
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2011

Online at http://www.jot.fm.

A Satisficing Bi-Directional Model
Transformation Engine using Mixed

Integer Linear Programming

Glenn Callowa Roy Kalawskyb

a. g.m.callow@lboro.ac.uk, Loughborough University

b. r.s.kalawsky@lboro.ac.uk, Loughborough University

Abstract The use of model transformation in software engineering has
increased significantly during the past decade, with the ability to rapidly
transform models and ensure consistency between those models being a key
property of Model Driven Architecture. However, these approaches can be
applied to a wide variety of different model types and some of these models
and associated transformations require different semantics than those
popularised by current model transformation tools. Specifically, current
relational model transformation languages typically prioritise matching
relation patterns in the source model over creating a target model that
is compliant with its meta-model. In this paper we describe a relational
model transformation engine implemented as a series of Mixed Integer
Linear Programs (MILP). This engine has a key novel feature; it prioritises
target model compliance with its meta-model by considering multiple
interpretations of applying the transformation specification in order to
ensure a correct target model is generated. In this paper the MILP
transformation engine and the representations it uses are described, followed
by the results of applying it to examples of varying complexity.

Keywords Model Transformation; Model Driven Architecture; Mixed
Integer Linear Programming ; Domain Specific Models

1 Introduction

Model transformation languages, approaches and engines have been a research focus
within elements of the software engineering community for some years. These offer
a number of potential benefits, including increasing the speed at which new models
and views can be generated (as large parts of the process are automated) and the
utility of models (because the same source model can be reused multiple times as the
source of a number of different transformations). Indeed, model transformation is

Glenn Callow, Roy Kalawsky. A Satisficing Bi-Directional Model Transformation Engine using Mixed
Integer Linear Programming. In Journal of Object Technology, vol. 12, no. 1, 2013, pages 1:1–43.
doi:10.5381/10.5381/jot.2013.12.1.a1

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1
http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

2 · Glenn Callow, Roy Kalawsky

one of the key elements of the OMG’s Model Driven Architecture (MDA) [MM03].
MDA looks to specify models at varying levels of abstraction, supporting the reuse of
models across a variety of different platforms by separating the platform independent
elements from platform specific elements, and automatically transforming the relevant
Platform Independent Models (PIM) into Platform Specific Model (PSM) variants.
This has led to a variety of different languages and approaches being defined with
differing strengths and advantages of which there are many good summaries, such
as [CH06] [GK10] [JK06]; it is not appropriate to revisit all of these languages here.
However, one common element of these languages is that they are largely targeted at
the software engineering community, and specifically either the generation of code from
models or the transformation of general models into specific models (the PIM to PSM
transformation). Model transformation is not unique to software engineering, and so
determining how applicable these model transformation languages are to other model
types is an important consideration. If we consider more general system models1,
equivalents to relation based model transformations can be seen in system verification
approaches, such as Quality Function Deployment (QFD) models [Hau88] or MODAF
Function to Operational Activity mappings [Bai05]. For system models it is not
unusual for changes to be made to multiple domains at the same time. This means
that bi-directional transformation specifications [CFH+09] [HSST11] are of particular
relevance, because the transformation specification between domains A and B does
not have to be modified irrespective of whether domain A or B is the target domain.
Incremental model updates in any of the domains are easily propagated to other
domains as required.

Earlier work has considered whether model transformation languages offer a benefit
when used with these types of models [CKWO11]. This work concluded that relational
model transformations do potentially offer a benefit, but that limitations in current
model transformation engines prevented these benefits from being fully realised. In
particular, existing relational transformation languages prioritise source model matches
over target model correctness, which can result in target models being generated that
do not conform to their meta-model. In this paper, we describe an alternative
approach to implementing a relational model transformation engine which addresses
these problems. Section 2 presents an in-depth discussion on these existing model
transformation languages and some of the identified problems. In section 3 the set-
based model, meta-model and model transformation representations that are used
in the Mixed Integer Linear Programming (MILP) based transformation engine are
described, whilst section 4 describes the MILP problems in detail. The implementation
of the MILP system is discussed in section 5, and results when using the system are
presented in section 6. Finally, in section 7, conclusions are drawn and future work
identified.

2 Background

Model transformation languages can largely be categorised into two types; Imper-
ative/Operational and Relational/Declarative. In imperative approaches, such as
QVT-Operational [OMG08a] or the OMG’s Model To Text transformation language

1By ’system model’ we mean models that describe hardware, software, system functionality,
interfaces, components and requirements. The authors have a particular focus on models that
support system verification, i.e. assessing whether the system, as specified, is capable of achieving
the requirements associated with it.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 3

[OMG08b], a transformation specification is typically specified as a set of modules
or rules which match a source module construct (e.g. a class instance), and a list of
commands which, when executed, initialise the appropriate target model constructs.
These languages work well where the target model will be automatically generated, and
where the emphasis is to prioritise the source model when generating the target model.
That is, when presented with a source model and a transformation specification, an
imperative transformation matches all the rules it can against the source model and
executes the associated commands. This is irrespective of whether this creates a target
model that is or is not compliant with its associated meta-model.

Declarative or Relational model transformations promote a different approach.
Instead of rules containing a source model construct and lists of commands for
creating target models, they contain both source and target model constructs or
patterns, represented as a set of consistency relations. These are examined by a
model transformation engine to determine if they hold given the supplied models.
If a consistency relation does not hold, the transformation engine determines what
modifications are required to allow the consistency relation to hold. Examples of
languages that are declarative or relation based include QVT-Relation [OMG08a] and
Triple Graph Grammars [Sch95] [KW07].

The differences between the two approaches can be briefly summarised as follows:
a) Imperative languages allow a modeller to specify how a target model should be
created whilst relational approaches allow a modeller to specify what should exist in a
target model; a relational model transformation engine will automatically determine
how the model is constructed or modified based on the models and transformation
specification. b) Whilst both imperative and relational model transformation languages
support model creation, this change in approach allows relational model transformation
engines to easily support additional capabilities, such as model synchronisation where
updates on pre-existing source and target models are automatically propagated between
them and consistency checking where a target model is checked to see if it is a valid
transformation of a given source model. c) Relation based approaches are often
bi/multi-directional. The same specification can be used to execute a transformation
in different directions between the specified domains. The same is not typically true
of imperative approaches.

A pure relational approach to model transformations is potentially very powerful,
but a key to the success of the approach is in the rigour with which the transformations
can be specified, and the execution semantics of an associated model transformation
engine. The more difficult it is for a modeller to interpret how a transformation engine
will modify a target model to enforce consistency relations, the more challenging it
is to write the transformation specification. If different engines interpret the same
specification in different ways, this further increases the difficulty of writing a general
transformation specification.

Whilst existing relational transformation engines consider what can be created in a
target model due to relation matches in the source model, they rarely consider what is
not allowed to exist due to restrictions placed on the target model by its meta-model.
In this paper, this style of relational transformation shall be said to prioritise the
source model. For example, the enforcement semantics for QVT-Relation (Appendix
B in [OMG08a]) state that for each relation that correctly matches a source pattern
in a source model, an equivalent update will be made to the target model, either by
updating an existing object or creating a new object, as required. This behaviour
is only disregarded when there is a clash with other transformation rules, meaning

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

4 · Glenn Callow, Roy Kalawsky

than an engine is allowed to create new instances even if those instances would violate
constraints in the target meta-model. Considering an alternative relational approach,
Triple Graph Grammars typically mandate bind-exactly-once semantics [GK10]. These
semantics state that all source model elements must be bound during the model
transformation; a transformation that does not bind all source model elements is
marked as incomplete. This is a valid assumption for some, but not all, circumstances.
There could be situations where it is only intended that a subset of the source model
will be considered in the transformation. Triple Graph Grammars address this by
requiring the creation of an alternative view of the source model which comprises only
the sub-set to be included in the transformation.

The semantics of relational model transformation execution are also key to their
utility. In Greenyer et al.’s comparison of QVT-Relation and Triple Graph Grammars
[GK10] they investigated the different languages semantics, and in particular the
associated determinism. How deterministic a relational model transformation is
depends on how easy or difficult it is to specify ambiguous or conflicting relations, and
how consistent the semantics are in the underlying model transformation engine in
resolving these ambiguities or conflicts. For instance, Triple Graph Grammars allow
non-deterministic transformations to be specified in the language but the semantics
in how to address conflicts are not precisely defined. The general advice is simply to
avoid non-deterministic transformation specifications where possible. This requires
good design principles to be applied during the development of model transformations,
and the thorough testing of transformation specifications. This is a nascent area,
but there is work that can be drawn on, such as Heidenreich et al.’s approach to
safe transformation composition [HKA11], Cabot et al’s approach to both verifying
and validating graph transformations by transforming them into OCL [CCG10], the
transML developed by Guerra et al. [GdLK+11] [GdLKP10] [GdLKP10] which is a
modelling language designed specifically to support the development and testing of
model transformation languages, and the work by Sen et al. on approaches to testing
model transformations [SBM09] [SBM08].

Considering QVT-Relation, the problem of consistent semantics is exacerbated
further. Specifically, the semantics of source model pattern matching and check-then-
enforce object creation are not precisely specified and, as a consequence, different tools
implement these semantics differently. Consider the meta-models in Figure 1. These
meta-models describe two very simple but prescriptive domains. The first domain
describes possible system functions. A model in this domain could have a Localisation
function implemented by one (or both) of two underlying technologies; a GPS based
sensor or a Simultaneous Localisation And Mapping (SLAM) software component.
The second meta-model describes a requirements domain; it describes capabilities
required for a particular system or task. The meta-model in this example is very
precise; there is only one valid model that will satisfy the meta-model. A system
must have two means of determining its position in order to satisfy the localisation
requirement.

A model transformation will be used to generate a requirements model (which
describes what the system can achieve) from the available system functions. If the
generated requirements model satisfies the meta-model, then the system has the
necessary functions to achieve the requirements. Instances of these meta-models
and associated models for real systems would obviously be much more complex than
portrayed in this example. However, the problems elaborated in the rest of this section
would also manifest themselves in more complex models.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 5

(a) System Functions Meta-Model (b) System Requirements Meta-Model

Figure 1 – Simple system’s meta-models representing functionality (left) and requirements
(right) domains

The transformation specification is shown graphically in Figure 2 and the actual
QVT specification used is presented in Appendix A. Four relations are specified.
Relation 1 acts similarly to the axiom in Triple Graph Grammars; it provides a root
for the other relations. Relation 3 realises a System Can Determine Its Position
requirement if GPS functionality is present in the system. Relation 4 realises a System
Can Determine Its Position requirement if SLAM functionality is present in the
system.

Consider the source model in Figure 3. All of the specified relations are top relations.
The QVT-Relation specification states that "The execution of a transformation requires
that all its top-level relations hold". Therefore in our example, valid instances which
can be bound to the target domain pattern must be created for all the relations;
there is a corresponding source domain pattern for each of them. To determine what
target model instances should be created, the enforcement semantics for QVT-Relation
need to be considered. The QVT-Relation specification states that "if there does not
exist a valid binding of the remaining unbound variables of domain k that satisfies
domain k’s pattern and where condition, then create objects (or select and modify if
they already exist) and assign properties as specified in domain k pattern.". Whether
an existing object should be selected, or whether a new object should be created
(check-then-enforce semantics) is somewhat ambiguous. In the enforcement semantics
the specification states "Whether an object is selected from the model or created afresh
depends on whether the model already contains an object that matches the key property
values, if any, specified in the object template". Therefore, with no key statements
specified in the transformation specification, a valid interpretation is that one instance
of ProjectX class will be created from the first relation, one instance of Requirements
will be created from the second relation and two instances of the System Can Determine
Its Position class will be created, one each from the third and fourth relations. This
model, if generated, would be compliant with the meta-model.

Evaluating this example with the two primary tools that currently implement
QVT-Relation, MediniQVT2 and ModelMorf3, different results are achieved. These

2Available at http://projects.ikv.de/qvt - last checked 30/3/12
3Available at http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm - last checked

30/3/12

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

6 · Glenn Callow, Roy Kalawsky

(a) Relation 1 (b) Relation 2 when Relation 1

(c) Relation 3 when Relation 2 (d) Relation 4 when Relation 2

Figure 2 – Graphical representation of four consistency relations between meta-models.
Coloured elements show non-dependent elements of a consistency relation. Elements
bordered with a dashed line are dependent on another consistency relation through
the when clause. The full QVT-Relation transformation specification can be found in
Appendix A.

results are shown in Figure 3. MediniQVT produces a very unexpected model, with
one ProjectX instance, three Requirement instances and two System Can Determine
Its Position instances. The Requirement instances are not correctly associated, and
therefore the model is invalid given the meta-model. This appears to be due to a
bug in MediniQVT’s interpretation of the when clause for the specified relations.
ModelMorf, which is generally considered to be a more faithful implementation of
the QVT-Relation specification [Ste11], fails to generate a target model with this
transformation specification. This is because ModelMorf requires that a single relation
be able to fully realise a compliant target model instance; e.g. a single relation
that creates a Requirement instance must also create two System Can Determine Its
Position instances. The fact that the required number of instances would be created
by a combination of relations is ignored. This behaviour is not explicitly required by
the QVT-Relation, nor is it explicitly excluded; instead it is simply how the developers
of this tool have chosen to interpret the specification. One potential reaction to these
results would be to modify the transformation specification to work with the semantics
defined by the tool and allow the correct target model to be generated. However, in the
ideal case this modification shouldn’t be required; there is a valid interpretation of this
specification so a transformation engine should be able to accommodate this. Requiring
a transformation specification to be tailored to a particular engine implementation is
a barrier to reuse, and increases the difficulty in writing a correct specification.

Improved approaches to engineering transformation specifications can go some way
to mitigating these problems. For example, the correct use of transML [GdLK+11]
during the design of a transformation specification would likely result in a transfor-

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 7

(a) Source Model For Transfor-
mation

(b) Target Model generated by MediniQVT

Figure 3 – Source model and target model generated by MediniQVT. The generated target
model does not conform to the corresponding meta-model.

mation with fewer amibiguities (if that was desired), and one that can be tested in a
principled manner using, perhaps, a set of synthesised test models using the approaches
developed by Sen et al. [SBM09]. Whilst these approaches are undeniably important,
they don’t directly address the issues we have highlighted; namely that relational
model transformations can have ambiguous interpretations, and that this ambiguity
can actually be desirable by allowing an engine to choose the best matches based on
the supplied models. Because of this, applying the work of Cabot et al. in verifying
and validating graph transformations by generating an OCL based representation
[CCG10] is more problematic because it makes implicit assumptions on the semantics
of how a graph transformation will be applied. Whilst highly relevant and aiming
for many of the same goals (e.g. ensuring that a generated target model is compliant
with its meta-model, and is what the developer intended), their approach aims to
determine whether a transformation specification is conflicting and ambiguous given
these specific semantics.

An approach that does address ambiguity in transformations is the Janus Transfor-
mation Language (JTL) by Cicchetti et al [CDREP10]. JTL is specifically targeted at
non-bijective transformations and has a novel capability amongst the transformation
approaches considered in this section whereby it will guarantee that a generated
target model is compliant with its target meta-model. The JTL has been modelled on
QVT-Relations, and the execution engine utilises Answer Set Programming (a search
technique designed for difficult search problems) to generate a correct transformation,
given the matched relations in the source model and the imposed constraints of the
target meta-model. A JTL transformation specification is itself transformed into an
appropriate ASP representation, that can then be used as input to an ASP solver.
JTL has many desirable properties that are required for the transformation of system
models, the guarantee of compliance with the target meta-model being the most
significant. However, there are several areas where we believe the JTL approach to
relational model transformations can be built upon. In particular:

• The semantics of source model matching and handling relation dependencies
are a key source of ambiguity in matching source relation patterns, and hence
relational model transformations. Adding flexibility here may allow target models
to be generated in circumstances where other approaches would reject them, as

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

8 · Glenn Callow, Roy Kalawsky

there are more potential source model matches available.

• Specifically allowing the model transformation engine the flexibility to instantiate
only those relations that allow a target meta-model to be generated, even when
there is a valid source model match for a relation. This would allow the engine
to match only those relations that it needs to generate a valid target model.

The last point also opens up an interesting direction of work. If a model transfor-
mation engine is allowed to not utilise certain relations, then there is the potential for
a transformation engine to only ever generate the simplest compliant target model,
using only the minimum number of relations it needs to. Given this is probably not
what a modeller intends, an additional mechanism to guide the transformation engine
to a preferred target model out of all the possible compliant models is desirable.

3 Model, Meta-Model and Transformation Representations

We perceive two key problems preventing the practical use of current relational
model transformation approaches. Firstly, Relational/Declarative approaches to model
transformations should focus on the what should be generated, rather than how.
Current languages do not readily support this. Knowledge of the detailed semantics
about how a model transformation engine will apply the transformation is required
to write a good specification and, in the instance of QVT-Relation, knowledge of the
precise semantics of a particular implementation of a model transformation engine
is required to write a transformation that will create a valid target model. The
same models and specifications often cannot be used interchangeably. Secondly, as
meta-models become more complex and precise, enforcing a single set of semantics
becomes an increasing burden. There may be a natural semantic interpretation of a
relational model transformation specification that would result in a valid target model
but, because of the enforced semantics of the particular language or tool being used, a
model is generated that is not compliant with the target meta-model.

In order to address this, we have developed a relational model transformation
engine based on an underlying Mixed Integer Linear Programming (MILP) solver. Our
approach has some similarities to work on UML model verification (i.e. determining
whether a model is compliant with an associated meta-model) [CCR08] and partial
model completion (i.e. determining the changes that need to be made to a model in
order to make it compliant with an associated meta-model) [SBV10]. However, the
work by Cabot et al. and Sen et al. have typically utilised SAT-solvers or derivatives
thereof.

There are two novel aspects of our approach. Firstly, by applying a MILP solver
we are able to take advantage of the fact that there are a large number of linear
relationships present between elements specified in the models, meta-models and
transformations. For model transformations, this means that many of the unknown
variables (such as which relations have valid matches, which classes require instantiation
and what relationships need to exists between those classes) are linearly related4.
Using a MILP solver to find acceptable values for these distinct variables allows
these relationships to be exploited to find a solution more efficiently. Secondly, a
transformation engine based on a MILP solver can then exploit these relationships and
improved efficiency to ensure that automatically generated target models are always

4the details of which depend on the details, such as allowable cardinalities, of those relationships.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 9

compliant with their associated meta-models, if a solution exists, even from ambiguous
model transformation specifications; it prioritises target models.

The transformation language the MILP transformation engine uses is heavily
influenced by QVT-Relation and Triple Graph Grammars. The input to our Mixed
Integer Linear Programming (MILP) solver shall be a set-based representation of
models, meta-models and model transformation specifications, written using the
Gnu MathProg Language (GMPL) [Mak10]. The set-based model and meta-model
representations can be generated directly from ECORE-derived models in the Eclipse
toolset. This is discussed further in section 5. A transformation specification must
currently be written directly in GMPL, although this representation has been written
with features of Triple Graph Grammars and QVT-Relation in mind. The remainder
of this section shall focus on the set-based representations used for the solver.

3.1 Meta-Model Representation

Each meta-model consists of a set C of classes for a specific source or target domain,
where each of these classes contain references or attributes to other classes or data-
types. Each class c ∈ C is further represented as a set P of 7-tuples where each tuple
describes a particular reference or attribute as follows:

Pc = {(n1, c1, y1, l1, h1, u1, o1),} (1)

n describes the name of the reference or attribute, d is the type of attribute or
reference endpoint, y defines whether the tuple refers to a containment reference,
association references or attribute. l and h set the minimum and maximum cardinality
for references and u is a boolean which sets the isUnique parameter for association
references. Finally, o refers to an opposite association role name i.e. there exists an
association reference between the two classes in the opposite direction with name o. If
o is not null for an association reference then there will be an equivalent tuple in the
P set for the target class. For example:

Pc1 ={(class2end, c2, assoc, 1, 1, true, class1end)} (2)
Pc2 ={(class1end, c1, assoc, 1, 1, true, class2end)}

Therefore class ProjectX as shown in Figure 1 is defined as follows:

PProjectX = {(requirements,Requirements, con, 1, 1, true, null)} (3)

3.2 Model Representation

Models are similarly represented as a series of sets. First, a set of class instances I
is defined which contains (i, c) instance/class pairs. i refers to a Unique Identifier
(UID) associated with each instance in the model. References and Attributes are
represented slightly differently from the meta-model representation. Three distinct
sets are used to capture these elements. Ico represents containment references as a
set of 5-tuples (i1, c1, i2, c2, r) where c1 is the class that contains the containment
reference (as specified in the meta-model), r is the reference name, i1 is the class
instance that contains the containment reference, and i2 is an instance of class c2
which is the containment reference endpoint type. Association references are also

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

10 · Glenn Callow, Roy Kalawsky

described using a similarly defined set Ias of 5-tuples. Attributes are represented as
a set Iatt of 4-tuples (i, c, a, v) where i is the instance of c that contains attribute a,
which has value v.

3.3 Transformation Representation

It is our intention to mirror the features of existing relational model transformation
representations where possible. In particular, the transformation representation for
the MILP solver has been designed to closely follow the properties of QVT-Relation.
Let us consider the QVT-Relation specification shown graphically in Figure 2. This
specification contains four relations, which relate two domains. All of these relations are
top relations and contain patterns for each of the domains that they reference. These
patterns should be subsets of the respective domain’s meta-model, and each pattern
starts from a particular class which acts as the root of that pattern. These domains can
then follow containment references from the root class (through the nesting of classes
within braces), follow associations through their roles or reference named attributes.
Therefore, a natural way to represent relations is using a variant of the meta-model
and model representations, with extensions to accommodate the variables that shall
be bound to class instances for each pattern match. A transformation specification
is made up of a number of relations. A set Rrels is used to capture the number of
relations in a given specification:

Rrels ={1, 2, ..., nmax} (4)

where nmax is the number of relations in the transformation specification. For the
remainder of this paper, the following notation shall be used. Each set associated with
the transformation specification shall have a super-scripted element. A single value
super-script represents either the domain identifier or, if a scalar value, the relation
identifier n ∈ Rrels within the transformation specification. A 2-tuple superscript (n, s)
describes both the relation and domain identifier. A 3-tuple superscript (n, j, s) adds
a relation instance identifier j of relation n. So:

• R1
top refers to set Rtop for relation 1 in the transformation specification.

• R(2,train)
cre refers to set Rcre which contains elements of a pattern associated with

domain train of relation 2.

• Q(2,1,uml)
inst refers to set Qinst which containes elements associated with domain

uml for relation instance 1 of relation 2.

Subscripts will be used to identify sets capturing particular aspects of the transfor-
mation (classes, containment references, etc) as per the model representation described
previously. For each relation n, which relates domains s and t the following sets are
defined. Firstly, whether the relation is a top relation is defined with the following set
containing a single boolean.

Rn
top = {[true|false]} (5)

Each relation has a number of variables v associated with it. These will be bound
to class instances in the subsequent transformation. The variables are relation and
domain specific.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 11

R
(n,s)
bind = {vs1, vs2,, vsp} (6)

R
(n,t)
bind = {vt1, vt2,, vtq}

Then, the root class for the pattern needs to be defined for each domain referenced
by the relation.

R
(n,s)
root ⊆{cs|cs ∈ Cs},

∣∣∣R(n,s)
root

∣∣∣ = 1 (7)

R
(n,t)
root ⊆{ct|ct ∈ Ct},

∣∣∣R(n,t)
root

∣∣∣ = 1

The next two sets define the classes and associated patterns for each relation.
This is one area where the GMPL representation deviates from the QVT-Relation
specification and instead looks to Triple Graph Grammars. For each relation, it is
explicitly specified whether an instantiation of that relation should be permitted to
create an instance of that class, or whether that relation instance will be dependent
on instances created by another relation which are bound through the when clause.
The when clause is used in QVT-Relation to describe constraints or relations which
must hold in order for this relation to be evaluated. It acts as a guard, but also has
the effect of binding variables to values which have been bound by other relations.
QVT-Relation therefore implicitly determines whether a relation is permitted to create
relation instances, or whether it relies on other relations being instantiated to create
those instances. Triple Graph Grammars are more explicit in their rule definition
about these dependencies. Making these dependencies explicit in the transformation
representation allows some of transformation semantics, such as how patterns should
be matched or created, to be elaborated more formally. Therefore, for each relation n
which relates domains s and t the following sets are used for classes which should be
instantiated by relations that hold.

R(n,s)
cre ⊆

{
(vs, cs) ∈

(
Cs ×R(n,s)

bind

)}
(8)

R(n,t)
cre ⊆

{
(vt, ct) ∈

(
Ct ×R(n,t))

bind

)}
Each of these sets consist of (v, c) pairs which describe the class c to match in

the pattern. Each relation pattern that is matched to an element within the source
model will have the corresponding instance bound to variable v. The sets for classes
that make up the relation pattern, but which are dependent on those instances being
realised through other relations are specified similarly. The set Rall will be used to
describe all the classes associated with a particular relation domain pattern. The same
variable cannot be used within a relation to refer to both a class instance that must
be instantiated as part of realising this relation, and to a class instance that will be
realised by another relation.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

12 · Glenn Callow, Roy Kalawsky

R
(n,s)
dep ⊆

{
(vs, cs) ∈

(
Cs ×R(n,s)

bind

)}
(9)

R
(n,t)
dep ⊆

{
(vt, ct) ∈

(
Ct ×R(n,t)

bind

)}

R
(n,s)
all =R

(n,s)
dep ∪R

(n,s)
cre (10)

R
(n,t)
all =R

(n,t)
dep ∪R

(n,t)
cre

∅ =R(n,s)
dep ∩R

(n,s)
cre

∅ =R(n,t)
dep ∩R

(n,t)
cre

Whilst these sets capture the classes that are present within the pattern, they do
not describe the relationships between those classes that must also be captured. For
that, separate sets are defined for containment and association references. Containment
references are described using the following:

R(n,s)
co ⊆

{
(vs1, c

s
1, v

s
2, c

s
2, r) | (vs1, cs1) ∈ R

(n,s)
all ∧ (vs2, c

s
2) ∈ R

(n,s)
all

}
(11)

Each containment relationship is captured as a 5-tuple which describes the con-
taining class c1, an instance of which should be bound to variable v1. c1 contains
class c2, an instance of which is accessed through the containment endpoint (role)
named r. This instance is bound to v2, and both of these pairs should exist in either
Rcre or Rdep. An equivalent set R(n,t)

co exists for the target domain t. Associations are
described similarly.

R(n,s)
as ⊆

{
(vs1, c

s
1, v

s
2, c

s
2, r) | (vs1, cs1) ∈ R

(n,s)
all ∧ (vs2, c

s
2) ∈ R

(n,s)
all

}
(12)

The when and where clauses are the main mechanism by which dependencies are
specified between relations in QVT-Relation. Therefore, for all the variables specified
in Rdep, there should be an appropriate reference to an alternative relation as these
instances must be created by another relation in the specification. The MILP solver
only considers the when clause at present, and it is represented as follows.

Rn
when ⊆ {(nd, vs, vt) | nd ∈ Rrels ∧ nd 6= n ∧ (13)

(vs, cs) ∈ R(n,s)
dep ∧ (vt, ct) ∈ R(n,t)

dep }

Therefore relation n is dependent on relation nd, and the appropriate variables will
be bound to class instances within a dependent relation. If no matches for relation
nd can be identified, then relation n cannot be instantiated; not all of the variables
within the pattern can be bound.

Implementing precise semantics for variable binding and relation dependencies
are a significant underlying cause of the complexity of relational transformations.
Under what circumstances can variables be bound to the same class instance? Can

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 13

a dependent relation have multiple variables bound to the same class instance in a
source model, and does this require exactly the same structure be replicated in the
target model? For the purposes of this paper, it shall be assumed that a variable may
only appear once in a when statement for a particular relation.

∀(vs, c) ∈ R(n,s)
all

∑
(nd,v

s,vt)∈Rwhen

≤ 1, (14)

∀(vt, c) ∈ R(n,t)
all

∑
(nd,v

s,vt)∈Rwhen

≤ 1

In order to support attributes, an additional element of the QVT-Relation specifi-
cation is replicated in this set-based specification; relation-specific variables. These are
variables that are independent of domain, and can be bound to particular values in any
domain referenced as part of the relation. This makes them a convenient mechanism
for transforming attribute values within the model. For each relation, a set contains
each relation specific variable x and its associated type y.

Rn
var = {(x1, y1),} (15)

For each domain, a set of 5-tuples is used to describe attributes associated with a
particular class in a domain, and how they are bound to the relation specific variables.

R
(n,s)
att = {(v, c, a, x, y, z),} (16)

where v is the domain variable which an instance of class c will be bound to, a
is the attribute name in the class specification, x is the relation-specific variable, y
is the attribute type of a and x, and z is a GMPL specific string which references
and modifies the value associated with a. The GMPL string z is used to modify the
attribute value for a particular domain; i.e. by concatenating an additional string, or
carrying out an arithmetic operation5. The combination of the attribute value and z
will be be used to determine x for the source model. The combination of x and z will
be used to determine the attribute value for the target model.

There are aspects of MOF-specified meta-models and QVT-Relation that are not
captured in the above set representation. Currently, the inheritance/generalisation
relationship in not explicitly captured, although some of the common model structures
associated with inheritance, such as multi-parent composition relationships, are sup-
ported. The QVT-Relation where element is not currently supported, nor are arbitrary
OCL statements in when clauses. The support of where clauses should be a relatively
straightforward addition, whilst the support of arbitrary OCL statements requires
a means to automatically transform OCL into the GMPL representation. The key
statement in QVT-Relation, which provides additional information for when target
model elements should be reused, is not currently implemented. Finally, the wider
problem of automatically transforming QVT-Relation specifications into the set-based
representation should also be addressed in future work.

5See sections 3.1.5 and 3.1.9 in the GMPL manual [Mak10] for a summary of the arithmetic
operators that could be used in z

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

14 · Glenn Callow, Roy Kalawsky

4 Transformations using Mixed Integer Linear Programming

In order to transform a supplied source model into a target model, the set based
representations described in the previous section are used as the basis of a series
of Mixed Integer Linear Programs. A linear program is a sub-set of programming
problems where the problem itself is made up of one or more linear relationships
between the elements of the problem [Gas85]. These relationships are of the form:

a1x1 + a2x2 + ...aixi +anxn = b (17)

where ai’s and b are known coefficients, and the xi’s are the unknown variables.
These are the decision variables whose values will be determined in solving the
particular linear programming problem.

The MILP transformation approach separates the problem into four distinct stages.
Stages 2, 3 and 4 each require one MILP to be solved.

1. Source Model Analysis - Analyse the source model, given its meta-model and
the transformation, using a simple graph matching algorithm and determine the
maximum number of possible matches for each relation.

2. Bind variables to source model instances - Execute a Mixed Integer Linear
Program which, for each relation, identifies a potential binding for all the
variables from the source model. Every candidate set of variable bindings for
each relation is a potential relation instance.

3. Create target model instances - Execute a Mixed Integer Linear Program which,
for each relation, instantiates target model instances for each potential relation
instance, providing the instances do not clash with another potential relation
instance and that resulting completed model does not violate any constraints
associated with the target meta-model. Any potential relation instances that
have all of their target model variables bound to target model instances are
completed relation instances. Any potential relation instances that are not fully
realised are disregarded.

4. Create containment and association references, and assign values to attributes -
The containment and association references for all class instances are initialised,
given the completed relation instances, and attribute values set accordingly.

4.1 Differences with existing relational model transformation approaches

In order to prioritise target models a number of principles associated with existing
model transformation engines must be modified. Firstly, a model transformation
should be more permissive in how source model relations are matched. Triple Graph
Grammars require that the entire source model (or appropriate view of that model)
must be matched for the transformation to succeed. Subsets of source models must
be created manually if that is not the case, and these are presented to the model
transformation engine instead. An alternate system that prioritises target models
should instead determine which aspects of the source model should be matched and will
participate in the transformation. Secondly, the QVT-Relation specification requires
that all top relations hold. If a source domain match is found for a top relation,
then the corresponding target pattern must be created. A transformation engine that
prioritises target models must relax this restriction; a top relation will instantiate the

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 15

necessary target model pattern if there is a source model match and the creation of the
target model elements will not ultimately result in an invalid target model. Thirdly,
the more combinations, choices and alternatives for source model matches that are
identified, the more flexibility the transformation engine has in finding a combination
that allows a valid target model to be constructed. Overlapping bindings, where
the same elements are used in different combinations in multiple relation instances,
are actively encouraged. The system should choose which (if any) of these relation
instances will be instantiated based on their effect on the target model.

4.2 Detailed Stage Description

4.2.1 Stage 1 - Source Model Analysis

The first stage of the algorithm provides a simple sub-graph matching algorithm to
identify the maximum possible number of relation instances for each relation described
in the model transformation specification. The sole purpose of this step is to provide
an upper bound for the subsequent stages of the model transformation. Three simple
algorithms determine the number of times a) the class instances, b) the containment
references and c) the association references could be matched for each relation given the
source model. Dependencies between relations are not considered at this point; each
relation is considered in isolation. The minimum value from these three algorithms
is then used to set an upper bound for each relation. This is the maximum number
of potential relation instances that could be identified, given the source model. No
actual binding of variables to class instances takes place at this stage. The number of
potential relation instances under consideration in subsequent stages is represented for
each relation n as follows:

Q
(n,s)
rels = {1, 2, 3,, jnmax} (18)

where jnmax is the maximum number of potential relation instances identified for
relation n in stage 1. The Q set notation forms part of a correspondence model, and
is explained further in the subsequent section.

4.2.2 Stage 2 - Bind variables to source model instances

To implement this stage as a MILP problem, three elements are required. 1) Decision
variables or arrays must be described, which the solver is able to manipulate. 2)
Constraints which reference these decision variables or vectors must be described;
these bound the overall problem. 3) An objective function must be captured which
specifies a metric which guides the solver.

The decision variables for this problem are relatively straightforward. The first set
of binary decision variables, α, are captured within an array. The array maps variables
within relations for a particular domain to class instances within the source model.
For every variable within each potential relation instance identified after stage 1, the
corresponding array element should be set to 1 if the class instance is bound to the
variable for that relation instance after solving and zero otherwise.

α
(n,j,s)
(v,i) =

{
1 if i is bound to relation instance j, var v for relation n
0 otherwise (19)

A second decision vector β, is also used. This vector is used to explicitly state
whether a relation instance is still a potential relation instance after this second stage,

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

16 · Glenn Callow, Roy Kalawsky

or whether one of the earlier relation instances identified during sub-graph analysis is
now being disregarded. This could be because there is an unresolvable clash between
relation instances when binding variables, that some of the relation dependencies could
not be satisfied for that relation instance, or simply that stage 1 over-estimated the
number of potential relation instances.

β(n,j,s) =

{
1 All of relation n, instance j’s variables are be bound
0 At least one variable in relation n, instance j’s could not be bound

(20)
A series of constraints are required which define the semantics of the source model

matching. These can be grouped into four categories; 1) ensuring class instances
are correctly bound to variables, 2) ensuring these bindings satisfy any containment
relationships specified in the relation, 3) ensuring these bindings satisfy any association
relationships specified in the relation and 4) ensuring these bindings satisfy any
dependencies between relations. Considering each of these groups in order.

Group 1 consists of three constraints. 1) If a relation is responsible for instantiating
a class instance, then the source model semantic equivalent is that a class instance
must only exist for one potential relation instance per relation n for classes specified in
R

(n,s)
cre . Note - the class instance can be referenced in any number of dependent relation

instances. This is shown in constraint 21. 2) For each potential relation instance,
different variables cannot be bound to the same class instance (constraint 22). 3) For
each potential relation instance, a variable must be bound to no more than one class
instance (constraint 23). In this latter constraint, the comparison is made between
α and β to ensure potential relation instances are either fully active or inactive in
subsequent stages.

∀n ∈ R,

∀(v, c) ∈ R(n,s)
cre ,∀(i, c) ∈ Is

∑
j∈Q

(n,s)
rels

α
(n,j,s)
(v,i) ≤ 1 (21)

∀j ∈ Q(n,s)
rels ,∀(i, c) ∈ Is

∑
(v,c)∈R

(n,s)
all

α
(n,j,s)
(v,i) ≤ 1 (22)

∀j ∈ Q(n,s)
rels ,∀(v, c) ∈ R(n,s)

all

∑
(i,c)∈Is

α
(n,j,s)
(v,i) = β(n,j,s) (23)

In group 2, the containment relationships are considered. This consists of two
constraints. The first constraint (constaint 24) states that if a containment relationship
is present in a relation, then a potential relation instance must contain class instances
that are an appropriate container (i.e. they have an appropriately typed containment
reference). The second constraint (constraint 25) focuses on the containment endpoint.
A potential relation instance can only use a class instance as an endpoint if the
containing instance is present as per the first constraint.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 17

∀n ∈ R,∀j ∈ Q(n,s)
rels ,

∀(v1, c1, v2, c2, r) ∈ R(n,s)
co ∑

(i1,c1)∈Is|
∃(i2,c2)∈Is s.t.
(i1,c1,i2,c2)∈Is

co

α
(n,j,s)
(v1,i1)

= β(n,j,s) (24)

∀(i1, c1) ∈ Is |

∃(i2, c2) ∈ Is s.t. (i1, c1, i2, c2) ∈ Isco
∑

(i1,c1,i2,c2)∈Is
co

α
(n,j,s)
(v2,i2)

= α
(n,j,s)
(v1,i1)

(25)

Group 3 considers association references. These are similar to the containment
constraints, with the only difference being the second constraint in this group. This
comparison is different for associations than for containments due to the semantics
of that relationship. For containments, if a variable is bound to a class instance
in a relation as a containment target endpoint then only one class instance can be
its container. There cannot be a situation where several class instances are the
container for a single specific class instance as it would be an invalid model. However,
for associations that is not the case; there could be several candidate association
relationships where a class instance is bound to a variable as an association endpoint,
with differing sources for that relationship. Some of these options may ultimately not
be chosen when binding variables in this stage; the source variable will not be bound
for that association reference.

∀n ∈ R,∀j ∈ Q(n,s)
rels ,

∀(v1, c1, v2, c2, r) ∈ R(n,s)
as ∑

(i1,c1)∈Is|
∃(i2,c2)∈Is s.t.
(i1,c1,i2,c2)∈Is

as

α
(n,j,s)
(v1,i1)

= β(n,j,s) (26)

∀(i2, c2) ∈ Is
∑

(i1,c1,i2,c2)∈Is
as

α
(n,j,s)
(v1,i1)

= α
(n,j,s)
(v2,i2)

(27)

The final group consists of one constraint, and is concerned with the when depen-
dencies. Specifically, if there is a variable6 that is dependent on another relation then
it must be ensured that a candidate dependent relation exists, and that one of the
potential relation instances for that relation can be bound to an acceptable value for
the dependent relation. If it can be, then both the parent and dependent relations
must have the corresponding variables bound to the same class instance.

6Note, that the Rwhen set contains variables in both the source and target domains. The variable
names in the tuples in Rwhen are compared with the variables in Rall for the chosen source domain
to allow bi-directionality of the transformation specification.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

18 · Glenn Callow, Roy Kalawsky

∀n ∈ R,∀(v, c) ∈ R(n,s)
all ,

∀(np, vs, vt) ∈ Rn
when,∀j ∈ Q

(n,s)
rels ,

∀(i, c) ∈ Is | (v = vs) ∨ (v = vt) α
(n,j,s)
(v,i) ≤

∑
(vp,c)∈R

(np,s)

all ,

jp∈Q
(np,s)

rels

α
(np,jp,s)

(vp,i)
(28)

To complete the MILP, an objective function is required. For the purposes of this
paper, it shall be assumed the goal is to maximise the number of bound variables in
potential relation instances. Other objective functions could be specified and these
could give rise to interesting model transformations that are concerned with maximising
or minimising some other property of the model.

max


∑

n∈R,j∈Q
(n,s)
rels ,

(v,c)∈R
(n,s)
all ,

(i,c)∈Is

α
(n,j,s)
(v,i)


(29)

This problem can now be passed through the solver, with the decision variables
being set appropriately if a solution exists. When a solution is found, the decision
variables are used to produce a series of new sets. These sets form the the source portion
of a correspondence model Q, similar to that utilised by Triple Graph Grammars
[Sch95] through its use of correspondence nodes. First, the number of potential relation
instances still under consideration must be updated.

Q
(n,s)
rels′ =

{
j ∈ Q(n,s)

rels | β
(n,j,s) = 1

}
(30)

This set defines which relation instances, up to the maximum number detected in
the initial sub-graph matches, are still being considered as potential relation instances.
Each one of these potential relation instances should have all of their variables bound,
which is defined as a set of 3-tuples.

Q
(n,j,s)
inst =

{
(i, v, c) ∈

(
Is ×R(n,s)

all

)
| α(n,j,s)

(v,i) = 1
}

(31)

The correspondence model used also explicitly captures the relationship between
dependent potential relation instances. Every dependent variable for a relation is
mapped explicitly to a class instance. This same class instance must be bound to
a variable within an instance of the parent relation. This is represented using the
following set of 6-tuples:

Q
(n,j,s)
dep ⊆

{
(v, np, vp, jp, i, c) | (v, i, c) ∈ Q(n,j,s)

inst ∧ (vp, i, c) ∈ Q
(np,jp,s)
inst

}
(32)

For each relation instance j, each of its dependent variables v is mapped to the
variable vp in the instance jp of relation np. These variables are bound to the instance

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 19

i of class c. Finally the relation variables, which are primarily used to capture and set
attribute values, are set for each relation instance.

Q(n,j,s)
vars = {(xi, yi,m),} (33)

where xi is the variable name, yi is the variable type and m is the value assigned
to that variable for instance j of relation n.

4.2.3 Stage 3 - Create Target Model Instances

At this point, a consolidated set of potential relation instances have been identified
and the source components of a correspondence model have been constructed. The
next step is to consider those potential relation instances and instantiate target model
elements for non-conflicting relation instances that do not violate constraints associated
with the target meta-model. For the purposes of this paper, only models that are
fully compliant with the target meta-model shall be considered. If a model cannot
be generated that complies with the meta-model, the transformation is considered
invalid.

As with the previous problem, decision variables are required. Three related arrays
of decision variables will be used in order to create the target model. The first decision
variable, γ, specifies which of the potential relation instances will be fully realised as a
completed relation instance in the target model. Each γ is described as follows:

γ(n,j,t) =

{
1 j ∈ Q(n,s)

rels′ ∧ j ∈ Q
(n,t)
rels

0 j ∈ Q(n,s)
rels′ ∧ j /∈ Q

(n,t)
rels

(34)

A second decision variable, ψ, is used to describe whether variable v bound to class
c in each potential relation instance j of relation n should be instantiated.

ψ
(n,j,t)
(v,c) =

{
1 an instance bound to v in n should be instantiated
0 an instance bound to v in n should not be instantiated (35)

Finally, a third decision variable τ tc describes how many class instances for each
class c will be created for the model as a whole. The arrays of τ and ψ will be related
through the constraints, with ψ being set appropriately to ensure the relations are
properly satisfied, and τ being set appropriately to ensure the meta-model is satisfied.

Three groups of constraints will be considered. The first group is concerned with
which class instances must be instantiated to satisfy a completed relation instance.
The second group is concerned with which class instances must be instantiated to
satisfy the target meta-model. Finally the third group relates the first two groups,
and ensures both the relations and meta-model are satisfied.

The first group contains 4 constraints. The first constraint (constraint 36) is
straightforward; for each completed relation instance, instantiate the required number
of classes as specified in set R(n,t)

cre . The second constraint (constraint 37) concerns
relation dependencies. If a relation instance has been determined to be dependent
on another relation instance in the previous stage, the dependent potential relation
instance cannot be used if the parent relation is not used.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

20 · Glenn Callow, Roy Kalawsky

∀n ∈ R,∀j ∈ Q(n,s)
rels′ ,

∀(v, c) ∈ R(n,t)
cre ψ

(n,j,t)
(v,c) = γ(n,j,t) (36)

∀(v, np, vp, jp, i, c) ∈ Q(n,j,s)
dep γ(n,j,t) ≤ γ(n,jp,t) (37)

The third constraint considers specifically the Rcre sets. Recall that the semantics
for these sets is that relations in these sets are responsible for instantiating the
referenced classes. The corresponding semantics when considering source model
matching are that, for each class instance in the source model, only one relation
instance can bind a specific class instance to a variable in those sets. However, multiple
potential relation instances can have variables in a Rcre set bound to the same class
instance. This allows the solver in this stage to choose the most appropriate potential
relation instance to instantiate but, at this point, only one of those candidates can be
completed. Therefore constraint 38 enforces this.

∀(i, c) ∈ Is
∑
n∈R,

j∈Q
(n,s)

rels′ ,

(v,c)∈R(n,s)
cre |

(i,v,c)∈Q
(n,j,s)
inst

γ(n,j,t) ≤ 1 (38)

The fourth constraint concerning relation dependencies is similar. In the previous
stage, there may be mutually exclusive potential relation instances that have been
identified. Different potential relation instances may have the same class instance
as a containment endpoint with different containing classes. It would be invalid to
instantiate all of them, so constraint 39 ensures that only one of these potential relation
instances is completed.

∀np ∈ R,∀jp ∈ Q
(np,s)
rels′ ∑

n∈R,j∈Q
(n,s)

rels′ ,

(va,ca,vb,cb,r)∈R(n,s)
co ,

(vb,np,vp,jp,i,c)∈Q
(n,j,s)
dep

γ(n,j,t) ≤ γ(np,jp,t) (39)

This set of constraints would, with a little modification, allow us to execute a
model transformation that prioritises the source model as per a traditional model
transformation engine. However, our goal is target model correctness and to ensure
this the associated target meta-model must be considered. To achieve this, previous
work on determining if a class diagram is satisfiable can be leveraged, such as that
by Cadoli [CCGM07], Cabot [CCR08] and the completion of Domain Specific Models
described by Sen [SBV10]. Therefore, the second group of constraints consists of four
constraints which directly reference the meta-model.

This first constraint (40) states that for all classes that are instantiated in the
target model and contain lower cardinality bounds for a containment reference, then
there must be sufficient instances of the child class in the model (number of instances
of the source class, multiplied by the lower cardinality bound). Similarly, if an upper
cardinality bound exists (i.e. is not *) then there cannot be more child class instances
than can be contained within the bounds (constraint 41).

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 21

∀c ∈ C ∑
cp∈C,(n,c,con,l,h,u,o)∈Pcp

τ tcp .l ≤ τ
t
c (40)

∑
cp∈C,(n,c,con,l,h,u,o)∈Pcp |h>0

τ tcp .h ≥ τ
t
c (41)

Association references are handled in a slightly different manner given the differing
semantics. If the isUnique flag is set then there must be enough unique instances
of the target class to satisfy the lower bounds of that association reference. If there
is an opposite pairing for this reference then the number of classes that must be
instantiated are linked; there must be sufficient instances to satisfy the relationship
in both directions. However, if there is no opposite reference then isUnique does not
prevent the same n target class instances being reused for multiple source instances;
this would not be a violation of the target meta-model. In this case the number of
instances required to satisfy an association endpoint is independent from the number
of class instances that contain the source of the reference. If the isUnique flag is not
set then the constraint is even weaker. If the lower bound of an association reference
is greater then zero, then at least one instance of the target class must exist. That
single instance can be used multiple times to satisfy the constraint.

∀cp ∈ C, ∀c ∈ C,
∀(n, c, assoc, l, h, u, o) ∈ Pcp | l > 0 (42)

τ (c,t) ≥

 l.τ (cp,t) if u is true, o is not null
l if u is true, o is null
1 if u is false, o is null

Upper cardinality bounds for associations are not considered in these constraints.
Having more candidate class instances than are required to satisfy all the association
references is not a violation of the meta-model providing all of those class instances
can be contained. Only the appropriate subset of class instances will participate in
the association references.

Finally, group 3 relates the two previous groups of constraints and consists of one
constraint only. The total number of class instances created for a model, represented
through the array of τ , should be equivalent to the number of instances required to be
realised for all complete relation instances, represented through the array of ψ.

∀c ∈ C ∑
n∈R,

(v,c)∈R(n,t)
cre ,

j∈Q
(n,s)

rels′

ψ
(n,j,t)
(v,c) = τ (c,t) (43)

As with the previous stage, an objective function is required. The examples in
section 6 shall utilise an objective function with maximises the number of source model
class instances that are included in the final correspondence model.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

22 · Glenn Callow, Roy Kalawsky

max


∑

(i,c)∈Is,n∈R,j∈Q
(n,s)

rels′ ,

(v,c)∈R(n,s)
cre |(i,v,c)∈Q

(n,j,s)
inst

γ(n,j,t)

 (44)

If a solution is found, the decision array represented by ψ can be used directly to
create the target domain aspects of the correspondence model. ψ, when combined
with the transformation specification, describe exactly which relation instances will be
instantiated, which variables will require new class instances to be created, and which
dependent relation instances are bound to which parent relation instances. This results
in a new set Q(n,j,t)

inst for the target domain which represents the instances that will be
created. Each created instance will have a Unique Identifier (UID) associated with it.
To make the results of the transformation easier to trace, the UID is derived from the
relation instance that instantiated it using a fixed format. So, r1_j1_t1_ClassA is
the UID for an instance of ClassA that was created for, and bound to, variable t1 of
the first instance (j1) of relation 1 (r1).

4.2.4 Stage 4 - Instantiate References

Given the existence of the updated correspondence model Q(n,j,t)
inst , the fourth stage is

relatively straightforward, with two possible approaches; a deterministic approach and
a linear programming approach.

If the relations in the transformation specification fully describe all references
within a meta-model, given that Qt will bind all the variables in the model and that
Rt describes how those variables participate in references, it is straightforward to
instantiate Itas and Itco.

However, in many circumstances the transformation specification may not be
complete with regards every possible reference between class instances. A common
example is opposite references where the association is specified in only one direction
explicitly in the transformation specification. This is a feature of the example used in
section 6.2. Simply using the Q sets here would miss instantiating these references.
To address this, the stage is treated as a MILP problem in a similar form to stage 3.
Given the similarities to the previous stage, it shall only be briefly elaborated upon.
Binary decision variables are introduced to determine whether a reference should be
instantiated between two class instances. Completed relation instances must have
the required references as specified in their transformation specification instantiated.
However, the system is also allowed to instantiate additional references as required to
conform with the meta-model, even if those references are not explicitly captured in
the transformation specification.

5 Implementation

To execute the model transformation, the four stages of the approach (Source Model
Analysis, Bind Variables, Create Target Model Instances and Create References,
described in section 4) are represented using the Gnu MathProg Language (GMPL)
[Mak10]. These programs are solved using the Gnu Linear Programming Kit (GLPK)7.

7Available at http://www.gnu.org/s/glpk

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 23

GMPL and GLPK offer some rudimentary modularisation features, such as the
separation of problems to be solved into model and data files. GMPL models are not
equivalent to MOF-derived models. In our implementation, there is one GMPL model
file (i.e. MILP problem) for each of the stages described in section 4. Each model
file captures the constraints and objective functions described previously, and does
not change irrespective of the inputs. After each stage of the method is completed
an updated data file is written which contains the updated set representations as
determined by the solver.

To assemble an initial GMPL data file from individual models, meta-models and
transformation specification, a bash shell script is used which takes these specifications
as inputs as well as a number of options, including which direction to conduct the
transformation. The bash script then assembles the appropriate GMPL data file as an
input to stage 1 of the transformation engine.

Whilst this solution provides a means to conduct the transformation, the repre-
sentations used are not those commonly used for domain specific modelling. Direct
integration with the Eclipse Modelling Framework (EMF) [SBPM09] is a desirable
property. This has been achieved for meta-models specified using ECORE and associ-
ated models in EMF. The Acceleo implementation of the OMG Model To Text (M2T)
transformation language [OMG08b] has been used to generate the GMPL meta-model
and model representations from their Eclipse based equivalents.

As the solver is operating, it generates a text file which specifies which class
instances are created, how they reference each other and what the attribute values
should be set to, as determined by the appropriate stage of the solver. On completion,
this file is read back into Eclipse using a custom Java plug-in which creates an EMF
model based on the solver output. This system has been evaluated under both Scientific
Linux 6 and Mac OS 10.7 operating systems.

6 Evaluation and Results

In this section results from an evaluation of the solver are described using two
transformation examples. The first example uses the simple meta-models shown earlier
in figure 1. This example illustrates the representations in more depth, and how the
solver addresses this problematic transformation. The second example uses a more
complex set of models and associated transformations. This is used to demonstrate
the solver operating on more realistic models, and on transformations where there is
significant ambiguity on how the relations should be applied. This second example is
also used to demonstrate the system working on a wide variety of input models, and
as a means to investigate the scalability of the system.

6.1 Simple Model Transformation

Consider the problematic source model, transformation and meta-models originally
discussed in section 2. Two variants of the target meta-model shall be introduced.
The only difference between the target meta-models is the lower and upper cardinality
bounds on the Requirement to System Can Determine Its Position classes. The
first meta-model sets the bounds to two (i.e. two system functions are required to
independently achieve this requirement). The second meta-model has the bounds set
to one (i.e. Exactly one system function is required to achieve this requirement). An
example of the set based representations for the source meta-model is shown in Figure

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

24 · Glenn Callow, Roy Kalawsky

4. All the models, meta-models and transformations are shown in Appendix A, along
with the set-based representation.

The results of running the model transformation, with the same source model and
transformation specification, but differing target meta-models is shown in Figure 5. In
both cases the generated model complies with the target meta-model. However, in the
second target model the system has only utilised relations 1, 2 and 4 in generating the
model. Whilst relation 3 had a match in the source model (as evidenced by the first
target model), realising that relation would have over-specified the target model with
respect to the second target meta-model. It has therefore been disregarded for the
second transformation, and utilised in the first.

Cs ={SystemFunctions, Localisation,
GPS, SLAM}

P s
SystemFunctions ={(SystemFunctions, Localisation,

con, 0, 1, true, null)}
P s

Localisation ={(gps, GPS, con, 0, 1, true, null),
(slam, SLAM, con, 0, 1, true, null)}

P s
GPS =∅

P s
SLAM =∅

Figure 4 – Second Source Meta-Model Set Representation

6.2 Train Sets to Petri Nets

A common example in some of the published work on Triple Graph Grammars is
the transformation of Train Sets to Petri-Nets [GK10] [KW07]. Whilst this example
appears relatively straightforward on first examination, it has several properties that
can make transformation difficult. The example transformations have been adapted
in the differing publications, such as the change in Petri-Net representation of the
Join/Converging Switch between the earlier example described by Kindler and Wagner
[KW07] and the later work by Greenyer et al. [GK10]. Some of these changes were
likely motivated by the difficulty in implementing this transformation in QVT-Relation.
An additional problem associated with this transformation is the ambiguity in the
’reverse’ transformation from Petri-Nets to Train Sets; the same Petri-Net patterns
participate in multiple relations. If the target meta-model is not considered when
executing the transformation, it is relatively easy for invalid models to be generated by
choosing the wrong relations to instantiate. Whilst this problem could be addressed
by reworking the transformation to remove that ambiguity, this is not desirable. It can
result in significant rework, and requires more monolithic relations; multiple relations
that each cover an overlapping proportion of the model to explicitly cope with each
ambiguous situation. Instead, the MILP transformation engine will use the target
meta-model as an additional source of information to resolve these ambiguities and
instantiate the correct relations.

Given the lack of support for inheritance in our current solver implementation,
expanded meta-models shall be used compared to those used by Greenyer et al. The
abstract classes in the original examples are removed, and the concrete classes directly
related to each other. In addition, explicit Converging and Diverging Switch types
shall be introduced which are precisely specified in terms of the number of InPort and

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 25

(a) Target Meta-Model A (b) Target Meta-Model B

(c) Target model generated for Meta-Model A

(d) Target model generated for Meta-Model B

Figure 5 – Target Models generated by the solver when targetting Meta-Model A (left) and
Meta-Model B (right)

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

26 · Glenn Callow, Roy Kalawsky

(a) Train MetaModel

(b) Petri-Net MetaModel

Figure 6 – Train and Petri-Net Meta-Models

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 27

Figure 7 – Train Pieces and their equivalent Petri-Net representations

Figure 8 – Subset of Train to Petri-Net relations, showing when dependencies

OutPorts they contain. These meta-models are shown in Figure 6. To aid with the
understanding of the example models, an alternative graphical notion shall be used,
as shown in Figure 7. This shows the possible train model pieces, such as Tracks or
Diverging or Converging Switches and their corresponding Petri-Net representations.
For more information on this example, the reader is directed to the technical report by
Kindler and Wagner [KW07]. The fully specified transformation uses eight relations,
of which four are shown in Figure 8. Relation 4 describes the transformation of a Track
piece containing one InPort and one OutPort into a Petri-Net Place and Transition,
which are both associated with an Arc with the Place as the source. Note, in this
specification the relations responsible for the creation of InPorts and OutPorts are
relations 2 and 3 respectively. Relation 4 is dependent on these two relations. Similarly,
Relation 5 describes the transformation of a Diverging Switch which contains one
InPort and two OutPorts. This relation is dependent on one instance of relation 2, but
two instances of relation 3 in order to realise the necessary OutPorts. Other relations
not shown in this figure include the relations for transforming Converging Switches,
Connectors, Trains and the containing Project into their corresponding Petri-Net
representations.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

28 · Glenn Callow, Roy Kalawsky

Figure 9 – Example Train Model

Figure 10 – Generated Petri-Net Model

Consider the example train model in Figure 9. If the transformation is executed
in the direction of the Petri-Net meta-model using the MILP solver then the Petri-
Net shown in Figure 10 is generated by the MILP transformation engine. This is
a relatively straightforward transformation, largely due to to the precision of the
Train Set meta-model. Each of the eight relations specified in the transformation
specification unambiguously describe the entire meta-model. This is due to the strongly
typed nature of the model which allows, for example, Track pieces to be distinct from
Switches and the appropriate relations used. Examining the potential relation instances
identified after the source model variables have been bound and the completed relation
instances used to instantiate the target model shows that all of the potential relation
instances are used. There is no ambiguity or conflict between those relation instances.

However, executing the transformation in the opposite direction is less clear, due
to the ambiguous nature of the relation patterns for that domain. Specifically the
Petri-Net representation for a Track piece, which comprises a Place and a Transition
connected by an Arc is a sub-set of the petri-net representations for both Diverging and
Converging Switches. Indeed, if the meta-models are ignored and relational patterns
are simply matched there are multiple potential transformations of this model. For
example, a potential transformation from a standard QVT-Relation engine is for this
model to be transformed into six Track pieces; relation 4 can strictly be matched six
times. The Train Set meta-model precludes a single InPort being contained within
multiple Track pieces, but as was shown earlier, most current transformation languages
do not consider the meta-models when generating target models.

The MILP solver described in this paper is able to regenerate the original Train Set
model from this Petri-Net model. After binding variables to source model instances,
there are a significant number of potential relation instances still under consideration.
Whilst only one Petri-Net pattern for a Converging Switch has been identified (the
most complex of the patterns), two Petri-Net patterns for a Diverging Switch have been
identified with acceptable variable bindings, and five Petri-Nets patterns for Track
Pieces have been identified. The solver is able to determine that instantiating one each
of the Track, Diverging Switch, and Converging Switch relation instances maximises
the objective function in equation 44, thus successfully recreating the original model.

This MILP solver does not guarantee the ability to reverse a previous transformation
and regenerate the original source model. It depends on the information available
to the system, including the detail within the transformation specification and the
respective meta-models. In some cases, the ambiguity may be too great and an

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 29

Figure 11 – Different Greenyer-derived (center) and Callow (right) petri-net representations
of a track converging switch (left)

alternative model is generated. However, the system will guarantee that whatever
model is generated, it will be generated from a valid combination of potential relation
instances and the generated model will be compliant with its meta-model.

6.3 Correctness and Performance

To examine correctness and scalability of the system, a variety of 16 example test train
models have been constructed. These models are summarised in Table 1 and range
from single switch pieces through to a large loop that has multiple tracks, switches
and trains. Two variants of the transformation specification have also been considered;
the Greenyer-derived specification introduced previously and a Callow specification.
The only difference between the two is the equivalent petri-net representation for a
converging switch. This is summarised in Figure 11.

To test correctness of the transformation engine, two transformations were executed
for each model. A petri-net model was automatically generated using the transforma-
tion engine from the selected train-model and then this automatically generated model
was used as the input for the reverse transformation. All other aspects (meta-models,
transformation specification) were kept constant for both transformations and this
resulted in a newly generated train model. This model was then compared with the
original model in terms of the class instances expected, attribute values and references.
For all of the example models, and for both transformation specifications, the system
successfully reconstructed all of the original source models except for the reverse
transformation for model 16 using the Greenyer transformation. Even for this model,
it is expected that the solver can generate the correct target model for this example.
However, that example is the most complex that is considered in this paper and the
system did not converge on a solution in a reasonable time. The test process (and
computation times) for model 13 are shown in figure 12. Some of the more complex
models (15 and 16) are shown in Appendix A.

To test performance of the system, the time taken to complete each of the stages
in both the forward and reverse transformations in the correctness tests was measured.
This was conducted for all input train models, using both the Greenyer-derived and
Callow transformation specifications. These results are summarised in the charts in
Figure 13. In the forward transformation, performance is relatively constant over stages
1, 2 and 3. It is only in the final two models where there is a measurable exponential
growth in completion time and this is due to the increase in time it takes to complete
stage 4, where the association and containment references are established. For models
1 to 14, there is no appreciable difference between the times to complete when using

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

30 · Glenn Callow, Roy Kalawsky

Table 1 – Summary of example train models

Model
No.

Model Desc. Class
Inst.

Cont.
Refs.

Assoc.
Refs

1 2 Tracks, 1 Connection 8 7 4
2 3 Tracks, 2 Connections 12 11 8
3 4 Tracks, 3 Connections 16 15 12
4 2 Tracks, 1 DivSwitch, 2 Connections 13 12 8
5 4 Tracks, 4 Connections (Loop) 17 16 16
6 2 Tracks, 1 DivSwitch 11 10 0
7 2 Tracks, 2 DivSwitches, 3 Connections 18 17 12
8 2 Tracks, 3 DivSwitches, 5 Connections (Loop) 24 23 20
9 1 ConSwitch 5 4 0
10 1 Track, 1 ConSwitch, 1 Connection 9 8 4
11 4 Track, 3 Connections, 1 Train 17 16 12
12 4 Track, 3 Connections, 1 Train 17 16 12
13 4 Track, 4 Connections, 2 Trains (Loop) 19 18 16
14 1 Track, 2 ConSwitch, 2 Connections 13 12 8
15 4 Tracks, 2 DivSwitches, 2 ConSwitches, 10 Connections

(Loop)
39 38 40

16 12 Tracks, 4 DivSwitches, 4 ConSwitches, 24 Connections, 3
Trains (Loop)

96 95 96

either the Greenyer-derived or Callow transformation specification. This includes
model 8, the most complex model that does not contain any Converging Switches.
Given that the only the difference between the specifications is the Converging Switch
representation, this is not surprising. However, Models 15 and 16 contain two and four
converging switches respectively and there is a significant increase in the completion
time for these models. The engine takes longer to complete the fourth stage when
using the Greenyer-derived specification compared to the Callow specification. This
is because the Greenyer Converging Switch representation has double the number of
petri-net elements as the Callow representation, and therefore more elements that
need to be correctly associated. The petri-net meta-model is relatively unconstrained
in that the same meta-model elements are reused in representing the train model
components, and therefore there are many potential association references which
would be permitted by the meta-model. These potential associations references are
considered (thus increasing the search space) but disallowed in stage 4 due to not
participating in the potential relation instances.

Table 2 – Table showing the number of potential relation instances identified by the trans-
formation engine at the end of stage 1 in both the forward and reverse transformation
for model 16, using the Callow transformation specification

Direction R1 R2 R3 R4 R5 R6 R7 R8

Forward 1 24 24 12 24 4 4 3
Reverse 1 24 24 24 52 24 24 3

The reverse transformation has different properties. As with the forward trans-
formation most of the models are solved in a reasonable time but the larger models
exhibit an exponential increase, in relation to the increase in the size of the model,
in their time to complete. However in the reverse transformation stage 2, where the
binding of variables in the relations to the source model occurs, is where the majority

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 31

Figure 12 – Train Model 13, transformed to a Petri Model and then back to a Train Model
using the Greenyer-derived transformation specification. Figure shows the total time
taken to complete the transformation, broken down by stages.

of the time is spent. For the forward transformation stage 2 was not a significant
proportion of the computation time. This is again due to the permissive nature of
the petri-net meta-model, and is most clearly shown through the number of potential
relation instances that are identified after the initial sub-graph matching algorithm in
stage 1. The forward and reverse transformations for Model 16 are shown in Table
2. This shows that in the forward transformation, the sub-graph matching algorithm
correctly identifies the exact number of potential relation instances for each relation.
This is largely due to the strongly typed nature of the train meta-model. Each relation
accommodates a specific type in that meta-model, and therefore it is a straightforward
process to deterministically calculate the correct of number of matching relations. The
combination of a strongly typed meta-model and the correctly identified number of
potential relation instances ensures the optimisation problem in stage 2 is heavily
constrained and can be solved quickly for large models. The same is not true for
the reverse transformation. As many of the relations contain the same meta-model
elements, there are many more potential relation instances under consideration after
stage 1; over double the number for relation 4 and six times the number for the switch
relations 6 and 7. The result of this is that stage 2 is a much less constrained optimi-
sation problem than the forward transformation, and therefore can take significantly
longer to solve. Enabling choice between potential relation instances in transformation
specifications that reference permissive meta-models, and still generating correct target
models, is the primary goal for this transformation engine and therefore this less
constrained optimisation problem is simply a consequence of that research goal. There
is also a large difference in completion times between the Greenyer-derived and Callow
specifications in the reverse direction due to the differences between the Converging
Switch representation; this difference results in a larger optimisation search space
because of the larger Greenyer-derived representation of this switch. Stage 4, however,

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

32 · Glenn Callow, Roy Kalawsky

takes much less time to solve in the reverse transformation. This is because stage 4
in this instance works within the train meta-model domain and therefore is creating
these references whilst considering a more precisely specified meta-model.

Let us consider further the relationship between stage 1 and stage 2. Stage 1, as
described in section 4, provides a deterministic estimate of the number of potential
relation instances which in turn establishes bounds for the optimisation problem in
stage 2. Stage 1 only outputs a number of potential relation instances ; it does not make
any attempt to bind the variables in the relation to source model instances. If the
algorithm used in stage 1 under-estimates the number of potential relation instances,
then this can affect the target model being generated as it can overly constrain stage
2. This would prevent some viable relation instances from being realised, although
the rest of the system will still assemble a target model that is compliant with its
meta-model out of the relation instances it is allowed to use (if a compliant model is
possible). If stage 1 over-estimates the number of potential relation instances then
there is no effect on target model correctness. Any potential relation instances that
cannot have their variables bound correctly to source model instances are ultimately
disregarded. This prompts two questions; is stage 1 is required and why not assume
arbitrarily large constant values for potential relation instances as an input to stage 2?

In table 3, a summary of stage 1 and 2 for three separately run reverse transforma-
tions of model 8 are shown. The difference between the three runs is how the number
of potential relation instances is deterministically calculated in stage 1. Recall that
stage 1 currently uses the minimum of three heuristics which determine 1) number of
instance matches, 2) containment relationship matches and 3) association relationship
matches in order to set bounds on potential relation instances. The difference between
the three runs is simply a change in the logic in the containment relationship heuristic.
Consider that a relation may specify multiple containment relationships. Run 1 (the
default) returns the number of times the containment relationship with the fewest
matches was matched. Run 3 returns the number of times the containment relation-
ship with the most matches was matched. Run 2 adds a constant off-set of 1 to the
containment values of Run 1. Whilst all three runs generated the same target model,
run 3 took significantly longer to complete stage 2 because of the less constrained
optimisation problem. This demonstrates that there is a significant performance
benefit by accurately estimating the number of potential relation instances in the first
stage.

Table 3 – Table showing the number of potential relation instances identified by the trans-
formation engine at the end of stage 1 when transforming a petri-net representation
of model 8 back to a train model using the Greenyer derived specification. Run 1 is
tightly constrained in the number of potential relations identified. Run 3 is the most
permissive.

Model
Run

R1 R2 R3 R4 R5 R6 R7 R8 Stage 2 Completion
Time (secs)

Run 1 1 5 8 6 13 6 6 0 6.846
Run 2 1 5 8 7 13 7 7 0 40.474
Run 3 1 5 8 13 13 13 13 0 953.887

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 33

Figure 13 – Time to complete for forward and reverse transformation using the Greenyer-
derived and Callow transformation specifications. Model 16 is not shown for the
Greenyer-derived Petri to Train transformation due to the computation time required.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

34 · Glenn Callow, Roy Kalawsky

6.4 Scalability Discussion

These results demonstrate a wide range of performance results. For all of the small to
medium sized models, the system is able to correctly generate a target model in both
the forward and reverse directions in a practical time-scale. It is only with the largest
models that we begin to see significant increases in completion times; in the forward
direction in stage 4, and in the reverse direction in stage 2. Both of these stages are
considering a lightly constrained meta-model when they show these extended times to
completion.

Considering the forward transformation first, there appears to be some straight-
forward improvements that could be made to improve the completion times. The
current formulation for stage 4 considers the entire model when trying to determine
the best association references to instantiate; the domain of the decision variables
is all possible class instances that have the appropriate reference in the meta-model.
This is then further constrained by which variables are bound to particular instances
in the completed relation instances. A relatively straight-forward modification would
be to modify the decision variables so that they are a) associated with each completed
relation instance and b) only use the class instances that are bound to variables of that
completed relation instance in that domain. This would have the effect of increasing
the number of decision variables but drastically reducing the domain these decision
variables operate over.

Improving the performance of stage 2 when used with very permissive meta-models
is more difficult. This could potentially be considered a type of Bin Packing Problem
with Conflicts (BPPC) where the system is looking to fit a number of different patterns
most effectively over a given model to optimise a particular metric. For large models
with permissive meta-models and where the associated transformation specification
has relations which are sub-sets of other relations, there will be a large search space
to examine and this is reflected in the results.

7 Conclusions and Future Research

This paper has described a novel model transformation engine, implemented as a series
of Mixed Integer Linear Programs, which ensures that models created using the system
are compliant with their meta-model. It achieves this by being less prescriptive with
the source pattern matching semantics, allowing many more source pattern matches
to be identified than can be realised and then choosing which of those relations should
be instantiated to create an appropriate target model. The evaluations that have been
conducted show the system can successfully create compliant target models, even when
there is significant ambiguity in the transformation specification and source models
provided.

7.1 Future Research

There are a number of areas for improving the current system. i) Integrating model
synchronisation and consistency checking capabilities; the set-based representation
used within this system has been developed with supporting these behaviours in
mind. Consistency checking in particular is a useful capability for verifying system
models, and this system potentially offers a significant benefit when applied to these
models. It is straightforward to identify the relations that maximise coverage of source
and/or target models. This could, for instance, be used to identify elements of system

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 35

models that are not able to be verified (i.e. they don’t currently participate in the
transformation). ii) The use of an objective function to guide the different stages of
the transformation also opens up other interesting possibilities. Whilst the objective
function in this paper has been to either maximise the number of relations matched,
or maximise the coverage of a particular model by the instantiated relations, other
objective functions could be used. For example, the system could maximise or minimise
a particular attribute value in the source or target models. When used for system
verification, this could be used to identify the highest or lowest level of performance
a system may achieve for a particular requirement. This would be a fruitful area
for future research. iii) Additional meta-model constraints are often specified using
an additional constraint language, such as OCL, when specifying meta-models. The
current transformation engine can incorporate these additional constraints relatively
easily within stage 3 of the approach, but the transformation from OCL to GMPL is
currently a manual process. Automating this, by automatically transforming OCL into
an equivalent GMPL form, would significantly increase the complexity of meta-models
that can be considered when the engine assembles a target model. This would form a
future research theme for this work.

Improving the performance of the system also has several promising research
directions. iv) Performance of stage 2 is dependent on the number of potential relation
instances identified in stage 1. At present, a relatively naive set of heuristics are
used in stage 1. If a more accurate determination of the potential relation instances
can be made, this could lead to an improved performance in stage 2. v) One of the
benefits of specifying this transformation as a GMPL problem is that it opens up
the possibility of easily using alternative solvers to address this problem. Whilst
the results in this paper are generated from the GLPK solver, there are many other
solvers that support AMPL8 from which GMPL is derived. Some of these solvers may
have improved performance over GLPK when applied to this problem. vi) Although
BPPC is NP-hard, alternative optimisation approaches have been used previously in
finding good approximations to the global optimum [MIM09] [Fal96]. The set-based
representation, constraints and metrics described in section 4 could form the basis for
implementing a heuristic optimisation solution as an alternative to a MILP that is
better able to identify near-optimal solutions for stage 2 when dealing with very large
search spaces.

7.2 Conclusions

One of the key problems that we believe has caused the limited uptake of relational
model transformation languages is their restrictive or ambiguous semantics. However,
the goal of relational transformation languages is to focus on what the transformation
is expected to achieve rather than how a model transformation engine should execute
a transformation. Unfortunately, relational transformation languages that have restric-
tive, deterministic semantics, such as Triple Graph Grammars, constrain the scope
and style of relations that can be written. The fixed semantics restrict the relations
that are, and are not allowed. QVT-Relation, which is ambiguous in its semantics,
has additional problems; different tools interpret the semantics differently, and there-
fore have different behaviour. Moreover, it cannot be guaranteed that a particular
transformation will generate a correct model, or that results will be consistent across
different engines given the same inputs. A modeller must have knowledge of how a

8See http://www.ampl.com/solvers.html for a reasonably complete list. (Last checked 29/6/2012)

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

36 · Glenn Callow, Roy Kalawsky

QVT-Relation transformation engine will interpret their transformation to write an
effective specification.

The Mixed Integer Linear Program based model transformation approach described
in this paper addresses this challenge by avoiding a prescriptive set of semantics.
Instead, the generated target models are determined based on the target meta-model
and the associated objective functions. This novel approach allows for a consistent
interpretation of the transformation specification (in that a correct target model will
be generated) independent from fixed semantics within the engine, and guarantees
that a generated model will be correct with respect to its meta-model.

Consequently, there are significant potential benefits to modellers when using
this transformation engine. Firstly, they have greater freedom in writing the model
transformation specification. They do not need to be as cognisant of how a model
transformation engine will interpret their specification, and can instead guide the
transformation by the detail in the associated meta-model and user-specified metrics.
Secondly, the modeller can be confident that a correct model will be generated, if one
is possible; models that are non-compliant with their associated meta-model will not
be generated. Our research clearly indicates the merits of our approach and signposts
the important benefits for the evoling model based systems engineering community.

A Detailed Model Examples

In this Appendix, detailed information about some of the examples used in this paper
are described. The full QVT-Relation specification described in section 2 is presented
in Figure 17. The Target Meta-Models used for that example and the set-based
equivalents (based on the descriptions in section 3) are shown in Figure 14. Similarly,
the source model used for that transformation and the set-based equivalent is shown
in Figure 15. Finally, the set based equivalent of the QVT-Relation transformation
specification is shown in Figure 16.

Ct ={ProjectX, Requirements,
SystemCanDetermineItsPosition}

P t
ProjectX ={(requirements, Requirements, con, 1, 1,

true, null)}

P t
Requirements ={(positionreq,

SystemCanDetermineItsPosition,
con, 2, 2, true, null)}

P t
System... =∅

Ct ={ProjectX, Requirements,
SystemCanDetermineItsPosition}

P t
ProjectX ={(requirements, Requirements, con, 1, 1,

true, null)}

P t
Requirements ={(positionreq,

SystemCanDetermineItsPosition,
con, 1, 1, true, null)}

P t
System... =∅

Figure 14 – Target Meta-Model Set Representations

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 37

Is ={(sysfunc1, SystemFunctions),
(loc1, Localisation),
(gps1, GPS),
(slam1, SLAM)}

Isco ={(sysfunc1, SystemFunctions,
loc1, Localisation),
(loc1, Localisation,
gps1, GPS),
(loc1, Localisation,)
slam1, SLAM)}

Figure 15 – Simple Source Model Set Representation

R1
top ={true}

R
(1,s)
root ={SystemFunctions}

R
(1,t)
root ={ProjectX}

R
(1,s)
cre ={(s1, SystemFunctions)}

R
(1,t)
cre ={(t1, ProjectX)}

R
(1,s)
dep =∅

R
(1,t)
dep =∅

R
(1,s)
co =∅

R
(1,t)
co =∅

R1
when =∅

R3
top ={true}

R
(3,s)
root ={Localisation}

R
(3,t)
root ={Requirements}

R
(3,s)
cre ={(s3, GPS)}

R
(3,t)
cre ={(t3, SystemCanDetermineItsLocation)}

R
(3,s)
dep ={(s2, Localisation)}

R
(3,t)
dep ={(t2, Requirements)}

R
(3,s)
co ={(s2,Localisation,s3,GPS,gps)}

R
(3,t)
co ={(t2,Requirements,t3,}

{SystemCanDetermineItsLocation,
positionreq)}

R3
when ={(2, s2, t2)}

R2
top ={true}

R
(2,s)
root ={SystemFunctions}

R
(2,t)
root ={ProjectX}

R
(2,s)
cre ={(s2, Localisation)}

R
(2,t)
cre ={(t2, Requirements)}

R
(2,s)
dep ={(s1, SystemFunctions)}

R
(2,t)
dep ={(t1, ProjectX)}

R
(2,s)
co ={(s1, SystemFunctions, s2,

Localisation,localisation)}

R
(2,t)
co ={(t1, ProjectX, t2, Requirements,

requirements)}

R2
when ={(1, s1, t1)}

R4
top ={true}

R
(4,s)
root ={Localisation}

R
(4,t)
root ={Requirements}

R
(4,s)
cre ={(s4, SLAM)}

R
(4,t)
cre ={(t3, SystemCanDetermineItsLocation)}

R
(4,s)
dep ={(s2, Localisation)}

R
(4,t)
dep ={(t2, Requirements)}

R
(4,s)
co ={(s2,Localisation,s4,SLAM,slam)}

R
(4,t)
co ={(t2,Requirements,t3,}

{SystemCanDetermineItsLocation,
positionreq)}

R4
when ={(2, s2, t2)}

Figure 16 – Set Based Representation of Transformation shown in Figure 17

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

38 · Glenn Callow, Roy Kalawsky

Figure 17 – QVT-Relation specification used for example transformation in section 2

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 39

Figure 18 – Train Model 15, Forward and Reverse Transformations using the Callow speci-
fication (top) and Greenyer-derived specification (bottom)

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

40 · Glenn Callow, Roy Kalawsky

Figure 19 – Train Model 16, Forward and Reverse Transformations using the Callow speci-
fication

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 41

References

[Bai05] C Bailey. Developing Coherent, Concise And Comprehensive User
Requirements Using The MoD Architectural Framework (MODAF).
DTIC Document, 2005.

[CCG10] Jordi Cabot, R Clarisó, and E Guerra. A UML/OCL Framework for
the Analysis of Graph Transformation Rules. Software and Systems
Modeling, 2010. doi:10.1007/s10270-009-0129-0.

[CCGM07] M Cadoli, D Calvanese, G De Giacomo, and T Mancini. Finite
Model Reasoning on UML Class Diagrams via Constraint Program-
ming. In Proceedings of the 10th Congress of the Italian Association
for Artificial Intelligence on AI*IA 2007: Artificial Intelligence and
Human-Oriented Computing, pages 36–47, Rome, Italy, 2007. AI*IA
’07. doi:10.1007/978-3-540-74782-6_5.

[CCR08] Jordi Cabot, R Claris, and Daniel Riera. Verification of UML/OCL
Class Diagrams Using Constraint Programming. In Proceedings of the
2008 International Conference on Software Testing Verification and
Validation Workshop, pages 73–80, Barcelona, 2008. doi:10.1109/
ICSTW.2008.54.

[CDREP10] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. JTL: A Bidirectional and Change Propagating Transfor-
mation Language. In SLE’10: Proceedings of the Third international
conference on Software language engineering. Springer-Verlag, October
2010. doi:10.1007/978-3-642-19440-5_11.

[CFH+09] K Czarnecki, J Foster, Z Hu, R Lämmel, A Schürr, and J F Ter-
williger. Bidirectional Transformations: A Cross-Discipline Perspective.
ICMT2009 - International Conference on Model Transformation, pages
260–283, 2009. doi:10.1007/978-3-642-02408-5_19.

[CH06] K Czarnecki and S Helsen. Feature-based Survey of Model Trans-
formation Approaches. IBM Systems Journal, 45(3):621–645, 2006.
doi:10.1147/sj.453.0621.

[CKWO11] Glenn Callow, R Kalawsky, G Watson, and Y Okuda. Addressing
Systems Verification of Autonomous Systems through Bi-Directional
Model Transformations: A Systems Model Driven Approach. Proceed-
ings of the 6th IEEE International Conference on System of Systems
Engineering, 2011. doi:10.1109/SYSOSE.2011.5966616.

[Fal96] Emanuel Falkenauer. A Hybrid Grouping Genetic Algorithm for
Bin Packing. Journal of heuristics, 2(1):5–30, 1996. doi:10.1007/
BF00226291.

[Gas85] SI Gass. Linear Programming: Methods and Applications. Dover
Publications Inc., 5th edition, 1985.

[GdLK+11] Esther Guerra, Juan de Lara, Dimitrios Kolovos, Richard Paige,
and Osmar dos Santos. Engineering Model Transformations with
transML. Software and Systems Modeling, pages 1–23, 2011. doi:
10.1007/s10270-011-0211-2.

[GdLKP10] E Guerra, J de Lara, D Kolovos, and R Paige. transML: A Family of
Languages to Model Model Transformations. In Proceedings of the

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.1007/s10270-009-0129-0
http://dx.doi.org/10.1007/978-3-540-74782-6_5
http://dx.doi.org/10.1109/ICSTW.2008.54
http://dx.doi.org/10.1109/ICSTW.2008.54
http://dx.doi.org/10.1007/978-3-642-19440-5_11
http://dx.doi.org/10.1007/978-3-642-02408-5_19
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1109/SYSOSE.2011.5966616
http://dx.doi.org/10.1007/BF00226291
http://dx.doi.org/10.1007/BF00226291
http://dx.doi.org/10.1007/s10270-011-0211-2
http://dx.doi.org/10.1007/s10270-011-0211-2
http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

42 · Glenn Callow, Roy Kalawsky

13th international conference on Model driven engineering languages
and systems, pages 106–120, Oslo, Norway, 2010. MODELS ’10. doi:
10.1007/978-3-642-16145-2_8.

[GK10] J Greenyer and E Kindler. Comparing relational model transformation
technologies: implementing Query/View/Transformation with Triple
Graph Grammars. Software and Systems Modeling, pages 21–46, 2010.
doi:10.1007/s10270-009-0121-8.

[Hau88] J Hauser. The House of Quality. Harvard Business Review, 66(3):63–73,
1988.

[HKA11] F Heidenreich, J Kopcsek, and U Aßmann. Safe Composition of
Transformations. Journal of Object Technology, 10:7:1–20, 2011.
doi:10.5381/jot.2011.10.1.a7.

[HSST11] Z Hu, A Schürr, P Stevens, and J F Terwilliger. Dagstuhl Seminar on
Bidirectional Transformations (BX). SIGMOD Record, 40(1):35–39,
2011. doi:10.4230/DagRep.1.1.42.

[JK06] F Jouault and I Kurtev. On the Architectural Alignment of ATL and
QVT. Proceedings of the 2006 ACM symposium on Applied computing,
page 1195, 2006. doi:10.1145/1141277.1141561.

[KW07] E Kindler and R Wagner. Triple Graph Grammars: Concepts, Ex-
tensions, Implementations, and Application Scenarios. University of
Paderborn Technical Report tr-ri-07-284, 2007.

[Mak10] A Makhorin. Modelling Language for GNU MathProg for GLPK Ver-
sion 4.45. December 2010.

[MIM09] AEF Muritiba, M Iori, and E Malaguti. Algorithms for the Bin Packing
Problem with Conflicts. INFORMS Journal on Computing, 22(3):401–
415, 2009. doi:10.1287/ijoc.1090.0355.

[MM03] J Miller and J Mukerji. MDA Guide v1.0.1. OMG Document omg/03-
06-01, June 2003. Available from: http://www.omg.org/cgi-bin/doc?
omg/03-06-01.

[OMG08a] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. OMG Document formal/2008-04-03, April 2008.

[OMG08b] OMG. MOF Model to Text Transformation Language, v1.0. OMG
specification formal/2008-01-16, pages 1–48, February 2008.

[SBM08] S Sen, B Baudry, and JM Mottu. On Combining Multi-Formalism
Knowledge to Select Models for Model Transformation Testing. In
Proceedings of 1st International Conference on Software Testing, Verifi-
cation, and Validation, April 2008. doi:10.1109/ICST.2008.62.

[SBM09] S Sen, Benoit Baudry, and Jean-Marie Mottu. Automatic Model Gen-
eration Strategies for Model Transformation Testing. Theory and Prac-
tice of Model Transformations, Lecture Notes in Computer Science,
5563:148–164, 2009. doi:10.1007/978-3-642-02408-5_11.

[SBPM09] D Steinberg, F Budinsky, M Paternostro, and E Merks. EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley, 2009.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.1007/978-3-642-16145-2_8
http://dx.doi.org/10.1007/978-3-642-16145-2_8
http://dx.doi.org/10.1007/s10270-009-0121-8
http://dx.doi.org/10.5381/jot.2011.10.1.a7
http://dx.doi.org/10.4230/DagRep.1.1.42
http://dx.doi.org/10.1145/1141277.1141561
http://dx.doi.org/10.1287/ijoc.1090.0355
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://dx.doi.org/10.1109/ICST.2008.62
http://dx.doi.org/10.1007/978-3-642-02408-5_11
http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

A Satisficing Bi-Directional Model Transformation Engine · 43

[SBV10] S Sen, B Baudry, and Hans Vangheluwe. Towards Domain-Specific
Model Editors with Automatic Model Completion. Simulation: Transac-
tion of the Modeling and Simulation Society, 86(2):109–126, February
2010. doi:10.1177/0037549709340530.

[Sch95] Andy Schürr. Specification of Graph Translators with Triple Graph
Grammars. Graph-Theoretic Concepts in Computer Science, 903:151–
163, 1995. doi:10.1007/3-540-59071-4_45.

[Ste11] P Stevens. A Simple Game-Theoretic Approach to Checkonly QVT
Relations. Software and Systems Modeling, 2011. doi:10.1007/
s10270-011-0198-8.

About the authors

Glenn Callow received his BSc (Hons) in computer science from the University of
York in 1999. He is currently working towards an Eng.D. in Systems Engineering at
Loughborough University. He was previously employed at the BAE Systems Advanced
Technology Technology in the area of intelligent and autonomous systems, and has led
the development of a number different platforms. His main research interests include
system modelling, architectures and improved engineering for autonomous systems.

Glenn is a member of the British Computer Society. Contact him at g.m.callow@
lboro.ac.uk

Roy Kalawsky (PhD (Hull 1991), MSc (Hull 1984), BSc (Hull 1978), C.Eng, MIET,
FRSA) is Director of the Research School of Systems Engineering at Loughborough
University, UK.). He has extensive industrial and academic experience in systems
engineering spanning over 32 years. He spent over 17 years working for BAE Systems
as a systems engineer and was responsible for Advanced Crew Station research across
the Military Aircraft Division. He joined Loughborough University in 1995 and
established the Advanced VR Research Centre to specialize in advanced systems,
modelling and simulation, synthetic environments and advanced visual analytics.
He is the founding Director of the Research School of Systems Engineering. He is
adjunct professor at the University of Southern Australia (Adelaide). Contact him at
r.s.kalawsky@lboro.ac.uk

Acknowledgments The work reported in this paper was funded by BAE Systems
and the Systems Engineering for Autonomous Systems (SEAS) Defence Technology
Centre established by the UK Ministry of Defence. Additionally, the authors would
like to thank Prof. Charles Dickerson for his input and guidance with this work.

Journal of Object Technology, vol. 12, no. 1, 2013

http://dx.doi.org/10.1177/0037549709340530
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/s10270-011-0198-8
http://dx.doi.org/10.1007/s10270-011-0198-8
mailto:g.m.callow@lboro.ac.uk
mailto:g.m.callow@lboro.ac.uk
mailto:r.s.kalawsky@lboro.ac.uk
http://dx.doi.org/10.5381/10.5381/jot.2013.12.1.a1

	Introduction
	Background
	Model, Meta-Model and Transformation Representations
	Meta-Model Representation
	Model Representation
	Transformation Representation

	Transformations using Mixed Integer Linear Programming
	Differences with existing relational model transformation approaches
	Detailed Stage Description
	Stage 1 - Source Model Analysis
	Stage 2 - Bind variables to source model instances
	Stage 3 - Create Target Model Instances
	Stage 4 - Instantiate References

	Implementation
	Evaluation and Results
	Simple Model Transformation
	Train Sets to Petri Nets
	Correctness and Performance
	Scalability Discussion

	Conclusions and Future Research
	Future Research
	Conclusions

	Detailed Model Examples
	Bibliography
	About the authors

