=218153.218155, doi:10.1016/0164-1212(95)00047-X.

[LDA10] Jannik Laval, Stéphane Ducasse, and Nicolas Anquetil. Ozone: Package
layered structure identification in presence of cycles. In 9th BElgian-
NEtherlands software eVOLution seminar (BENEVOL 2010), Lille,
France, 2010.

[LDDB09] Jannik Laval, Simon Denier, Stéphane Ducasse, and Alexandre Bergel.
Identifying cycle causes with enriched dependency structural matrix.
In WCRE ’09: Proceedings of the 2009 16th Working Conference on
Reverse Engineering, Lille, France, 2009.

[LLG06] Mircea Lungu, Michele Lanza, and Tudor Gîrba. Package patterns for
visual architecture recovery. In Proceedings of CSMR 2006 (10th Eu-
ropean Conference on Software Maintenance and Reengineering), pages
185–196, Los Alamitos CA, 2006. IEEE Computer Society Press. Avail-
able from: http://scg.unibe.ch/archive/papers/Lung06aPackagePatterns.pdf,
doi:10.1109/CSMR.2006.39.

[LSP05] Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin.
Visualization-based analysis of quality for large-scale software systems.
In ASE ’05: Proceedings of the 20th IEEE/ACM international Con-
ference on Automated software engineering, pages 214–223, New York,
NY, USA, 2005. ACM. Available from: http://dx.doi.org/10.1145/1101908.
1101941, doi:10.1145/1101908.1101941.

[LTJJM00] Y. Le Traon, T. Jeron, J.-M. Jezequel, and P. Morel. Efficient object-
oriented integration and regression testing. Reliability, IEEE Transac-
tions on, 49(1):12 –25, March 2000. doi:10.1109/24.855533.

[Mar02] Robert Cecil Martin. Agile Software Development. Principles, Patterns,
and Practices. Prentice-Hall, 2002.

[MM06] Brian S. Mitchell and Spiros Mancoridis. On the automatic modular-
ization of software systems using the bunch tool. IEEE Transactions on
Software Engineering, 32(3):193–208, 2006.

[MT07a] Hayden Melton and Ewan Tempero. An empirical study of cycles
among classes in java. Empirical Software Engineering, 12(4):389–415,
2007. doi:10.1007/s10664-006-9033-1.

[MT07b] Hayden Melton and Ewan D. Tempero. Jooj: Real-time support for
avoiding cyclic dependencies. In 14th Asia-Pacific Software Engineering
Conference, pages 87–95. IEEE Computer Society, 2007.

[Par78] David Lorge Parnas. Designing software for ease of extension and
contraction. In International Conference on Software Engineering
(ICSE’78), pages 264–277, 1978.

[SDE91] David A. Gebala Steven D. Eppinger. Methods for analyzing design
procedures. In ASME Conference on Design Theory and Methodology,
pages 227–233, 1991. Miami.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using
dependency models to manage complex software architecture. In Pro-
ceedings of OOPSLA’05, pages 167–176, 2005.

Journal of Object Technology, vol. 11, no. 1, 2012

http://portal.acm.org/citation.cfm?id=218153.218155
http://portal.acm.org/citation.cfm?id=218153.218155
http://dx.doi.org/10.1016/0164-1212(95)00047-X
http://scg.unibe.ch/archive/papers/Lung06aPackagePatterns.pdf
http://dx.doi.org/10.1109/CSMR.2006.39
http://dx.doi.org/10.1145/1101908.1101941
http://dx.doi.org/10.1145/1101908.1101941
http://dx.doi.org/10.1145/1101908.1101941
http://dx.doi.org/10.1109/24.855533
http://dx.doi.org/10.1007/s10664-006-9033-1
http://dx.doi.org/10.5381/jot.2012.11.1.a4

24 · Jannik Laval, Jean-Rémy Falleri, Philippe Vismara, Stéphane Ducasse

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algorithms.
SIAM J. Comput., 1(2):146–160, 1972.

[Tar73] Robert Endre Tarjan. Enumeration of the elementary circuits of a di-
rected graph. SIAM J. Comput., 2(3):211–216, 1973.

[TD97] Kuo-Chung Tai and F.J. Daniels. Test order for inter-class inte-
gration testing of object-oriented software. In Computer Software
and Applications Conference, 1997. COMPSAC ’97. Proceedings.,
The Twenty-First Annual International, pages 602 –607, aug 1997.
doi:10.1109/CMPSAC.1997.625079.

[TSWW11] Craig Taube-Schock, Robert Walker, and Ian Witten. Can we avoid
high coupling? In Mira Mezini, editor, ECOOP 2011 – Object-Oriented
Programming, volume 6813 of Lecture Notes in Computer Science,
pages 204–228. Springer Berlin / Heidelberg, 2011.

[Vai04] Daniel Vainsencher. Mudpie: layers in the ball of mud. Computer Lan-
guages, Systems & Structures, 30(1-2):5–19, 2004.

About the authors

Jannik Laval Jannik Laval works in the Sphere group of the LaBRI laboratory,
Bordeaux, France. He received the doctorate degree in computer science from the
University Lille 1, France, in June 2011. He works on software maintenance, evolution
and remodularization. He is a contributor of the Moose Software analysis platform.
More information is available at www.jannik-laval.eu

Jean-Rémy Falleri Jean-Rémy Falleri received the doctorate degree in computer
science from the University Montpellier 2, France, in October 2009. He is now an
associate professor at the Institut Polytechnique of Bordeaux, France, and a research
associate in the Sphere group of the LaBRI laboratory. His research interests lie in
Software Engineering, and more particularly in software maintenance, evolution and
comprehension. More information is available at www.labri.fr/~falleri.

Philippe Vismara Philippe Vismara is an associate professor at Montpellier Su-
pAgro and a researcher at LIRMM, University of Montpellier 2 (UM2) and National
Center for Scientific Research (CNRS), France. His research interests are in graph
algorithms (especially cycles) and constraint programming. More information is avail-
able at http://www.lirmm.fr/~vismara/

Stéphane Ducasse Stephane Ducasse works at INRIA Lille Nord Europe where
he leads the RMoD team. He is expert in two domains: object-oriented language
design and reengineering. He worked on traits, composable groups of methods, and
this work made some real impact. Traits have been introduced in AmbientTalk, and
Squeak/Pharo, Perl, PHP, a variant of Scala, and Fortress of SUN Microsystems. He
is one of the developers of Pharo http://www.pharo.project.org/ a new dynamic language
used in industry and academia. He is also an expert on software quality, program
understanding, program visualizations, reengineering and metamodeling. He is one
of the developers of Moose, an open-source software analysis platform http://www.
moosetechnology.org/.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.1109/CMPSAC.1997.625079
www.jannik-laval.eu
www.labri.fr/~falleri
http://www.lirmm.fr/~vismara/
http://www.pharo.project.org/
http://www.moosetechnology.org/
http://www.moosetechnology.org/
http://dx.doi.org/10.5381/jot.2012.11.1.a4

	Introduction
	Motivation
	Limitation of the main cycle detection algorithm
	Desired and undesired cycles

	Our Approach
	A new cycle retrieval algorithm
	Intuition of our algorithm
	Mathematical model
	Details of our algorithm
	Complexity of Algorithm 1

	Undesired cycles ranking metrics
	Diameter metric
	Weight-based metric
	Diameter-Weight-based metric

	Validation
	Preparation of the data
	Experiment
	Dependency extraction
	Experiment description

	Results
	Maintainers evaluation
	Finding the cycles
	Precision using our different metrics

	Discussion
	Threats to validity

	Related Work
	Conclusion and Future Work
	References
	About the authors

