

JOURNAL OF OBJECT TECHNOLOGY

Pu b l i s h e d b y A I TO — A s s o c i a t i o n I n t e r n a t i o n a l e p o u r l e s T e c h n o l o g i e s O b j e t s © J o t , 2 0 1 1
On l i ne a t http://www.jot.fm

Seyed Mohammad Hossein Hasheminejad, Saeed Jalili. SCI-GA: Software Component Identification
using Genetic Algorithm. In Journal of Object Technology, vol. 12, no. 2, 2013, pages 3:1–34. doi:
10.5381/jot.2013.12.2.a3

SCI-GA: Software Component
Identification using Genetic

Algorithm
Seyed Mohammad Hossein Hasheminejad a Saeed Jalili a

a. Department of Computer Engineering, Tarbiat Modares University,

Tehran, Iran

Abstract Identifying software components is a crucial task in software
development. There are a number of methods to identify components in the
literature; however, the majority of these methods rely on clustering techniques
with expert judgment. In contrast to the previous methods, which have used
classical clustering techniques, this paper maps the components identification
problem to an optimization problem. We propose a novel GA-based algorithm
(Genetic Algorithm) as a powerful optimization search algorithm, called SCI-GA
(Software Component Identification using Genetic Algorithm), to identify
components from analysis models. SCI-GA uses software cohesion, coupling, and
complexity measurements to define its fitness function. For performance evaluation,
we evaluated SCI-GA using three real-world cases. The results reveal that SCI-GA
can identify correct suboptimal software components, and performs far better than
alternative heuristics like k-means and FCA-Based methods.

Keywords Software Component; Component Identification; Genetic Algorithm

1 Introduction

In Component-Based Software Development (CBSD) process, partitioning a
software space to identify components is a crucial task. Several methods have been
presented to identify software components, but they do not agree on what exactly
is a component. Birkmeier and Overhage [BO09] divided components into three
categories: Business-oriented components [AOB08, CYW11, GS01, JCI01, LYC99,
PTZ08, WXZ05], Architecture-focused or Logical components [Ham09, KC04,

2  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

LJK01, SJH10], and Technical components [CC11]. Business-oriented components
are associated with business components and require realizing business processes.
Architecture-focused components concentrate on logical characteristics, i.e., a
structuring is required in them. Finally, Technical components focus on
deployment and implementation aspects.

This paper concentrates on a logical definition of component as follows [KPS08]:
"A logical component, in contrast to a physical component, is a component
representing requirements except for technology, environments, and constraints.
Nevertheless, it is meaningful that these logical components provide the starting
point for designing the software architecture".

Logical components are the primary abstractions of the entire design of a
system. Partitioning a system into logical components has a key role in defining the
system architecture [SJH10]. During the CBSD process, a software architect is
responsible for decomposing a system into some logical components. However,
because of heavy reliance on software architect experience, it is an extremely
difficult and error prone task to identify logical components without any tool
support [BO09]. To help overcome this difficulty, several works suggest automatic
or semi-automatic methods to identify logical components.

Current attempts to identify logical components rely on classical clustering
techniques with expert judgment and cluster either use cases or classes of a system
into components. Lee et al. [LJK01] proposed a method for clustering classes into
logical components with high cohesion and low coupling. Kim et al. [KC04]
employed use case models, object models and collaboration diagrams to identify
components. Hamza [Ham09] proposed a framework based on the theory of Formal
Concept Analysis (FCA) to partition a class diagram into logical components with
some heuristics similar to clustering techniques. Shahmohammdi et al. [SJH10]
proposed a feature-based clustering method to identify logical components, in
which several features like actors and entity classes were presented to measure the
similarity between a pair of use cases. Therefore, several classical clustering
techniques like k-means, Hierarchal, Graph-based method, and Fuzzy C-means
were examined to achieve good software architecture.

These four methods use classical clustering techniques, and suffer from several
common weaknesses. First, they need to manually adjust their thresholds, and
highly depend on expert judgment to select the best solution. Second, the number
of components must be manually determined by experts in advance. Third, they
use different classical clustering techniques like k-means, which are inefficient to
deal with complex search landscapes due to their simple greedy and heuristic
nature [RW10]. Finally, the common objective of these methods is to optimize
clustering criteria like Sum of Squared Error (SSE) and Variance Ratio Criterion
(VRC) [HCF09] rather than software design measurements like software cohesion,
coupling, and complexity.

3  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

Recently, evolutionary algorithms have been widely applied to software
problems. Therefore, a new scope of software engineering by the name of Search-
Based Software Engineering (SBSE) [HMZ12] has emerged to reformulate software
problems as optimization problems. In [SP13], all works related to SBSE are
categorized and Search-Based Design works are particularly surveyed in [Räi10].

The goal of this paper is to improve limitations of Clustering-Based methods.
Therefore, we propose a search-based method called SCI-GA, which is based on an
evolutionary approach (a GA-Based method), with the aim of mapping the logical
component identification problem to an optimization problem. Compared with
other Clustering-Based methods, especially [SJH10], SCI-GA has a number of
distinguishing characteristics:

1. Component identification is an NP-complete problem [CYW11]. Therefore,
SCI-GA uses a Meta-heuristic method (i.e., GA) as a powerful optimization
search algorithm to identify components instead of a heuristic like k-means.

2. There is no requirement for the number of components to be determined in
advance, and it can automatically identify the suitable number of
components.

3. It uses a fitness function that measures software cohesion, coupling, and
complexity metrics, so it automatically identifies suitable components.

For justification, we evaluated SCI-GA using three real-world cases, and the
obtained results are analyzed and discussed in comparison with other methods.

The rest of this paper is organized as follows: Section 2 defines component
identification problem, and Section 3 describes software design measurements used
in SCI-GA. In Section 4, SCI-GA is described in detail, and in Section 5, we
evaluate SCI-GA using three real-world cases. Finally, after describing related
works in Section 6, Section 7 provides concluding remarks and future works.

2 Component Identification Problem

The goal of logical component identification is to partition requirements of a
system into meaningful units. In RUP methodology [Kru00], requirements of a
system are identified in the Requirements Capture Workflow, and are presented by
use case model. Use case model consists of some use cases and actors. After
capturing use cases, in RUP methodology, the identified use cases are described
with more details at the Analysis and Design Workflow. One of the important
artifacts in Analysis and Design Workflow is analysis class diagram. In fact, for
each use case, an analysis class diagram is created. Each analysis class diagram
consists of three types of classes: boundary (interface), control, and entity (data)
classes. In this paper, SCI-GA inputs are a use case model and analysis class
diagrams of a system. The goal of this paper is to partition use cases of a system

4  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

into cohesive and independent units called logical components. Figure 1(a) shows a
representative use case model of a system. As shown in Figure 1(a), this system has
two actors and seven use cases. In addition, Figure 1(b) shows the corresponding
logical components which are identified for this system as an example. As shown in
Figure 1(b), three logical components are identified for this sample system.

Figure 1 - (a) An example use case model and (b) the corresponding logical components of
use cases of part (a) as an example

3 Software Design Measurements

Maintainability and reusability are two important factors in component
identification. For this reason, SCI-GA employs software cohesion, coupling and
complexity metrics, which will be defined in below.

3.1 Cohesion

To compute software cohesion, in this paper, we propose a metric based on
similarity between a pair of use cases. In [SJH10], a use case is quantitatively
represented by a feature vector. Among the properties of each use case presented in
[SJH10], we only use two important property sets, i.e., actors and entity classes,
because these property sets have major impacts according to the sensitivity
analysis performed in [SJH10], and the preprocessing cost of making all properties
available in [SJH10] is too high. In our feature-based representation, a "use
case/property" matrix, called F, is created, where all use cases are listed in rows
and all entity classes and actors in columns, respectively. In this matrix, each Fij is
either 0 or 1, i.e., 1 entry denotes the ith use case (UCi) has a relationship with
property j (EntityClassj or Actorj) and 0 otherwise. For example, Figure 2 shows a
sample F matrix of the use cases introduced in Figure 1. As shown in Figure 2, this

5  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

system has seven use cases, two actors, and five entity classes; hence, F will be a
binary matrix with 7 rows and 7 columns.

Figure 2 - a sample "use case/property" matrix for the use cases of Figure 1

There are many similarity measurements to measure the similarity between a
pair of vectors, in terms of features [RW10]. Based on experiments in [SJH10], we
choose Simple coefficient (see Equation 1) to compute the similarity between two
use cases. Let n11 denote the number of features present in both UCi and UCj, n10
denote the number of features present in UCi but not UCj, n01 denote the number
of features present in UCj but not UCi, and n00 denote the number of features not
present in both UCi and UCj.

 (1)

Table 1 shows a matrix in which all similarities among use cases of Figure 2 are
computed in terms of Equation (1). For example, the similarity between UC4 and
UC5 is 0.714, because according to Figure 2, n11, n00, n10, and n01 values for these
use cases are 3, 2, 1, and 1, respectively.

There is no component cohesion measurement based on use case model.
Consequently, according to Cohesion Ratio (CR) idea [Bal96]: Q/(P+Q), where the
number of pairs with similarity (Q) is divided by the total number of pairs, we
propose a new Component Cohesion (CC) measurement based on a use case model
defined as Equation (2).

Actor1 Actor2
Entity
Class1

Entity
Class2

Entity
Class4

1 0 0 1 1 0 0

1 0 0 0 1 1 0

0 1 0 0 0 0 1

1 0 1 1 1 0 0

1 0 0 1 1 1 0

1 0 0 1 1 0 0

UC1

UC2

A Set of Actors A Set of Entity Classes

A Set of
Use cases

Entity
Class3

UC3

UC4

UC5

UC6

Entity
Class5

0 1 0 0 0 1 0UC7

6  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

Table 1 - The similarity matrix of the "use case/property" matrix presented in Figure 2

UC1 UC2 UC3 UC4 UC5 UC6 UC7

UC1 1 0.714 0.286 0.857 0.857 1 0.286

UC2 0.714 1 0.286 0.571 0.857 0.714 0.571

UC3 0.286 0.286 1 0.143 0.143 0.286 0.714

UC4 0.857 0.571 0.143 1 0.714 0.857 0.143

UC5 0.857 0.857 0.143 0.714 1 0.857 0.429

UC6 1 0.714 0.286 0.857 0.857 1 0.286

UC7 0.286 0.571 0.714 0.143 0.429 0.286 1

(2)

Where CC(cmpc) is the cohesion of a component cmpc and mc is the number of
use cases in cmpc. In other words, to compute the cohesion of component cmpc, the
summation of similarities between all pairs of its use cases is divided into
maximum interactions between them (൫௠೎

ଶ ൯). An example of this metric is presented
below.

Take Figure 1(b) and Table 1 as an example. The CC values of components
cmp1, cmp2, and cmp3 are 0.905, 0.857, and 0.714, respectively. For example,

(ଵ݌݉ܿ)	ܥܥ =	
ௌ௜௠	(௎஼భ,௎஼ర)	ାௌ௜௠	(௎஼భ,௎஼ల)	ା	ௌ௜௠(௎஼ర,௎஼ల)

ቆ
య

మ
ቇ

=	 ଴.଼ହ଻ାଵା଴.଼ହ଻
ଷ

= 0.905.

The CC value of a component lies in the range [0,1] and if a component has
only one use case, its CC value equals to 1. A component with a higher CC value is
better than one with a smaller CC value. For evaluating the overall software
cohesion, we use Equation (3), where n is the number of components.

 (3)

For example, the SoftwareCohesion value of identified components of Figure
1(b) is equal to 0.825.

7  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

3.2 Coupling

Coupling represents how tightly one component interacts with others. There have
been several studies on component coupling metrics [CL06, WYF03]. However,
most of them are not applicable at an early stage of the software design, because
they usually need factors extracted from source codes. We use CCR [CC11] defined
in Equation (4) to evaluate coupling of a component with others, because it is
applicable at use case model and is also more accurate.

(4)

Where CCR(cmpc) is the coupling of a component cmpc, CP(cmpc) and UCMP
denote a set of components coupled to cmpc and a set of components that compose
a software system, respectively. Note that in CCR, three types of relationships
among use cases including <<include>>, <<extend>>, and <<generalization>>
are considered. In CCR, two components are coupled if there is a relationship
between their use cases. The CCR value of a component lies in the range [0,1]: one
and zero mean that component cmpc is accessed by all the other components and is
entirely independent, respectively. For example, in Figure 1 (b), the CCR values of
components cmp1, cmp2, and cmp3 are 0, 0.5, and 0, respectively. As shown in
Figure 1(b), \CP(cmp1)| = 0, \CP(cmp2)| = 1, |CP(cmp3)| = 0, and |UCMP| = 3.

AlSharif et al. [ABA04] have shown that to compute total software coupling,
Euclidean norm distance formula outperforms average norm formula, so we use
Equation (5) to compute overall software coupling, which is in the range [0,1].

(5)

For example, the SoftwareCoupling value of identified components of Figure
1(b) is equal to 0.189. It is worth mentioning that softwares with lower
SoftwareCoupling are more maintainable and reusable.

3.3 Complexity

Although, there are many metrics to compute software complexity, the majority of
them such as conventional OO complexity metrics including Chidamber and
Kemerer’s metrics [CK94] do not incorporate a procedure to account for
characteristics of CBSD such as component complexity. However, a few metrics are
presented in literature to compute component complexity and most of them are not
applicable at an early stage of software design because of the lack of

8  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

information.UCP (Use Case Point) is one of the famous metrics applicable at use
case model [Kar93].

UCP is a software complexity measurement and is accomplished in two steps as
shown in Equation 6. First, the Unadjusted UCP (UUCP) count is calculated
based on the unadjusted weighted actors and use cases as illustrated in Equations
7, 8, and 9. Second, the Adjusted UCP (AUCP) count is calculated using technical
complexity. Note that we neglect AUCP in complexity measurement, because
determining this technical complexity metric is an extremely difficult task.

 (6)

 (7)

 (8)

 (9)

Table 2 - UCP use case types and complexity weights

Use Case Type Description Weight
Simple Fewer than 5 analysis classes 5
Average 5 to 10 analysis classes 10
Complex More than 10 analysis classes 15

Unadjusted Actor Weight (UAW): An actor in a use case can be a person, a

software program or a hardware device. Then, UAW is computed based on three
actor types shown in Table 2 with complexity weights.

Unadjusted Use Case Weight (UUCW): The complexity level of the use cases is
primarily derived from the number of analysis classes. Then, UUCW is computed
based on three use case types shown in Table 3 with complexity weights.

For example, if we take Figure 2 as an example, Table 4 shows the UCP value
of each of the use cases. We suppose that both actors in Figure 2 are graphical
interfaces and each use case has one boundary class and one control class except for
its entity classes.

Table 1 - UCP actor types and complexity weights
Actor Type Description Weight
Simple Program interface 1
Average Interactive, or protocol-driven interface 2
Complex Graphical interface 3

9  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

Table 3 - The UCP value of each use case of Figure 2

 UAW UUCW UCP
UC1 3 5 8
UC2 3 5 8
UC3 3 5 8
UC4 3 10 13
UC5 3 10 13
UC6 3 5 8
UC7 3 5 8

We propose a new component complexity measurement based on UCP metric

defined as:

(10)

Where ComponentComplexity(cmpc) and mc are the complexity of a component
cmpc and the number of use cases in cmpc, respectively. In addition, UCPi and
TotalUCP denote the complexity of the ith use case and the summation of all
UCPi, respectively. Moreover, to compute overall software complexity, we employ
Equation (11) according to AlSharif et al. [ABA04] idea about Euclidean norm
distance formula, which is in the range [0,1].

(11)

Where n denotes the number of components in the system. Take Figure 1(b)
and Table 4 as an example. The ComponentComplexity values of components
cmp1, cmp2, and cmp3 are 0.146, 0.159, and 0.121, respectively. For example,

(ଵ݌݉ܿ)ݕݐ݅ݔ݈݁݌݉݋ܥݐ݊݁݊݋݌݉݋ܥ = 	
௎஼௉భା	௎஼௉రା	௎஼௉ల
௠భ 	×	்௢௧௔௟௎஼௉

=	 ଼ାଵଷା଼
ଷ	×଺଺

= 0.146. In addition, the
SoftwareComplexity value of identified components of Figure 1(b) is equal to 0.094.
It is obvious that the value of SoftwareComplexity for each system is over zero;
therefore, logical components with lower complexity are more desirable and
maintainable.

4 The SCI-GA Algorithm

To discover the best use cases grouping, i.e., logical components identification, we
have to consider

10  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

(12)

possibilities, where N is the total number of use cases and k is the number of
components [HE03]. For example, there are n(25,5) = 2	 ×	10ଵହ different ways of
grouping 25 use cases into 5 logical components. Therefore, when k is known, it is
not easy to identify the best components. If k is unknown; then, we face to
∑ ݊	(ܰ, ݇)ே
௞ୀଵ possibilities. For example, considering 25 use cases, this number

represents approximately 4 × 10ଵ଼ different component identifications [HE03].
Thus, the component identification problem is a NP-complete problem [CYW11],
because the number of different ways of grouping N use cases into k components
increases approximately as ݇ே ݇!ൗ [HE03].

In [SJH10], we identified logical components using classical clustering
techniques, but in this paper, the SCI-GA algorithm is proposed to extend [SJH10].
Our contributions in this paper in comparison with [SJH10] are mentioned as
follows. First, SCI-GA uses a GA-Based algorithm as a powerful optimization
search algorithm to identify components instead of a heuristic like k-means, so that
GA has been used successfully for tackling large and complex search spaces like
NP-complete problems [HCF09]. Second, SCI-GA aims at automatically finding a
near-optimal number of logical components. Finally, SCI-GA proposes a novel
fitness function defined in Section 4.2 to make trade-off among software cohesion,
coupling, and complexity of system components.

Figure 3 shows the SCI-GA algorithm to identify logical components. The
inputs of SCI-GA are a use case model with similarity matrix like Table 1 and
UCP matrix like Table 4. The outputs of SCI-GA are the proper number of
components and identified logical components. In SCI-GA, the initial chromosomes
of population are first generated randomly. Then, for each chromosome, the fitness
is evaluated according to a fitness function defined in Section 4.2. Then, some
chromosomes for reproduction are selected as parents using the roulette wheel
selection scheme [Mic96]. After selecting some parent chromosomes, one of the
three crossover operators defined in Section 4.3.1 is randomly applied on all pairs of
parents to generate two children. Then, one of the two mutation operators defined
in Section 4.3.2 is randomly applied on each generated offspring. After applying
SCI-GA operators, the consistency of each offspring is evaluated and the least fit
chromosomes in the existing population are replaced by the newly generated
offspring. Now, the next generation of population is created; therefore, this process
is repeated until the fittest chromosome satisfies some conditions or the maximum
number of iterations is exceeded.

11  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

4.1 Use Case Encoding in Chromosomes and Population Initialization

To encode the entire logical components of a system in a chromosome, we propose
a novel encoding scheme, in which for each component cmpc, a use case, called
centroid use case (CUCc), is considered as a representative of other use cases
belonging to that component. In the proposed encoding scheme, each component
identification solution is represented as a binary string of N length, where N is the
total number of use cases in the system. Each position of the binary string
corresponds to a particular use case, i.e., the ith position (gene) represents the UCi.
The value of the ith gene is 1 if the UCi is a centroid use case and zero otherwise.
Therefore, the number of "1" in the binary string of a chromosome shows the
number of components. For example, the components depicted in Figure 4 can be
encoded by means of the string [0111000], in which UC2, UC3, and UC4 are
centroid use cases of components cmp2, cmp3, and cmp1, respectively. Each UCi
that is not a centroid use case, is assigned to cmpc that UCi has the highest
similarity to CUCc in comparison with other centroid use cases according to
Equation (13). Take Figure 4 and Table 1 as an example. According to Figure 4,
UC1, UC5, UC6, and UC7 are not centroid use cases and must be assigned to one of
the three components with UC2, UC3, and UC4 as centroid use cases. For example,
for UC1, among three similarities between UC1 and each of three centroid use cases,
i.e., Sim(UC1,UC2), Sim(UC1,UC3), and Sim(UC1,UC4), the value of
Sim(UC1,UC4) is the highest, so UC1 is assigned to cmp1.

 (13)

For the initial population, each chromosome is randomly generated by SCI-GA
in such a way that the number of 1’s in each chromosome is uniformly distributed
within [1, kmax], where kmax is a user-defined maximum number of components that
can be determined by software architects to apply their preferences. It should be
noted that the default value of kmax is the total number of use cases.

12  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

Figure 3 - The flowchart of the SCI-GA algorithm

Figure 4 - SCI-GA encoding

4.2 Objective Function

The input of SCI-GA includes the use case model used in chromosome encoding
and analysis class diagrams used in computing the SCI-GA fitness function. In the
SCI-GA algorithm, we simultaneously employ the SoftwareCohesion,
SoftwareCoupling, and SoftwareComplexity metrics (defined in Section 3) as a

Input: A Use case
model with its similarity

and UCP matrices
Initialize population

Fitness Evaluation

Crossover

Replacement

Selection

Mutation

 Chromosome Evaluation
and Correction

Termination

SCI-GA

No

Yes

Output: The proper
number of components
and identified logical

components

0 1 1 1 0 0 0

Gene 1 Related to
Use Case 1

Gene 7 Related to
Use Case 7

UC1 UC2 UC3 UC4 UC5 UC6 UC7

UC1

UC6
UC4

cmp 1

UC3 UC7

UC5 UC2

cmp 3

cmp 2

13  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

fitness function. However, in the literature, few works propose a single function to
evaluate the quality of logical components. Making logical components, Choi et al.
[CKH09] proposed a single function called Independence Degree of a System (IDS)
that is computed by the expression (SoftwareCohesion - SoftwareCoupling). When
IDS is high, it consists of more independent components. Based on IDS idea and
with respect to the SoftwareComplexity metric, we propose a new Fitness Function
(FF) defined in Equation (14) to maximize the overall software cohesion and
minimize the overall software coupling and complexity.

 (14)

The maximum value of FF denotes that highly cohesive and loosely coupled

components with the least complexity have been obtained.

4.3 Selection and Reproduction

Reproduction in SCI-GA consists of applying both crossover and mutation
operators. In SCI-GA, two chromosomes are selected as parents for crossover, using
the roulette-wheel selection scheme [Deb01], so that each parent’s chance of
selection is directly proportional to its fitness.

4.3.1 Crossover

After selecting some chromosome for reproduction, some pairs of them are
randomly selected to produce offspring chromosomes. SCI-GA uses three standard
crossover operators [Deb01]: one-point, two-point, and uniform crossover operators.
In one-point crossover, a position in the chromosome is randomly selected as parts
of two parents after the crossover position are exchanged. In two-point crossover,
two positions are randomly chosen and the parts between them are exchanged.

In uniform crossover, a mask binary vector is first generated at random.
Suppose that a mask such as [0110001] is generated; then, the values of the 2nd,
3rd and 7th genes are taken from the second parent to copy in the corresponding
genes of the first offspring, and the others are taken from the first parent. For the
sake of illustration, an example of these operators is shown in Figure 5. It should
be noted that SCI-GA uses one of these three crossover operators at random for
each pair of chromosomes.

14  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

Figure 5 - Example of crossover operators: (a) one-point, (b) two-point, and (c) uniform

crossover

4.3.2 Mutation

After crossover, the offspring are mutated to avoid getting trapped at local optima
on one hand and to ensure diversity on the other hand. SCI-GA uses two novel
mutation operators including Eliminate Mutation and Add Mutation operators.
SCI-GA uses Eliminate Mutation and Add Mutation operators to allow for the
number of components to be changed dynamically as the evolutionary process
progresses. Therefore, the number of components does not need to be specified by
software architects in advance.

In Add Mutation, one chromosome is selected; then, it randomly changes value
of a gene, i.e., its value is changed from "0" to "1". By applying Add Mutation to a
chromosome, the number of components is increased by one.

In Eliminate Mutation, a component is randomly chosen and eliminated, i.e.,
the value of its centroid use case is set to zero. Algorithm 1 presents the pseudo
code of the Eliminate Mutation operator. As shown in Algorithm 1, a candidate
component can be a component, which has the highest CCR or
ComponentComplexity values or the one with the lowest CC value. By applying

15  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

Eliminate Mutation to a chromosome, the number of components is decreased by
one. It is expected that when a component with the highest ComponentComplexity
value is eliminated and the use cases belonging to it are assigned to other
components, the value of SystemComplexity is decreased. However, this decrease is
not an inclusive event. It should be noted that SCI-GA uses one of these two
mutation operators at random for each chromosome.

Algorithm 1 - The Eliminate Mutation description

1) Cmprandom : Select randomly a component belonging to the parent
chromosome.

2) Cmpcomplex : Select a component with the highest ComponentComplexity
value belonging to the parent chromosome.

3) Cmpnot-cohesive : Select a component with the lowest CC value belonging to the
parent chromosome.

4) Cmpdependent : Select a component with the highest CCR value belonging to
the parent chromosome.

5) Cmpcandidate : Choose randomly a component among Cmprandom, Cmpcomplex,
Cmpnot-cohesive, and Cmpdependent.

6) The corresponding gene value of centroid use case of Cmpcandidate is set to
zero.

4.4 Component Evaluation and Correction

The main challenge of applying genetic operators to chromosomes is that invalid
component solutions may be produced. An identified component solution is invalid
if the number of components is less than 1 or more than kmax. To illustrate this
point, let us apply the one-point crossover to both chromosomes [0100011] and
[1000000], as displayed in Figure 6 (bold type refers to the exchanged genetic
information). It is not difficult to see that similar problems may occur under the
other used crossover operators and introduced mutation operators.

16  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

Figure 6 - Examples of invalid identified components after applying one-point crossover: (a)
the number of components of Child1 is 0 and (b) the number of components of Child1 is

more than kmax

To solve this problem, we propose four methods as follows:
a. Omission: In this method, after applying each operator, if an invalid

offspring is generated, it is omitted from the population, and does not
participate in the next generation.

b. Applying Again: In this method, if an invalid offspring is produced, because
of applying crossovers on a pair of parents or mutations on a parent, this
offspring is omitted and genetic operators are applied again on those
parents.

c. Punishment: In this method, if the produced offspring is invalid, its fitness
is decreased. The motivation of this method is that when the fitness of an
invalid offspring is decreased, the chance of its presence in the next
generation is extremely decreased, but in contrast to omission method,
participation in the next generation is possible. To decrease the fitness of an
invalid offspring, we need a penalty function, which is described in Equation
(15).

(15)

Where FFold and FFnew are the initial fitness of an invalid offspring and

its fitness after punishing, respectively. Moreover, NIC denotes the number
of "1" of the invalid offspring. For example, in Figures 6(a) and 6(b), the
values of P are 1 and 2 (i.e., 5-3), respectively.

d. Correction: The goal of this method is to correct an invalid offspring;
therefore, it uses Eliminate and Add mutations described in Section 4.3.2
for this correction. If the number of components of the invalid offspring is
zero, the Add mutation operator is applied on it. Moreover, if the number
of components of the invalid offspring is higher than kmax, the Eliminate
mutation operator is applied P (according to Equation 15) times on it.

We evaluate these methods in Section 5.2 and the efficient method is derived
from experiments.

0 1 0 0 0 1 1

1 0 0 0 0 0 0

0 0 0 0 0 0 0

Parent1

Parent2

Child1

1 1 0 0 0 1 0

0 0 0 0 1 1 1

1 1 0 0 1 1 1

Parent1

Parent2

Child1

kmax = 3

(a) (b)

17  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

4.5 Replacement and Termination Conditions

SCI-GA uses the roulette-wheel replacement scheme [Deb01] to replace new
members of the current population to the old ones, in which a chromosome with
the higher fitness has more chance to survive in the next generation.

 For the sake of simplicity, the generation step is stopped when the number of
iterations exceeds the limit or when the best fitness value does not improve during
some generations.

5 Experimental Results

We implemented SCI-GA and set its parameters by performing empirical studies
[Gre86] as follows: population size was 100, crossover and mutation rates were 70%,
and 2%, respectively. In addition, the SCI-GA algorithm was stopped when the
generation number reached 1000 or the fitness value did not improve during the
last 50 generations.

For measuring the performance of SCI-GA, we have applied it on an Online
Broker System (OBS), derived from a number of established Internet-based broker
systems [CSC13], a Restaurant Automation System (RAS) [CSC13] and
AgriInsurance System [AIF13]. The analysis models of both OBS and RAS cases
are reported in [CSC13], and are comprised of 30 and 32 use cases, 4 and 6 actors,
22 and 25 analysis classes, and 6 and 10 entity classes, respectively.

Note that AgriInsurance System provides farmers with financial protection
against production losses caused by natural perils, such as drought, flood, hail,
frost, excessive moisture and insects. This system is designed and implemented by
Yass-System Company, one of the famous software house companies in Iran, for
Agriculture Bank, the Iranian bank customized to agriculture finance for Iranian
farmers. This system is developed by more than 10 professional developers with the
average of 4 years of experience and comprises 68 use cases, 27 actors, 233 analysis
classes, and 154 entity classes. According to Equation (12), to identify the best
logical components, we have to consider ∑ ݊	(30, ݇)ଷ଴

௞ୀଵ , ∑ ݊	(32, ݇)ଷଶ
௞ୀଵ , and

∑ ݊	(68, ݇)଺଼
௞ୀଵ possibilities for OBS, RAS and AgriInsurance System cases,

respectively. It seems that these problem spaces are enough to show the SCI-GA
effectiveness.

It should be noted that for OBS and RAS cases, 3 professional developers with
the average of 5 years of experience, are considered as experts, and one of them
with more experience than others combines solutions of all developers to reach one
solution. It is worth mentioning that the goal of all experts is to increase software
cohesion and decrease software coupling and complexity.

18  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

For comparison, CRUD-Based [LYC99], Clustering-Based [SJH10], and FCA-
Based [CYW11] methods are considered. We implemented these methods and
applied them on OBS, RAS and AgriInsurance System cases, but due to the space
limitation, we only demonstrate the final results of them, and the details of
evaluations are reported in [CSC13].

Figures 7 and 8 illustrate the components obtained by SCI-GA for OBS and
RAS cases, respectively. Note that in Figures 7 and 8, dark use cases refer to the
centroid use cases. For OBS case, comparing the components identified by experts
(reported in [CSC13]) with the components identified by SCI-GA (Figure 7) shows
that SCI-GA automatically obtains components which are approximately the same
as the ones identified by experts. Indeed, there is only one difference between
components identified by experts and SCI-GA: the UC28-Compute Benefit in
components identified by experts belongs to Component 6, but to Component 3 in
SCI-GA components (see Figure 7). However, the values of SoftwareCohesion and
SoftwareComplexity metrics, i.e., 0.969 and 0.0771, for SCI-GA components are
slightly better than the values identified by experts for components (i.e., 0.966 and
0.0779).

For RAS case, comparing the components identified by experts (reported in
[CSC13]) with the components identified by SCI-GA (Figure 8) shows that SCI-GA
automatically obtains 8 components, as opposed to 7 components determined by
experts. In fact, all components identified by both SCI-GA and experts are the
same except for Components 2 and 3. However, SCI-GA divides the expert’s
Administrator component into two cohesive components (Components 2 and 3 in
Figure 8), because this component is too complex. Indeed, dividing the complex
Administrator component into two simpler components in the SCI-GA results leads
to improve the values of SoftwareCohesion, SoftwareCoupling, and
SoftwareComplexity metrics, i.e., 0.907, 0.138 and 0.0153, respectively, in contrast
to the ones identified by experts for the components (i.e. 0.886, 0.144 and 0.0159,
respectively).

For AgriInsurance System case, comparing the components identified by experts
with the components identified by SCI-GA shows that SCI-GA automatically
obtains 11 components, as opposed to 9 components determined by experts and
including Administrator, Policy Management, Commissions, Billing, General
Ledger, Claims, Reporting, Calculations and User Managements components.
However, SCI-GA divides each of the expert’s Administrator and Policy
Management components into two simpler components, because these components
are too complex. Indeed, dividing each of the complex Administrator and Policy
Management components into two simpler components in the SCI-GA results leads
to improve the values of SoftwareCohesion, SoftwareCoupling, and
SoftwareComplexity metrics, i.e., 0.867, 0.111 and 0.0599, respectively, in contrast
to the ones identified by experts for the components (i.e., 0.842, 0.112 and 0.0623,
respectively).

19  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

It should be noted that to evaluate components identified by SCI-GA according
to expert opinions, we employ a metric, called Quality metric [TH99], which is
presented in Equation (16).

,ܣ)ܳ (ݏݐ݊݁݊݋݌݉݋ܥݐݎ݁݌ݔܧ = (1 −
,ܣ)݋ܬ݋ܯ (ݏݐ݊݁݊݋݌݉݋ܥݐݎ݁݌ݔܧ

݊) × 100

(16)

Where MoJo(ܣ, computes the minimal number of Move (ݏݐ݊݁݊݋݌݉݋ܥݐݎ݁݌ݔܧ
and Join operations needed to transform solution A into the expert’s solution, and
n is the total number of use cases of the system. Note that a solution with higher
Quality Metric value has higher similarity with the expert’s solution than that with
a lower value.

Table 5 compares the final results of applying various methods on OBS, RAS
and AgriInsurance System cases in terms of the number of components identified
by each method, the number of different use cases in components identified by each
method compared with experts and the value of Quality metric for each solution.
As shown in Table 5, SCI-GA outperforms the other methods, and has the closet
results to the ones identified by experts.

For RAS case, although the number of different use cases of components
identified by SCI-GA compared with experts is 6, but the reason of this case is that
SCI-GA identifies 8 simpler and cohesive components for RAS case (see Figure 8)
in comparison with 7 components identified by experts [CSC13]. However, when we
use expert opinions in SCI-GA to determine the number of components for RAS
case in advance (i.e., kmax is set to 7), SCI-GA identifies a solution with 7
components, which has only 4 different use cases compared with experts. Moreover,
for AgriInsurance System, SCI-GA automatically identifies 11 components and
when we use expert opinions to determine the number of components in advance
(i.e., kmax is set to 9), it identifies a solution with only 6 different use cases
compared with the expert’s solution. The key point in Table 5 is that SCI-GA
automatically identifies the number of components, which is approximately the
same as expert opinions, as opposed to other methods, which must be given in
advance.

20  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

Table 5 - Results of different methods applied on OBS, RAS and AgriInsurance System case
studies according to the number of components, the number of different use cases compared

with experts and Quality metric

Quality
metric

No. of different use
cases compared with

experts

No. of
Components Method Case Study

60 12 from 30 use cases 6 COMO
(CRUD-Based) [LYC99]

83 5 from 30 use cases 6 Shahmohammadi et al.
(Clustering-based)[SJH10]

OBS 87 4 from 30 use cases 5 Cai et al.
(FCA-Based) [CYW11]

97 1 from 30 use cases 6 SCI-GA (Evolutionary)
100 0 6 Expert

47 17 from 32 use cases 7 COMO
(CRUD-Based) [LYC99]

69 10 from 32 use cases 7 Shahmohammadi et al.
(Clustering-based)[SJH10]

RAS

78 7 from 32 use cases 7 Cai et al.
(FCA-Based) [CYW11]

88 4 from 32 use cases 7

SCI-GA (Evolutionary)
with 7 components
determining by experts
in advance

81 6 from 32 use cases 8 SCI-GA (Evolutionary)
100 0 7 Expert

59 28 from 68 use cases 9 COMO
(CRUD-Based) [LYC99]

AgriInsurance
System

72 19 from 68 use cases 9 Shahmohammadi et al.
(Clustering-based)[SJH10]

76 16 from 68 use cases 9 Cai et al.
(FCA-Based) [CYW11]

91 6 from 68 use cases 9

SCI-GA (Evolutionary)
with 9 components
determining by experts
in advance

87 9 from 68 use cases 11 SCI-GA (Evolutionary)
100 0 9 Expert

Table 6 shows the values of SoftwareCohesion, SoftwareCoupling,

SoftwareComplexity, and FF metrics for the final results of applying various
methods on OBS and RAS cases. As shown in Table 6, for three metrics introduced
in Section 3 and FF metric, SCI-GA outperforms the other methods. Accordingly,
it is concluded that SCI-GA has far better performance in searching component
space than classical clustering techniques used in [SJH10], and is able to achieve

21  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

near-optimal logical components, which are better than the components identified
by experts in terms of all the four metrics used. An important point in Table 6 is
that SCI-GA with the highest values for FF metric in all three cases has the closest
results to components identified by experts in comparison with the other methods.
Moreover, comparing results of the other methods [CSC13] with the components
identified by experts reveals that when a solution for logical components has a
higher FF value, it is more desirable and closer to expert opinions. Consequently, it
is concluded that FF metric is a suitable metric to evaluate logical components,
and is a metric close to expert opinions.

It is worth mentioning that Cai et al. work [CYW11] on OBS case has a main
limitation in choosing the number of components, i.e., this work cannot identify
more than five components for OBS case [CSC13].

Table 6 - Results of different methods applied on OBS, RAS and AgriInsurance System case

studies according to SoftwareCohesion, SoftwareCoupling, SoftwareComplexity, and FF
metrics

FF
 M

et
ric

So
ftw

ar
eC

om
pl

ex
ity

M

et
ric

So
ftw

ar
eC

ou
pl

in
g

M
et

ric

So
ftw

ar
eC

oh
es

ion

M
et

ric

Method Case Study

0.575 0.079 0.171 0.825 COMO (CRUD-Based) [LYC99]

OBS
0.681 0.083 0.163 0.927 Shahmohammadi et al.

(Clustering-based) [SJH10]
0.649 0.087 0.183 0.919 Cai et al.(FCA-Based) [CYW11]
0.7329 0.0771 0.159 0.969 SCI-GA (Evolutionary)
0.7291 0.0779 0.159 0.966 Expert
0.663 0.0145 0.169 0.846 COMO (CRUD-Based) [LYC99]

RAS
0.688 0.0164 0.154 0.859 Shahmohammadi et al.

(Clustering-based) [SJH10]
0.694 0.0140 0.156 0.864 Cai et al.(FCA-Based) [CYW11]
0.7537 0.0153 0.138 0.907 SCI-GA (Evolutionary)
0.7261 0.0159 0.144 0.886 Expert
0.449 0.0785 0.187 0.764 COMO (CRUD-Based) [LYC99]

AgriInsurance
System

0.567 0.0873 0.167 0.821 Shahmohammadi et al.
(Clustering-based) [SJH10]

0.569 0.0781 0.145 0.792 Cai et al.(FCA-Based) [CYW11]
0.6961 0.0599 0.111 0.867 SCI-GA (Evolutionary)
0.6677 0.0623 0.112 0.842 Expert

22  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

Figure 7 – Obtained components for OBS case by SCI-GA

Figure 8 – Obtained components for RAS case by SCI-GA

23  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

5.1 SCI-GA Effectiveness

To clearly show the SCI-GA effectiveness, Figure 9 demonstrates the best obtained
values of the SoftwareCohesion, SoftwareCoupling, SoftwareComplexity, and FF
metrics in each generation for OBS, RAS and AgriInsurance System cases. As
shown in Figure 9, the value of FF metric is strictly increasing as the number of
generations grows, while the values of other metrics are not necessarily increased.
The upper curve in Figure 9(a) shows that the SoftwareCohesion climbs to a peak
of 0.970 at approximately 120 generations, where as FF, SoftwareCoupling,
SoftwareComplexity metrics, and the number of components of this solution (i.e.,
the identified components) are 0.723, 0.176, 0.071, and 6, respectively. In this
solution, the value of SoftwareCohesion is slightly higher than the value (i.e.,
0.969) in the best result obtained by SCI-GA (presented in Figure 7). However, the
value of SoftwareCoupling is higher than the value (i.e., 0.159) in the best result
obtained by SCI-GA. Therefore, as the value of FF metric for this solution is lower
than the best result obtained by SCI-GA, it is not the best solution.

Considering all case studies reveals that when SoftwareComplexity is not
considered in FF metric, the obtained results are not encouraging. For example, in
the evolution process of RAS case, there is a solution with 0.875, 0.099, 0.132, and
4 for SoftwareCohesion, SoftwareCoupling, SoftwareComplexity, and the number of
components, respectively. Therefore, when the original FF metric (Equation 14) is
considered, the best components obtained (presented in Figure 8) with FF = 0.689
are much better than this solution with FF = 0.644. However, when
SoftwareComplexity is omitted in Equation (14), i.e., FF = (SoftwareCohesion –
SoftwareCoupling), this solution with FF = 0.776 is better than the best obtained
components with FF = 0.758. Accordingly, it is concluded that the proposed FF
metric is practically able to achieve a good trade-off among SoftwareCohesion,
SoftwareCoupling and SoftwareComplexity metrics, i.e., identified cohesive
components with loosely interconnections and low complexity.

5.2 SCI-GA Component Evaluation

To solve invalid component solution, four methods are proposed in Section 4.4. In
this section, we report the results of applying the four proposed methods presented
in Section 4.4 on three used case studies. Table 7 shows the average time of one
iteration, average number of iterations to convergence, average time to
convergence, and the best identified FF for each method. Note that all of these
experiments are performed with a PC with 2.80 GHz Intel Core i7 CPU and 16 GB
RAM. As shown in Table 7, using Omission method leads to achieve at least
average time of one iteration, but its best FF is lower than the other methods.

24  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

(a)

(b)

(c)

Figure 9 –The effectiveness of SCI-GA for (a) OBS, (b) RAS, and (c) AgriInsurance
System case studies

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100 120 140

m
et

ric
s

Generations

FF SoftwareCohesion SoftwareCoupling SoftwareComplexity

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100 120 140

m
et

ric
s

Generations

FF SoftwareCohesion SoftwareCoupling SoftwareComplexity

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0 20 40 60 80 100 120 140 160 180

m
et

ric
s

Generations

FF SoftwareCohesion SoftwareCoupling SoftwareComplexity

25  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

Therefore, the main advantage of the use of Omission method is its simplicity;
however, its main shortcoming is that it is not able to achieve suitable results.
Using Applying Again method leads to have enormous computational cost, and is
not able to achieve a suitable result according to the FF metric. It should be noted
that when Applying Again method is used in these experiments, there are some
cases in which GA operators are called more than 50 times, so this method wastes
a lot of time in the evolution process and is not suggested to use. As shown in
Table 7, although Punishment method achieves plausible results for OBS case, but
it is not able to identify good results for both RAS case and AgriInsurance System.
The reason for this seems to be that determining an effective penalty function is an
extremely difficult task [Sal09], and the penalty function used in Punishment
method is not good for different case studies. Note that to achieve an effective
penalty function, adaptive penalty functions like [PB07] should be suggested. As
shown in Table 7, Correction method achieves the best FF in comparison with the
other methods in all three case studies. In addition, the experiments reveal that
although the average time for one iteration of Correction method is higher than
some other methods, its average time to converge is lower than the other methods.
The reason for this is that using Correction method leads to converge very quickly
in comparison to the other methods and it requires less iteration than the other
methods. It is concluded that among four methods presented in Section 4.4 to
handle invalid solution, Correction method achieves better performance than the
other methods.

Table 7 - The effectiveness of methods to handle invalid components (Average of 30 runs for

OBS and RAS cases, and Average of 10 runs for AgriInsurance System)

 Method
to handle
invalid

components

Average
time

of one
iteration
(Second)

Average
number of
iterations

to
convergence

Average
time to

convergence
(Second)

The best
identified

FF Case Study

OBS

Omission 3.99 282.4 1126.78 0.60
Applying Again 7.21 241.6 1741.94 0.63
Punishment 4.09 184.2 753.38 0.72
Correction 4.33 160.1 693.23 0.73

RAS

Omission 4.41 311.3 1372.83 0.59
Applying Again 8.05 288.4 2321.62 0.61
Punishment 4.98 193.3 962.63 0.53
Correction 5.12 143.3 733.70 0.75

AgriInsurance
System

Omission 28.11 475.4 13363.49 0.62
Applying Again 85.04 382.5 32665.5 0.62
Punishment 31.67 331.9 10511.27 0.59
Correction 41.22 191.2 7881.26 0.70

26  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

It is worth mentioning that the best identified components for OBS, RAS and

AgriInsurance System cases are obtained within 8.6, 10.1 and 117.3 minutes,
respectively.

5.3 A Summary of the Evaluations and SCI-GA Limitations

In Table 8, we have compared SCI-GA to other used methods according to
experiments preformed and mentioned in Tables 5 and 6. Among the four methods,
just FCA-Based method [CYW11] and our method consider both the cohesion and
coupling simultaneously throughout the identification process. Note that this
feature leads to a good trade-off between these metrics.

Table 8 - The qualitative comparison of the component identification methods
Method

 Parameter
 Evolutionary

(SCI-GA)
FCA-Based
[CYW11]

CRUD-Based
[LYC99]

Clustering-Based
[SJH10]

Yes Yes No No

Considering both
Cohesion and
Coupling
simultaneously

Yes No No No
Determining
automatically the
No. of components

Yes No No No Complexity metric

Very Low Low Medium Medium Need expert's
experience

High Medium Low Medium Precision (Match to
expert’s omponents)

Although, all of these methods need to manually determine some parameters,

but some of these parameters have an observable impact on performance. For
example, in FCA-Based method [CYW11], TD and Ts parameters (note that these
are used as thresholds for computing cohesion and coupling) are manually
determined based on expert experiences. However, our method needs to determine
insignificant parameters, such as, the population number, crossover and mutation
rates.

As shown in Table 8, our method has some advantages over other methods,
particularly [SJH10]. First, it can not only set the number of components
determined by experts a priori, but also automatically identify near-optimal
number of components. Second, it uses a powerful optimization search algorithm

27  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

(i.e., GA) instead of simple heuristics like k-means. Third, it considers the
complexity metric along with cohesion and coupling metrics throughout the
identification process. Finally, according to our evaluation in Table 5, it identifies
the most similar components to the ones identified by experts.

In the course of experimentations during the evaluation, a number of limitations
of SCI-GA became apparent. First, using an evolutionary search algorithm leads to
increase complexity, particularly time complexity. However, it should be noted that
to identify logical components at an early stage of software design, it is not
necessary to have a real-time method. Therefore, according to our experiments,
SCI-GA identifies logical components during an acceptable period of time. The
second limitation of SCI-GA is that similar to other existing methods, it cannot
guarantee to achieve an optimal solution, because it is based on a Meta-heuristic
method, i.e., GA. However, as discussed in [HCF09], evolutionary search-based
methods are able to achieve better performance than simple heuristics like k-means.
Furthermore, SCI-GA proposes four methods described in Section 4.4 to avoid
identifying infeasible solutions.

6 Related Works

As mentioned earlier, software components can be divided into three categories:
Business, Logical, and Technical components. The attempts for automatic
identification of logical or business components can be divided into four
approaches, Graph Partitioning [AOB08, PTZ08], Clustering-Based [JCI01, KC04,
LJK01, SJH10], CRUD-based [GS01, LYC99], and FCA-Based [CYW11, Ham09]
approach, which are discussed in detail below. Additionally, we use a new
approach, called Evolutionary, to identify logical components. Note that this
approach is used to identify Technical components, i.e., software modules, from
source codes. For this reason, in the following section, we compare SCI-GA to other
evolutionary-based component identification methods.

Graph Partitioning Approach. Albani et al. [AOB08] have mapped domain models
(data objects, process steps and actors) into vertices and edges of a graph; then,
based on relation types between domain model elements and designer preferences,
they have assigned weights to edges. Finally, the graph is partitioned into
components using a heuristic from graph theories. Peng et al. [PTZ08] have
transformed the relationship model among business elements to a weighted graph.
Then, they have applied a graph segmentation method is applied on the graph to
identify mutually disjoint sub-graphs as components. The authors claimed that the
proposed method has achieved cohesive components with low coupling, but they
have not demonstrated their claim. However, the main limitation of this approach
is that weights are manually assigned to edges according to expert experiences.

28  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

Clustering-Based Approach. Lee et al. [LJK01] proposed a method for clustering
classes into logical components with high cohesion and low coupling. At first, key
classes are selected as candidate components; then, other classes are assigned to the
components that have the highest level of dependency with them. Identifying key
classes is a critical problem, and is manually determined by experts. Jain et al.
[JCI01] used hierarchical agglomerative clustering techniques to iteratively cluster
two elements (i.e., classes) with the highest strength. The strength between
elements is measured using weighted relations manually determined by experts.
Kim et al. [KC04] employed use case models, object models and collaboration
diagrams to identify components. For clustering related functions, functional
dependencies of use cases are calculated, and related use cases are clustered. This
work requires weighting, and does not give any guidelines in this regard.
Shahmohammadi et al. [SJH10] proposed a feature-based clustering method to
identify logical components, in which several features like actors and entity classes
are presented to measure the similarity between a pair of use cases. Therefore,
several classical clustering techniques like k-means, Hierarchal, Graph-based
method, and Fuzzy C-means have been examined to achieve good software
architecture. All of these Clustering-Based methods used classic clustering
techniques; however, they may achieve poor components due to their simple
heuristics, and they have the problem of determining the best number of
components in advance.

CRUD-Based Approach. Lee et al. [LYC99] presented a tool called COMO, in
which “use case/class matrix” is created with respect to use case diagrams and class
diagrams. It is then partitioned into blocks with tight cohesion as business
components. Ganesan and Sengupta [GS01] presented a tool similar to COMO
called O2BC, but it has several differences in the clustering technique and uses
business events and domain objects as input. However, this approach has a number
of limitations similar to Clustering-Based Approach due to the use of classical
clustering techniques.

FCA-Based Approach. Hamza [Ham09] initially proposed a framework based on the
theory of FCA to partition a class diagram into logical components with several
heuristics similar to clustering techniques. However, this framework emphasizes
stability instead of cohesion and coupling as important metrics to identify
components. CAI et al. [CYW11] proposed a novel method based on Fuzzy FCA.
They transformed business elements and their memberships into a lattice; then,
they used a simple clustering technique to identify components. They used
dispersion and distance concepts to measure the cohesion and coupling,
respectively. However, they used two dispersion and distance thresholds (i.e., TD
and Ts thresholds for computing cohesion and coupling, respectively) with high

29  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

effect on the performance of their method, which must be manually determined by
practical experiences. Moreover, this approach has a number of limitations similar
to Clustering-Based approach, due to the use of classical clustering techniques.

Evolutionary Approach. Recently, evolutionary algorithms have been widely
applied to software problems. Therefore, a new scope of software engineering has
appeared by the name of Search- Based Software Engineering (SBSE) [HMZ12] to
reformulate software problems as optimization problems. In [SP13], all works
related to SBSE are categorized, and Search-Based Design works are particularly
surveyed in [Räi10]. One of the popular scopes of search-based design is module
clustering. In this field, source code of a legacy system is clustered into software
modules with a high degree of cohesion and a low degree of coupling. SCI-GA like
these search-based methods, aims at identifying components with high degree of
cohesion and a low degree of coupling, but the main differences between them is
their inputs. In fact, the inputs of SCI-GA are a use case model and analysis class
diagrams as opposed to the inputs of search-based module clustering (i.e., source
codes).

To identify new well-structured modules based on search-based clustering
methods, a number of heuristics like hill-climbing [MHH03, MM06], and simulated
annealing [MM06] and Meta-heuristics like genetic algorithm [DMM99, PHY11] are
employed. Experiments presented in [PHY11] revealed that Meta-heuristic methods
outperform simple heuristics like hill-climbing for dealing with complex search
space, particularly software clustering search space.

In [DMM99], like SCI-GA, both cohesion and coupling metrics are combined
into a single objective fitness function. On the contrary, in [PHY11], Pareto
optimality is used to module clustering problem with multi-objective approach.
However, the Pareto optimality has several shortcomings [DSK10]. First, it yields a
set of solutions, among which software architects have to select one. For example,
in [SPG10], an iterative multi-objective genetic algorithm is proposed to identify
design classes. In this algorithm, software architects must rank a number of
identified solutions in each generation. In practical applications, the use of Pareto
optimality leads to a semi-automatic method, and its performance highly depends
on experts. Second, the Pareto optimality has generally higher computational costs
and is time-consuming. In fact, when the number of objectives is increased, the
Pareto optimality approach is not suitable, because it needs more population
members and more computations; therefore, its progress is slowed down. Another
difference between SCI-GA and all the existing search-based module clustering
methods is that they aim at optimizing clustering criteria like SSE, intra-edges and
inter-edges of all clusters, in contrast to SCI-GA that aims at maximizing software
cohesion and simultaneously minimizing coupling and complexity. Furthermore,
unlike SCI-GA, the existing search-based module clustering methods do not take
infeasible solutions into account, and do not apply any techniques to handle them.

30  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

7 Conclusions

With the advent of the evolutionary approach in software engineering, we are now
able to automatically identify logical software components based on a powerful
optimization search algorithm. In this paper, we presented a novel method to
identify logical components based on the evolutionary approach called SCI-GA.
The evolutionary approach supports the logical component identification in
searching components space; therefore, it is more accurate than other approaches.

 SCI-GA encodes entire components of a system in a chromosome, so that each
use case is encoded as a gene. In this encoding, some use cases are considered as
representatives of other use cases. The efficiency of SCI-GA was evaluated by using
three real-world OBS, RAS and AgriInsurance System case studies; therefore, the
evaluation results demonstrated that it outperforms other methods such as FCA-
Based and Clustering-Based methods. Additionally, it has an ability to
automatically identify the near-optimal number of logical components for all three
case studies (see Table 5), as opposed to the other methods, in which the number
of components is manually determined according to the number of components
identified by experts. Moreover, in SCI-GA, a novel fitness function was proposed,
and the evaluation results revealed that it is a close metric to expert opinions.

In a future work, we intend to use other optimization algorithms like Ant
Colony or GA hybrid algorithms to improve the search performance and apply the
idea of automatic design pattern selection [HJ99, HJ12] in order to design classes of
each component.

ACKNOWLEDGEMENT
The research was supported by Iran Telecommunication Research Centers

(ITRC).

References

[ABA04] M AlSharif, WP Bond, and T Al-Otaiby. Assessing the Complexity of

Software Architecture. In Proceedings of the 42nd annual Southeast
regional conference, ACM, pages 98-103, 2004. doi:
10.1145/986537.986562.

[AIF13] Agricultural Insurance Fund.
URL:http://www.aiiri.gov.ir/HomePage.aspx?TabID=1&Site=aiiriPortal
&Lang=en-US, Accessed by May 2013.

[AOB08] A Albani, S Overhage, and D Birkmeier. Towards a systematic method
for identifying business components. In Proceedings of CBSE, LNCS
5282, pages 262–277, 2008. doi: 10.1007/978-3-540-87891-9_17.

31  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

[Bal96] NV Balasubramanian. Object-oriented metrics. In Proceedings of
Software Engineering Conference, pages 30-34, 1996. doi:
10.1109/APSEC.1996.566737.

[BO09] D Birkmeier and S Overhage. On Component Identification Approaches–
Classification, State of the Art, and Comparison. In Proceedings of CBSE
2009, LNCS 5582, pages 1-18, 2009. doi: 10.1007/978-3-642-02414-6_1.

[CC11] JF Cui and HS Chae: Applying agglomerative hierarchical clustering
algorithms to component identification for legacy systems. Information
and Software Technology. 53:601-614, 2011.

 doi: 10.1016/j.bbr.2011.03.031.
[CKH09] M Choi, IJ Kim, J Hong, and J Kim. Component-based metrics applying

the strength of dependency between classes. In Proceedings of ACM
symposium on Applied Computing, pages 530-536, 2009. doi:
10.1145/1529282.1529392.

[CK94] SR Chidamber and CF Kemerer: A metrics suite for object oriented
design. IEEE Transactions on Software Engineering. 20(6):476-492, 1994.
doi: 10.1109/32.295895.

[CL06] M Choi and S Lee. A coupling metric applying the characteristics of
components. In Proceedings of Workshop on Component Based Software
Engineering and Software Process Model, pages 966-975, 2006. doi:
10.1007/11751632_104.

[CSC13] Case Studies of Component Identification Project. URL:
http://www.modares.ac.ir/en/Schools/ece/grp/cmp/res/lab/SCSLAB/Pr
oject/Project2, Accessed by May 2013.

[CYW11] Z-g Cai, X-h Yang, X-y Wang, and A Kavs: A Fuzzy-based Approach for
Business Component identification. Journal of Zhejiang University-
SCIENCE C (Computers & Electronics). 12(9):707-720, 2011. doi:
10.1631/jzus.C1000337.

[Deb01] K Deb. Multi-objective optimization using evolutionary algorithms.
Chichester, England: John Wiley & Sons, Ltd, 2001.

[DMM99] D Doval, S Mancoridis, and BS Mitchell: Automatic Clustering of
Software Systems Using a Genetic Algorithm. In Proceedings of Int’l
Conf. Software Tools and Eng. Practice. 1999. doi:
10.1109/STEP.1999.798481.

[DSK10] K Deb, A Sinha, PJ Korhonen, and J Wallenius: An Interactive
Evolutionary Multiobjective Optimization Method Based on Progressively
Approximated Value Functions. IEEE Transactions On Evolutionary
Computation. 14(5):723-739, 2010. doi: 10.1109/TEVC.2010.2064323.

[Gre86] JJ Grefenstette: Optimization of control parameters for genetic
algorithms. IEEE Trans Syst Man Cybern. 16(1):122–128, 1986. doi:
10.1109/TSMC.1986.289288.

32  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

[GS01] R Ganesan and S Sengupta. O2BC: a Technique for the Design of
Component-Based Applications. In Proceedings of the 39th Int. Conf. and
Exhibition on Technology of Object-Oriented Languages and Systems,
pages 46-55, 2001. doi: 10.1109/TOOLS.2001.941658.

[Ham09] HS Hamza. A Framework for Identifying Reusable Software Components
Using Formal Concept Analysis. In Proceedings of the 6th International
Conference on Information Technology: New Generations, pages 813-818,
2009. doi: 10.1109/ITNG.2009.276.

[HCF09] ER Hruschka, RJGB Campello, AA Freitas, and ACPLF de Carvalho: A
Survey of Evolutionary Algorithms for Clustering. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews.
39(2):133-155, 2009. doi: 10.1109/TSMCC.2008.2007252.

[HE03] ER Hruschka and NFF Ebecken: A genetic algorithm for cluster analysis.
Intell. Data Anal. 7(1):15-25, 2003. URL:
http://iospress.metapress.com/content/adhnkma5h48f1l0q/.

[HJ09] SMH Hasheminejad and S Jalili. Selecting Proper Security Patterns Using
Text Classification. In Proceedings of International Conference on
Computational Intelligence and Software Engineering, CiSE 2009, pages
1-5, 2009. doi: 10.1109/CISE.2009.5363861.

[HJ12] SMH Hasheminejad and S Jalili: Design patterns selection: An automatic
two-phase method. Journal of Systems and Software. 85(2):408-424, 2012.
doi: 10.1016/j.jss.2011.08.031.

[HMZ12] M Harman, SA Mansouri, and Y Zhang: Search-based software
engineering: Trends, techniques and applications. ACM Computing
Surveys (CSUR). 45(4):11, 2012. doi: 10.1145/2379776.2379787.

[JCI01] H Jain, N Chalimeda, N Ivaturi, and B Reddy. Business Component
Identification a Formal Approach. In Proceedings of the 5th IEEE Int.
Enterprise Distributed Object Computing Conf., pages 183-187, 2001. doi:
10.1109/EDOC.2001.950437.

[Kar93] G Karner. Resource Estimationfor Objectory Projects. Objectory
Systems, 1993.

[KC04] S Kim and S Chang. A Systematic Method to Identify Software
Components. In Proceedings of the 11th Software Engineering Conf.,
pages 538-545, 2004. doi: 10.1109/APSEC.2004.11.

[KPS08] J Kim, S Park, and V Sugumaran: DRAMA: A framework for domain
requirements analysis and modeling architectures in software product
lines. The Journal of Systems and Software. 81(1):37-55, 2008. doi:
10.1016/j.jss.2007.04.011.

[Kru00] P Kruchten. The Rational Unified Process An Introduction. 2nd ed.
Addison Wesley, 2000.

[LJK01] JK Lee, SJ Jung, SD Kim, WH Jang, and DH Ham. Component
Identification Method with Coupling and Cohesion. In Proceedings of the

33  SCI-GA: Software Component Identification using Genetic Algorithm

Journal of Object Technology vol. 12, no.2, 2013

8th Asia-Pacific Software Engineering Conference, pages 79-86, 2001. doi:
10.1109/APSEC.2001.991462.

[LYC99] SD Lee, YJ Yang, ES Cho, SD Kim, and SY Rhew. COMO: A UML-
Based Component Development Methodology. In Proceedings of the 6th
Asia Pacific Software Engineering Conference, Washington, DC, USA,
IEEE Computer Society, Los Alamitos, pages 54-61, 1999.

 doi: 10.1109/APSEC.1999.809584.
[MHH03] K Mahdavi, M Harman, and RM Hierons. A Multiple Hill Climbing

Approach to Software Module Clustering. In Proceedings of IEEE Int’l
Conf. Software Maintenance, pages 315-324, 2003. doi:
10.1109/ICSM.2003.1235437.

[Mic96] Z Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. New York: Springer-Verlag, 1996.

[MM06] BS Mitchell and S Mancoridis: On the Automatic Modularization of
Software Systems Using the Bunch Tool. IEEE Trans. Software Eng.
32(3):193-208, 2006. doi: 10.1109/TSE.2006.31.

[PB07] S Parsa and O Bushehrian: Genetic clustering with constraints. Journal
of research and practice in information technology. 39(1):47-60, 2007.
URL:
http://ws.acs.org.au/jrpit/JRPITVolumes/JRPIT39/JRPIT39.1.47.pdf.

[PHY11] K Praditwong, M Harman, and X Yao: Software Module Clustering as a
Multi-Objective Search Problem. IEEE Trans. Software Eng. 37(2):264-
282, 2011. doi: 10.1109/TSE.2010.26.

[PTZ08] L Peng, Z Tong, and Y Zhang. Design of Business Component
Identification Method with Graph Segmentation. In Proceedings of the
3rd Int. Conf. on Intelligent System and Knowledge Engineering, pages
296-301, 2008. doi: 10.1109/ISKE.2008.4730944.

[Räi10] O Räihä: A survey on search-based software design. Computer Science
Review, Elsevier 4(4):203-249, 2010. doi: 10.1016/j.cosrev.2010.06.001.

[RW10] X Rui and DC Wunsch: Clustering Algorithms in Biomedical Research: A
Review. IEEE Reviews in Biomedical Engineering. 3:120-154, 2010. doi:
10.1109/RBME.2010.2083647.

[Sal09] S Salcedo-Sanz: A survey of repair methods used as constraint handling
techniques in evolutionary algorithms. Computer Science Review,
Elsevier. 3(3):175-192, 2009. doi: 10.1016/j.cosrev.2009.07.001.

[SJH10] GR Shahmohammadi, S Jalili, and SMH Hasheminejad: Identification of
System Software Components Using Clustering Approach. Journal of
Object Technology (JOT). 9(6):77-98, 2010. doi: 10.5381/jot.2010.9.6.a4.

[SP13] SBSE Publications. URL: www.sebase.org/sbse/publications, Accessed by
May 2013.

34  S.M.H. Hasheminejad, S. Jalili

Journal of Object Technology, vol. 12, no.2, 2013

[SPG10] CL Simons, IC Parmee, and R Gwynllyw: Interactive, Evolutionary
Search in Upstream Object-Oriented Class Design. IEEE Transactions on
Software Engineering. 36(6):798-816, 2010. doi: 10.1109/TSE.2010.34.

[TH99] V Tzerpos and RC Holt. MoJo: A distance metric for software
clusterings. In Proceedings of the 6th Working Conference on Reverse
Engineering, pages 187-193, 1999. doi: 10.1109/WCRE.1999.806959.

[WXZ05] Z Wang, X Xu, and D Zhan: A Survey of Business Component
Identification Methods and Related Techniques. International Journal of
Information Technology. 2(4):229-238, 2005.

 URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.5794&rep
=rep1&type=pdf.

[WYF03] H Washizaki, H Yamamoto, and Y Fukazawa. A metrics suite for
measuring reusability of software components. In Proceedings of the 9th
International Software Metrics Symposium, pages 211-223, 2003. doi:
10.1109/METRIC.2003.1232469.

About the author(s)

Saeed Jalili received the Ph.D. degree from Bradford University in
1991 and the M.Sc. degree in computer science from Sharif
University of Technology in 1979. Since 1992, he has been
associate professor at the Tarbiat Modares University. His main
research interests are software testing, software runtime
verification and quantitative evaluation of software architecture.

E-mail: Sjalili@modares.ac.ir

Seyed Mohammad Hossein Hasheminejad is a Ph.D. Candidate of
computer engineering at Tarbiat Modares University (TMU). He
received the M.Sc. degree in Software engineering from TMU in
2009, and the B.Sc. degree in Software engineering from Tarbiat
Moalem University in 2007. His main research interests are Formal
Methods for Software Engineering, Object-Oriented Analysis and

Design, Search-Based Software Engineering, and Self-Adaptive Systems.
E-mail: SMH.Hasheminejad@Modares.ac.ir

