JOURNAL OF OBJECT TECHNOLOGY

Published by AITO — Association Internationale pour les Technologies Objets, © JOT 2011
Online at http://www. jot.fm.

A Catalogue of Refactorings for
Model-to-Model Transformations

b

Manuel Wimmer? Salvador Martinez Frédéric Jouault?

Jordi CabotP

a. Vienna University of Technology, Austria
b. INRIA & Ecole des Mines de Nantes, France

Abstract In object-oriented programming, continuous refactorings are
used as the main mechanism to increase the maintainability of the code
base. Unfortunately, in the field of model transformations, such refac-
toring support is so far missing. This paper tackles this limitation by
adapting the notion of refactorings to model-to-model (M2M) transfor-
mations. In particular, we present a dedicated catalogue of refactorings
for improving the quality of M2M transformations. The refactorings have
been explored by analyzing existing transformation examples defined in
ATL. However, the refactorings are not specifically tailored to ATL, but
applicable also to other M2M transformation languages.

Keywords Refactoring, Model Transformation, Model Transformation Qual-
ity

1 Introduction

Model manipulation is a central activity in many model-based software engineering
activities [SK03] like, model translations (e.g., translating a UML class model into an
ER model), model augmentations (e.g., weaving aspects into a UML class model), and
model alignments (e.g., mapping a content model to its GUI view), to mention just
a few. Model manipulations are usually implemented by means of model-to-model
(M2M) transformations. A M2M transformation transforms a model Ma conforming
to a metamodel MMa into a model Mb conforming to a metamodel MMb (where
MMa and M Mb can be the same or different metamodels).

Current research on model transformation focuses on developing languages for
specifying transformations (e.g., cf. [CHO6] for a survey). However, there are no avail-
able techniques focusing on the maintainability of existing transformations beyond
manually applying atomic edit operations on them. Such support is clearly needed,
e.g., to improve the readability of transformations and to facilitate their evolution
in response to changes on the transformation requirements and/or the source/target

Manuel Wimmer, Salvador Martinez, Frédéric Jouault, Jordi Cabot. A Catalogue of Refactorings for
Model-to-Model Transformations. In Journal of Object Technology, vol. 11, no. 2, 2012, pages 2:1-40.
doi:10.5381/jot.2012.11.2.a2

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2012.11.2.a2
http://dx.doi.org/10.5381/jot.2012.11.2.a2

2 . Wimmer et al.

metamodels used in the transformation. A maintainable, reusable, and extensible set
of transformation definitions is a key aspect in any high-quality model-based solution.

In the area of object-oriented programming, refactorings are the technique of
choice for improving the structure of existing code without changing its external
behavior [Opd92, Fow99, MT04]. They have proved to be useful to improve the
quality attributes of source code, and thus, to increase its maintainability. Unfortu-
nately, no catalogue of refactorings for model transformation exists. Available object-
oriented refactoring catalogues are not reusable as they are, because most current
transformation approaches follow a rule-based programming paradigm and are very
domain-specific. This forces transformation developers to improve model transfor-
mation specifications without any kind of dedicated support. Given the potential
complexity of model transformations, manual modifications may lead to unwanted
side-effects and result in a tedious and error-prone maintenance process.

In this sense, the main contribution of this paper is the provision of a refactor-
ing catalogue for rule-based M2M transformations. The catalogue is based on our
experience as MDE (model-driven engineering) researchers plus on the analysis of ex-
isting transformation examples from different sources! defined in ATL [JK05]. Most
of the refactorings are not specifically tailored to ATL, but are applicable also for
other M2M transformation languages following the rule-based paradigm such as the
QVT transformation language family [OMG11]. It is worth to note that the presented
refactorings may improve not only quality attributes related to maintainability such
as readability, reusability, and extensibility of the transformations, but also the per-
formance of transformations. Execution of refactorings can be semi-automated by
employing higher-order transformations [TJF109].

The rest of the paper is structured as follows. In Section 2, we introduce the main
M2M transformation concepts and present an illustrative example which exhibits some
bad smells that should be eliminated. Section 3 presents the notion of refactorings
for M2M transformations and Section 4 summarizes the refactoring catalogue and
its application on excerpts of the illustrative example. Furthermore, this section
also highlights the reusability of the refactorings for other rule-based transformation
languages. Section 5 and Section 6 show the impact of the refactorings on internal
quality attributes and on the execution performance of transformations, respectively.
In Section 7 we report on some details of the implementation of the refactorings.
Section 8 discusses related work, and finally, Section 9 concludes with an outlook on
future work.

2 lllustrative example

We illustrate M2M transformations and motivate the need for transformation refac-
torings by means of the transformation scenario presented in this section and used as
a running example throughout the paper. The goal of this transformation scenario is
to transform UML class diagrams into Entity Relationship (ER) diagrams.

Fig. 1 shows the (simplified) metamodels of both modeling languages. Most modeling
concepts have a direct counterpart in the other language except for the inheritance
concept in UML, which can not be represented in our simplified version of the ER
language. Thus, an important task of the transformation is to flatten inheritance trees
in the UML model, duplicating the properties of the superclasses in the subclasses
when generating entity types in the ER model.

LFor instance, the transformations available at www.eclipse.org/m2m/atl/at1Transformations

Journal of Object Technology, vol. 11, no. 2, 2012

www.eclipse.org/m2m/atl/atlTransformations
http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 3

superClasses features
0.* \I/ J EntityType ‘ﬁ/ o
0.1 name : Strin =
(‘:I:s? s Feature
name : String 0.1 " type name : String
complex
Type properties
0.*

Property Reference I Attribute
name : String type : String
isContainment : Bool
primitiveType : String |WeakReference| | StrongReference |
UML metamodel ER metamodel

Figure 1 — Metamodels of the UML Class Diagram and Entity Relationship Diagram.

module UML2ER;
create OUT : ER from IN : UML;

1
2
3
4 helper context UML!Class def: allClasses() : Sequence(UML!Class) =

5 self.superClasses— >iterate(e; acc : Sequence(UML!Class) = Sequence {} |
6

7

8

9

acc—>union(Set{e})—>union(e.allClasses()));

rule Class {

from
10 s: UML!Class
11 to
12 t: ERIEntityType (
13 name < — s.name,
14 features <— attributes,
15 features <— weakReferences,
16 features <{— strongReferences
b,
18 attributes : distinct ER!Attribute foreach(a in
19 s.allClasses().including(s).flatten()
20 —>collect(e | e.ownedProperty).flatten()
21 —>select (e | not e.primitiveType.oclIsUndefined())) (
22 name < — a.name,
23 type <— a.primitiveType
u),
25 weakReferences : distinct ER!WeakReference foreach(a in
26 s.allClasses().including(s).flatten()
27 —>collect(e | e.ownedProperty).flatten()
28 —>select(e | not e.complexType.oclIsUndefined() and not e.isContainment)) (
29 name < — a.name,
30 type <— a.complexType
s)
32 strongReferences : distinct ER!StrongReference foreach(a in
33 s.allClasses().including(s).flatten()
34 —>collect(e | e.ownedProperty).flatten()
35 —>select(e | not e.complexType.oclIsUndefined() and e.isContainment)) (
36 name < — a.name,
37 type <— a.complexType
38)
3 }

Listing 1 — UML to ER Transformation in ATL.

We have chosen ATL as the transformation language for this paper, because it is
one of the most widely used transformation languages, both in academia and industry,
and there is mature tool support available. List. 1 shows the UML2ER transformation
expressed in ATL. This (correct but poor as discussed below) transformation is a
typical solution we frequently encounter in our model engineering labs [BKSWO09]
where about 150 students have to solve several model transformation problems with
ATL.

An ATL transformation is composed of a set of transformation rules and helpers.
Each rule describes how (part of) the target model should be generated from (part

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

4 . Wimmer et al.

of) the source model. There are two kinds of declarative rules, matched rules and lazy
rules. The former are automatically matched by the ATL execution engine according
to the rule matching pattern, whereas the latter have to be explicitly called from
another rule giving more control over the transformation execution. This is similar
to the concept of top and non-top relations in QVT Relations.

A helper can be seen as auxiliary function that enables the possibility of factor-
izing ATL code used in different points of the transformation. In the transformation
example, the rule Class matches every class in the UML model to produce an en-
tity type in the output model while the helper allClasses() calculates all direct and
indirect superclasses of a given class.

Rules are mainly composed of an input pattern and an output pattern. The input
pattern filters the subset of source model elements that are concerned by the rule.
The output pattern details how the target model elements are created from the input
ones. Each output pattern element can have several bindings that can be used to
initialize the values of the elements in the target model. These initializations are
performed as a second step after a first step consisting in matching the rules and
creating the output elements. This separation in two steps enables the utilization
of an automatic resolution algorithm allowing the initialization of target values with
other target values by indicating the source values that will produce them. This
avoids the need for navigating the target model.

In the example, we have defined one input pattern element, that selects elements
of type class, and an output pattern that creates four types of elements: entity types,
attributes and both kinds of references. Bindings are used, for instance, to initialize
the name of entity types with the name of the corresponding classes. Distinct-foreach
clauses in the pattern indicate that this part of the pattern can produce more than
one output element of that type at once.

Finally, the Object Constraint Language (OCL) is used all along ATL transfor-
mations as a query language for traversing the models.

Although the previous transformation does the job, i.e., it correctly produces ER
models from UML ones, it has several bad smells that compromise its quality in terms
of maintainability and performance:

1. The transformation consists of one complex rule doing all the work, instead of
decomposing the transformation based on the different types of elements in the
source pattern. This bad smell may be seen as the rule-based paradigm equiva-
lent to the well-known “God Class” bad smell in object-oriented programming.
Thus, we name this bad smell “God Rule”.

2. Duplicated code hampers evolution. For instance, if the reference ownedProperty
is renamed in the source metamodel, three complex OCL expressions have to
be adapted in the transformation.

3. Unnecessary repetitive calls that compromise the performance. The helper
allClasses() is called several times for the same element. This results in re-
calculating the return value every time.

4. Use of deprecated constructs. The distinct-foreach construct used in the trans-
formation has been classified as deprecated because it breaks the internal trace-
ability links of the ATL virtual machine.

Transformation designers may not be aware of these problems or are unsure of
how to solve them without breaking the transformation. The refactoring catalogue

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 5

we present in the next section clearly improves this situation by contributing to the
body of knowledge of transformation engineering.

3 Refactorings for M2M Transformations

In this section, we explain how the notion of refactoring is adopted to the field of
M2M transformations.

As for any other kind of refactorings, the behavior of the refactored object, the
transformation in our case, must be preserved. Unfortunately, there is no consensus
about the meaning of behavior preservation of refactorings. Therefore a universal def-
inition of behaviour preservation is missing [MT04|. Consequently, several definitions
exist tailored to specific domains and languages.

Adapting the broadest definition [Opd92] to M2M transformations leads to the
following definition. Behaviour preservation is assured if for any input model, the
produced output model will be the same before and after refactoring the transforma-
tion. This definition of behavior preservation may be checked by a comprehensive test
suite or in case of having formal semantics by demonstrating the semantic equivalence
of the refactored transformation with the original one. There are some efforts to give
a formal semantics to transformation languages like ATL, cf. e.g., [TV11], but there is
not yet a complete formal semantics for any of them. Thus, due to the rapid feedback
and its pragmatic advantage which has been proven useful for software engineers in
the field of object-oriented refactorings, we use the test suite approach for checking
the behaviour preservation of our refactorings. In particular, by using model compar-
ison frameworks such as EMF Compare?, we are able to validate that for a set of test
input models, the same output models are generated by the initial transformation
and the refactored ones. At our project website?, we provide transformations and
test input models we have used to validate the refactorings of our catalogue.

4 Catalogue

This section describes our proposed refactoring catalogue. For outlining the refactor-
ings in the paper, we are using a format inspired by Fowler [Fow99|. In particular,
we describe the refactorings by (1) giving a name to the refactoring, (2) describing
the typical situation where the refactoring should be applied, i.e., the problem, (3)
describing the solution to improve the problematic situation, (4) stating the precon-
ditions that must be satisfied to be able to apply the refactoring, (5) stating the
parameters needed to provide the necessary information to execute the refactoring,
(6) describing the refactoring steps and, for some of them, (7) discussing a concrete
example application. Implementation of the proposed refactorings is described in
Section 7.

The refactorings mainly focus on language constructs of ATL that are also part
of other M2M transformation languages. This includes also the notion of inheritance
between transformation rules [WKK* 11|, which allows to reuse and extend existing
transformation rules defined for superclasses for their subclasses. Furthermore, OCL
constructs forming also an integral part of many transformation languages are also

2http://www.eclipse.org/emf/compare
Shttp://www.emn.fr/z-info/atlanmod/index.php/Model-to-Model_Transformation_
Refactorings

Journal of Object Technology, vol. 11, no. 2, 2012

http://www.eclipse.org/emf/compare
http://www.emn.fr/z-info/atlanmod/index.php/Model-to-Model_Transformation_Refactorings
http://www.emn.fr/z-info/atlanmod/index.php/Model-to-Model_Transformation_Refactorings
http://dx.doi.org/10.5381/jot.2012.11.2.a2

6 - Wimmer et al.

covered by our refactoring catalogue. Thanks to this, most of the refactorings are use-
ful regardless the concrete M2M transformation language of use. We do not attempt
to cover imperative code in the current version of the refactoring catalogue. This may
be already covered by existing refactorings tackling the improvement of imperative
code in the field of object-oriented programming languages [Opd92, Fow99].

The refactorings are structured into four categories:

1. Renaming: This category comprises refactorings needed for renaming identifiers
as well as their references within the transformation.

2. Restructuring: Transformations are composed by rules for generating output
elements from input elements and by additional helpers for calculating certain
values. Thus, refactorings are needed for improving the structure of a transfor-
mation by means of restructuring and introducing rules and helpers.

3. Inheritance-related: The refactorings from this category deal with the extraction
or elimination of commonalities between rules by introducing and removing
inheritance between rules.

4. OCL Ezpression Optimization: Finally, transformation languages are built upon
OCL for queries and computation of feature values. Thus, also the improvement
of OCL expressions should be possible through the execution of refactorings.

While the first category can be seen as a set of basic refactorings for enhancing the
readability of the transformation, category 2-4 is used for heavily changing the struc-
ture of a transformation. In particular, we also included refactorings for explicitly
removing outdated language constructs and poor coding practices from existing trans-
formations as well as introducing new language constructs such as rule inheritance
into already existing transformations. Table 1 summarizes the refactoring catalogue.
In the following subsections, we outline each category in more detail.

4.1 Renaming Refactorings

As in programming languages [Fow99], one of the easiest but nonetheless very use-
ful things one can do to improve code is simply changing names. In transformation
languages, rules and helpers with proper names will give a precise idea of what func-
tionality they are providing, thus saving the time needed to go to the definition itself.
Other language constructs such as variables for input/output pattern elements may
be renamed as well. In Table 1, refactorings 1 to 3 perform these renaming opera-
tions. In the rest of this subsection we provide a short description of each of these
refactorings.

(1) Rename In/Out Pattern Element
Problem: In/Out pattern element name is not descriptive enough.
Solution: Substitute the name for a more meaningful one. Normally, associated with
source/target meta-element names.
Preconditions: There is not an In/Out pattern element with the same name for the
given rule.
Parameters:
1. The pattern element to be renamed.
2. The new name for the In/Out pattern element.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 7

N | Name of the refactoring | Purpose
| Renaming [
1 Rename In/Out Pattern Ele- | Change the name of In/Out Pattern Element for better ex-
ment plaining the intention of the element.
2 Rename In/Out Model Change the name of In/Out Models for better explaining the
intention of the model.
3 Rename Rule/Helper Change the name of Rules/Helpers for better explaining the
intention of the Rule/Helper.
| Restructuring [
4 Extract Helper/Rule* Extract an additional helper from an existing helper/rule or
extract an additional rule from an existing rule.
5 Inline Helper/Rule* Inline a helper into another helper/rule or inline a rule into
another rule.
6 Merge Rule Merge rules into one rule
7 Split Rule Split a rule into two rules
8 Merge Binding Merge two bindings into one binding if the same target feature
is set.
9 Split Binding Split a binding into two bindings if several elements are as-
signed to the one feature.
10 Convert Rule Type* Change the type of a rule by converting a MatchedRule into
a LazyRule, and vice versa.
‘ Inheritance-related ‘ Applicable on Matched and Lazy rules
11 Extract Superrule Introduce a common superrule for a set of rules which share
common supertypes for input/output elements.
12 Pull Up Binding Move common bindings of subrules to their common super-
rule.
13 Pull Up Filter Move common filters of subrules to their common superrule.
14 Eliminate Superrule Eliminate a common superrule and the inheritance relation-
ships to the subrules.
15 Push Down Binding Move the bindings of a superrule to all of its subrules.
16 Push Down Flilter Move the filters of a superrule to all of its subrules.
| OCL-related [
17 Convert Helper Type* Change the type of a helper by converting a helper operation
into a helper attribute, and vice versa.
18 Protect Unsafe Target Naviga- Introduce resolveTemp operation for navigating the target
tion model without depending on the transformation state.
19 Substituting IF/ELSE Chains | Complex IF/ELSE expressions can be substituted by maps in
with Map case of value conversions.
20 Improve Opposite Reference If missing backward references in metamodels are calculated
Computations by iterator-based operations, substitute this calculation with
reflmmediateComposite operations.
21 Shorten Navigation By Context Shorten OCL expressions by optimizing the navigation length
Switch by setting the appropriate context.
22 Replace Select/First with Any Substitute select/first operation chains by any operation for
finding a specific element fulfilling a certain condition.
23 Replace alllnstances with Navi- Sometimes calculating all instances of a specific type may be
gation replaced by navigating to a specific set of elements.
24 Introduce Short-Circuits AND and OR expressions can be optimized by surrounding

them with IF /ELSE expressions.

*represent subcategories which comprise

several refactorings themselves

Table 1 — Refactoring Catalogue for M2M Transformations

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

8 - Wimmer et al.

Refactoring Steps:
1. Modify In/Out pattern element name.
2. Locate references to the old name and adapt them to the new one.

(2) Rename In/Out Model
Problem: In/Out model name is not descriptive enough.
Solution: Substitute In/Out model name for a more meaningful one.
Preconditions: There is not an In/Out model with the same name.
Parameters:

1. The model to be renamed.

2. The new name for the model.

Refactoring Steps:
1. Modify In/Out model element name.
2. Locate references to the old In/Out model name and adapt them to the new
one.

(3) Rename Rule/Helper
Problem: Rule/Helper name is not descriptive enough.
Solution: Substitute rule/helper name for a more meaningful one.
Preconditions: There is not a rule/helper with the same name.
Parameters:

1. The rule/helper to be renamed.

2. The new name for the rule/helper.

Refactoring Steps:
1. Modify rule/helper name.
2. Locate references to the old name and adapt them to the new one (note that for
matched rules, this step is not needed since they are not explicitly called from
other rules).

4.2 Restructuring Refactorings

Besides simple renaming, refactorings are needed to improve the structure of transfor-
mations. In particular, this requires to restructure rules and helpers. The refactorings
of this category deal with the problem that transformation rules, especially matched
rules, tend to grow big, i.e., one rule does most of the work by generating a multitude
of elements using a large output pattern block consisting of a huge amount of output
pattern elements.

In order to ensure the readability and maintainability of transformation rules,
restructuring refactorings aimed at transforming large transformation rules into sev-
eral smaller ones by either splitting a matched rule into several matched rules or by
delegating functionality to additional lazy rules are needed. In Table 1, we provide
refactorings aimed at these restructuring needs. In particular, refactorings 4 and 5
are in charge of, respectively, extract and inline rules and helpers. Then, refactorings
6 and 7 allow merging or splitting rules or helpers whereas refactorings 8 and 9 do
the same for bindings. Finally, refactoring number 10 allows changing the type of a
rule.

For exemplifying these restructuring refactorings, we present in detail three refac-
torings of the catalogue which are applicable to the running example. First, we extract
a global helper which is used for eliminating the duplicated code in the distinct-foreach

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

1
2
3
4

5
6
7
8
9

11

Refactoring M2M Transformations - 9

output pattern elements of List. 1. Subsequently, we eliminate the distinct-foreach
output pattern elements on the one hand by extracting lazy rules and on the other
hand by extracting matched rules. Then, after the examples, we also provide a short
description for each of the remaining refactorings of this category.

(4) Extract Global Helper from OCL Expression
Problem: Some OCL expressions are too complex (e.g. sequential application of
several iterator-based operations on one collection) or duplicated expressions exist
within a transformation. The former results in less readable code and the latter in
less maintainable code.
Solution: Extract a global helper for computing the requested value(s).
Preconditions: None.
Parameters:

1. The new name for new helper.

2. The OCL expression.

3. Pointers to the places where the OCL expression is meant to be substituted by

the new helper.

Refactoring Steps:

1. Determine the context and the parameters for the helper. The context is defined
as the type of the element on which the helper should be called. The parameters
for the helper are additional values which are used within the computation but
not accessible via the context object.

2. Determine the return type of the helper. This is the type of the last executed
statement of the computation.

3. Create the helper with a meaningful unique name.

4. Move OCL expression to the helper body.

5. If a context is required, introduce the keyword self as the first statement of the
helper body.

6. Add a call to the helper for each place where the extracted code was residing.

Ezample: Consider the OCL expressions used for computing the attributes for the
distinct-foreach output pattern element in List. 1. An excerpt of the refactored trans-
formation is shown in the following. In particular, the refactoring is applied twice:
first for extracting a helper for computing all attributes of a class and second from
this helper a second helper is extracted for computing all properties (intermediate
result for computing all attributes).

helper context UML!Class def : allProperties() : Sequence (UML!Properties) =
self.allClasses().including(self).flatten()—>collect(e|e.ownedProperty).flatten();

helper context UML!Class def : allAttributes() : Sequence (UML!Properties) =
self.allProperties() —> select (e|not e.primitiveType.oclIsUndefined());

rule Class {
from
s: UML!Class
to
t: ERIEntityType (...),
attributes : distinct ER!Attribute foreach(a in s.allAttributes()) (

Listing 2 — Extract global helper example.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

10 - Wimmer et al.

(4) Extract Lazy Rule from Distinct-Foreach Output Pattern Element
Problem: A matched rule uses the deprecated keyword distinct-foreach to produce a
collection of output elements from a collection of input elements.
Solution: Extract a lazy rule from the output pattern element and call it in the
matched rule by iterating the collection of input elements.
Preconditions:
1. The output pattern element is only used in one binding of the matched rule.
2. The bindings of the output pattern element are only using the iterator variable,
i.e., the output pattern element must be self-contained.

Parameters:
1. The name for the new lazy rule.
2. The distinct-foreach expression.

Refactoring Steps:

1. Determine the types of the input/output pattern elements of the to-be-created
lazy rule. The input pattern element type is defined as the element type of
the iterator. The output pattern element type is defined as the type of the
distinct-foreach output pattern element.

2. Create the lazy rule with a proper name.

. Move bindings of the distinct-foreach output pattern element to the lazy rule.

4. Call the lazy rule in the matched rule by iterating over the collection of the input
elements by using the collect operator for collecting the produced elements of
the lazy rule calls.

w

Ezample: Consider the distinct-foreach output pattern element in List. 1 for produc-
ing attributes. This definition can be refactored as follows.

rule Class {
from
s: UML!Class
to
t: ERIEntityType (
name < — s.name,
features <— s.allAttributes()—>collect (e|thisModule.Attributes(e),

-
}

lazy rule Attributes {
from
s: UML!Property
to
t: ER!Attribute (
name <— s.name,
type <— s.primitiveType

Listing 3 — Extract LazyRule example.

(4) Extract Matched Rule from Distinct-Foreach Output Pattern Element
Problem: Analogous to previous problem description.

Solution: Extract a matched rule from a distinct-foreach output pattern element
and adapt the bindings using the distinct-foreach output pattern element by just
navigating to the input elements used for generating the output elements.
Preconditions:

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 11

1. The bindings of the distinct-foreach output pattern element are only using the
iterator variable, i.e., it must be self contained.
2. No existing matched rule must match for the same set of input elements.

Parameters:
1. The name for the new rule.
2. The distinct-foreach expression.
3. An extra input pattern element for the rule (in case a Cartesian product of
input elements is needed).

Refactoring Steps:

1. Determine the types of the input/output pattern elements of the to-be-created
matched rule. The first element of the input pattern corresponds to the element
type of the iterator used in the distinct-foreach output pattern element and the
output pattern element type equals the original output pattern element type.
Additional input pattern elements may be necessary in order to ensure that the
matched rule is executed as many times as the distinct-foreach output pattern
element (cf. the following example).

2. Create the matched rule by assigning a proper name for it.

. Move bindings of the distinct-foreach pattern element to the matched rule.

4. Substitute the bindings that are using the distinct-foreach output pattern ele-
ment with the navigation to the input elements referred to in the distinct-foreach
iterator. The collection of the produced output elements is done automatically
by the implicit trace model of ATL.

w

Ezxample: Consider again the distinct-foreach output pattern element in List. 1. This
definition is refactored to the following transformation excerpt. Please note that
the input pattern element of the rule Attributes has to match as many times and
for exactly the same elements as previously the distinct-foreach pattern element did.
Therefore, it is not sufficient to match only for properties, but in addition the cartesian
product of properties and classes has to be generated from which the appropriate
combinations have to be selected by an additional filter which checks if a class directly
or indirectly owns a certain property.

1 rule Class {

2 from

3 s: UML!Class
4 to

5 t: ER!EntityType (
6 name < — s.name,

7 features <— s.allAttributes() —> collect(p | Tuple {s = p, c = s},
8

9

0 }

11
12 rule Attributes {
13 from

14 s : UML!Property,

15 c : UML!Class (

16 c.allAttributes()—>includes(s)
17)

18 to

19 t: ER!Attribute (

20 name <— s.name,

21 type <— s.primitiveType

2)

23 }

Listing 4 — Extract matched rule example.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

12 - Wimmer et al.

(5) Inline Rule
Problem: Proliferation of small rules with the responsibility of creating very few or
only one element makes the transformation more difficult to understand.
Solution: Inline the small rule into another rule.
Preconditions:
1. There exist a rule that matches a source element from where the source element
of the rule to inline can be reached.
2. The small rule is a matched rule or it does not require special control over its
execution.

Parameters:
1. The rule to be inlined.
2. The target rule.
3. Pointers to rule bindings using the target elements created by the rule to be
inlined.

Refactoring Steps:

1. Inline the target pattern elements of the to-inline rule into the target rule.

2. Substitute source element references in the to-inline rule bindings for a naviga-
tion expression from the target rule source element.

3. If the target elements created by the to-inline rule are used in the target rule,
substitute automatic resolution and resolveTemp expression for refereces to tar-
get pattern element variables.

4. If the target elements created by the to-inline rule are used in other rules,
substitute automatic resolution or resolveTemp expressions for a resolveTemp
expression with the desired target element and corresponding source element as
parameters.

(5) Inline Helper
Problem: The code of a helper is as explicit as its name.
Solution: Inline the code of the helper into the calling helper or rule.
Preconditions: There are no multiple calls to the helpers (if there are multiple calls
keeping it separated will enhance reusability and maintainability).
Parameters:
1. The helper to be inlined.
2. Pointers to the rules and/or helpers using the to-inline helper.

Refactoring Steps:
1. Substitute the calls to the helper for its code.
2. Remove the helper.

(6) Merge Rule
Problem: There exists in the transformation two similar rules with only small differ-
ences in Filter and Bindings.
Solution: Merge the two rules in one rule.
Preconditions:
1. The two rules match and create the same kind of elements.
2. The matches of the two rules are disjoint (i.e., the filter conditions are disjoint).

Parameters:
1. The rule to stay.
2. The rule to remove.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 13

3. Flag telling if the filters need to be combined or removed.
4. Bindings of the rule to stay that should be adapted.

Refactoring Steps:

1. Choose a rule to stay and a rule to remove.

2. If the complete set of instances of the input pattern type are matched remove
the filter from the rule to stay. If not, connect the two filters by the logical
operator OR.

3. Adapt the bindings of the rule to stay.

(7) Split Rule
Problem: A rule creates two different configurations of output pattern elements by
refining the match into two subsets when setting the features of target model elements.
Solution: Split the rule in two such that each configuration is created in its own rule.
Preconditions:

1. The rule creates different configurations of output pattern elements.

2. The rule uses IF/ELSE expressions in the bindings to create these two subsets.

Parameters:
1. The name for the new rule.
2. The original rule.

Refactoring Steps:
1. Create a new empty rule.
2. Add the if condition of the bindings to the filter of the original rule and its
negative to the new rule.
3. Copy the source pattern and the else part of the bindings to the new rule.
4. Eliminate the else part of the bindings from the original rule.

(8) Merge Binding
Problem: A target feature is being set by two bindings which is implicitly interpreted
in ATL as union. The feature setting will be less complex and easier to understand if
it is set in just one binding.
Solution: Merge the two bindings setting the same target feature.
Preconditions: The target feature of the binding is multi-valued.
Parameters:
1. The binding to stay.
2. The binding to remove.

Refactoring Steps:
1. Select one of the two bindings to stay.
2. Add the other binding by using the union operation at the end of the binding
to stay.
3. Delete the discarded binding.

(9) Split Binding
Problem: A target feature is being set by a binding which code is too complex and
difficult to read and understand.
Solution: Split the binding in two bindings setting the same target feature.
Preconditions:

1. The target feature of the binding is multi-valued.

2. The binding initialization expression is decomposable.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

14 . Wimmer et al.

Parameters:
1. The binding to split.
2. The subexpression of the binding to be transferred to a second binding.

Refactoring Steps:
1. Create a new binding setting the same target feature.
2. Split the original binding initialization expression.
3. Pass one of the subexpressions to the second binding.

(10) Convert Rule Type
Problem: A lazy rule is defined instead of a matched rule Using the latter is the
recommended programming style in ATL and should be used when no explicit rule
execution control is needed, e.g., for executing the rule for one input element several
times.
Solution: Change the type of the rule from Lazy to Matched.
Preconditions:
1. The set of source elements to translate does not contain duplicates or source
duplicates do not have to be translated to target duplicates.
2. All source elements matching the source pattern and passing the filter are to be
transformed (even when there is no reference from other rules).

Parameters:
1. The lazy rule.
2. Pointers to the places using the lazy rule.

Refactoring Steps:
1. Change the type of the rule from Lazy to Matched.
2. Locate the bindings using references to the lazy rule.
3. Substitute the expression used to call the lazy rule to only the source element
or the list of the source elements to be assigned in the given binding.

4.3 Inheritance-Related Refactorings

As in object-oriented refactoring catalogues, the concept of inheritance, in our domain
inheritance between rules, creates its own category of refactorings. Thus, in Table 1,
we present some refactorings that work over this concept.

The refactoring number 11 is in charge of extracting superrules (note that, in
addition to the common functionality, the input element patterns and output element
patterns of the involved rules need common superclasses to be able to introduce a
common superrule) whereas refactoring 14 does the opposite job. Common bindings
in subrules initializing features of the superclases can be extracted to a common
superrule. The same happens with filters. Refactorings 12 and 13 perform this pulling
up whereas refactorings 14 and 15 allow the opposite, push bindings and filters down
from superrules to subrules.

For the implementation of these refactorings knowledge about the input and out-
put metamodels is needed. For example, deciding if a filter can be extracted to a
superrule or finding where to place an extracted superrule in an already existing
hierarchy needs to exploit this knowledge.

In the following, we present in detail one of these inheritance related refactorings.
Afterwards, we provide a description for the rest of the refactorings of this category.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 15

(11) Extract Superrule out of Matched Rules
Problem: Two or more rules contain similar functionality and share common super-
types for their input/output pattern elements.
Solution: Extract a superrule to collect commonalities such as similar bindings and
filters.
Preconditions: The input/output patterns elements must be of equal type or must
have common supertypes.
Parameters:

1. The name for the new superrule.

2. The rule to inherit from (optional).

3. Pointers to all the rules to become subrules.

4. Pointers to the bindings and filters to be moved to the superrule.

5. Pointers to the bindings and filters to be removed from the subrules.

Refactoring Steps:

1. Find most specific common superclasses in the input/output metamodel for the
input/output pattern elements.

2. In case the rules already have a superrule, find the appropriate place of the
to-be-created superrule in the rule inheritance hierarchy.

3. Add an abstract rule that acts as superrule.

4. Add inheritance relationships between super/subrules.

5. Pull up common bindings and filters of the subrules.

Ezxample: Considering our running example, by extracting for each distinct-foreach
output pattern element a matched rule, the resulting matched rules have common
bindings. To eliminate these duplicated code fragments, a new abstract rule Property
is introduced acting as superrule for the extracted matched rules. By further applying
the Pull Up Bindings refactoring, common bindings of the matched rules are now
encapsulated into the superrule.

abstract rule Property{
from
s : UML!Property,
¢ : UML!Class
to
t: ER!Feature (
name < — s.name,

)
}

rule Attribute extends Property{...}
rule WeakReference extends Property{...}

rule StrongReference extends Property{...}

Listing 5 — Extract SuperRule example.

(12) Pull Up Binding
Problem: Two rules define exactly the same binding duplicating code and hampering
maintainability. Typically, this refactoring comes after the Eztract Superrule refac-
toring.
Solution: Pull up the binding to a superrule.
Preconditions:

1. There are two rules holding the same binding definition.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

16 - Wimmer et al.

2. There exists a superrule in the inheritance hierarchy for the rules which is able
to define this binding.

Parameters:
1. The binding to pull up.
2. The rules using the binding.
3. The rule where to put the binding.

Refactoring Steps:
1. Find a superrule in the inheritance hierarchy that can hold the binding.
2. Copy the binding to the superrule.
3. Delete the binding from the subrules.

(13) Pull Up Filter
Problem: Two rules define exactly the same filter duplicating code and hampering
maintainability. Typically, this refactoring comes after the Eztract Superrule refac-
toring.
Solution: Pull up the filter to a superrule.
Preconditions:

1. There are two rules holding the same filter definition.

2. There exist a superrule in the inheritance hierarchy for the rules holding the

filter.

Parameters:
1. The filter to pull up.
2. The rules using the filter.
3. The rule where to put the filter.

Refactoring Steps:
1. Find a superrule in the inheritance hierarchy that can hold the filter.
2. Copy the filter to the superrule.
3. Delete the filter from the subrules.

(14) Eliminate Superrule
Problem: A superrule and its subrules are too similar that the inheritance hierarchy
is adding complexity to the transformation without adding any value.
Solution: Eliminate superrule.
Preconditions: None.
Parameters:
1. The superrule.
2. The subrules.
3. Pointers to places using the superrule (needed only for lazy rules).

Refactoring Steps:
1. Use Push Down Filter and Push Down Binding to move all the generalized
behaviour to the subrules.
2. Adjust references pointing to the superrule to point to the subrule (only needed
for lazy rules).
3. Eliminate superrule.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 17

(15) Push Down Binding
Problem: A superrule’s binding is only required in specific subrules.
Solution: Push down the binding to the rule using it.
Preconditions:
1. There exist subrules in the inheritance hierarchy that require the binding.
2. The binding is only required by the subrules that are going to receive the bind-
ing.

Parameters:
1. The superrule.
2. The subrules.
3. The binding to push down.

Refactoring Steps:
1. Copy binding to the subrules.
2. Eliminate binding from the superrule.

(16) Push Down Filter
Problem: A superrule’s filter is only relevant for specific subrules.
Solution: Push down the filter to the subrules where it is relevant.
Preconditions:
1. There exist subrules in the inheritance hierarchy that require the filter.
2. The filter is required only by the subrules that are going to receive it.

Parameters:
1. The superrule.
2. The subrules.
3. The filter to push down.

Refactoring Steps:
1. Copy the filter to the subrules.
2. Eliminate the filter from the superrule.

4.4 OCL Refactorings

OCL is heavily used in model transformations for queries and value computations.
For providing refactorings for OCL expressions within transformations, we reuse ex-
isting OCL design rules such as those introduced in [CT07] to improve the quality of
OCL expressions in terms of readability and maintainability (in Table 1, refactorings
20 to 24 address these improvements). Furthermore, we introduce new refactorings
that are especially tailored to transformations such as querying the target model or
optimizing helpers which are based on OCL expressions. The refactoring number 17
allows the optimization of helpers whereas refactoring 18 is aimed to remove unsafe
target model navigations. Refactoring 19 helps to simplify transformations by remov-
ing complex IF /ELSE chains for data conversions—a typical functionality needed in
transformations.

To illustrate the usage of OCL refactorings, we provide an example of a frequently
applicable refactoring, the number 17, namely to convert an operation helper into
an attribute helper. This refactoring aims at improving the execution time due to
usual caching techniques of transformation engines for attribute helpers when they are
called for the same context element and /or using the same parameters. Subsequently,

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

[CIN

18 - Wimmer et al.

as it we did for the other categories, each refactoring of this category is described.

(17) Convert Helper Operation into Helper Attribute
Problem: A computation intensive helper operation needs to be called for the same
element(s) several times.
Solution: Convert the helper operation into a helper attribute to take advantage of
caching support.
Preconditions: The helper does not have any parameters.
Parameters: The helper to be converted.
Refactoring Steps:
1. Convert the operation helper into an attribute helper.
2. Replace operation calls with attribute calls.

Ezample: Considering our running example, we can apply this refactoring to the
helper operation for computing all superClasses for a given class. In the concrete
syntax only the round brackets have to be eliminated to convert the operation to an
attribute. Please note that the computation of all superClasses is recursive, so also
the call of the allClasses operation within the body has to be changed to an attribute
call. Although this refactoring seems to be only a minimal modification, it can lead
to huge performance boost which is evaluated in the next section.

helper context UML!Class def: allClasses : Sequence(UML!Class) =
self.superClasses— >iterate(e; acc : Sequence(UML!Class) = Sequence {} |
acc—>union(Set{e})—>union(e.allClasses));

Listing 6 — Convert Operation Helper into Attribute Helper Example.

(18) Protect Unsafe Target Navigation
Problem: Target model navigation, which is strongly discouraged, is used to access
target elements created in other rules. This can lead to unexpected results as ATL
does not impose any order in the execution of the rules.
Solution: Substitute the unsafe target navigation for the provided resolve Temp oper-
ation.
Preconditions: None.
Parameters:

1. The rule where the required target element is created.

2. The name of the required output pattern element.

3. The unsafe target navigation expression.

Refactoring Steps:
1. Find the name of the rule where the required target element is created.
2. Find the name of the output pattern element creating the target element.
3. Substitute the unsafe target navigation for the resolveTemp operation passing
the source object of the rule and the output pattern element variable name as
parameters.

(19) Substituting IF /ELSE Chains with Map

Problem: Complex nested IF/ELSE chains are used to convert values from the source
model into values needed for the target model, e.g., convert Java to SQL data types.
Solution: Substitute IF/ELSE chains with a map representing the relation between
the different values and a helper that access it.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 19

Preconditions: Source values must not have several correspondences to target values,
because the source values represent the keys of the map that have to be, of course,
unique.
Parameters:

1. The name for the new map.

2. The name for the new helper.

3. The IF/ELSE chain.

Refactoring Steps:
1. Identify through IF/ELSE conditions the mappings between the values.
2. Create a map representing the mapping of values.
3. Create a helper that takes a source value and returns the corresponding target
value from the map.
4. Substitute the call to the IF/ELSE chains with a call to the new helper.

(20) Improve Opposite Reference Computations
Problem: Opposite containment references are calculated in a complex and inefficient
way using alllnstances operations.
Solution: Substitute the opposite reference calculation for the reflmmediate Composite
operation.
Preconditions: The reference to calculate is a containment reference.
Parameters: The expression calculating the opposite reference.
Refactoring Steps:
1. Substitute the call to the references calculation for a call to the reflmmediate-
Composite operation.
2. Delete the code in charge of calculating opposite references if it is not used for
other purposes.

(21) Shorten Navigation By Context Switch*
Problem: Use of very long OCL expression impacting the readability and understand-
ability of the transformation.
Solution: Change the context of the OCL expression in order to shorten the navigation
length.
Preconditions:

1. The expression is defined using a single instance of the context type.

2. The context to switch can be navigated from the original one and/or belongs

to the same taxonomy.

Parameters:
1. The OCL expression to be shortened.
2. The new context type.

Refactoring Steps: Redefine the expression over the new context type.

(22) Replace Select/First with Any

Problem: An OCL expression containing Select/First operation chains is difficult to
read and unnecessarily expensively calculated.

Solution: Substitute the operation chain for any operation for finding a specific ele-
ment fulfilling a certain condition.

4This refactoring is quite complex. Thus, only a summarized version of its description is provided.
See [CT07] for a complete description.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

20 - Wimmer et al.

Preconditions: None.
Parameters: The OCL expression.
Refactoring Steps:
1. Locate corresponding Select /First operation chain
2. Substitute the chain by the OCL Any Operation using the condition of the
Select operation.

(23) Replace alllnstances with Navigation
Problem: alllnstances operation is used when the same result can be achieved by
using cheaper operations. As the possibilities of use of the alllnstances operation are
huge, we focus only on expression that uses alllnstances followed by a condition that
refines the result set.
Solution: Substitute the alllnstances operation for a navigation expression reaching
the same set of resulting elements.
Preconditions: The type over which alllnstances is applied coincides with the context
type of the expression. They may not be applied if the expression already contains
any explicit or implicit reference to the self variable.
Parameters:

1. The OCL expression.

2. The navigation expression used to substitute the alllnstances operation.

Refactoring Steps: Substitute the alllnstances operation for a normal navigation ex-
pression that applies the condition over self.

(24) Introduce Short-Circuits
Problem: A complex boolean expression is used. As many OCL implementations
do not provide short-circuit evaluation, all the conditions are evaluated, which could
seriously impact performance when using large models.
Solution: Surround the OCL AND and OR expression by IF/ELSE.
Preconditions: The OCL implementation does not implement short-circuit evaluation.
Parameters: The OCL expression.
Refactoring Steps:
1. Group OR or AND expression.
2. If the expression is condi() or cond?2() substitute it for if cond1() then cond2()
else false endif. Else, if the boolean expression is AND, substitute if for if
cond1() then true else cond2() endif.

4.5 Reuse Potential of the presented Refactorings

The proposed refactoring catalogue has been developed by analyzing a set of exoge-
nous, out-place model transformations (for the terminology see [MGO6]), although
most of the refactorings are also applicable to transformations written in the ATL re-
fining mode [TMJC11], that performs endogenous, in-place transformations. To show
the reuse potential of the refactorings for other model transformation languages, we
have selected three prominent transformation languages and evaluated which refac-
torings of the afore presented catalogue are applicable for them.

In this context, we examined two languages of the QVT language family, namely
the imperative transformation language QVT Operational (QVT-0) and the declara-
tive transformation language QVT Relational (QVT-R) [OMG11]. By this, we cover
a wide spectrum of current transformation languages ranging from pure declarative to

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 21

| aQvt-R QVT-0 ETL
Renaming
Rename In/Out Pattern Element v v v
Rename In/Out Model v v v
Rename Rule/Helper v v v
Restructuring
Extract Helper/Rule v (v) ()
Inline Helper/Rule v (v) ()
Merge Rule v v v
Split Rule v v v
Merge Binding v v v
Split Binding v v v
Convert Rule Type v x v
Inhertitance-related
Extract Superrule x (v) v
Pull Up Binding x v v
Pull Up Filter x v v
Eliminate Superrule x (v) v
Push Down Binding x 4 v
Push Down Filter x v v
OCL related
Convert Helper Type x x v
Protect Unsafe Target Navigation 4 v v
Substituting IF/ELSE Chains with Map x v v
Improve Opposite Reference Computations x v v
Shorten Navigation By Context Switch 4 v v
Replace select/first with any v v v
Replace alllnstances with Navigation 4 v v
Introduce Short-Circuits v v v

Legend

4 fully applicable
) partially applicable
x not applicable

Figure 2 — Reuse Potential of the Refactoring Catalogue for QVT-R, QVT-0, and ETL.

pure imperative languages. Furthermore, we also included the hybrid Epsilon Trans-
formation Language (ETL) [KPPO08]| to evaluate if the refactorings developed for ATL
are applicable for other hybrid languages as well. Examining the QVT languages al-
lows to investigate if the refactorings are applicable for languages following either the
imperative paradigm or the declarative paradigm.

Figure 2 summarizes the results by stating for each refactoring category if it is
fully applicable, i.e., all refactorings are reusable, partially applicable, i.e., some refac-
torings are reusable, or not applicable at all.

The first section of Figure 2 regards the renaming refactorings which are all appli-
cable for QVT-R, QVT-0O, and ETL. The reason is that all these languages, as ATL,
use variable names for the in/out models, rules, helpers, and in/out pattern elements.

The second section is about restructuring refactorings for which the results vary for
each language. For ETL, nearly all refactorings are reusable, except the refactorings

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

22 . Wimmer et al.

which are tailored to the foreach-distinct output pattern elements of ATL which has
no corresponding concept in ETL. This concept is only shared by QVT-R where an
output pattern element may represent a set of elements. Thus, all refactorings of this
section can be applied to QVT-R. For QVT-O the only exception is the convert rule
type refactoring given that QVT-O only supports lazy rules due to its imperative
nature. Instead, QVT-R allows to define top relations and non-top relations which
corresponds to ATL matched and lazy rules, respectively. Thus, the convert rule type
refactoring is applicable for QVT-R, and also for ETL where also a kind of matched
rules (which are automatically executed by the transformation engine) and lazy rules
are supported. Interestingly, also the merge/split binding refactorings can be reused,
because QVT-R assumes implicitly—such as ATL—to build the union of assigned
feature values calculated by different bindings. In ETL as well as in QVT-O there is
not only the possibility to override already existing bindings for a feature, but also to
extend them. For example, ETL allows to use the addALL operation which inserts
elements into an collection of elements and QVT-O provides a specific assignment
operator which is extending the collection with additional elements.

The inheritance-related refactorings are reusable for ETL and QVT-O, because
these languages also provide inheritance between rules similar as in ATL. However,
QVT-O does not supported matched rules, thus extracting/eliminating super matched
rules is not needed for QVT-O. QVT-R has no support for inheritance between rela-
tions, thus this category of refactorings is not reusable at all for QVT-R.

OCL related refactorings are reusable in particular for ETL and QVT-O, because
these languages provide similar OCL support as ATL does. More specifically, the
last four OCL-related refactorings are only based on standard OCL, thus they are
applicable for all transformation languages, because all of them are based on the
core of OCL. However, the first four OCL-related refactorings are based on OCL
extensions provided by ATL. As can be seen by the evaluation, ETL and QVT-O
provide similar extensions to OCL. For example, in QVT-O there is the container
operation introduced for computing the inverse reference and in ETL there is the
possibility to reuse operations defined by the underlying EMF framework, in this
context the eContainer operation for computing the inverse reference. Furthermore,
also the Map data type of ATL has corresponding concepts in ETL (there is also a
Map data type) and in QVT-O (there is the data type DictionaryType). Thus if/else
chains may be also substituted with instantiating these data types. However, for
QVT-R, there are no such OCL extensions foreseen, thus this kind of refactorings is
mostly not reusable for QVT-R. Furthermore, in QVT-O and ETL there are several
operations provided for making the navigation to the target model save by having
several different resolve operations which can be used for this purpose. In QVT-R,
there is no such operation, but because relations are executed with the check-before-
enforce semantics, i.e., an element is only created when it is not already existing in
the target model, the relations may be triggered several times which allows to access
already created elements without recreating them. Finally, ETL is the only language
of the three examined that also supports cached queries, thus only for this language
the convert helper refactoring is applicable.

5 Impact of Refactorings on Quality Attributes

To provide more insights on the applicability of the proposed refactorings as well as
their impact on quality attributes of model transformations, we discuss refactoring

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

1
2
3
4

5
6
7
8
9
10
11

12
13

Refactoring M2M Transformations - 23

possibilities of the illustrative example from Section 2. More specifically, we describe
two different chains of refactorings, present essential metrics of the transformations
before and after each refactoring, and finally, we elaborate on their implications on
the transformation quality attributes.

5.1 Refactoring Chains

Two different chains of refactorings (cf. Fig. 3) are applied to the initial version (T1)
of the transformation (cf. List. 1) resulting, after several intermediate steps, in a ver-
sion which is solely based on matched rules following the pure declarative approach
of ATL (called T4 in the following) and in a version consisting only of one matched
rule which delegates to lazy matched rules mixing the declarative and imperative pro-
gramming styles (called T6 in the following). The rationale for using two different
refactoring chains is to illustrate that there are several ways to improve a model trans-
formation, depending on the designer’s goal. The refactoring chains result in different
solutions whereby each has its own properties. Please note that the six versions of
the transformation depicted in Fig. 3 are later used in Section 6 for evaluating the

impact of the refactorings on the execution performance of transformations.
1. Extract Superrule 2x

1. Extract Matched Rule from 2. Pull-up bﬁnding 2x
Distinct-Foreach Output 3. Pull-up filter 2x
1. Convert Helper Type

Pattern Element 3x 4. Merge Bindings @
2. Extract Attribute Helper

a rom OCL Exp
@ @
1. Extract Lazy Rule from 1. Extract Superrule 2x

Distinct-Foreach Output 2. Pull-up binding 2x
Pattern Element 3x 3. Pull-up filter 2x
4. Merge Bindings

Figure 3 — Refactoring chains producing six different transformation versions.

The transformation T4 is shown in List. 7. First, the existing helper allClasses is
converted from an operation helper to an attribute helper, and subsequently, the addi-
tional helper getAl1lProperties is produced by applying the Extract Helper refactor-
ing for eliminating the duplicated code for querying all direct and indirect possessed
properties of a class. Second, three matched rules (Attribute, WeakReference,
and StrongReference) have been created by extracting the distinct-foreach con-
structs from the rule EntityType. Third, a superrule is extracted from the rules
WeakReference and StrongReference, and subsequently, from the combination of
this resulting rule with the rule Attribute, the rule Feature is extracted. Fourth,
the redundant bindings and filters of the subrules are pulled up to the new superrules.
Finally, the feature assignments in the rule EntityType are merged by exploiting poly-
morphism and retrieving properties from the trace model in one step.
module UML2ER;
create OUT : ER from IN : UML;

helper context UML!Class def: allClasses : Sequence(UML!Class) =
self.superClasses— >iterate(e; acc : Sequence(UML!Class) = Sequence {} |
acc—>union(Set{e})—>union(e.allClasses));

helper context UML!Class def : getAllProperties : Sequence (UML!Properties) =
self.allClasses.including(self).flatten()—>collect(e | e.ownedProperty).flatten();

rule EntityType {

from s: UML!Class
to t: ERIEntityType (

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

24 . Wimmer et al.

name < — s.name,
features < — s.getAllProperties —> collect(e | Tuple {s = e, c = s}))}

abstract rule Feature{
from s: UML!Property,
c : UML!Class (c.getAllProperties— >includes(s))
to t: ERIFeature (
name < — s.name)}

rule Attribute extends Feature{
from s: UML!Property,
c : UML!Class (not s.primitiveType.oclIsUndefined())
to t: ER!Attribute (
type <— s.primitiveType)}

abstract rule Reference extends Feature{
from s: UML!Property,
c : UML!Class (not s.complexType.oclIsUndefined())
to t: ERIReference (
type <— s.complexType)}

rule WeakReference extends Reference{
from s: UML!Property,
c : UML!Class (not s.isContainment)
to t: ERlWeakReference }

rule StrongReference extends Reference{
from s: UML!Property,
c : UML!Class (s.isContainment)
to t: ERIStrongReference }

Listing 7 — UML to ER Transformation (T4).

The transformation T6 is shown in Listing 7. The applied refactoring chain is
similar to the previous refactoring chain, except that lazy rules are extracted for
distinct-foreach constructs instead of matched rules. Thus, also the resulting trans-
formation code is similar to the previous transformation version, however, the input
pattern of the rules are simpler compared to the matched rule version. Moreover, a
major difference is in the execution of both refactored transformations. While in T4
all rules are executed independently, in T6 only the first rule is automatically exe-
cuted which delegates to the lazy rules when appropriate. In the following, we discuss
the initial version T1 as well as both refactored versions (T4 and T6) based on ded-
icated model transformation metrics. Please note that the impact on the execution
performance of the refactorings is discussed in Section 6.

-- header and helpers same as in T4

rule EntityType {
from s: UML!Class
to t: ERIEntityType (
name < — s.name,
features <— s.getAllProperties—>collect (e | thisModule.Feature(e)))}

lazy abstract rule Feature{
from s: UML!Property
to t: ERIFeature (
name < — s.name) }

lazy rule Attribute extends Feature{
from s: UML!Property (not s.primitiveType.oclIsUndefined())
to t: ERlAttribute (
type <— s.primitiveType)}
lazy rule Reference extends Feature {
from s: UML!Property (not s.complexType.oclIsUndefined())
to t: ERIReference (
type <— s.complexType)}

lazy rule WeakReference extends Reference{

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 25

from s: UML!Property (not s.isContainment)
to t: ERlWeakReference }

lazy rule StrongReference extends Reference{
from s: UML!Property (s.isContainment)
to t: ERIStrongReference }

Listing 8 — UML to ER Transformation (T6).

5.2 Metric-based Evaluation

An established way of evaluating the impact of refactorings on the quality attributes
of a software artefact is to compute metrics on its initial version and on the refactored
version. With this purpose, we have surveyed recent work on model transformation
metrics [vALvdB09, KGBH10, vAvdB11].

Nevertheless, metrics alone do not provide a clear answer to the question of
whether the refactorings improve the quality attributes of the software artefact. For
that, it is necessary to find an alignment of metrics to quality attributes, i.e., whether
a lower/higher value of a metric improves/worsens a given quality attribute. This
is still an open issue in the model transformation field due to the lack of large em-
pirical studies [KGBH10]. However, some initial empirical studies have been already
conducted [vAvdB11] that will help us to justify the quality improvements of our
refactorings (apart from relying on our own experience in the field). Besides these
works from the model transformation field, we also base our argumentation on exist-
ing work on metrics for OCL [RGP04, CT06], object-oriented programming languages
[CK94, BBM96], and rule-based systems [DV92].

5.2.1 Metric Setup

We use a number of metrics to evaluate the quality of transformations. First we
present traditional code metrics for measuring the transformation size such as lines
of code (LoC) for the textual representation of transformations. ATL transformation
code can be automatically transformed to a so-called transformation model [BBG'06]
which represents the abstract syntax of the transformation. The transformation model
allows us to easily compute the total number of model elements, number of rules, ab-
stract rules (ARules), concrete rules (CRules), bindings, helpers and so on by reusing
a transformation from van Amstel et al. [vAvdB11] for producing a metric model.

Second, we use metrics tailored to detect bad smells such as code duplicates (CD)
by stating the total number of CDs, god rules (GD) by stating the total number
of them, and overlong OCL expressions by stating the maximum OCL expressions
length (MEL) in a transformation. Our experience is that a MEL higher than 10
leads to hardly understandable OCL expressions, especially when several navigations
and iterator-based operations are used in sequence.

Third, we measure the dependencies of rules based on Fan-in a.k.a. afferent cou-
pling and Fan-out a.k.a efferent coupling metrics. Fan-in values are calculated by
counting the incoming dependencies. More precisely, in case of lazy rules, we measure
how often a rule is called from others and, in case of matched rules, we measure how
often the trace model entries produced by a rule are accessed by other rules. To
reflect inheritance between rules, we evaluate for how many other rules the respective
rule acts as superrule. Fan-out values are calculated by counting the outgoing depen-
dencies of a rule. Outgoing dependencies comprise references to superrules, calls to
lazy rules, access to trace information created by matched rules, and finally calls to

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

26 - Wimmer et al.

helpers. In addition to intra-transformation dependencies, we also include measuring
the dependencies of a rule to the metamodel, i.e., how many metamodel elements
are used by a rule. By considering this kind of information, we aim to evaluate the
maintainability of a transformation in case of metamodel evolution.

Fourth, we measure the complexity of rules by computing Val-in and Val-out
metrics. In the context of rule-based model transformations, val-in value corresponds
to the number of input pattern elements of a rule, and analogously, val-out value
equals the number of output pattern elements. Please note that distinct-foreach
output pattern elements produce collections of objects, in contrast to simple output
pattern elements which produce single objects. Because retrieving an output element
generated for a given input element from such collections requires for additional code,
distinct-foreach output pattern elements are counted with a factor of 3 instead of 1 as
is used for simple output pattern elements as an approximation for the extra effort.

Finally, we state the abstractness of a transformation by comparing the number
of abstract rules to the total number of rules.

Table 2 depicts the values of all introduced metrics for the initial as well as for
both refactored versions of the illustrative example.

Table 2 — Metrics Overview: Initial version (T1) vs. Matched rule version (T4) vs. Lazy
rule version (T6)

Metric | T1 | T4 | T6
LoC | 39 | 44| 38

#Elements 122 132 116
#Rules
#ARules
#CRules
#Helpers
#Bindings

#CD
#GD
MEL

=

Avg Fan-in
Avg Fan-out
-internal
-external

Avg Val-in
Avg Val-out

oo

— 00
HFNW|[OoO | NN

=

— —
C|OH | NHXXO | WHW|[OHRFOF

ot
=
~
[
[°d

1,83 1
1 1

0,33 | 0,33

—

Abstraction ‘

5.2.2 Impact on quality attributes

The goal of the refactorings is to enhance quality attributes such as readability, ex-
tendability, maintainability, understandability, and reusability. Thus, in the follow-
ing, we discuss the implications of the refactorings on quality attributes based on
the aforementioned metrics. Again, note that the two transformations resulting from
the two refactoring chains present slightly different quality attributes. There is not
a single best transformation, it all depends on the quality attributes the designer is
most interested in her specific context.

Transformation size. As can be seen in Table 2, the initial version of the trans-
formation has almost the same number of LoCs as T6 and less than T4. However,
when considering the total number of model elements, T6 is the shortest version. In
general, it seems that measuring the size of transformations is more appropriately
done on the abstract syntax level and not on the concrete syntax level to be inde-

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 27

pendent of code formatting rules [Jon94|. T4 is definitely the longest version, on the
concrete as well as on abstract syntax level, due to the fact that more complex in-
put patterns are needed for the matched rule solution. Furthermore, both refactored
versions comprise additional elements for defining abstract transformation rules. In
the illustrative example only a small amount of features is used for each metamodel
class, thus the reuse of the bindings between the rules is marginal. Nevertheless, in
practical settings more bindings may be reused and shared in abstract rules which
definitely pays off the space needed for the additional abstract rules. The largest gain
in reducing the transformation size is that duplicated OCL expressions are eliminated
based on introducing one additional helper for calculating the direct and indirectly
contained properties of a class. To conclude, although the size could not be signifi-
cantly reduced by the refactorings, considering other aspects in the measurement may
show an enhancement of the readability and understandability as studies in the field
of object-oriented programming indicate [Jon94].

Bad smells. Three bad smells existed in the initial version, namely code clones,
overlong OCL expressions, and one god rule, whereas all of them could be removed
in both refactored versions. With the help of the refactoring Eztract Helper on the
one hand code clones could be eliminated and on the other hand the overlong OCL
expressions could be split into several smaller OCL expressions. This is reflected
by the maximum expression length of the OCL expression that could be reduced by
50 % in comparison to the initial transformation. Finally, also the god rule could be
eliminated by extracting additional rules out of the distinct-foreach output pattern
elements. By this, several aspects which have been intermingled in the god rule could
be separated into several different rules providing a higher cohesion of the resulting
rules.

Rule dependencies. The initial version consisted of only one rule, hence the average
fan-in value was zero. This means that this rule may be changed without requiring fur-
ther adaptations outside of the rule. The average fan-out value was 18, meaning that
this rule had 18 dependencies to other elements. In particular, the rule depends on
17 different metamodel elements. This shows that the rule covers mostly all elements
of the input and output metamodels and thus, it represents the whole transformation
indicating again the god rule bad smell. Concerning the maintainability of this rule, it
may be argued that it is easily changeable, because no other rules have to be adapted,
but at the same time it has to be mentioned that nearly the complete transformation
logic as well as the complete input and output metamodels have to be conceived and
understood as a prerequisite, which significantly mitigates the maintainability espe-
cially for larger transformations. The situation is quite different for the refactored
versions which have a much smaller average fan-out value, thus the transformation
rules may be easier maintained. Furthermore, in case of metamodel evolution, e.g.,
an attribute is renamed in the metamodel, the refactored transformation are easier
to adapt to the metamodel changes, because the rules have a much clearer focus.
However, the separation of the transformation logic into several rules comes with the
price of having coupling between rules, but it can be seen on the average fan-in value
that the coupling is still very low. This can be considered as necessary coupling level
as pointed out by [Ber93|, because a modular system without any coupling is useless
in general.

Rule complexity. The average complexity of the rules has been tremendously
lowered by the refactorings. The initial transformation consisting of one rule had
a very high average val-out value, which aggravates understandability, extensibility,

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

28 - Wimmer et al.

and reusability. The problem with the god rule w.r.t. reusability is that the chance
of reuse is practically not existing, because it comprises the complete transformation.
Furthermore, extensibility is low due to the following two reasons. First, the gen-
erated elements of this rule may only be accessed by Class objects, so if someone
wants to retrieve the generated element for one particular Property object to add
an additional link within a new rule to this object, the container, i.e., the containing
Class object, has to be retrieved before the trace model may be queried. Second, a
huge bunch of elements is generated by the rule, thus the result of querying the trace
model is quite complex. In particular, it is a four tuple where the last three entries
are again collections of elements which have been generated by the distinct-foreach
output pattern elements. In contrast to the initial version, the refactored versions
allow for a higher chance of reusing rules, especially T6 which only uses one-to-one
transformation rules. Furthermore, the understandability of the refactored versions
is higher, because the rules are much smaller and more focused. Finally, the extensi-
bility of the transformation is higher, because all generated target elements may be
retrieved by their direct counterparts in the source model.

However, there may be a trade-off between the size of rules and the degree of
fragmentation of transformation logic over a set of rules. Of course, the complexity of
the initial rule has been reduced by introducing additional rules, but this comes with
additional dependencies between rules. However, the minor increase in fan-in values
seems to be reasonable compared to the decrease in the val-in values.

Abstractness. For reusability and extendability concerns, the abstractness rate of
the transformation under study has been increased by introducing abstract rules which
may be used later on as extension points for introducing new subrules in case new
classes are added to the input or output metamodels. Furthermore, using inheritance
between rules allows to provide more concise rules which are in general also more
understandable as it has been observed by [vAvdB11]|. However, as for object-oriented
programs, the abstractness may have a negative impact on the understandability in
case the inheritance hierarchies are getting too deep. Here we have to mention that
the inheritance hierarchies of transformation rules are normally closely aligned to the
metamodel inheritance hierarchy of classes, thus they strongly depend on the quality
of the inheritance hierarchies in the input and output metamodels.

5.2.3 Synopsis

By refactoring the transformation T1 using the two refactoring chains, several quality
attributes could be improved, while the transformation size remains more or less
the same. Especially, by removing the god rule bad smell, future extensions of the
transformation should be more easily achieved without ending up with one complex
transformation rule realizing the complete transformation. Furthermore, the lazy rule
version T6 provides slightly better results compared to the matched rule version T4
when considering fan-out and val-in values. The reason for this is that the matched
rules require for this example a more complicated input pattern than the lazy rule
equivalents. The next section shows that this small metric value difference results in
huge execution performance differences of the discussed transformations.

6 Impact of Refactorings on Execution Performance

After showing the possibilities of refactorings to improve a transformation’s internal
structure, we proceed with an evaluation of their impact on the execution performance

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 29

of transformations. Although performance is usually not considered to be the main
objective of refactorings, several works showed that refactorings may come along with
significant impacts on performance (e.g., cf. [Dem05, OXJF05]). Therefore, we aim to
demonstrate that the presented refactorings do not necessarily worsen performance.
For the performance evaluation, we again resort to the illustrative example used in
the previous sections.

6.1 Setup

The following transformation versions have been evaluated (cf. Fig. 3): (T1) ini-
tial transformation (List. 1), refactored transformation after (T2) changing operation
helpers to attribute helpers; (T3) extract matched rules, (T4) extract matched rules
with inheritance, (T5) extract lazy rules, (T6) extract lazy rules with inheritance.

We choose this set of transformation to answer the following questions with respect
to performance:

e Impact of changing operation helpers to attribute helpers (T1 — T2)
e Impact of extracting rules from distinct-foreach patterns (T2 — T3, T2 — T5)
e Impact of introducing inheritance between rules (T3 — T4, T5 — T6)

In the experiment, three different synthetic input models are used for evaluating
the performance of the transformations. The models have in common that they all
comprise 1.000 classes, whereas each class contains 10 properties (properties repre-
senting attributes and properties representing references are equally distributed). The
significant differences between the models are coming from their different inheritance
structures. The first model does not even use a single inheritance relationship and
is therefore called loose model. The second model is called deep model, because the
Maximum Depth of Inheritance Tree (MDIT) is 20 and the Average Number of Chil-
dren (including direct and indirect subclasses) (ANOC) is 10,55. Finally, the third
model is called flat model, because MDIT is 2 and ANOS is 1,89.

For executing the transformations, we employed the ATL Regular Virtual Machine
in its version 3.1.2. The performance figures have been measured on a Lenovo T410s
with an Intel(R) Core(TM) i5 CPU M 560 @ 2.67 GHz 2.67 GHz, with 8 GB of
physical memory, and running the Windows 7 Professional 64 bits operating system.

6.2 Results

The results of the execution performance evaluation are depicted in Table 3, Table 4,
Table 5, for the loose input model, flat input model, and deep input model, respec-
tively. For measuring the performance, we are using the following metrics:

e CPU Time: Execution time in seconds - without the time for loading the input
model and serializing the target model.

e Instructions: Processed instructions - how many byte code statements are
executed to produce the target model.

e Speedup: Ratio between the execution time of the initial transformation and
the refactored transformation.

Please note that we measured the CPU time by executing each transformation 10
times and calculated the arithmetic mean of these 10 runs.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

30 - Wimmer et al.

6.3 Discussion

As one can see in the three tables, our chain of refactorings does not necessarily

worsen execution performance and some of them clearly have a positive impact on

the performance of the transformation. For example, it is obvious that using attribute

helpers instead of operation helpers improves the performance by at least 20 %. These

experiments have also been useful to learn more about the performance of ATL itself.
Table 3 — Results of the performance evaluation (loose model)

Transformations | Instructions | CPU Time | Speedup

T1 1.876.111 1,42 s 1,00
T2 1.504.135 1,10 s 1,28
T3 241.907.174 163,34 s 0,01
T4 507.073 56,59 s 0,03
T5 1.289.112 0,98 s 1,45
T6 1.361.117 1,02 s 1,39

Table 4 — Results of the performance evaluation (flat model)

Transformations ‘ Instructions ‘ CPU Time ‘ Speedup

T1 4.919.541 4,10 s 1,00
T2 3.876.615 3,07 s 1,25
T3 244.808.854 171,37 s 0,02
T4 84.850.488 63,21 s 0,44
T5 3.464.157 2,56 s 1,26
T6 3.643.337 2,70 s 1,47

Table 5 — Results of the performance evaluation (deep model)

Transformations | Instructions | CPU Time | Speedup

T1 17.125.461 18,07 s 1,00
T2 13.380.985 15,14 s 1,19
T3 256.444.024 186,31 s 0,10
T4 97.064.018 53,20 s 0,34
T5 12.237.967 9,07 s 1,99
T6 12.888.967 10,65 s 1,70

For instance, though using declarative matched rules is the recommended pro-
gramming style in ATL, in this example the application of matched rules does not
scale compared to the initial transformation and the lazy rule solutions. The reason
is the expensive computation of the Cartesian product for duplicating attributes of
superclasses for all subclasses. This requirement is more efficiently implemented us-
ing lazy rules, because they can be called from the appropriate context, i.e., classes
for which all direct and indirect contained properties can be efficiently calculated by
using helpers. In contrast, using matched rules which are automatically applied by
the transformation engine, this context has to be expensively computed by building
the Cartesian product of properties and classes. Obviously, this computation has the
matching complexity |Class| x |Property|. Thus, we can conclude that the transfor-
mation T3 and T4 both include a performance anti-pattern Wasted Rule Execution
Context meaning that a rule has to build expensively the context for its execution,
although the context is already available in another part of the transformation from
which the rule may be called.

Another observation is that inheritance between transformation rules may improve
or worsen performance. For matched rules we have a performance improvement,
because only the top rules have to be matched (rules having no super rule) and
these matches are refined down to the subrules. Thus, instead of calculating three
times the Cartesian product of properties and classes in T3, this is only done once in
T4. However, for the lazy rule versions, the performance decreases when introducing
inheritance. Lazy rules are not automatically executed by the ATL execution engine,

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 31

but are called by other rules. If a lazy rule is called, the dispatching strategy used
in ATL checks first the types of the given parameter values (by using oclIsKindOf
operations) and subsequently the filter conditions. When going from the top rule to
the most specific rule, each time the type of the input parameters are checked, even
if the type is always the same and only the filter conditions vary as it is the case in
our example.

To sum up the discussion, we may conclude that (1) switching from operation
helpers to attribute helpers definitely improves the performance of transformations.
This is also true for large input models and transformation logic which potentially
call the same query on the same context element several times. Thus, caching queries
to input models should be definitely considered when designing and refactoring trans-
formations. (2) Refactoring distinct-foreach patterns to rules does not have to worsen
execution time, but when extracting matched rules having more than one input pat-
tern element the performance will decrease. (3) Inheritance improves the performance
for matched rules because of the matching strategies of ATL, but decreases the per-
formance for lazy rules due to the expensive dispatching phase applied by the ATL
virtual machine.

6.4 Threats to Validity

In this subsection, we elaborate on several factors that may jeopardize the validity of
our results, specially regarding the performance results.

Internal validity—are there factors which might affect the results in the context of
ATL? Concerning the trade-off of using helper operations vs helper attributes, the
advantage of helper attributes can decrease if the input model is so large that we
cannot benefit from the caching mechanisms of the ATL VM.

In the presented transformation example, the matched rule versions did not scale
due to the complex match computations. It has to be noted that this evaluation does
not allow to conclude on how extracting matched rules with one input pattern, i.e.,
matching only one element, from distinct-foreach constructs affects the execution per-
formance. Therefore, we have experimented with an additional transformation which
is similar to the presented example, but without duplicating properties of superclasses
for subclasses. Thus, simple input patterns are sufficient for the matched rules. The
results of this experiment showed that in this case the matched rule versions have a
similar performance as the corresponding lazy rule versions.

Concerning the impact of using inheritance between transformation rules on the
performance, we concluded that inheritance has a positive impact in case of matched
rules and a negative impact in case of lazy rules. However, this result may be in-
fluenced by the complex input patterns of the matched rules, thus we also evaluated
this aspect by the slightly modified transformation mentioned in the previous para-
graph. This additional experiment showed a similar performance impact of using rule
inheritance.

Another threat to validity is the dependence on the specific ATL environment used
in the evaluation. For executing ATL transformations, two different VMs are currently
available, namely the Regular VM and the EMF-specific VM. It is important to note
that the compiler from ATL to VM code is the same for both VMs, but they use
different implementations for executing the VM code, e.g., how to retrieve and access
model elements. In our experiment we relied on the Regular VM. To gain evidence
that the refactorings have similar impacts on the performance for the EMF-specific
VM, we ran our tests again on this VM. We explored that the execution times varies

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

32 . Wimmer et al.

between the both VMs, but the impact of the refactorings on the performance is
comparable.

External validity—to what extent is it possible to generalize the findings for trans-
formation languages in general? So far, we cannot claim any performance results
outside the context of ATL. Nevertheless, the refactorings can indeed be applied on
other transformation languages (cf. Section 4.5). Thus, replaying the presented exper-
iments for those transformation languages should enable the possibility of reasoning
about the performance impact of the refactorings for those languages as well.

7 Implementation

Following a pure MDE approach, we propose to implement transformation refactor-
ings as transformations themselves. In ATL, transformations are expressed as models
[BBG106]. Therefore, they may be input or output of other transformations, so-called
Higher Order Transformations (HOT) [TJF*09].

As most of the model representing the transformation will remain unchanged, we
propose to use in-place transformations for the implementation of the refactorings.
This way we will only need to write transformation rules for the elements that are
meant to change during the refactoring. In ATL, this kind of transformations may
be developed by using the ATL refining mode [TMJC11| which provides dedicated
transformation language facilities as well as a dedicated transformation engine.

We want to stress that for some refactorings type inference is needed, e.g., for
extracting new superrules. Thus, for HOTs implementing such refactorings, they need
to have as input not only the transformation model, but in addition, the metamodels
of the input and output models of the transformation subject of refactoring.

For some refactorings an additional input model may be needed, comprising user
input and pointers to transformation elements which have to be manipulated during
the refactoring step.

List. 9 shows an excerpt of the HOT for the Extract Superrule refactoring. Fig. 4
illustrates the metamodel for the additional input model as well as an example model
which represents the selected elements for producing the resulting transformation code
shown in Section 4.3 (List. 5) after applying the refactoring.

In the current development stage, our refactorings are designed to be semi-automa-
tically executed. For instance, for the Extract Superrule refactoring, the transforma-

toBeMoved \/ 0. .*

toBeDeleted ..
o ATL::Binding

ExtractSuperRule
superRuleName : String ATL::Rule

| subRules 4\0--*

toBeMoved
:Rule 9@% :Binding |
names=,Attribute”
:ExtractSuperRule :Rule 9@% :Binding
superRuleName= ,Property” name= ,WeakReferenence”
:Rule -9|;|—>| :Binding |
name=,StrongReferenence” toBeDeIeted/]\

Figure 4 — Parameter Metamodel and Example Model for “Extract Super Rule” refactoring

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 33

tion engineer has to select the rules from which a new superrule is extracted as well
as the bindings which should be pulled up to the new superrule. By selecting the
appropriate elements, the additional input is produced which may be verified by OCL
constraints in order to verify the pre-conditions of the refactoring. Please note that
the production of the additional input is totally independent from the transforma-
tion which is used to perform the refactoring. For future work, we aim at providing
dedicated detector rules for refactorings which automatically find the right places
for applying refactorings in transformations and produce the additional input models
without requiring user interaction.

The refactoring Extract Superrule is implemented as is shown in List. 9. The first
rule creates an additional abstract rule which gets its name and its subrules from the
parameter model (cf. lines 7-17). Furthermore, the InPattern and OutPattern of this
rule are calculated from the subRules, but appropriate superclasses have to be found
for substituting the more concrete InPatternElement and OutPatternElement types
of the subrules (cf. lines 18-21). Subsequently, the bindings to be pulled up of the
first subrule are linked to the superrule (cf. line 24). Finally, the bindings to be pulled
up of the remaining subrules are deleted by using the drop functionality of the ATL
refining mode (cf. lines 28-31).

module ExtractSuperRule;
create OUT : ATL refining IN1 : ATL, IN2 : Params, IN3 : MMs, IN4 : MMt;

helper def : pars : Params!ExtractSuperRule =
Params!ExtractSuperRule.allInstances() —> first();

rule extractSuperRule{
from
m : ATL!Module
to
-- Create New SuperRule
newSuperRule: ATL!MatchedRule(
isAbstract <— true,
name <— thisModule.pars.superRuleName,
children <— thisModule.pars.subRules,

=

-- Copy Input Pattern + type inference based on MMs

newInPattern: ATL!InPattern (...)

-- Copy Output Pattern + type inference based on MMt

newOutPattern: ATL!OutPattern (...),

-- Pull up repeated bindings

newSimpleOutPatternElm: ATL!SimpleOutPatternElement (
bindings <— thisModule.pars.toBeMoved

)

}
rule dropBindingsInSubRules{
from
b : ATL!Binding (thisModule.pars.toBeDeleted— >includes(b))
to drop
}

Listing 9 — Excerpt of the Extract SuperRule HOT.

8 Related Work

Model transformations have been used to implement refactorings for models but the
problem of refactoring model transformations themselves has not been addressed. Im-
plementing refactorings with model transformation technologies has been extensively
studied within the last decade. One of the first investigations in this area was done by

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

34 . Wimmer et al.

Sunyé et al. [SPLTJO01], who define a set of UML refactorings on the conceptual level
by expressing pre- and postconditions in OCL. In [MVEDJ05|, object-oriented pro-
grams are represented as graphs before applying graph transformations for refactoring
this abstract representation. Furthermore, Mens [Men05] and Bottoni et al. [BPPTO03]
use graph transformations to describe refactorings for models. The application of this
formalism comes with the additional benefit of formal analysis possibilities of depen-
dencies between different refactorings [MTRO7|. Besides graph transformations, also
other transformation formalisms have been used for implementing model refactorings,
e.g., [Por05], [ZLGO05], [KPPRO7| to name just a few. Mentioned works have in com-
mon that they are focused on implementing refactorings with model transformation
formalisms, but not on refactoring model transformations themselves.

There is some dedicated work on refactoring OCL expressions which is of course
relevant for refactoring M2M transformations incorporating OCL expressions. For
our refactoring catalogue, we are reusing some refactorings/equivalences from pre-
vious work [CT07, CWO07, GL05] which are applicable for transformations such as
Shorten Navigation By Context Switch. Our catalogue complements these refactor-
ings by providing transformation-specific refactorings such as Convert Helper Type or
Eliminate Unsafe Target Navigation. Furthermore, we have developed refactorings for
retrospectively introducing the optimization patterns of [CJMBO8| in existing model
transformations such as Improve Opposite Reference Computations.

To the best of our knowledge, only one work explicitly mentions refactoring of
model transformations. In [EEE09], the authors present how to co-evolve graph trans-
formations in case the metamodels of the models to transform evolve. Nevertheless,
this is a totally different notion of refactoring. While we are using the term refactor-
ing for improving the transformation without changing its semantics, in [EEE09] the
semantics of the transformation are changed due to the changes in the metamodels.
The notion of refactoring used in [EEE09] is not concerned with enhancing the quality
of a transformation, but it is more related to adapting the transformations to the new
metamodel versions.

9 Conclusion and Future Work

This paper has outlined how to improve maintainability of M2M transformations by
adopting the notion of refactoring. In particular, we have presented an extensive
refactoring catalogue for model transformations, its application to an illustrative ex-
ample, and discussed reuse possibilities for several model transformation languages.
Furthermore, we discussed the impact of the refactorings on the transformations in-
ternal qualities and on their execution performance as well as how refactorings are
implemented using the in-place transformation mode of ATL. Our results emphasize
the great potential of using refactorings for enhancing the quality of model transfor-
mations. We hope this work acts as a stimulus for establishing a body of knowledge
of transformation engineering in order to accomplish the transition from implicit to
explicit knowledge.

We believe the next step should be improving user support and guidance through
the refactoring process. For this, the following research challenges have to be ad-
dressed.

Automation. Currently, the refactorings are performed semi-automatically. Users
must manually identify which (and where) transformations should be refactored and
determine the most suitable refactorings for them. Once this is done, the refac-

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 35

toring(s) is/are automatically applied by executing the corresponding higher-order
transformation(s). We plan to develop a set of patterns to identify bad smells in
transformations (as done for code refactorings) that help designers to identify po-
tential candidate transformation for refactoring and suggest possible refactorings for
them.

Code layout preservation. Refactorings are easier to implement on the abstract
syntax level of languages (like our transformation models). However, refactorings at
this level do not preserve textual aspects of the transformation like the code layout,
which is considered important by some transformation designers. In the future, spe-
cial synchronization mechanisms have to be developed in order to protect the layout
aspects of the transformation after the refactoring.

Language-independence. As has been discussed in Subsection 4.5, there is a
reuse potential of the refactoring catalogue to provide refactoring support for other
model transformations as well. Thus, our goal is to make the refactorings as generic as
possible both at the specification and implementation level. A more generic (language-
independent) definition of M2M transformations would facilitate both. This generic
M2M metamodel would be useful in other scenarios as well, e.g., to compare the
language features of existing model transformation languages or to act as a pivot
metamodel for model transformation exchange between different transformation tools.

References

[BBG106] Jean Bézivin, Fabian Biittner, Martin Gogolla, Frédéric Jouault, Ivan
Kurtev, and Arne Lindow. Model Transformations? Transforma-
tion Models! In Oscar Nierstrasz, Jon Whittle, David Harel, and
Gianna Reggio, editors, Proceedings of the 9th International Confer-
ence on Model Driven Engineering Languages and Systems (MoD-
ELS’06), volume 4199 of LNCS, pages 440-453. Springer, 2006. doi:
10.1007/11880240_31.

[BBM96| Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A Val-
idation of Object-Oriented Design Metrics as Quality Indicators.
IEEE Transactions on Software Engineering, 22(10):751-761, 1996.
doi:10.1109/32.544352.

[Ber93] Edward V. Berard. FEssays on object-oriented software engineering
(vol. 1). Prentice-Hall, 1993.

[BKSWO09] Petra Brosch, Gerti Kappel, Martina Seidl, and Manuel Wimmer.
Teaching Model Engineering in the Large. In Proceedings of the Ed-
ucators’ Symposium @ MoDFELS’09, 2009.

[BPPT03] Paolo Bottoni, Francesco Parisi-Presicce, and Gabriele Taentzer.
Specifying Integrated Refactoring with Distributed Graph Trans-
formations. In John L. Pfaltz, Manfred Nagl, and Boris Bohlen,
editors, Proceedings of the 2nd International Workshop on Appli-
cations of Graph Transformations with Industrial Relevance (AG-
TIVE’03), volume 3062 of LNCS, pages 220-235. Springer, 2003.
doi:10.1007/978-3-540-25959-6_16.

[CHO6] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621-645,
2006. doi:10.1147/sj.453.0621.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1007/11880240_31
http://dx.doi.org/10.1007/11880240_31
http://dx.doi.org/10.1109/32.544352
http://dx.doi.org/10.1007/978-3-540-25959-6_16
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.5381/jot.2012.11.2.a2

36 - Wimmer et al.

[CIMBOS]

[CK94]

[CTO6]

[CTO7]

[CWO7]

[Dem05]

[DV92]

[EEE09]
[Fow99)]

[GLO5|

[JKO5]

[Jon94|

[KGBH10]

Jests Sanchez Cuadrado, Frédéric Jouault, Jestis Garcia Molina, and
Jean Bézivin. Optimization Patterns for OCL-Based Model Transfor-
mations. In Michel R. V. Chaudron, editor, Models in Software Engi-
neering - Reports and Revised Selected Papers of Workshops and Sym-
posia at MoDELS’08, volume 5421 of LNCS, pages 273-284. Springer,
2008. doi:10.1007/978-3-642-01648-6_29.

Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Ob-
ject Oriented Design. IEEE Transactions on Software Engineering,
20(6):476-493, 1994. doi:10.1109/32.295895.

Jordi Cabot and Ernest Teniente. A metric for measuring the com-
plexity of OCL expressions. In Proceedings of the Model Size Metrics
Workshop @ MoDELS’06, 2006.

Jordi Cabot and Ernest Teniente. Transformation techniques for OCL
constraints. Science of Computer Programming, 68(3):179-195, 2007.
doi:10.1016/j.scico.2007.05.001.

Alexandre L. Correa and Claudia Werner. Refactoring Object Con-
straint Language Specifications. Software and System Modeling,
6(2):1137138, 2007. doi:10.1007/s10270-006-0023-y.

Serge Demeyer. Refactor Conditionals into Polymorphism: What’s the
Performance Cost of Introducing Virtual Calls? In Proceedings of the
21st International Conference on Software Maintenance (ICSM’05),
pages 627-630. IEEE Computer Society, 2005. doi:10.1109/ICSM.
2005.74.

Paul Doyle and Renaat Verbruggen. Applying Metrics to Rule-Based
Systems. In Proceedings of the 4th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE’92), pages 123
130. Knowledge Systems Institute, 1992. doi:10.1109/SEKE.1992.
227938.

Hartmut Ehrig, Karsten Ehrig, and Claudia Ermel. Refactoring of
Model Transformations. ECEASST, 18, 2009.

Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

Martin Giese and Daniel Larsson. Simplifying Transformations of OCL
Constraints. In Lionel C. Briand and Clay Williams, editors, Proceed-
ings of the 8th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’05), volume 3713 of LNCS, pages
309-323. Springer, 2005. doi:10.1007/11557432_23.

Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In
Jean-Michel Bruel, editor, Proceedings of Satellite Fvents at the MoD-
ELS’05 - Revised Selected Papers of International Workshops, Doctoral
Symposium, Educators Symposium, volume 3844 of LNCS, pages 128—
138. Springer, 2005. doi:10.1007/11663430_14.

Capers Jones. Software Metrics: Good, Bad and Missing. Computer,
27:98-100, 1994. doi:10.1109/2.312055.

Lucia Kapova, Thomas Goldschmidt, Steffen Becker, and Jérg Henss.
Evaluating Maintainability with Code Metrics for Model-to-Model

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1007/978-3-642-01648-6_29
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1016/j.scico.2007.05.001
http://dx.doi.org/10.1007/s10270-006-0023-y
http://dx.doi.org/10.1109/ICSM.2005.74
http://dx.doi.org/10.1109/ICSM.2005.74
http://dx.doi.org/10.1109/SEKE.1992.227938
http://dx.doi.org/10.1109/SEKE.1992.227938
http://dx.doi.org/10.1007/11557432_23
http://dx.doi.org/10.1007/11663430_14
http://dx.doi.org/10.1109/2.312055
http://dx.doi.org/10.5381/jot.2012.11.2.a2

[KPPOS]

[KPPRO7]

[Men05]

[MGO6]

[MT04]

[MTRO7|

[MVEDJO05]

[OMG11]
[Opd92]

[OXJF05]

[Por05)

Refactoring M2M Transformations - 37

Transformations. In George T. Heineman, Jan Kofron, and Frantisek
Plasil, editors, Proceedings of the 6th International Conference on the
Quality of Software Architectures (QoSA’10), volume 6093 of LNCS,
pages 151-166. Springer, 2010. doi:10.1007/978-3-642-13821-8_12.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The Ep-
silon Transformation Language. In Antonio Vallecillo, Jeff Gray,
and Alfonso Pierantonio, editors, Proceedings of the 1st Interna-
tional Conference on Theory and Practice of Model Transforma-
tions (ICMT’08), volume 5063 of LNCS, pages 46-60. Springer, 2008.
doi:10.1007/978-3-540-69927-9_4.

Dimitrios S. Kolovos, Richard F. Paige, Fiona Polack, and Louis M.
Rose. Update Transformations in the Small with the Epsilon Wizard
Language. Journal of Object Technology, 6(9):53-69, 2007. doi:10.
5381/jot.2007.6.9.a3.

Tom Mens. On the Use of Graph Transformations for Model Refactor-
ing. In Ralf Ladmmel, Joao Saraiva, and Joost Visser, editors, Proceed-
ings of the International Summer School on Generative and Trans-
formational Techniques in Software Engineering (GTTSE’05), vol-
ume 4143 of LNCS, pages 219-257. Springer, 2005. doi:10.1007/
11877028_7.

Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transforma-
tion. FElectronic Notes in Theoretical Computer Science, 152:125-142,
2006. doi:10.1016/j.entcs.2005.10.021.

Tom Mens and Tom Tourwé. A Survey of Software Refactoring. IFEFE
Transactions on Software Engineering, 30(2):126-139, 2004. doi:10.
1109/TSE.2004.1265817.

Tom Mens, Gabriele Taentzer, and Olga Runge. Analysing refactor-
ing dependencies using graph transformation. Software and System
Modeling, 6(3):269-285, 2007. doi:10.1007/s10270-006-0044-6.

Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens.
Formalizing refactorings with graph transformations. Journal of Soft-
ware Maintenance, 17(4):247-276, 2005. doi:10.1002/smr.316.

OMG. MOF Query/View/Transformation V1.1. Object Management
Group, 2011.

William F. Opdyke. Refactoring object-oriented frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

Jeffrey Overbey, Spiros Xanthos, Ralph Johnson, and Brian Foote.
Refactorings for Fortran and high-performance computing. In Pro-
ceedings of the 2nd International Workshop on Software Engineering
for High Performance Computing System Applications, pages 37-39.
ACM, 2005. doi:10.1145/1145319.1145331.

Ivan Porres. Rule-based Update Transformations and their Application
to Model Refactorings. Software and System Modeling, 4(4):368-385,
2005. doi:10.1007/s10270-005-0088-z.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1007/978-3-642-13821-8_12
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.5381/jot.2007.6.9.a3
http://dx.doi.org/10.5381/jot.2007.6.9.a3
http://dx.doi.org/10.1007/11877028_7
http://dx.doi.org/10.1007/11877028_7
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1007/s10270-006-0044-6
http://dx.doi.org/10.1002/smr.316
http://dx.doi.org/10.1145/1145319.1145331
http://dx.doi.org/10.1007/s10270-005-0088-z
http://dx.doi.org/10.5381/jot.2012.11.2.a2

38 - Wimmer et al.

[RGP04]

[SK03]

[SPLTJO1]

[TJF+09]

[TMJC11]

[TV11]

[vALvdB09]

[vAvdB11]

[WKK*11]

|ZLGO5]

Luis Reynoso, Marcela Genero, and Mario Piattini. Towards a metric
suite for OCL Expressions expressed within UML/OCL models. Jour-
nal of Comptuer Science and Technology, 4:38-44, 2004.

Shane Sendall and Wojtek Kozaczynski. Model Transformation: The
Heart and Soul of Model-Driven Software Development. IEEE Soft-
ware, 20(5):42-45, 2003. doi:10.1109/MS.2003.1231150.

Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel.
Refactoring UML Models. In Martin Gogolla and Cris Kobryn, ed-
itors, Proceedings of the 4th International Conference on the Unified
Modeling Language (UML’01), volume 2185 of LNCS, pages 134-148.
Springer, 2001. doi:10.1007/3-540-45441-1_11.

Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and
Jean Bézivin. On the Use of Higher-Order Model Transformations.
In Richard F. Paige, Alan Hartman, and Arend Rensink, editors,
Proceedings of the 5th European Conference on Model Driven Ar-
chitecture - Foundations and Applications, (ECMDA-FA’09), vol-
ume 5562 of LNCS, pages 18-33. Springer, 2009. doi:10.1007/
978-3-642-02674-4_3.

Massimo Tisi, Salvador Martinez, Frédéric Jouault, and Jordi Cabot.
Refining Models with Rule-based Model Transformations. Technical
report, AtlanMod, INRIA & Ecole des Mines de Nantes, 2011.

Javier Troya and Antonio Vallecillo. A Rewriting Logic Semantics for
ATL. Journal of Object Technology, 10:1-29, 2011. doi:10.5381/jot.
2011.10.1.a5.

Marcel van Amstel, Christian F. J. Lange, and Mark van den Brand.
Using Metrics for Assessing the Quality of ASF+SDF Model Transfor-
mations. In Richard F. Paige, editor, Proceedings of the 2nd Interna-
tional Conference on Theory and Practice of Model Transformations
(ICMT’09), volume 5563 of LNCS, pages 239-248. Springer, 2009.
doi:10.1007/978-3-642-02408-5_17.

Marcel van Amstel and Mark van den Brand. Using Metrics for As-
sessing the Quality of ATL Model Transformations. In Proceedings
of the Workshop on Model Transformation with ATL (MtATL) @
ICMT’11, volume 742, pages 20-34. CEUR, 2011.

Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzeg-
ger, Johannes Schénbock, Wieland Schwinger, Dimitrios S. Kolovos,
Richard F. Paige, Marius Lauder, Andy Schiirr, and Denis Wagelaar.
A Comparison of Rule Inheritance in Model-to-Model Transforma-
tion Languages. In Jordi Cabot and Eelco Visser, editors, Proceed-
ings of the 4th International Conference on Theory and Practice of
Model Transformations (ICMT’11), volume 6707 of LNCS, pages 31—
46. Springer, 2011. doi:10.1007/978-3-642-21732-6_3.

Jing Zhang, Yuehua Lin, and Jeff Gray. Generic and Domain-Specific
Model Refactoring using a Model Transformation Engine. In Sami
Beydeda, Matthias Book, and Volker Gruhn, editors, Model-driven
Software Development—Research and Practice in Software Engineer-
ing, pages 199-217. Springer, 2005. doi:10.1007/3-540-28554-7_9.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.1109/MS.2003.1231150
http://dx.doi.org/10.1007/3-540-45441-1_11
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.5381/jot.2011.10.1.a5
http://dx.doi.org/10.5381/jot.2011.10.1.a5
http://dx.doi.org/10.1007/978-3-642-02408-5_17
http://dx.doi.org/10.1007/978-3-642-21732-6_3
http://dx.doi.org/10.1007/3-540-28554-7_9
http://dx.doi.org/10.5381/jot.2012.11.2.a2

Refactoring M2M Transformations - 39

About the authors

Manuel Wimmer is working as a post-doc researcher at the
Business Informatics Group of the Vienna University of Technol-
ogy. His research interests comprise Web engineering and model
engineering; in particular model transformations based on formal
methods, generating transformations by-example as well as ap-
plying model transformations to deal with model (co-)evolution.
Currently, he is on leave working as visiting researcher at the
Software Engineering Group of the University of Malaga (Spain).
For further information about his research activities, please visit
http://www.big.tuwien.ac.at/staff/mwimmer or contact him
at wimmer@big.tuwien.ac.at.

Salvador Martinez is a PhD candidate at the Atlan-
Mod team of the FEcole des Mines de Nantes, France.
His research interests include model-driven security, model-
driven reverse engineering (particularly of security-related as-
pects) and model transformation languages. Contact him at
salvador.martinez_perez@inria.fr, or visit http://www.emn.
fr/z-info/atlanmod/index.php/User:SMartinez.

Frédéric Jouault is a researcher in the AtlanMod team. He
received his Ph.D. in September 2006 from the University of
Nantes. He did a postdoc at the University of Alabama at Birm-
ingham in 2007. His research interests involve model engineering,
model transformation, and their application to Domain-Specific
Languages (DSLs) and model-based legacy reverse engineering.
Frédéric created ATL (AtlanMod Transformation Language), a
DSL for model-to-model transformation. He is now leading the
development of ATL (language and toolkit) on Eclipse.org. He is
in charge of the Eclipse modeling M2M project as well as a mem-
ber of the modeling PMC. Contact him at frederic.jouault@
inria.fr.

Jordi Cabot is currently leading the AtlanMod team, an IN-
RIA research group at Ecole des Mines de Nantes (France). Pre-
viously, he has been a post-doctoral fellow at the University of
Toronto, a senior lecturer at the UOC (Open University of Cat-
alonia) and a visiting scholar at the Politecnico di Milano. He
received the BSc and PhD degrees in Computer Science from the
Technical University of Catalonia. His research interests include
conceptual modeling, model-driven and web engineering, formal
verification and social aspects of software engineering. He has
written more than 70 publications in international journals and
conferences in the area. Apart from his scientific publications,
he writes and blogs about all these topics in his Modeling Lan-
guages portal (http://modeling-languages.com). Contact him
at jordi.cabot@inria.fr, or visit http://jordicabot.com/.

Journal of Object Technology, vol. 11, no. 2, 2012

http://www.big.tuwien.ac.at/staff/mwimmer
mailto:wimmer@big.tuwien.ac.at
mailto:salvador.martinez_perez@inria.fr
http://www.emn.fr/z-info/atlanmod/index.php/User:SMartinez
http://www.emn.fr/z-info/atlanmod/index.php/User:SMartinez
mailto:frederic.jouault@inria.fr
mailto:frederic.jouault@inria.fr
http://modeling-languages.com
mailto:jordi.cabot@inria.fr
http://jordicabot.com/
http://dx.doi.org/10.5381/jot.2012.11.2.a2

40 - Wimmer et al.

Acknowledgments We would like to thank Marcel F. van Amstel for providing
us the ATL2Metrics transformations which have been used for the computation of
metric values for the different versions of the example transformation.

This work has been partially funded by the Austrian Science Fund (FWF) under
grant J 3159-N23 and by the OPEES ITEA2 European project.

Journal of Object Technology, vol. 11, no. 2, 2012

http://dx.doi.org/10.5381/jot.2012.11.2.a2

	Introduction
	Illustrative example
	Refactorings for M2M Transformations
	Catalogue
	Renaming Refactorings
	Restructuring Refactorings
	Inheritance-Related Refactorings
	OCL Refactorings
	Reuse Potential of the presented Refactorings

	Impact of Refactorings on Quality Attributes
	Refactoring Chains
	Metric-based Evaluation
	Metric Setup
	Impact on quality attributes
	Synopsis

	Impact of Refactorings on Execution Performance
	Setup
	Results
	Discussion
	Threats to Validity

	Implementation
	Related Work
	Conclusion and Future Work
	Bibliography
	About the authors

