
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

Language-Specific Model Versioning
Based on Signifiers

Philip Langera Manuel Wimmerb Jeff Grayc Gerti Kappela

Antonio Vallecillob

a. Vienna University of Technology, Austria

b. Universidad de Málaga, Spain

c. University of Alabama, USA

Abstract In model-driven engineering (MDE), models constitute the cen-
tral artifacts in the development process, and thus, are often built by teams
of developers. As a consequence, adequate version control for models is
crucial to the success of MDE-based projects. Several model versioning
systems have been proposed recently. Most of them are generic in the
sense that they are agnostic to modeling languages. Although this en-
sures a wide applicability, important merge issues may not be detected.

In this paper, we present an orthogonal extension to generic model
versioning systems for enabling the detection of an important subset of
language-specific merge issues. Users may enhance the versioning sys-
tem’s capabilities by defining signifiers, which describe the combination
of features of a model element type that convey the superior meaning of its
instances. Signifiers improve the different phases of the versioning process
including comparing and merging models leading to a higher quality of
the finally merged models. We showcase the applicability of our approach
by enhancing the versioning support for the modeling language Ecore.

Keywords Model-driven Engineering; Model Evolution; Model Compari-
son; Model Versioning.

1 Introduction

Software systems are so large and complex that they have to be built by teams of
developers [GJM02]. With the rise of model-driven engineering (MDE), software mod-
els are considered to be the main artifacts in the development process. Thus, tool
support for building models in teams is highly needed [FR07]. For managing the
team-based development of software, text-based versioning systems proved successful
for code-centric software. However, applying such systems to the textual serializa-
tions of models (e.g., XMI [OMG07]) turned out to be unsatisfactory because of

Philip Langer, Manuel Wimmer, Jeff Gray, Gerti Kappel, Antonio Vallecillo. Language-Specific Model
Versioning Based on Signifiers. In Journal of Object Technology, vol. 11, no. 3, 2012, pages 4:1–34.
doi:10.5381/jot.2012.11.3.a4

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2012.11.3.a4
http://dx.doi.org/10.5381/jot.2012.11.3.a4

2 · Langer et al.

the impedance mismatch [NMBT05] between the text-based representation and the
graph-based nature of models. Therefore, dedicated model versioning systems pro-
viding specific support for models have been proposed recently (cf. [BKL+12] for an
overview).

Most model versioning systems are designed to be independent of specific modeling
languages. Although this ensures a wide applicability, important merge issues may not
be detected, because the specifics of modeling languages are neglected. Other systems
are tailored to specific modeling languages, but they seem to be too inflexible, as they
force developers to use for each modeling language its own versioning system.

Irrespective of being generic or specific, most model versioning systems rely on
artificial universally unique identifiers (UUIDs) to determine whether two model ele-
ments in two successive versions of a model correspond to each other: if two elements
share the same UUID, they are considered to be two versions of the same model ele-
ment; otherwise, they are considered to be independent from each other, irrespective
of their characteristics. However, there are versioning scenarios in which this simplis-
tic strategy does not produce the optimal merge results: (i) two elements may share
the same UUID, but they represent two different entities after concurrent changes,
and (ii) two elements may have different UUIDs, but they actually represent the
same entity ; for instance, when two developers add similar elements concurrently.
Using heuristic matching algorithms instead of UUIDs, these two drawbacks may be
avoided, because the characteristics of the model elements are used for establishing
model element correspondences. However, such heuristics may lead to imprecision of
the match result causing other major drawbacks in certain versioning scenarios.

To combine the advantages of both approaches, i.e., UUIDs and natural model ele-
ment characteristics, we present an orthogonal lightweight extension to generic model
versioning systems for enabling the detection of an important subset of language-
specific merge issues. Therefore, users may enhance the versioning system’s capa-
bilities by specifying so-called signifiers, which describe the combination of specific
features of a model element type that are paramountly decisive for the meaning of its
instances. Instead of using artificial UUIDs only, signifiers are applied to explicate and
regard the natural identifier of a model element to eliminate the two aforementioned
shortcomings of pure UUID-based approaches.

In this paper, we introduce the notion of signifiers and their usage in model ver-
sioning to deal with an important subset of language-specific merge issues. In par-
ticular, we show how signifiers can be realized based on the Epsilon Comparison
Language [Kol09, KRP11] and demonstrate their integration in the model versioning
process in order to achieve merged models of a superior quality. We demonstrate the
usefulness of our approach by showcasing how the versioning support for the modeling
language Ecore [SBPM08] is improved and discuss our experiences with our proto-
typical implementation of the signifier-based versioning mechanisms, which has been
integrated in the model versioning system AMOR1 [BKS+10].

The remainder of this paper is structured as follows. In Section 2, we present the
state of the art in model versioning and introduce a versioning scenario in Section 3,
which serves as a running example throughout the paper. The notion of signifiers
and how they are specified is discussed in Section 4. In Section 5, we introduce the
integration of signifiers in the model versioning process. Subsequently, we present a
case-based evaluation and a critical discussion of the approach in Section 6, before we
conclude the paper with an outlook on future work in Section 7.

1http://www.modelversioning.org

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.modelversioning.org
http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 3

2 State of the Art

Existing model versioning systems may be categorized based on two orthogonal di-
mensions. First, they differ regarding their approach to obtain the changes applied
concurrently to the common ancestor version: the changes may be either directly
recorded in the modeling editor on-the-fly or obtained using model comparison after-
wards. Second, model versioning systems may either be tailored to a certain modeling
language or they are generic; that is, the degree to which they use generic algorithms
that exploit reflection mechanisms to access the models under consideration. Thereby,
the model versioning system is independent of the respective modeling language. In
the following, we discuss these two dimensions in more detail.

2.1 Change Recording versus Model Comparison

In the context of model versioning, obtaining the changes that have been applied
between two succeeding versions of a model is a crucial prerequisite for comput-
ing conflicts among the identified changes and creating a merged model. The most
straightforward way to obtain the applied changes is to record them as they are per-
formed in the modeling editor. This technique is often referred to as operation-based
versioning [LvO92] and is used in the model versioning systems CoObRA [SZN04],
Oda & Saeki [OS05], and EMFStore [KHWH10]. Obviously, such approaches depend
heavily on the modeling editor that is used by developers to create and modify the
models, because the editor has to capture and provide all occurring edit events in a
processable format. Nevertheless, change tracking allows for very precise change logs.

An alternative to change recording is to obtain the changes using model compar-
ison approaches. Such approaches, which are often referred to as state-based version-
ing, do not record the changes directly, but compute them from the original and two
revised states of a model. Model comparison is applied by several model versioning
systems, such as proposed by Alanen & Porres [AP03], Mehra et al.[MGH05], Oliveira
et al. [OMW05, MCPW08], EMF Compare [BP08], and Gerth et al. [GKLE10].

Model comparison is usually realized in two phases, a matching phase and a differ-
encing phase. The matching phase aims at establishing one-to-one correspondences
between model elements in the original model and the revised models. Based on the
established match, the differencing phase computes the actual differences (i.e., the
changes) between all corresponding model elements. Whereas the differencing phase
is very similar from a conceptual point of view among all approaches, the matching
phase differs concerning the used match function. The match function may either rely
on artificial UUIDs that are attached to each model element, or the match function
adopts similarity-based heuristics to establish the correspondences among the model
elements (cf. [Kol09] for a survey on model matching). UUID-based model matching
is used by Alanen & Porres [AP03], Mehra et al.[MGH05], Murta et al. [MCPW08],
and Gerth et al. [GKLE10]. EMF Compare [BP08] and the approach by Rivera &
Vallecillo [RV08] allow to use either UUID-based or similarity-based matching. There
are several other tools that focus on similarity-based model differencing only, such as
UMLDiff [XS05], DSMDiff [LGJ07], and SiDiff [SG08].

The accuracy of the model matching technique has a direct impact on the accuracy
of the model difference. For instance, if an updated model element in the revised
model could not be matched with its corresponding original model element, the model
comparison reports that the model element has been deleted instead of reporting the
update. Thus, most of the model versioning tools that are based on model comparison

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

4 · Langer et al.

use UUIDs to allow for finding corresponding model elements, even if the model
element has been changed significantly in the course of a revision. As we will see
later, this approach also has major drawbacks in several model versioning scenarios.

2.2 Generic versus Language-specific Model versioning

Existing approaches for model versioning are either designed to work independently
of the modeling language (i.e., they are generic) or they are tailored to a specific
modeling language.

Most of the existing generic model versioning systems make use of the reflec-
tion mechanisms of the underlying metamodeling framework (e.g., Eclipse Modeling
Framework (EMF) [SBPM08]). Thus, all modeling languages defined by the un-
derlying metamodeling framework are handled uniformly. Such generic versioning
systems have been proposed by Mehra et al. [MGH05], Oda & Saeki [OS05], Murta
et al. [MCPW08], EMF Compare [BP08], and EMFStore [KHWH10].

The major drawback of generic model versioning systems is that they neglect the
specifics of the modeling language to which the models under version control conform.
In Section 3, we illustrate a versioning scenario in which language-specific knowledge
helps significantly to achieve a merge result of higher quality.

Besides generic model versioning systems, other approaches have been proposed,
which are tailored especially for a specific modeling language. The specifics of a
modeling language is encoded across all phases of the merge process in order to
improve the accuracy of the change and conflict detection, as well as the quality
of the merge result. Thereby, language-specific changes and conflicts may be detected
and dedicated merge rules may be applied. Language-specific versioning systems have
been presented by Schneider et al. [SZN04] and Gerth et al. [GKLE10]. However, such
systems are very inflexible, because users have to employ their own versioning system
for each modeling language they use.

Another idea to address language-specific conflicts has been presented by Cicchetti
et al. [CDRP08]. Using their approach, conflicts can be specified manually in terms
of conflict patterns. These conflict patterns are represented by difference elements,
which are reported as conflict whenever found in the combination of two difference
models. To this end, a hand-crafted set of language-specific conflict patterns can be
established to create a dedicated conflict detection system. Thereby, the realization
of a customizable conflict detection component is possible. Their approach also allows
to specify reconciliation strategies to specific conflict patterns. It seems to be a great
deal of work to establish a complete set of conflict patterns for a specific language,
as all potentially conflicting changes have to be specified explicitly; nevertheless, a
highly customized conflict detection tool can be achieved in the end.

To combine the advantages of generic and language-specific model versioning sys-
tems, we recently developed the adaptable model versioning system AMOR [BKS+10].
AMOR offers generic versioning capabilities out-of-the-box, but it is adaptable to en-
hance the versioning support for a specific modeling language. Thereby, developers
are empowered to balance flexibly between reasonable adaptation efforts and the re-
quired level for versioning support. In the remainder of this paper, we present one
particular adaptation point of AMOR. The general approach presented in the follow-
ing, however, is not limited to be used within AMOR, as it can be integrated easily
with any other model versioning system.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 5

3 Motivating Example

In this section, we discuss an excerpt of a model versioning scenario (cf. Figure 1)
that motivated us to perform the work presented in this paper. In the original version
Vo, there is an Ecore model consisting of three classes, namely Developer, Manager,
and BugReport. The class Manager contains a reference named createdReports, which
refers to the class BugReport. The gray circles in Figure 1 indicate the UUIDs of the
respective model elements; e.g., the class Developer has the UUID c1.

This original version is modified concurrently by two developers. Developer 1 per-
forms the modification m1 to obtain the revised version Vr1 and developer 2 performs
m2 leading to Vr2.

Developer 1 addresses the requirement that instances of both the class Manager
and the class Developer should be able to refer to bug reports using the reference creat-
edReports. Therefore, she moves the reference createdReports from the class Manager
to Developer and specifies the class Developer to be the superclass of Manager. Addi-
tionally, she adds a new reference called assignee with a multiplicity of 1..1, as well
as an attribute named id to the class BugReport.

Developer 2 is concerned with the task of allowing instances of the classManager to
refer to all developers that are managed by the respective manager. Thus, a reference
between Manager and Developer is required. As frequently happening in practice,
she copies the existing reference createdReports instead of creating a new reference,
because the copied reference is very similar to the reference she intends to create. As it
is not easily possible to distinguish the copies from each other in the modeling editor,
she modifies the original reference having the UUID r1 according to her needs instead
of changing the created copy having the UUID r3. More precisely, she sets the target
of the original reference r1 to Developer and changes its name to managedDevelopers.
Besides these changes, she renames the class BugReport to IssueReport and also adds
a new reference named assignee, which links IssueReport and Developer.

Let us now consider the merge results of present state-of-the-art model version-
ing systems for the aforementioned versioning scenario. As discussed in the previ-
ous section, we may distinguish between operation-based approaches and state-based
approaches. State-based approaches may further be categorized according to their
approach for matching two revisions of a model; that is, the match is either estab-
lished based on synthetic UUIDs or on similarity-based heuristics. The merge result

Vo

Manager

Developer BugReport

createdReports r1

c1

c2

c3

0..*

Vm

Manager

Developer BugReport
assignee

createdReports

managed

Developers

IssueReport

assignee id : EString

0..*

0..1

1..1

0..*

Vm

Manager

Developer IssueReport

managed

Developers

assignee

assignee

id : EString

r1 c1

c2

c3

0..* 1..1

0..1

Vm

Manager

Developer IssueReport

managed

Developers

assignee

id : EString
createdReports

?..1

0..* 0..*

Manager

Developer IssueReport

managed

Developers

assignee

r1

c1

c2

c3

0..1Vr2

m2m1

0..*

createdReports

0..*

r3

createdReports 0..*r3

Vr1

Manager

Developer BugReport
createdReports

assignee

id : EString
r1

c1

c2

c3

1..1

0..*

r2

r2

r4

r4

UUID-based heuristics-based

optimal

Figure 1 – Motivating Model Versioning Example

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

6 · Langer et al.

Vm

Manager

Developer
assignee

createdReports

managed

Developers

assignee

0..*

0..1

1..1

Vm

Manager

Developer IssueReport

managed

Developers

assignee

assignee

id : EString

r1 c1

c2

c3

0..* 1..1

0..1

Manager

managed

Developers

createdReports

createdReports 0..*r3

Manager

r2

r4

UUID-based heuristics-based

(a) Merged Version using Operation-based or
state-based Merge using UUIDs

Vo

Manager

Developer BugReport

createdReports r1

c1

c2

c3

0..*

Vm

Manager

Developer BugReport
assignee

createdReports

managed

Developers

IssueReport

assignee id : EString

0..*

0..1

1..1

0..*

Vm

Manager

Developer IssueReport

managed

Developers

assignee

assignee

id : EString

r1 c1

c2

c3

0..* 1..1

0..1

Vm

Manager

Developer IssueReport

managed

Developers

assignee

id : EString
createdReports

?..1

0..* 0..*

Manager

Developer IssueReport

managed

Developers

assignee

r1

c1

c2

c3

0..1Vr2

m2m1

0..*

createdReports

0..*

r3

createdReports 0..*r3

Vr1

Manager

Developer BugReport
createdReports

assignee

id : EString
r1

c1

c2

c3

1..1

0..*

r2

r2

r4

r4

UUID-based heuristics-based

optimal

(b) Merged Version using State-based Merge with-
out UUIDs

Figure 2 – Merge Result of Current Model Versioning Systems

mainly depends on whether or not the model versioning system captures and exploits
synthetic identities of model elements during the merge construction; this is true for
operation-based approaches (because they use direct object references), as well as for
state-based approaches working with UUIDs. It is not the case, however, for state-
based approaches using similarity-based heuristics for model matching. Hence, we
investigate two different merge results for our versioning scenario in the following:
the one illustrates the result when synthetic identities of model elements are used
(cf. Figure 2a), and the other one arises from using similarity-based heuristics (cf.
Figure 2b). Please note that these results may differ slightly from the actual results
computed by the respective model versioning systems (e.g., due to different heuristic
match functions). However, in this context, we focus on the results to be expected
from the different underlying concepts of UUID-based and heuristics-based merging
approaches.

Merge Result based on UUIDs. When merging two revisions using an operation-
based or UUID-based merge approach, the identities of the model elements are pre-
served, irrespectively of how they have been modified in both revisions. When apply-
ing such a merge to our example depicted in Figure 1, no conflict is reported, because
no overlapping changes have been applied in m1 and m2. Thus, all changes of both
revisions can be unified, which leads to the merged model Vm in Figure 2a. However,
three issues are introduced in the merged model.

The first issue concerns the reference with the UUID r1. According to the mod-
ifications in m1, this reference has been moved from the class Manager to Developer.
However, the same reference has been subject to change also in m2. In particular, it
has been renamed from createdReports to managedDevelopers and its target has been
changed from BugReport to Developer. As a result of applying all changes of m1 and
m2 to this reference, it now has been turned into a reflexive reference in the class
Developer. Obviously, this is neither what developer 1 wanted, nor what developer 2
intended the reference to express. However, no conflict is reported, because both
changes affected different properties of the reference and, as a result, they can be ap-
plied without interfering with each other. A generic merge approach is not aware that
a concurrent change of a reference’s source and target might obfuscate the intended
meaning of the reference.

The second issue arises from the concurrent insertion of the equally named refer-
ence called assignee. When applying all changes of both modifications m1 and m2,
the reference with the UUIDs r2 and r4 are both added to the class IssueReport.
Thereby, the merged model exhibits an unfavorable redundancy, as well as a vali-

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 7

dation error: the modeling language Ecore forbids equally named references in the
same class, because this would lead to a compile error in the generated Java code. A
generic merge approach is designed to be agnostic of the respective modeling language
and, as a consequence, is not aware of redundancies and language-specific validation
constraints. This is even more aggravated by the fact that the two model elements
are not entirely equal: the lower bound of the references are different.

Finally, as a consequence of the flawed merge of the reference with the UUID r1,
also the reference createdReports with the UUID r3, which is the copy of the original
reference named createdReports created by developer 2, contradicts the intention of
developer 1. Developer 1 intended to move this reference from Manager to Developer;
and developer 2 did not actually intend to change the reference actively. In the
merged model, however, the reference still resides in the class Manager instead of in
the class Developer, because the merge approach assumes that the reference has been
newly created by developer 2 in the class Manager since the reference’s UUID does
not match with any UUID in the original model.

On the upside of the UUID-based merge, no conflict has to be resolved and all
changes could be merged easily because of the fine-grained and precise change detec-
tion of such approaches. Even the class with the UUID c3, which has been renamed
in one revision, used as a reference target of the new reference createdReports, and
extended with an additional attribute (named id) could be merged so that all original
changes applied to this class are reflected.

Merge result based on heuristics. Please note that the merge result may vary
based on the applied heuristics of the respective approach. In the following, we
discuss the most likely results that are obtained from using state-of-the-art tools, such
as EMF Compare [BP08], but also discuss possible variations of the results coming
from different heuristics. A potential merge result that is obtained from applying a
heuristics-based merge approach is depicted in Figure 2b. As the identity of model
elements is not preserved based on synthetic UUIDs or object references, the issue
concerning the reference createdReports, which has been moved to the class Developer
in m1 and renamed to managedDevelopers in m2, does not occur. Heuristics-based
merge approaches are usually not able to match the reference createdReports in Vo with
the reference managedDevelopers in Vr2. Instead, the reference in Vo is matched with
the equally named corresponding references in Vr1 and Vr2. Thus, the merge algorithm
assumes that the reference has not been changed in the course of the modification m2

and that it has been moved to the class Developer in Vr1. Consequently, the reference
is also moved to Developer in the merged version, which is an improvement over the
situation with UUID-based merge approaches. However, we get other severe merge
issues with heuristics-based approaches.

First, the merge most likely reports several “unnecessary” conflicts (i.e., false-
positive conflicts), because of the class BugReport. As this class has been renamed
in Vr2, the original version of this class in Vo could probably not be matched with
the renamed version of it in Vr2. Thus, the algorithm assumes that the class has
been deleted in Vr2 and a new class named IssueReport has been added. However, the
class BugReport has been modified in the opposite revision Vr1; as a result, a conflict
is raised because the merge algorithm cannot apply both the deletion of BugReport
and the insertion of the attribute id, the insertion of the reference assignee, as well
as setting the target of createdReports to the deleted class BugReport. Second, the
redundancy concerning the reference assignee, which has been added concurrently,
still remains, because currently existing approaches do not merge concurrently added

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

8 · Langer et al.

Vo

Manager

Developer BugReport

createdReports r1

c1

c2

c3

0..*

Vm

Manager

Developer BugReport
assignee

createdReports

managed

Developers

IssueReport

assignee id : EString

0..*

0..1

1..1

0..*

Vm

Manager

Developer IssueReport

managed

Developers

assignee

assignee

id : EString

r1 c1

c2

c3

0..* 1..1

0..1

Vm

Manager

Developer IssueReport

managed

Developers

assignee

id : EString
createdReports

?..1

0..* 0..*

Manager

Developer IssueReport

managed

Developers

assignee

r1

c1

c2

c3

0..1Vr2

m2m1

0..*

createdReports

0..*

r3

createdReports 0..*r3

Vr1

Manager

Developer BugReport
createdReports

assignee

id : EString
r1

c1

c2

c3

1..1

0..*

r2

r2

r4

r4

UUID-based heuristics-based

optimal

Figure 3 – Optimal Merge

model elements, irrespectively of whether they would match according to the applied
heuristics. The matching algorithm might also miss matching the reference create-
dReports in Vo with the moved reference in Vr1, depending on the applied heuristics;
in this case the result would even be worse, because we would have another reference
called createdReports in the class Manager referring to IssueReport.

Optimal merge result. One potential merged model, which better reflects the
intentions of both developers, is depicted in Figure 3.

In this merged model Vm, the original reference createdReports has been split: one
reference reflects the intention of developer 1 (i.e., the reference createdReports be-
tween Developer and IssueReport) and the other one reflects the intention of developer 2
(i.e., the reference managedDeveloper between Manager and Developer). Admittedly,
this is only one possible way of resolving this issue. In any case, the developers should
be confronted with a warning to point their attention towards their indirectly con-
tradicting changes regarding the meaning of the reference that has been concurrently
changed. Unfortunately, current model versioning systems are not able to identify
such merge issues, because they are unaware of the fact that a concurrent change of a
reference’s source and target may obfuscate its meaning and that concurrent changes
of such meaningful properties of a model element should be treated specifically.

The duplicate reference assignee has been merged into one reference to avoid the
redundancy. However, the references are not entirely equal (cf. lower bound of as-
signee). Thus, an ideal model versioning system should raise a warning for indicating
the need for a decision concerning the lower bound of the reference in the merged
model. Current model versioning systems are not capable of identifying such redun-
dancies in the merged model, especially if these systems follow a generic approach
and if the redundant model elements are not entirely equal. To allow for detecting
such unfavorable redundancies, additional information is needed to enable a model
versioning system to decide whether two model elements are redundant or not. In
our example, it would have to be aware of the fact that two references with the same
name and the same source are redundant.

Discussion. With this example, we illustrated the advantages and disadvantages of
UUID-based and heuristics-based merging and showcased the insufficiencies of both.
In general, UUID-based merging is more precise and leads to less conflicts, as well as a
better merge result. However, it might also lead to undetected obfuscated meanings of
model elements. Such a scenario usually occurs if the meaning of a model element has
been concurrently modified in a contradicting way, as was the case with the reference
with the UUID r1 in our example discussed above. Furthermore, UUID-based merging
fails to detect overlapping meaning of different model elements.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 9

Heuristics-based merge approaches do not exhibit this shortcoming. If a model
element is changed significantly by two developers in the course of two concurrent
revisions, the model element is implicitly split, because it could probably not be
matched anymore based on heuristics. Thus, the model versioning system treats the
concurrently modified model element as two independently created model elements.
As a result, the concurrent changes are not merged into one model element so that the
meaning of the original model element is not obfuscated during the merge. However, if
a model element could not be matched due to significant changes, the model versioning
system assumes that the model element has been deleted. As we have seen in our
example, this might again lead to false-positive conflicts as was the case with the
class BugReport. Moreover, concurrently added yet very similar model elements are
not merged into one model element in the final version by current approaches. Thus,
irrespective of the applied heuristics, we would still end up with redundancies in such
scenarios as it happened with the reference assignee.

Thus, we argue for an approach that combines the advantages of both techniques.
More precisely, we advocate the use of artificial UUIDs to achieve a precise match, but
also aim at treating the properties carrying the superior meaning of model elements
specifically during the merge.

4 Signifiers of Model Elements

The goal of the research described in this paper is to extend generic model versioning
systems so that they are capable of detecting inadvertently obfuscated and unexpect-
edly overlapping meanings of model elements as illustrated in the previous section.
Therefore, we have to find a way of specifying the meaning of model elements first.

4.1 Meaning of Model Elements

Irrespective of whether a model element is a linguistic or an ontological instance of a
metaclass [AK03, Küh06], it always represents a referent2. Hence, we may define the
meaning of a model element as the relationship between the model element and its
represented referent. This relationship, however, is imputed and potentially ambigu-
ous; it is established through a thought of the referent in the subjective mind of the
person perceiving the model element. For clarifying the relationship between a model
element, the thought of the referent, and the referent itself, we adopt the idea of the
semiotic triangle [OR23], which was designed originally to describe the relationships
among thoughts, words (of a natural language), and things.

Thought

Model
element Referent

represents

Figure 4 – Semiotic Triangle of Model Elements

2According to Merriam Webster, referent is defined as the thing that a symbol (as a word or a
sign) stands for.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

10 · Langer et al.

Referente1 ∈ Vr1 e1 ∈ Vr2∧

Developer 1's
thought

Developer 2's
thought

Figure 5 – Semiotic Triangle in Multi-user Settings: Ideal Case

The adoption of the semiotic triangle for the meaning of model elements is depicted
in Figure 4. The corners of this triangle are constituted by a referent, the developer’s
thought of this referent, and a model element standing for the referent. Whenever
a developer intends to model a thing (i.e., the referent), it evokes the developer’s
thought, which refers to the referent in the developers mind. By symbolizing this
thought using a concept of the respective modeling language, the developer creates a
model element in order to represent the referent (cf. Figure 4).

In the context of model versioning, the same model may now be modified concur-
rently. Thus, a model element created by one developer evokes a thought of another
developer. In an ideal case, this thought refers to the same referent; that is, the model
element represents the same thing for both developers (cf. Figure 5). Thus, the de-
velopers would usually not modify the model element contradictorily concerning its
intended meaning. However, there are two problematic cases in opposition to this
ideal case, which are depicted in Figure 6.

Thought

Model
element Referent

represents

Developer 1's
thought

e1 ∈ Vr1

Referent

Developer 2's
thought

Developer 1's
thought

Developer 2's
thought

==? <>?

e2 ∈ Vr2

e1 ∈ Vr1 e1 ∈ Vr2∧

Referent

Referent’

(a) Contradicting Change of a Model Element’s
Meaning

Thought

Model
element Referent

represents

Developer 1's
thought

e1 ∈ Vr1

Referent

Developer 2's
thought

Developer 1's
thought

Developer 2's
thought

==? <>?

e2 ∈ Vr2

e1 ∈ Vr1 e1 ∈ Vr2∧

Referent

Referent’

(b) Overlapping Meaning of Different
Model Elements

Figure 6 – Diverging Semiotic Triangles

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 11

Contradicting change of a model element’s meaning. The first problematic
case concerns the concurrent change of the meaning of the same model element (cf.
Figure 6a). A model element e1 is affected in the course of two concurrent revisions Vr1

and Vr2. Assuming the synthetic identity in terms of a UUID or object reference of this
element is preserved, the model element e1 is still part of both revised models Vr1 and
Vr2. In the concurrent revisions, however, the same model element e1 now represents
different referents according to the thoughts of the involved developers. To detect such
scenarios, a model versioning system would have to be aware of which concurrently
changed characteristics of a model element cause the represented referents to diverge
and what differences between the model element e1 in Vr1 and the model element
e1 in Vr2 make up the diverging interpretations of the model elements (cf. <>? in
Figure 6a). In Section 3, we illustrated such a scenario with the concurrent change of
the reference createdReports with the UUID r1.

Overlapping meaning of different model elements. We may also encounter
the opposite of the previous case. More precisely, an issue arises if two distinct model
elements, e1 and e2, represent the same referent in the revised versions Vr1 and
Vr2, respectively (cf. Figure 6b). In such a case, we end up with an unfavorable
redundancy in the merged model, if the overlapping meaning remains undetected.
As opposed to the previous case, a model versioning system would have to be aware
of which characteristics of two model elements cause an overlapping interpretation
(cf. ==? in Figure 6b). This seems to be possible without additional knowledge on
the meaning of model elements, if both model elements are entirely equal. However,
model elements having different characteristics may still represent the same referent.
Moreover, not only the model element itself, but also its context, is an important factor
for conceiving its meaning, which again impedes the detection of such a scenario. A
simple example of such a scenario has been demonstrated using the reference assignee
in Section 3.

4.2 Signifiers of Model Elements

The knowledge on which characteristics of a model element are paramountly decisive
for its meaning is certainly specific to the modeling language the model element con-
forms to. Thus, for enabling generic model versioning systems to detect concurrent
changes of the meaning of the same model element or the overlapping meaning of
distinct model elements, we have to specify the characteristics of model elements that
are of major importance for its meaning. Therefore, we adopt the notion of signs
and signifiers in linguistics [DS16] and introduce the term signifier to refer to charac-
teristics in terms of one or more intrinsic or extrinsic properties of a model element
that are paramountly decisive for conveying its meaning. Thus, signifiers explicate
the “shape” of a model element pointing primarily to the represented referent. For
instance, the meaning of a reference in Ecore is mainly conveyed by its containing
class, its name, and its target; thus, the signifier of a reference in Ecore is a combi-
nation of its containing class, its name, and its target. The properties constituting
the signifier of a model element may be thought of as the natural identifier of the
model element. Please note that a model element’s signifier does not consist only of
one intrinsic property of the model element; it usually is a combination of multiple
properties, which may also come from its context, such as its child model elements,
its container, or cross-referenced model elements. As these properties constituting

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

12 · Langer et al.

the signifier are particularly important for the meaning of a model element, we argue
that they should be treated specifically when merging concurrent changes of a model.

Specification of signifiers. A signifier specification for a model element type has
to state which features have to be considered for computing a model element’s signi-
fier and how to combine the values of these features. Ideally, this specification should
be directly applicable to examine whether two model elements share the same signi-
fier or not. One powerful technology that fulfills these requirements is the Epsilon
Comparison Language3 (ECL) [Kol09, KRP11]. Originally designed for model match-
ing, ECL provides a domain-specific language for developing language-specific model
comparison rules. As ECL is based on the Epsilon Object Language [KRP11], also im-
perative programming statements, as well as plain Java libraries may be incorporated
into ECL rules. Thus, we decided to use ECL as the base technology for specifying
signifiers and detecting signifier-based merge issues. Please note, however, that ECL
is only one possibility to realize signifiers and their usage in model versioning. Before
we proceed with presenting our approach for detecting signifier-based merge issues,
we give a brief overview on ECL in general and discuss how ECL can be used for
specifying signifiers.

1 // Signifier specification for Ecore references
2 rule EReference2EReference
3 match left : Left!EReference
4 with right : Right!EReference {
5 // two references, referred to as left and right, share the same signifier if ...
6 compare :
7 // their names are equivalent,
8 left.name = right.name and
9 // their sources are equivalent,

10 left.eContainer.matches(right.eContainer) and
11 // and their targets are equivalent
12 left.eType.matches(right.eType)
13 }
14 ...

Listing 1 – Example of a Signifier Specification for EReference

In general, each ECL rule declares a name and two parameters, let us call them
left and right, that specify the types of elements the rule can compare [KRP11].
Additionally, such a rule contains a compare block specifying declaratively the match
condition indicating whether or not the two elements should correspond to each other.
Within the compare block, users may define the actual comparison logic by accessing
feature values of the two elements, applying comparison operators to these values, or
by arbitrary expressions returning a boolean value. Several expressions may again be
combined using logical operators (cf. [Kol09, KRP11] for more information on ECL).

For specifying the signifier of a model element type, we may use one or more
ECL rules, which compare instances of the respective type with each other. If the
rule indicates a match for two model elements (i.e., the compare block is fulfilled),
the model elements share the same signifier, and consequently, represent the same
referent assumingly.

An example of such an ECL rule is given in Listing 1, which specifies the signifier
of Ecore references. As a signifier specification rule compares two model elements of
the same type with each other, the head of the rule is specified for Left!EReference
to be matched with Right!EReference in lines 3 and 4 of Listing 1. Thereby, the
rule is specified to be applicable to instances of EReference from the model Left

3http://www.eclipse.org/gmt/epsilon/doc/ecl

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.eclipse.org/gmt/epsilon/doc/ecl
http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 13

and instances of EReference from the model Right. Moreover, the two instances are
assigned to the local variables left and right, respectively, which may now be used in
the compare block of the rule. In this compare block, a signifier specification typically
contains expressions comparing the natural identifiers, such as the name of a reference
(cf. line 8 in Listing 1). However, in several cases, multiple features of a model element
convey its meaning in combination. Therefore, we may combine multiple expressions,
each comparing one feature, in terms of conjunctions in an ECL rule. This has
been done to further include the reference source and the reference target into the
signifier computation of Ecore references in lines 10 and line 12, respectively. In Ecore,
the source of a reference is constituted by its containing class (i.e., eContainer)
and the target is represented by the feature eType. Please note that we use an
operation called matches for comparing the source and target class of the reference,
in contrast to the equals operator (=) that we have used for the reference name.
Whereas comparison operators, such as = and >, compare the specified values directly,
the matches operation, which is built into ECL natively, delegates the comparison to
another comparison rule. Besides the advantages of decomposing the comparison logic
into multiple rules, using the matches operation is also necessary in this case, because
the compared model elements reside in different models, Left and Right. Thus, the
expression left.eContainer = right.eContainer would never be true unless the
container of left and right is the exact same model element. Consequently, the
common comparison operators (e.g., =, >, etc.) should only be used for simple data
types.

5 Detection of Merge Issues based on Signifiers

In this section, we present our approach for detecting language-specific merge issues
based on signifiers. This approach is intended as an orthogonal extension for generic
model versioning systems. Thus, we first discuss the applied overall versioning pro-
cess to set the context to subsequently introduce two signifier-based conflict detection
mechanisms: one for revealing contradicting changes of the meaning of one model
element and one for detecting an unexpected overlapping meaning of two model ele-
ments.

5.1 Versioning Process

To clarify the context of the proposed signifier-based merge issue detection, we depict
an overview of the model versioning process of AMOR in Figure 7. Please note that
the presented approach is not limited to be used within AMOR. On the contrary, it
may be integrated with any other model versioning system.

The input of the versioning process are three models: the common original model
Vo and two concurrently changed models, Vr1 and Vr2. Thus, Vr1 is the result of the
first modification m1 performed by developer 1 and Vr2 is the result of m2 performed
by developer 2.

As the AMOR versioning process applies state-based model comparison, the first
step is model matching. In this step, the revised models are each matched with the
common original model Vo. From that, two match models, called MVo,Vr1 and MVo,Vr2 ,
are obtained, which mark the corresponding model elements among the original model
Vo and the revised models Vr1 and Vr2, respectively.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

14 · Langer et al.

Vo

Vr1

Vr2

m1

m2

Match
Model
MVo,Vr1

Match
Model
MVo,Vr2

Model
Matching

Diff
Model
DVo,Vr1

Diff
Model
DVo,Vr2

Model
Differencing

Conflict
Model
Cm1,m2

Conflict
Detection

Signifier
Specifications

Resolution
& Merge

Vm
Signifier-based

Merge Issue Detection

Conflict
Model
Cm1,m2

Figure 7 – Signifier-enhanced Versioning Process

Based on these match models, in the next step, the actual differences between the
original version and the revised versions are computed. More precisely, for each pair of
corresponding model elements, a fine-grained comparison is performed. If differences
between the two model elements are encountered, a description of the difference is
added to the respective difference report, called DVo,Vr1

and DVo,Vr2
. Alternatively,

model versioning systems may apply change recording [HK10, LvO92] to establish the
difference models.

The two difference models are the input of the conflict detection, which analyzes
the concurrently applied changes in DVo,Vr1

and DVo,Vr2
to compute conflicting pairs

among them. A pair of concurrent changes is marked as conflicting if they do not
commute (also referred to as update-update conflict) or if one change cannot be applied
after the opposite change has been applied (e.g., a delete-update conflict). Change-
based conflict detection is, however, not the focus of this paper. For more information
on such conflict detection mechanisms, we kindly refer to [AP03, KHWH10, TELW12,
Wes10]. All detected conflicts are added to a conflict model, called Cm1,m2

in Figure 7,
which is passed on to the next step.

Before the conflicts in the conflict model are resolved and a merged version of both
revisions is created, we integrate the signifier-based merge issue detection proposed in
this paper. Signifiers are specific to the modeling language of the models under version
control. Thus, this step in the versioning process relies on pre-specified signifier
specifications in terms of ECL rules, which have to be created for each modeling
language being used. Based on these specifications, the versioning system may reveal
signifier-based merge issues as discussed in the remainder of this section. If signifier-
based merge issues are detected for a certain versioning scenario, a description of the
respective issue is added to the conflict model.

Finally, all raised conflicts are resolved by the developers so that a merged version
of the model, called Vm in Figure 7, can be created in the last step.

Improving model matching using signifiers. The primary focus of this paper is
the detection of signifier-based merge issues and how such raised issues may improve
the final merge result. However, the signifier specifications may also be used to
improve the quality of the match models and, as a result, the accuracy of the model
differencing, as discussed in the following.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 15

Although UUID-based matching is probably the most efficient and straightforward
technique for obtaining the actual model changes, there are some drawbacks of this
approach. In particular, if model elements loose their synthetic identity (constituted
by the UUID or by an object reference), it is assumed in the model differencing step
that the model element has been deleted and a new model element has been added
in the considered revision. Thus, concurrent changes to the same model element in a
concurrent revision cannot be merged and will always cause a conflict (i.e., a delete-
update conflict). Unfortunately, such a scenario occurs quite frequently; not only
because the developer deletes and re-creates the same model element subsequently,
but also because of improperly implemented copy & paste or move actions in certain
modeling editors, which fail to retain the UUID of the involved model element (e.g.,
in the tree-based Ecore editor).

To address these drawbacks, we apply a two-step matching process: first, a UUID-
based matching is applied to obtain a base match, which is improved subsequently by
applying signifier match rules to the pairs of model elements that could not be matched
based on UUIDs. Thereby, the advantages of UUID-based matching are retained
and its drawbacks are reduced significantly. As the comparatively slow signifier-
based matching is kept at a minimum with this hybrid approach, the execution time
of the model matching phase should still be reasonable (please see Section 6 for a
performance analysis).

5.2 Integrating Match Models in Signifier Specifications

After the conflicts among the detected differences have been revealed, we may start
with detecting signifier-based merge issues. Therefore, we apply the signifier specifica-
tions to compute the signifiers of certain model elements and check for contradicting
signifier changes of the same model elements, as well as for equal signifiers of differ-
ent model elements. Whether two model elements are considered to be the same or
different has to be determined based on the match model that has been computed in
a previous step of the versioning process.

However, ECL does not provide a method to access previously computed match
models from ECL rules directly. For comparing referenced model elements from within
a rule, ECL only provides the built-in operation called matches (as used in Listing 1).
The goal of this operation is to refrain from duplicating the comparison logic and
to de-couple match rules from each other. When this operation is called, the ECL
engine searches for an appropriate match rule based on the referenced model elements’
type, applies the found match rule, and returns the resulting boolean value. If no
appropriate match rule is found, it returns false.

Whereas this functionality is perfectly suitable for model matching in general, it
does not allow us to check whether two model elements are the same according to the
match model computed in the previous step of the versioning process. Let us consider
the signifier specification for EReference in Listing 1 as an example. The signifier of
Ecore references is computed based on a reference’s name, its source, and its target.
More precisely, if two references have the same name, the same source class, and the
same target class, they share a common signifier. Thus, the signifier specification
should return true if the source class of a reference in the original model Vo, for
instance, is considered to be the same source class in the revised model Vr1; that is,
if there is a correspondence between the source class in Vo and in Vr1 in the match
model MVo,Vr1

(cf. Figure 7). In the signifier specification for EReference in Listing 1,
the operation matches is applied to compare the source class (and the target class) of

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

16 · Langer et al.

a reference. However, the comparison is delegated to other match rules, which are in
fact again signifier specifications for the type EClass. As a result, this rule compares
the signifiers of the references’ source and target, instead of checking whether the
references actually have the same source and target classes according to the match
model. Thus, a way is needed to access the correspondences of the respective match
model computed in the preceding model matching step of the versioning process (cf.
Figure 7) in addition to the ECL operation matches.

1 rule EReference2EReference
2 match left : Left!EReference
3 with right : Right!EReference {
4 compare :
5 left.name = right.name and
6 left.eContainer.prevMatches(right.eContainer) and // prevMatches() instead of matches()
7 left.eType.prevMatches(right.eType) // prevMatches() instead of matches()
8 }
9

10 // Substitute operation for matches() to query the match model of the
11 // preceding match instead of invoking another comparison rule.
12 @cached
13 operation Any prevMatches(opposite : Any) : Boolean {
14 var theMatch := prevMatchTrace.getMatch(self, opposite);
15 if (theMatch <> null) {
16 return theMatch.matching;
17 } else {
18 return false;
19 }
20 }

Listing 2 – Accessing the Match Model from within Signifier Specifications

To allow for accessing the match model of the preceding UUID-based model match-
ing step from ECL match rules, we translate the match model of the first step of the
versioning process into an ECL match trace and add it to the execution context of
ECL with a variable named prevMatchTrace. As a result, this variable is visible
to all signifier specifications and can be used to query the correspondences of model
elements according to the preceding match model. To make the signifier specification
more convenient, we further add an ECL operation called prevMatches to the execu-
tion context, which can be used instead of the operation matches, to examine whether
two model elements correspond to each other. The accordingly adapted signifier spec-
ification for EReference, as well as the added ECL operation prevMatches is given
in Listing 2. As in this adapted signifier specification the operation prevMatches is
employed instead of matches (cf. line 6 and 7 in Listing 2), the match model of the
preceding model matching step is now used instead of other match rules to examine
whether the references’ source and the target are the same (and not only share the
same signifier). Thereby, we allow to isolate the comparison of signifiers from other
signifier specifications. Nevertheless, as the operation matches is still available, users
may still de-couple the comparison logics across several match rules if needed.

5.3 Signifier Preprocessing

For detecting merge issues based on signifier specifications, we have to compare the
signifiers of model elements in all three considered versions of a model (Vo, Vr1, and
Vr2) with each other. The computation of signifiers, however, might be rather time-
consuming. To avoid having to compare all model elements with each other, we aim
at keeping the number of signifier comparisons at a minimum. In fact, we only have
to compare the signifiers of model elements if they have been added in the course of a

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 17

MatchTriggerModel MatchTrigger
matchTriggers

*

EStructuralFeature

EClassifier
1

*

ruleName : EString

metaClass

features

* isTriggeredBy

Figure 8 – Match Trigger Metamodel

revision or if they have been subjected to modification such that their signifiers might
have changed. In the context of the versioning process, the information on the applied
changes is available in terms of difference models, which we may exploit to prune the
necessary signifier comparisons. Thus, we apply a preprocessing step, which analyzes
the signifier specifications to reveal and represent explicitly the metamodel features of
a model element type that constitute the respective signifier. Being equipped with this
information, we only have to compare those model elements that have been changed
at those features.

For collecting the information on the metamodel features that are read by the
ECL rules realizing the signifiers, we traverse through the abstract syntax tree (AST)
of each rule. If we reach a node in this tree that corresponds to a feature name of the
modeling language’s metamodel, it is saved as a visited feature for the metamodel type
that is compared by the current rule. If we encounter the built-in operation matches,
we additionally have to keep track of the metamodel features that are visited by the
rule that is indirectly invoked by this operation call. Therefore, we read the argument
that is passed to the matches operation and obtain the argument’s metamodel type.
Then, we search for the corresponding rule that processes the obtained metamodel
type and also save the features that are visited by the obtained rule. Additionally, we
have to regard invocations of user-defined ECL operations and obtain the features of
model elements that are read in the called operations.

The obtained visited features are saved in terms of another model. Therefore,
we introduce the match trigger metamodel depicted in Figure 8. This metamodel
contains a root class called MatchTriggerModel, which contains for each rule in the
signifier specification a dedicated instance of the class MatchTrigger. Match triggers
refer to the EClassifier from the modeling language’s metamodel that is processed by
the current rule and the features that are visited by the current rule for computing the
signifier of the respective EClassifier. As rules may depend on each other in terms of
calls to the operation matches, a match trigger may also be triggered by other match
triggers. For instance, if in the ECL rule for Ecore references the operation matches is
called for the containing Ecore class, the match trigger for the Ecore references refers
to the match trigger for Ecore classes through the reference isTriggeredBy. Thereby,
we know that we have to run the signifier comparison for an Ecore reference either if
its name or the respective features of the containing class have been changed. Please
note that we only represent a conservative estimation of the actual impact an applied
change has on a model element’s signifier, as we do not consider the full semantics
(such as logical conjunctions) of ECL rules.

The usage of match triggers is further illustrated in terms of a small example,
which is depicted in Figure 9. In this figure, we show the match trigger model for
the ECL rule EReference2EReference from the signifier specification in Listing 2. This
ECL rule considers the three features, name, eContainer, and eType, for computing
the signifier of instances of EReference. Accordingly, the corresponding match trigger
model contains one instance of MatchTrigger, which refers to the metamodel class

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

18 · Langer et al.

: MatchTriggerModel

: MatchTrigger

matchTriggers

ruleName = "EReference2EReference"

metaClass features

: EClass
name = "EReference"
…

: EAttribute
name = "name"
…

: EAttribute
name = "name"
…

: EAttribute
name = "name"
…

Match Trigger Model

: FeatureUpdate

Diff Model

Revised Model

feature

: EReference

name = "..."

affectedObject

to be matched

Figure 9 – Example for Match Trigger

EReference and the three features of EReference that are relevant for the signifier
computation. Next to the match trigger model, Figure 9 also shows an excerpt of a
difference model (e.g., DVo,Vr1

), as well as an excerpt of a revised model (e.g., Vr1).
The difference model contains one change in terms of an instance of FeatureUpdate.
This instance describes the applied feature update by referring to the modified ob-
ject in the revised model (cf. reference affectedObject) and the modified feature (cf.
reference feature). As the instance of FeatureUpdate denotes a modification of the
feature name which is also referenced from the match trigger, we may determine that
the signifier of the modified object in the revised model might have been affected by
the feature update and, thus, should trigger the matching process for the modified
object.

5.4 Contradicting Change of a Model Element’s Meaning

Contradicting changes of the meaning of model elements denote scenarios, in which the
signifier of a model element is contradictorily affected in the course of both concurrent
revisions (cf. Figure 6a). As a result, it is most likely that the model element’s
meaning is obfuscated when merging the concurrent changes naively. Therefore, the
developers should be notified in order to review the concurrent contradicting change
of the signifier. An example for such a scenario is discussed in Section 3 with the
concurrent change of the reference createdReports with the UUID r1.

To detect such merge issues, we have to compare the signifiers of the model ele-
ments in the revised models, Vr1 and Vr2, with the signifiers of their corresponding
model elements in the origin model Vo and check whether the signifier has been af-
fected concurrently in both revisions in a contradictory way.

Detecting contradicting signifier changes. In a first step, we select the revision
having the fewest differences according to the respective difference models, DVo,Vr1

and DVo,Vr2 , as we may assume that a revision with less differences also comprises less
signifier changes. Having identified the smaller revision—let us assume it is Vr1 in the
following—, we iterate through all model elements in Vr1 that have been modified in
a way that their signifier might have changed as indicated by the respective match
trigger (cf. Section 5.3). Next, we obtain the corresponding original model element
for the revised element using the match model MVo,Vr1

and apply the signifier spec-
ifications to this pair of model elements in order to examine whether the signifier of
the model element has been changed between Vo and Vr1 (i.e., the ECL rule realizing

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 19

the signifier specification does not indicate a match). For the evaluation of the sig-
nifier specifications, we add the respective match model (in this case MVo,Vr1) to the
prevMatchTrace of the ECL execution context as discussed in Section 5.2.

If the signifier of the model element has been changed between Vo and Vr1, we
check whether the signifier of the same original model element has also been affected in
the opposite revision. Therefore, we select the corresponding revised model element of
the opposite revision Vr2 based on the match model MVo,Vr2

and compare its signifier
with the signifier of the original model element in Vo. Of course, we now integrate the
match model MVo,Vr2 in the variable prevMatchTrace for this signifier evaluation. If
these two model elements do not match according to the signifier specification, we
encounter a concurrent signifier change: the signifier of the original model element is
different from the signifiers of both revised model elements.

In order to check whether the signifier has been changed not only concurrently, but
also contradictorily, we compare the signifiers of the respective revised model elements
from Vr1 and Vr2 with each other. Therefore, we first derive a new match model, called
MVr1,Vr2

, from the two match models, MVo,Vr1
and MVo,Vr2

, which explicates the
correspondences between the revised models, Vr1 and Vr2, directly. This derivation is
straightforward, as we may add a correspondence between the model element er1 ∈ Vr1

and the model element er2 ∈ Vr2 to MVr1,Vr2 , if and only if an original model element
e0 corresponds to er1 according to MVo,Vr1 and the same original model element e0
corresponds to er2 according to MVo,Vr2

. This computed MVr1,Vr2
is integrated in

the ECL execution context using the variable prevMatchTrace for this evaluation.
Next, we evaluate whether the signifier specifications of the respective model element
in Vr1 matches with the signifier of the corresponding model element in Vr2. If their
signifier are again different, a contradicting signifier change is added to the conflict
model Cm1,m2

, which is handed over to the resolution & merge step (cf. Figure 7).

Resolving contradicting signifier changes. Contradicting changes of a model
element’s signifier are not severe conflicts in the common sense, as they do not de-
note directly interfering operations that cannot be merged. If the preceding conflict
detection step in the versioning process does not report otherwise, a unique merged
model can still be created, despite the contradicting change of a model element’s sig-
nifier. Thus, such merge issues can be thought of as merge warnings with the goal of
pointing the developers’ attention to a potentially obfuscated meaning.

If developers are confronted with such a warning, the model versioning system
can offer three resolution strategies. The first one is to simply drop the warning
and merge. Thereby, the developers indicate that the contradicting signifier change
is a “false alarm” and the merge should just proceed as normal. Second, as with
usual merge conflicts, the developers may decide to omit one of the contradicting
changes. That is, either the version of the contradictorily affected model element of
Vr1 or Vr2 is used in the merged model and the other version of the model element is
dropped. Third, the developers may decide that both meanings of the model element
are actually contradicting and both meanings should be reflected in the merged model.
Thus, the model element is split so that one model element represents the meaning
of Vr1 and the other one reflects the meaning of Vr2. We proposed to apply this
resolution strategy for the references createdReports and managedDevelopers in our
example presented in Section 3.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

20 · Langer et al.

5.5 Overlapping Meaning of Different Model Elements

An overlapping meaning of model elements occurs if the signifier of a model element
in one revised model matches unexpectedly the signifier of another model element in
the opposite revised model (cf. Figure 6b). By unexpected, we mean that the two
model elements have the same signifiers, although they actually have no common
origin model element according to the match model (i.e., they do not correspond to
each other with respect to UUIDs). As a result, when naively merging the operations
of both revisions, we end up having two model elements that represent the same
referent, thus the merged model seems to have redundant model elements. As an
example for such a scenario, we refer to the concurrent insertion of the reference
assignee in Section 3.

Detecting unexpected signifier matches. To avoid such an unfavorable redun-
dancy, we compare the signifier of model elements in the revised models, Vr1 and
Vr2, with each other. Therefore, we have to match the signifiers of all inserted model
elements in Vr1 and Vr2, as well as those that may have changed their signifier ac-
cording to the match trigger (cf. Section 5.3), with each other. Please note that this
information is available already from detecting contradicting signifier changes (cf.
Section 5.4). Unchanged model elements do not have to be checked, as we assume
that there has been no redundancy in the original model already. Of course, we only
need to compare model elements of the same type with each other. Furthermore, we
may omit those model elements that correspond to each other according to the match
model, because they are expected to have the same signifier.

Thus, we iterate through the revised model Vr1 and select, for each inserted or
accordingly modified model element, all inserted or accordingly modified model ele-
ments of the opposite revised model Vr2 that have the same type. Next, we apply the
signifier specifications to check whether the respective model element from Vr1 has
the same signifier as one of the previously selected opposite model elements in Vr2.
For evaluating the signifier specifications, we again integrate the derived match model
MVr1,Vr2

(i.e., the derived direct correspondences between Vr1 and Vr2) using the vari-
able prevMatchTrace. If the signifiers of two model elements match, we encounter
an unexpected matching signifier.

It is helpful for the resolution & merge steps in the versioning process to know
whether the matching model elements are entirely equal (i.e., all their feature values
are the same) or whether they are “only” similar. By similar, we mean that their
signifier matches, but at least one of their feature values is different. Thus, in the
final step, we perform a fine-grained comparison of the matching model elements to
examine whether they are equal or similar and add a description of the unexpected
signifier match to the conflict model Cm1,m2 .

Resolving unexpected matching signifiers. Unexpected matching signifiers are
not severe conflicts, because the concurrent changes are not interfering directly. How-
ever, they are a strong indicator of an unfavorable redundancy if the model is merged
naively. Thus, a merge issue in the form of a warning is raised to indicate the potential
redundancy.

A model versioning system may offer two different resolution strategies to resolve
such a merge issue. As this issue is not a severe conflict, but rather a merge warning,
the developers may simply decide to drop the warning if these two model elements
actually have different meanings. Note that it is not necessary to save this decision

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 21

for future revisions, because unmodified model elements are not incorporated in the
signifier comparison. Thus, we only have to remove the warning from Cm1,m2 . If, on
the contrary, the matching model elements actually exhibit an overlapping meaning,
the developers may decide to merge the two model elements into one model element.
However, if the two unexpected matching model elements are not entirely equal but
only share a common signifier, the model versioning system has to ask the involved de-
velopers for a decision concerning each different feature value of both model elements.
After these decisions are taken, merging the model elements is largely straightforward.
The model versioning system has to accept either the left or the right version of the
matching model elements, apply the feature values according to the developers’ de-
cisions, and drop the other model element. However, potentially existing incoming
links and containments of the dropped model element have to be incorporated into
the accepted model element.

6 Case-based Evaluation and Critical Discussion

In this section, we study the applicability of our approach in terms of a case-based
evaluation. Therefore, we show how the motivating example of Section 3 can be
solved using the detection mechanisms proposed in this paper. Finally, we conclude
this section with a critical discussion of the general approach in which we compare
its benefits with related work and analyze its performance.

6.1 Solving the Motivating Example

In Section 3, we presented a versioning scenario illustrating several challenges for
merging concurrent revisions of models that cannot be solved by existing approaches.
In this section, we demonstrate how this versioning scenario can be addressed using
the signifier-based merge approach. Therefore, we step through each issue and discuss
how it is detected and resolved.

As discussed in Section 5.1, we apply a UUID-based model differencing approach
as a basis for the signifier-based merge issue detection. Thus, the identities of model
elements are preserved across different revisions of the model. When applying such an
approach to the versioning scenario presented in Section 3, the merged model exhibits
three issues: (i) the obfuscated meaning of the reference managedDevelopers, (ii) the
redundant reference assignee, and (iii) the reference createdReports, which resides in
the class Manager instead of the class Developer in the merged model (cf. Figure 2a).

(i) Contradicting signifier change. In Figure 10, we extracted the relevant parts
of the versioning scenario leading to the obfuscated meaning of the reference managed-
Developers. The original reference createdReports has been moved from Manager to
Developer in the course ofm1 resulting in Vr1. Withm2 the name, as well as the target
of the same reference, has been changed such that the resulting reference is named
managedDevelopers going from Manager to Developer (cf. Vr2 in Figure 10). When
merging these changes naively, the meaning of the reference is obfuscated, because we
obtain a reflexive reference in the class Developer.

When applying the proposed mechanism for detecting contradicting signifier changes
based on the signifier specification in Listing 2, the reference createdReports of Vo is
compared to the corresponding reference in Vr1. As the source (i.e., the feature
eContainer) of this reference has been changed in this revision, a signifier change

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

22 · Langer et al.

Vo

Manager

Developer BugReport

createdReports

0..*

Manager

Developer BugReport

managed

Developers

Vr2

m2m1

0..*

Vr1

Manager

Developer BugReport
createdReports

0..*

Contradicting Signifier Change

· Apply changes to reference from m1?

· Apply changes to reference from m2?

· Apply all changes from m1 and m2?

· Split reference?

Vm

Manager

Developer BugReport
createdReports

0..*

managed

Developers

0..*

P

Figure 10 – Resolving the Contradicting Signifier Change

is detected because line 6 of the signifier specification in Listing 2 returns false, as
the class Manager does not correspond to the class Developer according to the match
model. Thus, in the next step, the same reference in Vo is matched with its corre-
sponding reference in Vr2. In this revision, the reference’s name, as well as its target
has been modified, which also causes a signifier change between Vo and Vr2. Thus,
we compare the signifiers of the reference in Vr1 with the signifier of the reference in
Vr2. As neither the reference’s name, nor its source, and its target correspond to each
other, a contradicting signifier change is reported.

To resolve this merge issue, the model versioning system offers four resolution
strategies, which are depicted in the center of Figure 10. The corresponding references
in Vr1 and Vr2 have in fact divergent meanings and both meanings should be reflected
in the merged model. Hence, the developer decides to split the references, which
avoids obfuscating the reference’s meaning and leads to a superior merged model Vm

as depicted in Figure 10.

(ii) Unexpected signifier match at reference assignee. For illustrating the de-
tection of the second issue, namely the concurrent insertion of the reference assignee,
we depict the relevant model elements of the versioning scenario in Figure 11. The
original version contains two classes, namely Developer and BugReport. Both devel-
opers add a reference called assignee to the class BugReport, which refer to the class
Developer.

The detection mechanism for unexpected signifier matches compares all model
elements of Vr1 and Vr2 to each other that have been added or potentially changed

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 23

Vo

Developer BugReport

m2m1

Vr1

Unexpected Signifier Match

· Accept both?

· Merge references?

- Apply a lower bound of 0?

- Apply a lower bound of 1?

Vm

P

assignee1..1

Developer BugReport

Vr2
assignee0..1

Developer BugReport

P

assignee0..1

Developer BugReport

Figure 11 – Resolving the Unexpected Signifier Match of assignee

their signifier. Hence, the ECL rule in Listing 2 is applied to the reference assignee
of Vr1 and of Vr2. As their source and target classes correspond to each other and
their name is equal, an unexpected signifier match is reported. The model versioning
system may now offer two resolution strategies: the warning is either ignored, i.e.,
both are introduced to the merged version, or the model elements are merged. We
may assume that the developer decides to merge the two references, because both
reflect the same entity. However, the references to be merged are not entirely equal;
thus, the model versioning system asks for a decision concerning each different feature
value, which is, in our scenario, only the lower bound of the reference. Supposing the
developer decides to accept a lower bound of 0, we obtain Vm in Figure 11.

(iii) Redundant reference createdReports. Besides the signifier-based merge
warnings mentioned above, there is another issue concerning the redundant refer-
ences named createdReports. As depicted in Figure 12, developer 1 specified Manager
to be a subclass of Developer and moved the reference createdReports from Manager to
Developer. In the concurrent revision, however, developer 2 created a copy of the same
reference, but left the copy (having the UUID r3) unchanged in the class Manager,
but renamed and moved the original reference r1 to realize the reference managed-
Developers in Manager. Consequently, developer 2 implicitly added the new reference
createdReports with the UUID r3 to the class Manager.

When merging all changes and resolving the contradicting signifier change of the
reference having the UUID r1 by splitting it as discussed before, we end up with a
merged model that contains the reference createdReport r1 in the class Developer, as
well as the equally named reference r3 in the class Manager. As the reference with
the UUID r1 has been subject to change at its feature eContainer and the reference
with the UUID r3 has been added in the concurrent revision, the signifiers of these
two references are compared in the detection process for unexpected signifier changes.
However, the signifiers do not match because their containers (i.e., eContainer) do

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

24 · Langer et al.

not correspond to each other. Nevertheless, these references are redundant, because
the class Manager inherits the reference createdReports and contains an equally named
reference itself. Unfortunately, our current signifier specification does not consider
inheritance among Ecore classes.

Vo

Manager

Developer BugReport

Manager

Developer BugReport

Vr2

m2m1

Vr1

Manager

Developer BugReport
createdReports

0..*

createdReports

0..*

Vm

Manager

Developer
createdReports

0..* BugReport

createdReports

0..*

createdReports
r1

c1

c2

c3

0..*

r1c1

c2

c3

r3

c1

c2

c3

managed

Developers

0..*

r4

r3

c2

c3c1 r1

managed

Developers

0..*

r1

Figure 12 – Redundant Reference createdReports

1 rule EReference2EReference
2 match l : Left!EReference
3 with r : Right!EReference {
4 compare :
5 l.name = r.name and
6 l.eContainer.prevMatchesOrSuperType(r.eContainer) and
7 l.eType.prevMatchesOrSuperType(r.eType)
8 }
9

10 operation EClass prevMatchesOrSuperType(other : EClass) : Boolean {
11 if (self.prevMatches(other)) { return true; }
12 for (superType in prevMatchTrace.getMatch(self).getRight().eAllSuperTypes) {
13 if (superType = other) {
14 return true;
15 }
16 }
17 for (leftSuperType in self.eSuperTypes) {
18 if (leftSuperType.prevMatchesOrSuperType(other)) {
19 return true;
20 }
21 }
22

23 for (superType in prevMatchTrace.getMatch(other).getLeft().eAllSuperTypes) {
24 if (superType = self) {
25 return true;
26 }
27 }
28 for (rightSuperType in other.eSuperTypes) {
29 if (self.prevMatchesOrSuperType(rightSuperType)) {
30 return true;
31 }
32 }
33 return false;
34 }

Listing 3 – Respecting Inheritance in Signifier Specifications

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 25

Vo

Manager

Developer BugReport

Manager

Developer BugReport

Vr2

m2m1

Vr1

Manager

Developer BugReport
createdReports

0..*

Vm

Unexpected Signifier Match

· Accept both?

· Merge references?

- Apply an eContainer of "Developer"?

- Apply an eContainer of "Manager"?

P

P

createdReports

0..*

Manager

Developer BugReport
createdReports

0..*

Figure 13 – Resolving the Unexpected Signifier Match Regarding Inheritance

Incorporating inheritance of Ecore classes. To integrate the concept of inher-
itance of Ecore classes in the signifier specification for Ecore references, we have to
extend the specification as depicted in Listing 3. In particular, we added the opera-
tion prevMatchesOrSuperType and use it instead of the operation prevMatches for
comparing the eContainer and eType references. This new operation checks, on the
one hand, whether the specified instances of EClass correspond to each other directly
according to the injected match model and, on the other hand, whether the one class
is specified to be a superclass of the other in one of the compared models or vice
versa. Therefore, we first obtain the corresponding class of self (i.e., the class of
the left model) from the right model in line 12 using the injected match model and
iterate through all its superclasses. If one of the superclasses is equal to other (i.e.,
the class in the right model), we determined that other is specified to be a superclass
of self in the right model and return true. Subsequently, we check whether other
is the superclass of one of the superclasses of self recursively (cf. line 18). Next,
we evaluate the same in the left model (cf. line 23–32), because the inheritance rela-
tionship might have been specified either in the left or the right revision. Thereby,
a.prevMatchesOrSuperType(b) returns true, if b is a direct or indirect superclass of
a either in the left or right model, or if they correspond to each other directly.

The benefits of this extended signifier specification is twofold. First, no signifier
change is reported if a developer pulls a reference to a superclass, which is an im-
provement because the meaning has not been affected by this refactoring. Second,
we also obtain an unexpected signifier match, if the source classes of references are
two different classes, whereas one class inherits the reference from the other. Con-
sequently, we may also solve the last issue of our versioning scenario concerning the
indirectly redundant reference createdReports as depicted in Figure 13: the reference

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

26 · Langer et al.

Vm

Manager

Developer

managed

Developers

assignee

createdReports

0..1

0..* 0..* IssueReport

id : EString

Figure 14 – Final Result of the Resolution

createdReports in Vr1 now exhibits the same signifier as the equally named reference
in Vr2, because in Vr1, the source class of the reference is a superclass of Manager and,
in Vr2, the class Manager acts as source of the reference itself. Thus, a merge issue is
raised by the model versioning system to indicate an unexpected signifier match. As
the matching references have different feature values at the feature eContainer, the
developer may now decide to use the class Developer as eContainer of the merged
reference. Ultimately, after resolving all raised issues as discussed in this section, the
obtained merged version corresponds to the optimal merged version depicted in Fig-
ure 14, which is of much better quality than the merge that is obtained from existing
model versioning systems (cf. Figure 2).

6.2 Critical Discussion

By solving successfully the issues posed by the versioning scenario in the previous
section, we believe that the presented approach for extending generic model versioning
systems has the potential to address several challenging merge issues in a novel way.
Considering that ECL provides several more powerful possibilities, such as integrating
external Java libraries, we may even realize fuzzy signifiers based on Levenshtein
distance [Lev66] or thesauri, which might be useful in some scenarios.

Critical comparison to related work. The versioning systems ADAMS [DLFST09]
and Odyssey-VCS [MCPW08] allow to specify a so-called unit of comparison, which
can be thought of as the granularity of the conflict detection. More precisely, when
the unit of comparison is set to the model element level instead of feature level, the
versioning system will report a conflict for any concurrent changes to the same model
element, irrespective of whether or not the concurrent changes modified the same
features of the model element. In our example, this would lead to a conflict at the
reference with the UUID r1, because one developer changes its name and its target
and the other developer moves the same reference into another class. Although this is
the desired result in this scenario, we argue that this is too coarse-grained in general,
as every kind of concurrent change of the reference results in a conflict and not only
those changes that affect the reference’s meaning in a contradicting way. For instance,
if one developer changes the reference to unordered and the other one sets it to be
transient4, this would also cause a conflict when setting the unit of comparison
to the entire EReference. However, such changes could be merged easily without
obtaining an obfuscated meaning of the reference.

A much more flexible approach, in comparison to ADAMS and Odyssey-VCS,
has been proposed by Cicchetti et al. [CDRP08]. The approach by Cicchetti et al.

4ordered and transient are linguistic attributes [KKK+06] of references and attributes in Ecore.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 27

allows to specify conflict patterns, which indicate any combination of changes that
shall be reported as conflict. Their approach is more general and addresses a broader
set of conflicts, whereas our approach is targeted at a specific set of language-specific
conflicts. Nevertheless, their approach may allow to specify and detect at least a
subset of the merge issues discussed in this paper. The underlying concepts of the
approach by Cicchetti et al. are very different from ours. Whereas Cicchetti et al.
follow a change-based approach for specifying conflicts in terms of forbidden pairs
of changes, we use declarative signifier specifications, which are independent of the
actual changes that cause the respective merge issues. Thus, signifiers provide a more
concise and domain-specific way that abstracts from applied changes. In fact, from a
signifier specification it would be possible to infer all relevant conflict patterns (i.e.,
the crossproduct of all changes that may affect the signifier concurrently). Unexpected
overlapping meanings of model elements have not been considered by Cicchetti et al.

Performance. The presented signifier-based approach has probably a negative af-
fect on the overall performance, because it requires several potentially time-consuming
comparisons. To assess the performance of our approach, we prototypically realized
the signifier-based merge issue detection and integrated it with the model versioning
system AMOR. The prototypical implementation is available at EclipseLabs5. The
automatic derivation of match triggers from ECL rules presented in Section 5.3 is,
however, still work in progress; currently, they have to be encoded manually.

For evaluating the impact of the signifier-based merge issue detection on the exe-
cution time of AMOR, we simulated several model versioning scenarios by applying
30 changes in each revision randomly to five different original models. Please note that
30 concurrent changes is significantly higher than the average number of changes per
commit according to the case study performed by Herrmannsdoerfer et al. [HRW09].
With these versioning scenarios, we measured the steady state performance6 of AMOR
including and excluding the signifier-based merge issue detection. The five different
original models are Ecore metamodels containing from 992 model elements up to
84.570 model elements for covering a wide range of differently sized models. The sig-
nifier specification contained four ECL rules; i.e., for EPackage, EClass, EAttribute,
and EReference, whereas the name, the container, and in case of EAttribute and
EReference also the type has been incorporated in the signifier specification. For
matching the container and type, we used the operation prevMatchesOrSuperType
given in Listing 3. Note that we exploited the caching mechanism of ECL for all rules
and operations (i.e., @cached [KRP11]).

The results of the performance evaluation of our prototype are plotted in Figure 15.
This figure shows the execution time in milliseconds (ms) of AMOR excluding the
signifier-based merge issue detection (denoted with Conflict Detection in the legend of
Figure 15), as well as the additional execution time required for detecting contradict-
ing signifier changes and unexpected signifier matches. Furthermore, the overall sum
of the execution time of AMOR including both signifier-based detection mechanisms
is represented. AMOR uses a model differencing algorithm based on synthetic iden-
tifiers. Although this is much more efficient than heuristic approaches, its execution
time still depends heavily on the size of the compared models. Also, the additional
execution time required for the signifier-based merge issue detection grows with the
number of model elements. However, this is not because more model elements have

5http://code.google.com/a/eclipselabs.org/p/amor-conflict-detection
6A program is run repeatedly until the execution time of each run stabilizes.

Journal of Object Technology, vol. 11, no. 3, 2012

http://code.google.com/a/eclipselabs.org/p/amor-conflict-detection
http://dx.doi.org/10.5381/jot.2012.11.3.a4

28 · Langer et al.

Signifier Evaluation New Input With Inheritance

Page 1

0 10000 20000 30000 40000 50000 60000 70000 80000
0

1000

2000

3000

4000

5000

6000

7000

Conflict Detection
Contradicting Signifier
Change Detection
Unexpected Signifier
Match Detection
Overall Sum

Number of Objects in the Model

E
xe

cu
tio

n
 T

im
e

 (
m

s)

Figure 15 – Results of the Performance Evaluation

to be compared, since only inserted and correspondingly modified model elements are
included in the signifier matching. Nevertheless, the more model elements are in the
model, the larger is the computed match model. Thus, deriving the match traces
that are incorporated in the ECL execution context consumes more time and the
invocations of the operations prevMatches and prevMatchesOrSuperType become
more expensive with an increasing number of model elements.

In summary, we argue that the additionally required execution time is reasonable
in comparison to the benefits that are accomplished by the signifier-based merge
issue detection. For instance, when applying the presented detection mechanisms to a
model of over 6.000 model elements, the additional execution time is only 123 ms with
30 changes in each revision. The additional execution time for a model containing
more than 28.000 model elements constitutes 642 ms. However, a relatively large
model with more than 84.000 model elements caused the additional execution time
to increase up to 2 seconds. In our opinion, this is still acceptable when considering
that a model differencing approach that is based on heuristics only, has a much worse
performance. For instance, when applying the heuristic-based matching algorithm
of EMF Compare [BP08] to the model containing around 28.000 model elements, it
takes already more than 2 minutes to compute the differences.

Threats to validity. In this section, we evaluated the applicability of the proposed
approach by investigating a model versioning scenario containing several challenging
merge issues and assessed the performance of our prototypical implementation. Al-
though both experiments showed very promising results, there are some threats to
validity, which are discussed in the following.

As every case-based evaluation, the validity of the experiment presented in Sec-
tion 6.1 might suffer from a lack of comprehensiveness. Even though we gained
promising results also from investigating several scenarios other than the one pre-
sented in this paper (cf. [Lan11]), a more extensive evaluation based on real-world
scenarios would allow for deeper insights in the benefits of the presented approach.
However, such an extensive evaluation is, due to the lack of empirical data, not easy
to perform and has been left for future work.

Furthermore, the validity of the performance evaluation might be affected, as we
used synthetic models and not real-world models. To mitigate this threat, we gener-
ated models having a comparable fraction of numbers of packages, classes, attributes,
references, and inheritance relationships as the UML 2 metamodel. More precisely,
in the generated models, around 15 % of all model elements are classes, 60 % are

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 29

references, and 25 % are attributes. At least seven out of ten classes have at least one
superclass. The maximum inheritance depth of the five generated models are 4, 22,
29, 77, and 121.

Realization alternatives for signifiers. The implementation of the approach is
realized based on EMF and ECL. However, the conceptual approach is portable to
other technological spaces, metamodeling frameworks, and languages. Therefore, one
would only have to realize the means for computing and comparing feature values
constituting a model elements’ signifier. To avoid a poor performance, a technique
comparable to match triggers should be considered in addition. For instance, one
could use the Object Constraint Language (OCL) [OMG10], a specification language
for UML standardized by the Object Management Group (OMG), instead of ECL to
specify signifiers. This would also allow for exploiting existing OCL tools and algo-
rithms, such as the incremental evaluation of OCL constraints [BHR+10, CT09] to
maintain a reasonable performance. Nevertheless, when using plain OCL for spec-
ifying and comparing signifiers, one would have to implement an infrastructure for
matching model elements based on OCL statements, a match tracing mechanism, etc.
Although this would be possible, we preferred reusing the already available infrastruc-
ture provided by ECL for implementing our prototype.

7 Conclusion and Future Work

In this paper, we identified several merge issues that are insufficiently supported by
current generic model versioning systems. To address these issues, we proposed an
orthogonal extension of generic model versioning systems. Therefore, we introduced
the notion of signifiers representing the combination of properties of model elements
that convey its superior meaning and showed how such signifiers can be realized and
integrated in the versioning process. We validated the applicability of this approach
by showcasing its benefits for merging Ecore models. We are aware that the pre-
sented approach does not enable the detection of all possible language-specific merge
issues. However, we believe that signifiers facilitate a lightweight approach to specify
important aspects of modeling languages and that integrating them into a versioning
system enables the detection of an important subset of language-specific merge issues.

There are several lines for future work. First, we plan to develop a semi-automatic
process for deriving signifier specifications from metamodels and models. Therefore,
we may leverage several sources of information in the context of modeling languages,
such as uniqueness constraints in the metamodel, validation rules, as well as the con-
crete syntax specification, as an indicator for important features of a model element
type. Moreover, we aim for a more convenient specification of signifiers directly on
top of the metamodel’s concrete syntax using a model annotation mechanism, such
as EMF Profiles [LWWC12]. Furthermore, we also plan to investigate techniques to
attach user-specified resolution strategies to signifier specifications (e.g., using the Ep-
silon Merging Language [EPK06]). Another line of future research is the evaluation of
an signifier enhanced version of a model comparison framework with respect to preci-
sion and recall using a benchmark as proposed by van den Brand et al. [vdBHVP11].
Finally, we plan to investigate the usefulness of signifiers in other fields, e.g., to de-
tect equivalence correspondences between models in two-way merge scenarios [CNS12]
such as model composition and weaving or to reason about the identities of model
elements in bi-directional transformations [HLR08].

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.5381/jot.2012.11.3.a4

30 · Langer et al.

References

[AK03] C. Atkinson and T. Kühne. Model-driven Development: A Meta-
modeling Foundation. Software, IEEE, 20(5):36–41, 2003. doi:
10.1109/MS.2003.1231149.

[AP03] M. Alanen and I. Porres. Difference and Union of Models. In Proceed-
ings of the 6th International Conference on the Unified Modeling Lan-
guage (UML’03), volume 2863 of LNCS, pages 2–17. Springer, 2003.
doi:10.1007/978-3-540-45221-8_2.

[BHR+10] G. Bergmann, A. Horvath, I. Rath, D. Varro, A. Balogh, Z. Balogh,
and A. Ökrös. Incremental Evaluation of Model Queries over EMF
Models. In Proceedings of the 13th International Conference on
Model Driven Engineering Languages and Systems (MoDELS’10),
volume 6394 of LNCS, pages 76–90. Springer, 2010. doi:10.1007/
978-3-642-16145-2_6.

[BKL+12] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wim-
mer. An Introduction to Model Versioning. In Formal Methods for
Model-Driven Engineering, volume 7320 of LNCS, pages 336–398.
Springer, 2012. doi:10.1007/978-3-642-31753-8_14.

[BKS+10] P. Brosch, G. Kappel, M. Seidl, K. Wieland, M. Wimmer, H. Kargl,
and P. Langer. Adaptable Model Versioning in Action. In Tagungs-
band der Modellierung 2010, volume 161 of LNI, pages 221–236. GI,
2010.

[BP08] C. Brun and A. Pierantonio. Model Differences in the Eclipse Model-
ing Framework. UPGRADE, The European Journal for the Informat-
ics Professional, 9(2):29–34, 2008. doi:10.1016/j.ejso.2009.08.
008.

[CDRP08] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing Model Con-
flicts in Distributed Development. In Proceedings of the 11th Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS’08), volume 5301 of LNCS, pages 311–325. Springer,
2008. doi:10.1007/978-3-540-87875-9_23.

[CNS12] M. Chechik, S. Nejati, and M. Sabetzadeh. A Relationship-based Ap-
proach to Model Integration. Innovations in Systems and Software
Engineering, 8(1):3–18, 2012. doi:10.1007/s11334-011-0155-2.

[CT09] J. Cabot and E. Teniente. Incremental Integrity Checking of UM-
L/OCL Conceptual Schemas. Journal of Systems and Software,
82(9):1459–1478, 2009. doi:10.1016/j.jss.2009.03.009.

[DLFST09] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora. Concurrent
Fine-Grained Versioning of UML Models. In Proceedings of the 13th
European Conference on Software Maintenance and Reengineering
(CSMR’09), pages 89–98. IEEE, 2009. doi:10.1109/CSMR.2009.35.

[DS16] F. De Saussure. Nature of the Linguistic Sign. Course In General
Linguistics, 1916.

[EPK06] K. Engel, R. Paige, and D. Kolovos. Using a Model Merging Lan-
guage for Reconciling Model Versions. In Proceedings of the 2nd Eu-
ropean Conference on Model Driven Architecture - Foundations and

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1007/978-3-540-45221-8_2
http://dx.doi.org/10.1007/978-3-642-16145-2_6
http://dx.doi.org/10.1007/978-3-642-16145-2_6
http://dx.doi.org/10.1007/978-3-642-31753-8_14
http://dx.doi.org/10.1016/j.ejso.2009.08.008
http://dx.doi.org/10.1016/j.ejso.2009.08.008
http://dx.doi.org/10.1007/978-3-540-87875-9_23
http://dx.doi.org/10.1007/s11334-011-0155-2
http://dx.doi.org/10.1016/j.jss.2009.03.009
http://dx.doi.org/10.1109/CSMR.2009.35
http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 31

Applications (ECMDA-FA’06), volume 4066 of LNCS, pages 143–157.
Springer, 2006. doi:10.1007/11787044_12.

[FR07] R. France and B. Rumpe. Model-driven Development of Complex
Software: A Research Roadmap. In Proceedings of the Workshop on
the Future of Software Engineering @ ICSE’07, pages 37–54. IEEE
Computer Society, 2007. doi:10.1145/1253532.1254709.

[GJM02] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software
Engineering. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd
edition, 2002.

[GKLE10] C. Gerth, J. M. Küster, M. Luckey, and G. Engels. Precise De-
tection of Conflicting Change Operations Using Process Model
Terms. In Proceedings of the 13th International Conference on
Model Driven Engineering Languages and Systems (MoDELS’10),
volume 6395 of LNCS, pages 93–107. Springer, 2010. doi:10.1007/
978-3-642-16129-2_8.

[HK10] M. Herrmannsdoerfer and M. Koegel. Towards a Generic Operation
Recorder for Model Evolution. In Proceedings of the 1st International
Workshop on Model Comparison in Practice @ TOOLS’10, pages 76–
81. ACM, 2010. doi:10.1145/1826147.1826161.

[HLR08] T. Hettel, M. Lawley, and K. Raymond. Model Synchronisation: Def-
initions for Round-Trip Engineering. In Proceedings of the 1st Inter-
national Conference on Theory and Practice of Model Transforma-
tions (ICMT’08), volume 5063 of LNCS, pages 31–45. Springer, 2008.
doi:10.1007/978-3-540-69927-9_3.

[HRW09] M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth. Language
Evolution in Practice: The History of GMF. In Proceedings of the
2nd International Conference on Software Language Engineering
(SLE’09), volume 5969 of LNCS. Springer, 2009. doi:10.1007/
978-3-642-12107-4_3.

[KHWH10] M. Koegel, M. Herrmannsdoerfer, O. Wesendonk, and J. Helming.
Operation-based Conflict Detection on Models. In Proceedings of
the 1st International Workshop on Model Comparison in Practice
@ TOOLS’10, pages 21–30. ACM, 2010. doi:10.1145/1826147.
1826154.

[KKK+06] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Rets-
chitzegger, W. Schwinger, and M. Wimmer. Lifting Metamod-
els to Ontologies–A Step to the Semantic Integration of Model-
ing Languages. In Proceedings of the 9th International Confer-
ence on Model Driven Engineering Languages and Systems (MoD-
ELS’06), volume 4199 of LNCS, pages 528–542. Springer, 2006.
doi:10.1007/11880240_37.

[Kol09] D. Kolovos. Establishing Correspondences between Models with the
Epsilon Comparison Language. In Proceedings of the 5th Interna-
tional Conference on Model Driven Architecture-Foundations and Ap-
plications (ECMDA-FA’09), volume 5562 of LNCS, pages 146–157.
Springer, 2009. doi:10.1007/978-3-642-02674-4_11.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1007/11787044_12
http://dx.doi.org/10.1145/1253532.1254709
http://dx.doi.org/10.1007/978-3-642-16129-2_8
http://dx.doi.org/10.1007/978-3-642-16129-2_8
http://dx.doi.org/10.1145/1826147.1826161
http://dx.doi.org/10.1007/978-3-540-69927-9_3
http://dx.doi.org/10.1007/978-3-642-12107-4_3
http://dx.doi.org/10.1007/978-3-642-12107-4_3
http://dx.doi.org/10.1145/1826147.1826154
http://dx.doi.org/10.1145/1826147.1826154
http://dx.doi.org/10.1007/11880240_37
http://dx.doi.org/10.1007/978-3-642-02674-4_11
http://dx.doi.org/10.5381/jot.2012.11.3.a4

32 · Langer et al.

[KRP11] D. Kolovos, L. Rose, and R. Paige. The Epsilon Book. Online: http:
//www.eclipse.org/gmt/epsilon/doc/book/, 2011.

[Küh06] T. Kühne. Matters of (Meta-) Modeling. Software and Systems Mod-
eling, 5(4):369–385, 2006. doi:10.1007/s10270-006-0017-9.

[Lan11] P. Langer. Adaptable Model Versioning based on Model Transforma-
tion By Demonstration. PhD thesis, Vienna University of Technology,
2011.

[Lev66] V.I. Levenshtein. Binary Codes Capable of Correcting Deletions, In-
sertions, and Reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[LGJ07] Y. Lin, J. Gray, and F. Jouault. DSMDiff: A Differentiation Tool for
Domain-specific Models. European Journal of Information Systems,
16(4):349–361, 2007. doi:10.1057/palgrave.ejis.3000685.

[LvO92] E. Lippe and N. van Oosterom. Operation-Based Merging. In Pro-
ceedings of the 5th ACM SIGSOFT Symposium on Software Devel-
opment Environment (SDE’92), pages 78–87. ACM, 1992. doi:
10.1145/142868.143753.

[LWWC12] P. Langer, K. Wieland, M. Wimmer, and J. Cabot. EMF Profiles: A
Lightweight Extension Approach for EMF Models. Journal of Object
Technology, 11(4):1–29, 2012. doi:10.5381/jot.2012.11.1.a8.

[MCPW08] L. Murta, C. Corrêa, J.G. Prudêncio, and C. Werner. Towards
Odyssey-VCS 2: Improvements Over a UML-based Version Control
System. In Proceedings of the International Workshop on Comparison
and Versioning of Software Models @ ICSE’08, pages 25–30. ACM,
2008. doi:10.1145/1370152.1370159.

[MGH05] A. Mehra, J. Grundy, and J. Hosking. A Generic Approach to Sup-
porting Diagram Differencing and Merging for Collaborative De-
sign. In Proceedings of the 20th International Conference on Auto-
mated Software Engineering (ASE’05), pages 204–213. ACM, 2005.
doi:10.1145/1101908.1101940.

[NMBT05] Tien N. Nguyen, Ethan V. Munson, John T. Boyland, and Cheng
Thao. An infrastructure for development of object-oriented, multi-
level configuration management services. In Proceedings of the 27th
International Conference on Software Engineering (ICSE’05), pages
215–224. ACM, 2005. doi:10.1145/1062455.1062504.

[OMG07] Object Management Group OMG. XML Metadata Interchange 2.1.1
(XMI). http://www.omg.org/spec/XMI/2.1.1, 2007.

[OMG10] Object Management Group OMG. Object Constraint Language
(OCL), Version 2.2. http://www.omg.org/spec/OCL/2.2, 2010.

[OMW05] H. Oliveira, L. Murta, and C. Werner. Odyssey-VCS: A Flexi-
ble Version Control System for UML Model Elements. In Pro-
ceedings of the 12th International Workshop on Software Config-
uration Management @ ESEC/FSE’05, pages 1–16. ACM, 2005.
doi:10.1145/1109128.1109129.

[OR23] C.K. Ogden and I.A. Richards. The Meaning of Meaning. Harcourt,
Brace, 1923.

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.eclipse.org/gmt/epsilon/doc/book/
http://www.eclipse.org/gmt/epsilon/doc/book/
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1057/palgrave.ejis.3000685
http://dx.doi.org/10.1145/142868.143753
http://dx.doi.org/10.1145/142868.143753
http://dx.doi.org/10.5381/jot.2012.11.1.a8
http://dx.doi.org/10.1145/1370152.1370159
http://dx.doi.org/10.1145/1101908.1101940
http://dx.doi.org/10.1145/1062455.1062504
http://www.omg.org/spec/XMI/2.1.1
http://www.omg.org/spec/OCL/2.2
http://dx.doi.org/10.1145/1109128.1109129
http://dx.doi.org/10.5381/jot.2012.11.3.a4

Language-Specific Model Versioning Based on Signifiers · 33

[OS05] T. Oda and M. Saeki. Generative Technique of Version Control Sys-
tems for Software Diagrams. In Proceedings of the 21th International
Conference on Software Maintenance (ICSM’05), pages 515–524.
IEEE, 2005. doi:10.1109/ICSM.2005.49.

[RV08] J.E. Rivera and A. Vallecillo. Representing and Operating With
Model Differences. In Proceedings of the 46th International Con-
ference on Objects, Components, Models and Patterns (TOOLS’08),
volume 11 of LNBIP, pages 141–160. Springer, 2008. doi:10.1007/
978-3-540-69824-1_9.

[SBPM08] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2008.

[SG08] M. Schmidt and T. Gloetzner. Constructing Difference Tools for Mod-
els Using the SiDiff Framework. In Companion of the 30th Interna-
tional Conference on Software Engineering (ICSE’08), pages 947–948.
ACM, 2008. doi:10.1145/1370175.1370201.

[SZN04] C. Schneider, A. Zündorf, and J. Niere. CoObRA – A Small Step for
Development Tools to Collaborative Environments. In Proceedings of
the Workshop on Directions in Software Engineering Environments @
ICSE’04, 2004.

[TELW12] G. Taentzer, C. Ermel, P. Langer, and M. Wimmer. A Fundamental
Approach to Model Versioning Based on Graph Modifications. Soft-
ware and Systems Modeling, 2012. doi:10.1007/s10270-012-0248-x.

[vdBHVP11] Mark van den Brand, Albert Hofkamp, Tom Verhoeff, and Zvezdan
Protić. Assessing the quality of model-comparison tools: a method
and a benchmark data set. In Proceedings of the 2nd International
Workshop on Model Comparison in Practice @ TOOLS’11, pages 2–
11. ACM, 2011. doi:10.1145/2000410.2000412.

[Wes10] B. Westfechtel. A Formal Approach to Three-way Merging of EMF
Models. In Proceedings of the 1st International Workshop on Model
Comparison in Practice @ TOOLS’10, pages 31–41. ACM, 2010. doi:
10.1145/1826147.1826155.

[XS05] Z. Xing and E. Stroulia. UMLDiff: An Algorithm for Object-oriented
Design Differencing. In Proceedings of the 20th International Con-
ference on Automated Software Engineering (ASE’05), pages 54–65.
ACM, 2005. doi:10.1145/1101908.1101919.

About the authors

Philip Langer is a postdoctoral researcher in the Business In-
formatics Group at the Vienna University of Technology. His
research is focused on model evolution, model transformations,
and model execution in the context of model-driven engineering.
For further information about his research activities, please visit
http://www.big.tuwien.ac.at/staff/planger or contact him
at langer@big.tuwien.ac.at.

Journal of Object Technology, vol. 11, no. 3, 2012

http://dx.doi.org/10.1109/ICSM.2005.49
http://dx.doi.org/10.1007/978-3-540-69824-1_9
http://dx.doi.org/10.1007/978-3-540-69824-1_9
http://dx.doi.org/10.1145/1370175.1370201
http://dx.doi.org/10.1007/s10270-012-0248-x
http://dx.doi.org/10.1145/2000410.2000412
http://dx.doi.org/10.1145/1826147.1826155
http://dx.doi.org/10.1145/1826147.1826155
http://dx.doi.org/10.1145/1101908.1101919
http://www.big.tuwien.ac.at/staff/planger
mailto:langer@big.tuwien.ac.at
http://dx.doi.org/10.5381/jot.2012.11.3.a4

34 · Langer et al.

Manuel Wimmer is a postdoctoral researcher in the Busi-
ness Informatics Group at the Vienna University of Technol-
ogy. Currently, he is on leave as research associate at the Uni-
versity of Málaga. His research interests comprise Web engi-
neering, model-driven engineering, and model management. For
further information about his research activities, please visit
http://www.big.tuwien.ac.at/staff/mwimmer or contact him
at wimmer@big.tuwien.ac.at.

Jeff Gray is an Associate Professor in the Department of Com-
puter Science at the University of Alabama. His research interests
include model-driven engineering, aspect-orientation, and gener-
ative programming. For further information about his research
activities, please visit http://cs.ua.edu/~gray or contact him
at gray@cs.ua.edu.

Gerti Kappel is a full professor in the Institute for Software
Technology and Interactive Systems at the Vienna University of
Technology, heading the Business Informatics Group. Her current
research interests include model engineering, Web engineering, as
well as process engineering. For further information about her
research activities, please visit http://www.big.tuwien.ac.at/
staff/gkappel or contact her at gerti@big.tuwien.ac.at.

Antonio Vallecillo is Professor of Computer Science at the
University of Málaga. His research interests include Open Dis-
tributed Processing, Model-Based Engineering, Componentware,
Software Quality, and the industrial use of formal methods. For
further information about his research activities, please visit
http://www.lcc.uma.es/~av or contact him at av@lcc.uma.es.

Acknowledgments This work has been partially funded by the Austrian Science
Fund (FWF) under grant J 3159-N23, the Spanish Research Project TIN2011-23795,
and the NSF CAREER award (CCF-1052616).

Journal of Object Technology, vol. 11, no. 3, 2012

http://www.big.tuwien.ac.at/staff/mwimmer
mailto:wimmer@big.tuwien.ac.at
http://cs.ua.edu/~gray
mailto:gray@cs.ua.edu
http://www.big.tuwien.ac.at/staff/gkappel
http://www.big.tuwien.ac.at/staff/gkappel
mailto:gerti@big.tuwien.ac.at
http://www.lcc.uma.es/~av
mailto:av@lcc.uma.es
http://dx.doi.org/10.5381/jot.2012.11.3.a4

	Introduction
	State of the Art
	Change Recording versus Model Comparison
	Generic versus Language-specific Model versioning

	Motivating Example
	Signifiers of Model Elements
	Meaning of Model Elements
	Signifiers of Model Elements

	Detection of Merge Issues based on Signifiers
	Versioning Process
	Integrating Match Models in Signifier Specifications
	Signifier Preprocessing
	Contradicting Change of a Model Element's Meaning
	Overlapping Meaning of Different Model Elements

	Case-based Evaluation and Critical Discussion
	Solving the Motivating Example
	Critical Discussion

	Conclusion and Future Work
	Bibliography
	About the authors

