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Abstract Identifying software components is a crucial task in software 
development. There are a number of methods to identify components in the 
literature; however, the majority of these methods rely on clustering techniques 
with expert judgment. In contrast to the previous methods, which have used 
classical clustering techniques, this paper maps the components identification 
problem to an optimization problem. We propose a novel GA-based algorithm 
(Genetic Algorithm) as a powerful optimization search algorithm, called SCI-GA 
(Software Component Identification using Genetic Algorithm), to identify 
components from analysis models. SCI-GA uses software cohesion, coupling, and 
complexity measurements to define its fitness function. For performance evaluation, 
we evaluated SCI-GA using three real-world cases. The results reveal that SCI-GA 
can identify correct suboptimal software components, and performs far better than 
alternative heuristics like k-means and FCA-Based methods. 
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1 Introduction 

In Component-Based Software Development (CBSD) process, partitioning a 
software space to identify components is a crucial task. Several methods have been 
presented to identify software components, but they do not agree on what exactly 
is a component. Birkmeier and Overhage [BO09] divided components into three 
categories: Business-oriented components [AOB08, CYW11, GS01, JCI01, LYC99, 
PTZ08, WXZ05], Architecture-focused or Logical components [Ham09, KC04, 
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LJK01, SJH10], and Technical components [CC11]. Business-oriented components 
are associated with business components and require realizing business processes. 
Architecture-focused components concentrate on logical characteristics, i.e., a 
structuring is required in them. Finally, Technical components focus on 
deployment and implementation aspects.  

This paper concentrates on a logical definition of component as follows [KPS08]: 
"A logical component, in contrast to a physical component, is a component 
representing requirements except for technology, environments, and constraints. 
Nevertheless, it is meaningful that these logical components provide the starting 
point for designing the software architecture". 

Logical components are the primary abstractions of the entire design of a 
system. Partitioning a system into logical components has a key role in defining the 
system architecture [SJH10]. During the CBSD process, a software architect is 
responsible for decomposing a system into some logical components. However, 
because of heavy reliance on software architect experience, it is an extremely 
difficult and error prone task to identify logical components without any tool 
support [BO09]. To help overcome this difficulty, several works suggest automatic 
or semi-automatic methods to identify logical components. 

Current attempts to identify logical components rely on classical clustering 
techniques with expert judgment and cluster either use cases or classes of a system 
into components. Lee et al. [LJK01] proposed a method for clustering classes into 
logical components with high cohesion and low coupling. Kim et al. [KC04] 
employed use case models, object models and collaboration diagrams to identify 
components. Hamza [Ham09] proposed a framework based on the theory of Formal 
Concept Analysis (FCA) to partition a class diagram into logical components with 
some heuristics similar to clustering techniques. Shahmohammdi et al. [SJH10] 
proposed a feature-based clustering method to identify logical components, in 
which several features like actors and entity classes were presented to measure the 
similarity between a pair of use cases. Therefore, several classical clustering 
techniques like k-means, Hierarchal, Graph-based method, and Fuzzy C-means 
were examined to achieve good software architecture. 

These four methods use classical clustering techniques, and suffer from several 
common weaknesses. First, they need to manually adjust their thresholds, and 
highly depend on expert judgment to select the best solution. Second, the number 
of components must be manually determined by experts in advance. Third, they 
use different classical clustering techniques like k-means, which are inefficient to 
deal with complex search landscapes due to their simple greedy and heuristic 
nature [RW10]. Finally, the common objective of these methods is to optimize 
clustering criteria like Sum of Squared Error (SSE) and Variance Ratio Criterion 
(VRC) [HCF09] rather than software design measurements like software cohesion, 
coupling, and complexity. 
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Recently, evolutionary algorithms have been widely applied to software 
problems. Therefore, a new scope of software engineering by the name of Search-
Based Software Engineering (SBSE) [HMZ12] has emerged to reformulate software 
problems as optimization problems. In [SP13], all works related to SBSE are 
categorized and Search-Based Design works are particularly surveyed in [Räi10]. 

The goal of this paper is to improve limitations of Clustering-Based methods. 
Therefore, we propose a search-based method called SCI-GA, which is based on an 
evolutionary approach (a GA-Based method), with the aim of mapping the logical 
component identification problem to an optimization problem. Compared with 
other Clustering-Based methods, especially [SJH10], SCI-GA has a number of 
distinguishing characteristics: 

1. Component identification is an NP-complete problem [CYW11]. Therefore, 
SCI-GA uses a Meta-heuristic method (i.e., GA) as a powerful optimization 
search algorithm to identify components instead of a heuristic like k-means. 

2. There is no requirement for the number of components to be determined in 
advance, and it can automatically identify the suitable number of 
components. 

3. It uses a fitness function that measures software cohesion, coupling, and 
complexity metrics, so it automatically identifies suitable components. 

For justification, we evaluated SCI-GA using three real-world cases, and the 
obtained results are analyzed and discussed in comparison with other methods. 

The rest of this paper is organized as follows: Section 2 defines component 
identification problem, and Section 3 describes software design measurements used 
in SCI-GA. In Section 4, SCI-GA is described in detail, and in Section 5, we 
evaluate SCI-GA using three real-world cases. Finally, after describing related 
works in Section 6, Section 7 provides concluding remarks and future works. 
 

2 Component Identification Problem 

The goal of logical component identification is to partition requirements of a 
system into meaningful units. In RUP methodology [Kru00], requirements of a 
system are identified in the Requirements Capture Workflow, and are presented by 
use case model. Use case model consists of some use cases and actors. After 
capturing use cases, in RUP methodology, the identified use cases are described 
with more details at the Analysis and Design Workflow. One of the important 
artifacts in Analysis and Design Workflow is analysis class diagram. In fact, for 
each use case, an analysis class diagram is created. Each analysis class diagram 
consists of three types of classes: boundary (interface), control, and entity (data) 
classes. In this paper, SCI-GA inputs are a use case model and analysis class 
diagrams of a system. The goal of this paper is to partition use cases of a system 
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into cohesive and independent units called logical components. Figure 1(a) shows a 
representative use case model of a system. As shown in Figure 1(a), this system has 
two actors and seven use cases. In addition, Figure 1(b) shows the corresponding 
logical components which are identified for this system as an example. As shown in 
Figure 1(b), three logical components are identified for this sample system. 

 

 
 

Figure 1 -  (a) An example use case model and (b) the corresponding logical components of 
use cases of part (a) as an example 

3  Software Design Measurements 

Maintainability and reusability are two important factors in component 
identification. For this reason, SCI-GA employs software cohesion, coupling and 
complexity metrics, which will be defined in below. 

3.1 Cohesion 

To compute software cohesion, in this paper, we propose a metric based on 
similarity between a pair of use cases. In [SJH10], a use case is quantitatively 
represented by a feature vector. Among the properties of each use case presented in 
[SJH10], we only use two important property sets, i.e., actors and entity classes, 
because these property sets have major impacts according to the sensitivity 
analysis performed in [SJH10], and the preprocessing cost of making all properties 
available in [SJH10] is too high. In our feature-based representation, a "use 
case/property" matrix, called F, is created, where all use cases are listed in rows 
and all entity classes and actors in columns, respectively. In this matrix, each Fij is 
either 0 or 1, i.e., 1 entry denotes the ith use case (UCi) has a relationship with 
property j (EntityClassj or Actorj) and 0 otherwise. For example, Figure 2 shows a 
sample F matrix of the use cases introduced in Figure 1. As shown in Figure 2, this 
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system has seven use cases, two actors, and five entity classes; hence, F will be a 
binary matrix with 7 rows and 7 columns. 

 

 
Figure 2 - a sample "use case/property" matrix for the use cases of Figure 1 

There are many similarity measurements to measure the similarity between a 
pair of vectors, in terms of features [RW10]. Based on experiments in [SJH10], we 
choose Simple coefficient (see Equation 1) to compute the similarity between two 
use cases. Let n11 denote the number of features present in both UCi and UCj, n10 
denote the number of features present in UCi but not UCj, n01 denote the number 
of features present in UCj but not UCi, and n00 denote the number of features not 
present in both UCi and UCj. 

 

 (1) 

Table 1 shows a matrix in which all similarities among use cases of Figure 2 are 
computed in terms of Equation (1). For example, the similarity between UC4 and 
UC5 is 0.714, because according to Figure 2, n11, n00, n10, and n01 values for these 
use cases are 3, 2, 1, and 1, respectively.  

There is no component cohesion measurement based on use case model. 
Consequently, according to Cohesion Ratio (CR) idea [Bal96]: Q/(P+Q), where the 
number of pairs with similarity (Q) is divided by the total number of pairs, we 
propose a new Component Cohesion (CC) measurement based on a use case model 
defined as Equation (2).  
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Table 1 - The similarity matrix of the "use case/property" matrix presented in Figure 2 
 

 
UC1 UC2 UC3 UC4 UC5 UC6 UC7 

UC1 1 0.714 0.286 0.857 0.857 1 0.286 

UC2 0.714 1 0.286 0.571 0.857 0.714 0.571 

UC3 0.286 0.286 1 0.143 0.143 0.286 0.714 

UC4 0.857 0.571 0.143 1 0.714 0.857 0.143 

UC5 0.857 0.857 0.143 0.714 1 0.857 0.429 

UC6 1 0.714 0.286 0.857 0.857 1 0.286 

UC7 0.286 0.571 0.714 0.143 0.429 0.286 1 

 
  

 

(2) 

Where CC(cmpc) is the cohesion of a component cmpc and mc is the number of 
use cases in cmpc. In other words, to compute the cohesion of component cmpc, the 
summation of similarities between all pairs of its use cases is divided into 
maximum interactions between them (൫௠೎

ଶ ൯). An example of this metric is presented 
below. 

Take Figure 1(b) and Table 1 as an example. The CC values of components 
cmp1, cmp2, and cmp3 are 0.905, 0.857, and 0.714, respectively. For example, 

 

(ଵ݌݉ܿ)	ܥܥ =	
ௌ௜௠	(௎஼భ,௎஼ర)	ାௌ௜௠	(௎஼భ,௎஼ల)	ା	ௌ௜௠(௎஼ర,௎஼ల)

ቆ
య

మ
ቇ

=	 ଴.଼ହ଻ାଵା଴.଼ହ଻
ଷ

= 0.905. 

The CC value of a component lies in the range [0,1] and if a component has 
only one use case, its CC value equals to 1. A component with a higher CC value is 
better than one with a smaller CC value. For evaluating the overall software 
cohesion, we use Equation (3), where n is the number of components.  

 

 
     (3) 

 

For example, the SoftwareCohesion value of identified components of Figure 
1(b) is equal to 0.825. 
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3.2 Coupling 

Coupling represents how tightly one component interacts with others. There have 
been several studies on component coupling metrics [CL06, WYF03]. However, 
most of them are not applicable at an early stage of the software design, because 
they usually need factors extracted from source codes. We use CCR [CC11] defined 
in Equation (4) to evaluate coupling of a component with others, because it is 
applicable at use case model and is also more accurate. 

 
 

 
(4) 

 

Where CCR(cmpc) is the coupling of a component cmpc, CP(cmpc) and UCMP 
denote a set of components coupled to cmpc and a set of components that compose 
a software system, respectively. Note that in CCR, three types of relationships 
among use cases including <<include>>, <<extend>>, and <<generalization>> 
are considered. In CCR, two components are coupled if there is a relationship 
between their use cases. The CCR value of a component lies in the range [0,1]: one 
and zero mean that component cmpc is accessed by all the other components and is 
entirely independent, respectively. For example, in Figure 1 (b), the CCR values of 
components cmp1, cmp2, and cmp3 are 0, 0.5, and 0, respectively. As shown in 
Figure 1(b), \CP(cmp1)| = 0, \CP(cmp2)| = 1, |CP(cmp3)| = 0, and |UCMP| = 3.  

AlSharif et al. [ABA04] have shown that to compute total software coupling, 
Euclidean norm distance formula outperforms average norm formula, so we use 
Equation (5) to compute overall software coupling, which is in the range [0,1]. 

 

(5) 

For example, the SoftwareCoupling value of identified components of Figure 
1(b) is equal to 0.189. It is worth mentioning that softwares with lower 
SoftwareCoupling are more maintainable and reusable. 

3.3 Complexity 

Although, there are many metrics to compute software complexity, the majority of 
them such as conventional OO complexity metrics including Chidamber and 
Kemerer’s metrics [CK94] do not incorporate a procedure to account for 
characteristics of CBSD such as component complexity. However, a few metrics are 
presented in literature to compute component complexity and most of them are not 
applicable at an early stage of software design because of the lack of 
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information.UCP (Use Case Point) is one of the famous metrics applicable at use 
case model [Kar93].  

UCP is a software complexity measurement and is accomplished in two steps as 
shown in Equation 6. First, the Unadjusted UCP (UUCP) count is calculated 
based on the unadjusted weighted actors and use cases as illustrated in Equations 
7, 8, and 9. Second, the Adjusted UCP (AUCP) count is calculated using technical 
complexity. Note that we neglect AUCP in complexity measurement, because 
determining this technical complexity metric is an extremely difficult task. 

 

 (6) 

 
 (7) 

 (8) 

 (9) 
 

 
                         

Table 2 - UCP use case types and complexity weights 

Use Case Type Description Weight 
Simple Fewer than 5 analysis classes 5 
Average 5 to 10 analysis classes 10 
Complex More than 10 analysis classes 15 

 
Unadjusted Actor Weight (UAW): An actor in a use case can be a person, a 

software program or a hardware device. Then, UAW is computed based on three 
actor types shown in Table 2 with complexity weights. 

Unadjusted Use Case Weight (UUCW): The complexity level of the use cases is 
primarily derived from the number of analysis classes. Then, UUCW is computed 
based on three use case types shown in Table 3 with complexity weights. 

For example, if we take Figure 2 as an example, Table 4 shows the UCP value 
of each of the use cases. We suppose that both actors in Figure 2 are graphical 
interfaces and each use case has one boundary class and one control class except for 
its entity classes.  

Table 1 - UCP actor types and complexity weights 
Actor Type Description Weight 
Simple Program interface 1 
Average Interactive, or protocol-driven interface 2 
Complex Graphical interface 3 
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Table 3 - The UCP value of each use case of Figure 2 
 

 UAW UUCW UCP 
UC1 3 5 8 
UC2 3 5 8 
UC3 3 5 8 
UC4 3 10 13 
UC5 3 10 13 
UC6 3 5 8 
UC7 3 5 8 

 
We propose a new component complexity measurement based on UCP metric 

defined as: 
 

 
(10) 

Where ComponentComplexity(cmpc) and mc are the complexity of a component 
cmpc and the number of use cases in cmpc, respectively. In addition, UCPi and 
TotalUCP denote the complexity of the ith use case and the summation of all 
UCPi, respectively. Moreover, to compute overall software complexity, we employ 
Equation (11) according to AlSharif et al. [ABA04] idea about Euclidean norm 
distance formula, which is in the range [0,1]. 

 

 
(11) 

Where n denotes the number of components in the system. Take Figure 1(b) 
and Table 4 as an example. The ComponentComplexity values of components 
cmp1, cmp2, and cmp3 are 0.146, 0.159, and 0.121, respectively. For example, 

 

(ଵ݌݉ܿ)ݕݐ݅ݔ݈݁݌݉݋ܥݐ݊݁݊݋݌݉݋ܥ = 	
௎஼௉భା	௎஼௉రା	௎஼௉ల
௠భ 	×	்௢௧௔௟௎஼௉

=	 ଼ାଵଷା଼
ଷ	×଺଺

= 0.146. In addition, the 
SoftwareComplexity value of identified components of Figure 1(b) is equal to 0.094. 
It is obvious that the value of SoftwareComplexity for each system is over zero; 
therefore, logical components with lower complexity are more desirable and 
maintainable. 

4 The SCI-GA Algorithm 

To discover the best use cases grouping, i.e., logical components identification, we 
have to consider 
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(12) 

possibilities, where N is the total number of use cases and k is the number of 
components [HE03]. For example, there are n(25,5) = 2	 ×	10ଵହ different ways of 
grouping 25 use cases into 5 logical components. Therefore, when k is known, it is 
not easy to identify the best components. If k is unknown; then, we face to 
∑ ݊	(ܰ, ݇)ே
௞ୀଵ  possibilities. For example, considering 25 use cases, this number 

represents approximately 4 ×  10ଵ଼ different component identifications [HE03]. 
Thus, the component identification problem is a NP-complete problem [CYW11], 
because the number of different ways of grouping N use cases into k components 
increases approximately as ݇ே ݇!ൗ  [HE03]. 

In [SJH10], we identified logical components using classical clustering 
techniques, but in this paper, the SCI-GA algorithm is proposed to extend [SJH10]. 
Our contributions in this paper in comparison with [SJH10] are mentioned as 
follows. First, SCI-GA uses a GA-Based algorithm as a powerful optimization 
search algorithm to identify components instead of a heuristic like k-means, so that 
GA has been used successfully for tackling large and complex search spaces like 
NP-complete problems [HCF09]. Second, SCI-GA aims at automatically finding a 
near-optimal number of logical components. Finally, SCI-GA proposes a novel 
fitness function defined in Section 4.2 to make trade-off among software cohesion, 
coupling, and complexity of system components.  

Figure 3 shows the SCI-GA algorithm to identify logical components. The 
inputs of SCI-GA are a use case model with similarity matrix like Table 1 and 
UCP matrix like Table 4. The outputs of SCI-GA are the proper number of 
components and identified logical components. In SCI-GA, the initial chromosomes 
of population are first generated randomly. Then, for each chromosome, the fitness 
is evaluated according to a fitness function defined in Section 4.2. Then, some 
chromosomes for reproduction are selected as parents using the roulette wheel 
selection scheme [Mic96]. After selecting some parent chromosomes, one of the 
three crossover operators defined in Section 4.3.1 is randomly applied on all pairs of 
parents to generate two children. Then, one of the two mutation operators defined 
in Section 4.3.2 is randomly applied on each generated offspring. After applying 
SCI-GA operators, the consistency of each offspring is evaluated and the least fit 
chromosomes in the existing population are replaced by the newly generated 
offspring. Now, the next generation of population is created; therefore, this process 
is repeated until the fittest chromosome satisfies some conditions or the maximum 
number of iterations is exceeded. 
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4.1  Use Case Encoding in Chromosomes and Population Initialization 

To encode the entire logical components of a system in a chromosome, we propose 
a novel encoding scheme, in which for each component cmpc, a use case, called 
centroid use case (CUCc), is considered as a representative of other use cases 
belonging to that component. In the proposed encoding scheme, each component 
identification solution is represented as a binary string of N length, where N is the 
total number of use cases in the system. Each position of the binary string 
corresponds to a particular use case, i.e., the ith position (gene) represents the UCi. 
The value of the ith gene is 1 if the UCi is a centroid use case and zero otherwise. 
Therefore, the number of "1" in the binary string of a chromosome shows the 
number of components. For example, the components depicted in Figure 4 can be 
encoded by means of the string [0111000], in which UC2, UC3, and UC4 are 
centroid use cases of components cmp2, cmp3, and cmp1, respectively. Each UCi 
that is not a centroid use case, is assigned to cmpc that UCi has the highest 
similarity to CUCc in comparison with other centroid use cases according to 
Equation (13). Take Figure 4 and Table 1 as an example. According to Figure 4, 
UC1, UC5, UC6, and UC7 are not centroid use cases and must be assigned to one of 
the three components with UC2, UC3, and UC4 as centroid use cases. For example, 
for UC1, among three similarities between UC1 and each of three centroid use cases, 
i.e., Sim(UC1,UC2), Sim(UC1,UC3), and Sim(UC1,UC4),  the value of 
Sim(UC1,UC4) is the highest, so UC1 is assigned to cmp1.   

 

 (13) 

For the initial population, each chromosome is randomly generated by SCI-GA 
in such a way that the number of 1’s in each chromosome is uniformly distributed 
within [1, kmax], where kmax is a user-defined maximum number of components that 
can be determined by software architects to apply their preferences. It should be 
noted that the default value of kmax is the total number of use cases. 
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Figure 3 - The flowchart of the SCI-GA algorithm   

 
 

 
Figure 4 -   SCI-GA encoding 

4.2  Objective Function 

The input of SCI-GA includes the use case model used in chromosome encoding 
and analysis class diagrams used in computing the SCI-GA fitness function. In the 
SCI-GA algorithm, we simultaneously employ the SoftwareCohesion, 
SoftwareCoupling, and SoftwareComplexity metrics (defined in Section 3) as a 
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fitness function. However, in the literature, few works propose a single function to 
evaluate the quality of logical components. Making logical components, Choi et al. 
[CKH09] proposed a single function called Independence Degree of a System (IDS) 
that is computed by the expression (SoftwareCohesion - SoftwareCoupling). When 
IDS is high, it consists of more independent components. Based on IDS idea and 
with respect to the SoftwareComplexity metric, we propose a new Fitness Function 
(FF) defined in Equation (14) to maximize the overall software cohesion and 
minimize the overall software coupling and complexity.  

 
 (14) 

 
The maximum value of FF denotes that highly cohesive and loosely coupled 

components with the least complexity have been obtained. 

4.3 Selection and Reproduction 

Reproduction in SCI-GA consists of applying both crossover and mutation 
operators. In SCI-GA, two chromosomes are selected as parents for crossover, using 
the roulette-wheel selection scheme [Deb01], so that each parent’s chance of 
selection is directly proportional to its fitness. 

4.3.1 Crossover 

After selecting some chromosome for reproduction, some pairs of them are 
randomly selected to produce offspring chromosomes. SCI-GA uses three standard 
crossover operators [Deb01]: one-point, two-point, and uniform crossover operators. 
In one-point crossover, a position in the chromosome is randomly selected as parts 
of two parents after the crossover position are exchanged. In two-point crossover, 
two positions are randomly chosen and the parts between them are exchanged. 

In uniform crossover, a mask binary vector is first generated at random. 
Suppose that a mask such as [0110001] is generated; then, the values of the 2nd, 
3rd and 7th genes are taken from the second parent to copy in the corresponding 
genes of the first offspring, and the others are taken from the first parent. For the 
sake of illustration, an example of these operators is shown in Figure 5. It should 
be noted that SCI-GA uses one of these three crossover operators at random for 
each pair of chromosomes. 
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Figure 5 - Example of crossover operators: (a) one-point, (b) two-point, and (c) uniform 

crossover 

4.3.2 Mutation 

After crossover, the offspring are mutated to avoid getting trapped at local optima 
on one hand and to ensure diversity on the other hand. SCI-GA uses two novel 
mutation operators including Eliminate Mutation and Add Mutation operators. 
SCI-GA uses Eliminate Mutation and Add Mutation operators to allow for the 
number of components to be changed dynamically as the evolutionary process 
progresses. Therefore, the number of components does not need to be specified by 
software architects in advance.  

In Add Mutation, one chromosome is selected; then, it randomly changes value 
of a gene, i.e., its value is changed from "0" to "1". By applying Add Mutation to a 
chromosome, the number of components is increased by one.  

In Eliminate Mutation, a component is randomly chosen and eliminated, i.e., 
the value of its centroid use case is set to zero. Algorithm 1 presents the pseudo 
code of the Eliminate Mutation operator. As shown in Algorithm 1, a candidate 
component can be a component, which has the highest CCR or 
ComponentComplexity values or the one with the lowest CC value. By applying 
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Eliminate Mutation to a chromosome, the number of components is decreased by 
one. It is expected that when a component with the highest ComponentComplexity 
value is eliminated and the use cases belonging to it are assigned to other 
components, the value of SystemComplexity is decreased. However, this decrease is  
not an inclusive event. It should be noted that SCI-GA uses one of these two 
mutation operators at random for each chromosome. 
 

 

Algorithm 1 - The Eliminate Mutation description 

1) Cmprandom : Select randomly a component belonging to the parent 
chromosome. 

2) Cmpcomplex : Select a component with the highest ComponentComplexity 
value belonging to the parent chromosome. 

3) Cmpnot-cohesive : Select a component with the lowest CC value belonging to the 
parent chromosome. 

4) Cmpdependent : Select a component with the highest CCR value belonging to 
the parent chromosome. 

5) Cmpcandidate : Choose randomly a component among Cmprandom, Cmpcomplex, 
Cmpnot-cohesive, and Cmpdependent. 

6) The corresponding gene value of centroid use case of Cmpcandidate is set to 
zero. 

4.4 Component Evaluation and Correction 

The main challenge of applying genetic operators to chromosomes is that invalid 
component solutions may be produced. An identified component solution is invalid 
if the number of components is less than 1 or more than kmax. To illustrate this 
point, let us apply the one-point crossover to both chromosomes [0100011] and 
[1000000], as displayed in Figure 6 (bold type refers to the exchanged genetic 
information). It is not difficult to see that similar problems may occur under the 
other used crossover operators and introduced mutation operators. 
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Figure 6 - Examples of invalid identified components after applying one-point crossover: (a) 
the number of components of Child1 is 0 and (b) the number of components of Child1 is 

more than kmax 

To solve this problem, we propose four methods as follows: 
a. Omission: In this method, after applying each operator, if an invalid 

offspring is generated, it is omitted from the population, and does not 
participate in the next generation. 

b. Applying Again: In this method, if an invalid offspring is produced, because 
of applying crossovers on a pair of parents or mutations on a parent, this 
offspring is omitted and genetic operators are applied again on those 
parents.  

c. Punishment: In this method, if the produced offspring is invalid, its fitness 
is decreased. The motivation of this method is that when the fitness of an 
invalid offspring is decreased, the chance of its presence in the next 
generation is extremely decreased, but in contrast to omission method, 
participation in the next generation is possible. To decrease the fitness of an 
invalid offspring, we need a penalty function, which is described in Equation 
(15). 

 

(15) 

 
Where FFold and FFnew are the initial fitness of an invalid offspring and 

its fitness after punishing, respectively. Moreover, NIC denotes the number 
of "1" of the invalid offspring. For example, in Figures 6(a) and 6(b), the 
values of P are 1 and 2 (i.e., 5-3), respectively. 

d. Correction: The goal of this method is to correct an invalid offspring; 
therefore, it uses Eliminate and Add mutations described in Section 4.3.2 
for this correction. If the number of components of the invalid offspring is 
zero, the Add mutation operator is applied on it. Moreover, if the number 
of components of the invalid offspring is higher than kmax, the Eliminate 
mutation operator is applied P (according to Equation 15) times on it. 
 

We evaluate these methods in Section 5.2 and the efficient method is derived 
from experiments. 

0 1 0 0 0 1 1

1 0 0 0 0 0 0

0 0 0 0 0 0 0
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Child1

1 1 0 0 0 1 0

0 0 0 0 1 1 1

1 1 0 0 1 1 1
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Child1

kmax = 3 
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4.5 Replacement and Termination Conditions 

SCI-GA uses the roulette-wheel replacement scheme [Deb01] to replace new 
members of the current population to the old ones, in which a chromosome with 
the higher fitness has more chance to survive in the next generation. 

 For the sake of simplicity, the generation step is stopped when the number of 
iterations exceeds the limit or when the best fitness value does not improve during 
some generations. 

5 Experimental Results  

We implemented SCI-GA and set its parameters by performing empirical studies 
[Gre86] as follows: population size was 100, crossover and mutation rates were 70%, 
and 2%, respectively. In addition, the SCI-GA algorithm was stopped when the 
generation number reached 1000 or the fitness value did not improve during the 
last 50 generations. 

For measuring the performance of SCI-GA, we have applied it on an Online 
Broker System (OBS), derived from a number of established Internet-based broker 
systems [CSC13], a Restaurant Automation System (RAS) [CSC13] and 
AgriInsurance System [AIF13]. The analysis models of both OBS and RAS cases 
are reported in [CSC13], and are comprised of 30 and 32 use cases, 4 and 6 actors, 
22 and 25 analysis classes, and 6 and 10 entity classes, respectively.  

Note that AgriInsurance System provides farmers with financial protection 
against production losses caused by natural perils, such as drought, flood, hail, 
frost, excessive moisture and insects. This system is designed and implemented by 
Yass-System Company, one of the famous software house companies in Iran, for 
Agriculture Bank, the Iranian bank customized to agriculture finance for Iranian 
farmers. This system is developed by more than 10 professional developers with the 
average of 4 years of experience and comprises 68 use cases, 27 actors, 233 analysis 
classes, and 154 entity classes. According to Equation (12), to identify the best 
logical components, we have to consider ∑ ݊	(30, ݇)ଷ଴

௞ୀଵ , ∑ ݊	(32, ݇)ଷଶ
௞ୀଵ , and 

∑ ݊	(68, ݇)଺଼
௞ୀଵ  possibilities for OBS, RAS and AgriInsurance System cases, 

respectively. It seems that these problem spaces are enough to show the SCI-GA 
effectiveness.  

It should be noted that for OBS and RAS cases, 3 professional developers with 
the average of 5 years of experience, are considered as experts, and one of them 
with more experience than others combines solutions of all developers to reach one 
solution. It is worth mentioning that the goal of all experts is to increase software 
cohesion and decrease software coupling and complexity. 
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For comparison, CRUD-Based [LYC99], Clustering-Based [SJH10], and FCA-
Based [CYW11] methods are considered. We implemented these methods and 
applied them on OBS, RAS and AgriInsurance System cases, but due to the space 
limitation, we only demonstrate the final results of them, and the details of 
evaluations are reported in [CSC13].  

Figures 7 and 8 illustrate the components obtained by SCI-GA for OBS and 
RAS cases, respectively. Note that in Figures 7 and 8, dark use cases refer to the 
centroid use cases. For OBS case, comparing the components identified by experts 
(reported in [CSC13]) with the components identified by SCI-GA (Figure 7) shows 
that SCI-GA automatically obtains components which are approximately the same 
as the ones identified by experts. Indeed, there is only one difference between 
components identified by experts and SCI-GA: the UC28-Compute Benefit in 
components identified by experts belongs to Component 6, but to Component 3 in 
SCI-GA components (see Figure 7). However, the values of SoftwareCohesion and 
SoftwareComplexity metrics, i.e., 0.969 and 0.0771, for SCI-GA components are 
slightly better than the values identified by experts for components (i.e., 0.966 and 
0.0779). 

For RAS case, comparing the components identified by experts (reported in 
[CSC13]) with the components identified by SCI-GA (Figure 8) shows that SCI-GA 
automatically obtains 8 components, as opposed to 7 components determined by 
experts. In fact, all components identified by both SCI-GA and experts are the 
same except for Components 2 and 3. However, SCI-GA divides the expert’s 
Administrator component into two cohesive components (Components 2 and 3 in 
Figure 8), because this component is too complex. Indeed, dividing the complex 
Administrator component into two simpler components in the SCI-GA results leads 
to improve the values of SoftwareCohesion, SoftwareCoupling, and 
SoftwareComplexity metrics, i.e., 0.907, 0.138 and 0.0153, respectively, in contrast 
to the ones identified by experts for the components (i.e. 0.886, 0.144 and 0.0159, 
respectively). 

For AgriInsurance System case, comparing the components identified by experts 
with the components identified by SCI-GA shows that SCI-GA automatically 
obtains 11 components, as opposed to 9 components determined by experts and 
including Administrator, Policy Management, Commissions, Billing, General 
Ledger, Claims, Reporting, Calculations and User Managements components. 
However, SCI-GA divides each of the expert’s Administrator and Policy 
Management components into two simpler components, because these components 
are too complex. Indeed, dividing each of the complex Administrator and Policy 
Management components into two simpler components in the SCI-GA results leads 
to improve the values of SoftwareCohesion, SoftwareCoupling, and 
SoftwareComplexity metrics, i.e., 0.867, 0.111 and 0.0599, respectively, in contrast 
to the ones identified by experts for the components (i.e., 0.842, 0.112 and 0.0623, 
respectively). 
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It should be noted that to evaluate components identified by SCI-GA according 
to expert opinions, we employ a metric, called Quality metric [TH99], which is 
presented in Equation (16). 

 

,ܣ)ܳ (ݏݐ݊݁݊݋݌݉݋ܥݐݎ݁݌ݔܧ = (1 −
,ܣ)݋ܬ݋ܯ (ݏݐ݊݁݊݋݌݉݋ܥݐݎ݁݌ݔܧ

݊ ) × 100 
 

 

(16) 

Where MoJo(ܣ,  computes the minimal number of Move (ݏݐ݊݁݊݋݌݉݋ܥݐݎ݁݌ݔܧ
and Join operations needed to transform solution A into the expert’s solution, and 
n is the total number of use cases of the system. Note that a solution with higher 
Quality Metric value has higher similarity with the expert’s solution than that with 
a lower value. 

Table 5 compares the final results of applying various methods on OBS, RAS 
and AgriInsurance System cases in terms of the number of components identified 
by each method, the number of different use cases in components identified by each 
method compared with experts and the value of Quality metric for each solution. 
As shown in Table 5, SCI-GA outperforms the other methods, and has the closet 
results to the ones identified by experts.  

For RAS case, although the number of different use cases of components 
identified by SCI-GA compared with experts is 6, but the reason of this case is that 
SCI-GA identifies 8 simpler and cohesive components for RAS case (see Figure 8) 
in comparison with 7 components identified by experts [CSC13]. However, when we 
use expert opinions in SCI-GA to determine the number of components for RAS 
case in advance (i.e., kmax is set to 7), SCI-GA identifies a solution with 7 
components, which has only 4 different use cases compared with experts. Moreover, 
for AgriInsurance System, SCI-GA automatically identifies 11 components and 
when we use expert opinions to determine the number of components in advance 
(i.e., kmax is set to 9), it identifies a solution with only 6 different use cases 
compared with the expert’s solution. The key point in Table 5 is that SCI-GA 
automatically identifies the number of components, which is approximately the 
same as expert opinions, as opposed to other methods, which must be given in 
advance.  
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Table 5 - Results of different methods applied on OBS, RAS and AgriInsurance System case 
studies according to the number of components, the number of different use cases compared 

with experts and Quality metric 

Quality 
metric 

No. of different use 
cases compared with 

experts 

No. of 
Components Method Case Study 

60 12 from 30 use cases 6 COMO 
(CRUD-Based) [LYC99]   

83 5 from 30 use cases 6 Shahmohammadi et al. 
(Clustering-based)[SJH10]  

OBS 87 4 from 30 use cases 5 Cai et al.  
(FCA-Based) [CYW11]  

97 1 from 30 use cases 6 SCI-GA (Evolutionary) 
100 0 6 Expert 

47 17 from 32 use cases 7 COMO 
(CRUD-Based) [LYC99]   

69 10 from 32 use cases 7 Shahmohammadi et al. 
(Clustering-based)[SJH10] 

RAS 

78 7 from 32 use cases 7 Cai et al. 
(FCA-Based) [CYW11] 

88 4 from 32 use cases 7 

SCI-GA (Evolutionary)   
with 7 components 
determining by experts  
in advance 

81 6 from 32 use cases 8 SCI-GA (Evolutionary)   
100 0 7 Expert 

59 28 from 68 use cases 9 COMO 
(CRUD-Based) [LYC99]  

AgriInsurance 
System 

72 19 from 68 use cases 9 Shahmohammadi et al. 
(Clustering-based)[SJH10] 

76 16 from 68 use cases 9 Cai et al. 
(FCA-Based) [CYW11]  

91 6 from 68 use cases 9 

SCI-GA (Evolutionary) 
with 9 components 
determining by experts  
in advance 

87 9 from 68 use cases 11 SCI-GA (Evolutionary)  
100 0 9 Expert 

 
Table 6 shows the values of SoftwareCohesion, SoftwareCoupling, 

SoftwareComplexity, and FF metrics for the final results of applying various 
methods on OBS and RAS cases. As shown in Table 6, for three metrics introduced 
in Section 3 and FF metric, SCI-GA outperforms the other methods. Accordingly, 
it is concluded that SCI-GA has far better performance in searching component 
space than classical clustering techniques used in [SJH10], and is able to achieve 
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near-optimal logical components, which are better than the components identified 
by experts in terms of all the four metrics used. An important point in Table 6 is 
that SCI-GA with the highest values for FF metric in all three cases has the closest 
results to components identified by experts in comparison with the other methods. 
Moreover, comparing results of the other methods [CSC13] with the components 
identified by experts reveals that when a solution for logical components has a 
higher FF value, it is more desirable and closer to expert opinions. Consequently, it 
is concluded that FF metric is a suitable metric to evaluate logical components, 
and is a metric close to expert opinions. 

It is worth mentioning that Cai et al. work [CYW11] on OBS case has a main 
limitation in choosing the number of components, i.e., this work cannot identify 
more than five components for OBS case [CSC13]. 

 
Table 6 - Results of different methods applied on OBS, RAS and AgriInsurance System case 

studies according to SoftwareCohesion, SoftwareCoupling, SoftwareComplexity, and FF 
metrics 
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Method Case Study 

0.575 0.079 0.171 0.825 COMO (CRUD-Based) [LYC99]  

OBS 
0.681 0.083 0.163 0.927 Shahmohammadi et al.  

(Clustering-based) [SJH10] 
0.649 0.087 0.183 0.919 Cai et al.(FCA-Based) [CYW11]  
0.7329 0.0771 0.159 0.969 SCI-GA (Evolutionary) 
0.7291 0.0779 0.159 0.966 Expert 
0.663 0.0145 0.169 0.846 COMO (CRUD-Based) [LYC99]  

RAS 
0.688 0.0164 0.154 0.859 Shahmohammadi et al.  

(Clustering-based) [SJH10] 
0.694 0.0140 0.156 0.864 Cai et al.(FCA-Based) [CYW11]  
0.7537 0.0153 0.138 0.907 SCI-GA (Evolutionary) 
0.7261 0.0159 0.144 0.886 Expert 
0.449 0.0785 0.187 0.764 COMO (CRUD-Based) [LYC99]  

AgriInsurance 
System 

0.567 0.0873 0.167 0.821 Shahmohammadi et al.  
(Clustering-based) [SJH10] 

0.569 0.0781 0.145 0.792 Cai et al.(FCA-Based) [CYW11] 
0.6961 0.0599 0.111 0.867 SCI-GA (Evolutionary) 
0.6677 0.0623 0.112 0.842 Expert 
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Figure 7 – Obtained components for OBS case by SCI-GA 

 
 
 

 
Figure 8 – Obtained components for RAS case by SCI-GA  
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5.1 SCI-GA Effectiveness 

To clearly show the SCI-GA effectiveness, Figure 9 demonstrates the best obtained 
values of the SoftwareCohesion, SoftwareCoupling, SoftwareComplexity, and FF 
metrics in each generation for OBS, RAS and AgriInsurance System cases. As 
shown in Figure 9, the value of FF metric is strictly increasing as the number of 
generations grows, while the values of other metrics are not necessarily increased. 
The upper curve in Figure 9(a) shows that the SoftwareCohesion climbs to a peak 
of 0.970 at approximately 120 generations, where as FF, SoftwareCoupling, 
SoftwareComplexity metrics, and the number of components of this solution (i.e., 
the identified components) are 0.723, 0.176, 0.071, and 6, respectively. In this 
solution, the value of SoftwareCohesion is slightly higher than the value (i.e., 
0.969) in the best result obtained by SCI-GA (presented in Figure 7). However, the 
value of SoftwareCoupling is higher than the value (i.e., 0.159) in the best result 
obtained by SCI-GA. Therefore, as the value of FF metric for this solution is lower 
than the best result obtained by SCI-GA, it is not the best solution. 

Considering all case studies reveals that when SoftwareComplexity is not 
considered in FF metric, the obtained results are not encouraging. For example, in 
the evolution process of RAS case, there is a solution with 0.875, 0.099, 0.132, and 
4 for SoftwareCohesion, SoftwareCoupling, SoftwareComplexity, and the number of 
components, respectively. Therefore, when the original FF metric (Equation 14) is 
considered, the best components obtained (presented in Figure 8) with FF = 0.689 
are much better than this solution with FF = 0.644. However, when 
SoftwareComplexity is omitted in Equation (14), i.e., FF = (SoftwareCohesion – 
SoftwareCoupling), this solution with FF = 0.776 is better than the best obtained 
components with FF = 0.758. Accordingly, it is concluded that the proposed FF 
metric is practically able to achieve a good trade-off among SoftwareCohesion, 
SoftwareCoupling and SoftwareComplexity metrics, i.e., identified cohesive 
components with loosely interconnections and low complexity. 

5.2  SCI-GA Component Evaluation 

To solve invalid component solution, four methods are proposed in Section 4.4. In 
this section, we report the results of applying the four proposed methods presented 
in Section 4.4 on three used case studies. Table 7 shows the average time of one 
iteration, average number of iterations to convergence, average time to 
convergence, and the best identified FF for each method. Note that all of these 
experiments are performed with a PC with 2.80 GHz Intel Core i7 CPU and 16 GB 
RAM. As shown in Table 7, using Omission method leads to achieve at least 
average time of one iteration, but its best FF is lower than the other methods.  
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Figure 9 –The effectiveness of SCI-GA for (a) OBS, (b) RAS, and (c) AgriInsurance 
System case studies 
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Therefore, the main advantage of the use of Omission method is its simplicity; 
however, its main shortcoming is that it is not able to achieve suitable results. 
Using Applying Again method leads to have enormous computational cost, and is 
not able to achieve a suitable result according to the FF metric. It should be noted 
that when Applying Again method is used in these experiments, there are some 
cases in which GA operators are called more than 50 times, so this method wastes 
a lot of time in the evolution process and is not suggested to use. As shown in 
Table 7, although Punishment method achieves plausible results for OBS case, but 
it is not able to identify good results for both RAS case and AgriInsurance System.  
The reason for this seems to be that determining an effective penalty function is an 
extremely difficult task [Sal09], and the penalty function used in Punishment 
method is not good for different case studies. Note that to achieve an effective 
penalty function, adaptive penalty functions like [PB07] should be suggested. As 
shown in Table 7, Correction method achieves the best FF in comparison with the 
other methods in all three case studies. In addition, the experiments reveal that 
although the average time for one iteration of Correction method is higher than 
some other methods, its average time to converge is lower than the other methods. 
The reason for this is that using Correction method leads to converge very quickly 
in comparison to the other methods and it requires less iteration than the other 
methods. It is concluded that among four methods presented in Section 4.4 to 
handle invalid solution, Correction method achieves better performance than the 
other methods. 

 
Table 7 - The effectiveness of methods to handle invalid components (Average of 30 runs for 

OBS and RAS cases, and Average of 10 runs for AgriInsurance System)  
 

 Method 
to handle 
invalid 

components 

Average 
time  

of one 
iteration 
(Second) 

Average 
number of 
iterations 

to 
convergence 

Average  
time to 

convergence 
(Second) 

The best 
identified 

FF Case Study 

OBS 

Omission 3.99 282.4 1126.78 0.60 
Applying Again 7.21 241.6 1741.94 0.63 
Punishment 4.09 184.2 753.38 0.72 
Correction 4.33 160.1 693.23 0.73 

RAS 

Omission 4.41 311.3 1372.83 0.59 
Applying Again 8.05 288.4 2321.62 0.61 
Punishment 4.98 193.3 962.63 0.53 
Correction 5.12 143.3 733.70 0.75 

AgriInsurance 
System 

Omission 28.11 475.4 13363.49 0.62 
Applying Again 85.04 382.5 32665.5 0.62 
Punishment 31.67 331.9 10511.27 0.59 
Correction 41.22 191.2 7881.26 0.70 
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It is worth mentioning that the best identified components for OBS, RAS and 

AgriInsurance System cases are obtained within 8.6, 10.1 and 117.3 minutes, 
respectively.  

5.3 A Summary of the Evaluations and SCI-GA Limitations 
 

In Table 8, we have compared SCI-GA to other used methods according to 
experiments preformed and mentioned in Tables 5 and 6. Among the four methods, 
just FCA-Based method [CYW11] and our method consider both the cohesion and 
coupling simultaneously throughout the identification process. Note that this 
feature leads to a good trade-off between these metrics.  
 

Table 8 -  The qualitative comparison of the component identification methods 
Method 

         Parameter     
     Evolutionary 

(SCI-GA) 
FCA-Based 
[CYW11] 

CRUD-Based 
[LYC99] 

Clustering-Based 
[SJH10]  

Yes Yes No No  

Considering both 
Cohesion and 
Coupling 
simultaneously 

Yes No No No  
Determining 
automatically the 
No. of components 

Yes No No No  Complexity metric 

Very Low Low Medium Medium  Need expert's 
experience 

High Medium Low Medium  Precision (Match to 
expert’s omponents) 

 
Although, all of these methods need to manually determine some parameters, 

but some of these parameters have an observable impact on performance. For 
example, in FCA-Based method [CYW11], TD and Ts parameters (note that these 
are used as thresholds for computing cohesion and coupling) are manually 
determined based on expert experiences. However, our method needs to determine 
insignificant parameters, such as, the population number, crossover and mutation 
rates. 

As shown in Table 8, our method has some advantages over other methods, 
particularly [SJH10]. First, it can not only set the number of components 
determined by experts a priori, but also automatically identify near-optimal 
number of components. Second, it uses a powerful optimization search algorithm 
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(i.e., GA) instead of simple heuristics like k-means. Third, it considers the 
complexity metric along with cohesion and coupling metrics throughout the 
identification process. Finally, according to our evaluation in Table 5, it identifies 
the most similar components to the ones identified by experts. 

In the course of experimentations during the evaluation, a number of limitations 
of SCI-GA became apparent. First, using an evolutionary search algorithm leads to 
increase complexity, particularly time complexity. However, it should be noted that 
to identify logical components at an early stage of software design, it is not 
necessary to have a real-time method. Therefore, according to our experiments, 
SCI-GA identifies logical components during an acceptable period of time. The 
second limitation of SCI-GA is that similar to other existing methods, it cannot 
guarantee to achieve an optimal solution, because it is based on a Meta-heuristic 
method, i.e., GA. However, as discussed in [HCF09], evolutionary search-based 
methods are able to achieve better performance than simple heuristics like k-means. 
Furthermore, SCI-GA proposes four methods described in Section 4.4 to avoid 
identifying infeasible solutions. 

6 Related Works 
 
As mentioned earlier, software components can be divided into three categories: 
Business, Logical, and Technical components. The attempts for automatic 
identification of logical or business components can be divided into four 
approaches, Graph Partitioning [AOB08, PTZ08], Clustering-Based [JCI01, KC04, 
LJK01, SJH10], CRUD-based [GS01, LYC99], and FCA-Based [CYW11, Ham09] 
approach, which are discussed in detail below. Additionally, we use a new 
approach, called Evolutionary, to identify logical components. Note that this 
approach is used to identify Technical components, i.e., software modules, from 
source codes. For this reason, in the following section, we compare SCI-GA to other 
evolutionary-based component identification methods. 
 
Graph Partitioning Approach. Albani et al. [AOB08] have mapped domain models 
(data objects, process steps and actors) into vertices and edges of a graph; then, 
based on relation types between domain model elements and designer preferences, 
they have assigned weights to edges. Finally, the graph is partitioned into 
components using a heuristic from graph theories. Peng et al. [PTZ08] have 
transformed the relationship model among business elements to a weighted graph. 
Then, they have applied a graph segmentation method is applied on the graph to 
identify mutually disjoint sub-graphs as components. The authors claimed that the 
proposed method has achieved cohesive components with low coupling, but they 
have not demonstrated their claim. However, the main limitation of this approach 
is that weights are manually assigned to edges according to expert experiences. 
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Clustering-Based Approach. Lee et al. [LJK01] proposed a method for clustering 
classes into logical components with high cohesion and low coupling. At first, key 
classes are selected as candidate components; then, other classes are assigned to the 
components that have the highest level of dependency with them. Identifying key 
classes is a critical problem, and is manually determined by experts. Jain et al. 
[JCI01] used hierarchical agglomerative clustering techniques to iteratively cluster 
two elements (i.e., classes) with the highest strength. The strength between 
elements is measured using weighted relations manually determined by experts. 
Kim et al. [KC04] employed use case models, object models and collaboration 
diagrams to identify components. For clustering related functions, functional 
dependencies of use cases are calculated, and related use cases are clustered. This 
work requires weighting, and does not give any guidelines in this regard. 
Shahmohammadi et al. [SJH10] proposed a feature-based clustering method to 
identify logical components, in which several features like actors and entity classes 
are presented to measure the similarity between a pair of use cases. Therefore, 
several classical clustering techniques like k-means, Hierarchal, Graph-based 
method, and Fuzzy C-means have been examined to achieve good software 
architecture. All of these Clustering-Based methods used classic clustering 
techniques; however, they may achieve poor components due to their simple 
heuristics, and they have the problem of determining the best number of 
components in advance. 
 
CRUD-Based Approach. Lee et al. [LYC99] presented a tool called COMO, in 
which “use case/class matrix” is created with respect to use case diagrams and class 
diagrams. It is then partitioned into blocks with tight cohesion as business 
components. Ganesan and Sengupta [GS01] presented a tool similar to COMO 
called O2BC, but it has several differences in the clustering technique and uses 
business events and domain objects as input. However, this approach has a number 
of limitations similar to Clustering-Based Approach due to the use of classical 
clustering techniques. 
 
FCA-Based Approach. Hamza [Ham09] initially proposed a framework based on the 
theory of FCA to partition a class diagram into logical components with several 
heuristics similar to clustering techniques. However, this framework emphasizes 
stability instead of cohesion and coupling as important metrics to identify 
components. CAI et al. [CYW11] proposed a novel method based on Fuzzy FCA. 
They transformed business elements and their memberships into a lattice; then, 
they used a simple clustering technique to identify components. They used 
dispersion and distance concepts to measure the cohesion and coupling, 
respectively. However, they used two dispersion and distance thresholds (i.e., TD 
and Ts thresholds for computing cohesion and coupling, respectively) with high 
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effect on the performance of their method, which must be manually determined by 
practical experiences. Moreover, this approach has a number of limitations similar 
to Clustering-Based approach, due to the use of classical clustering techniques. 
 
Evolutionary Approach. Recently, evolutionary algorithms have been widely 
applied to software problems. Therefore, a new scope of software engineering has 
appeared by the name of Search- Based Software Engineering (SBSE) [HMZ12] to 
reformulate software problems as optimization problems. In [SP13], all works 
related to SBSE are categorized, and Search-Based Design works are particularly 
surveyed in [Räi10]. One of the popular scopes of search-based design is module 
clustering. In this field, source code of a legacy system is clustered into software 
modules with a high degree of cohesion and a low degree of coupling. SCI-GA like 
these search-based methods, aims at identifying components with high degree of 
cohesion and a low degree of coupling, but the main differences between them is 
their inputs. In fact, the inputs of SCI-GA are a use case model and analysis class 
diagrams as opposed to the inputs of search-based module clustering (i.e., source 
codes). 

To identify new well-structured modules based on search-based clustering 
methods, a number of heuristics like hill-climbing [MHH03, MM06], and simulated 
annealing [MM06] and Meta-heuristics like genetic algorithm [DMM99, PHY11] are 
employed. Experiments presented in [PHY11] revealed that Meta-heuristic methods 
outperform simple heuristics like hill-climbing for dealing with complex search 
space, particularly software clustering search space. 

In [DMM99], like SCI-GA, both cohesion and coupling metrics are combined 
into a single objective fitness function. On the contrary, in [PHY11], Pareto 
optimality is used to module clustering problem with multi-objective approach. 
However, the Pareto optimality has several shortcomings [DSK10]. First, it yields a 
set of solutions, among which software architects have to select one. For example, 
in [SPG10], an iterative multi-objective genetic algorithm is proposed to identify 
design classes. In this algorithm, software architects must rank a number of 
identified solutions in each generation. In practical applications, the use of Pareto 
optimality leads to a semi-automatic method, and its performance highly depends 
on experts. Second, the Pareto optimality has generally higher computational costs 
and is time-consuming. In fact, when the number of objectives is increased, the 
Pareto optimality approach is not suitable, because it needs more population 
members and more computations; therefore, its progress is slowed down. Another 
difference between SCI-GA and all the existing search-based module clustering 
methods is that they aim at optimizing clustering criteria like SSE, intra-edges and 
inter-edges of all clusters, in contrast to SCI-GA that aims at maximizing software 
cohesion and simultaneously minimizing coupling and complexity. Furthermore, 
unlike SCI-GA, the existing search-based module clustering methods do not take 
infeasible solutions into account, and do not apply any techniques to handle them. 
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7 Conclusions 
 

With the advent of the evolutionary approach in software engineering, we are now 
able to automatically identify logical software components based on a powerful 
optimization search algorithm. In this paper, we presented a novel method to 
identify logical components based on the evolutionary approach called SCI-GA. 
The evolutionary approach supports the logical component identification in 
searching components space; therefore, it is more accurate than other approaches. 

 SCI-GA encodes entire components of a system in a chromosome, so that each 
use case is encoded as a gene. In this encoding, some use cases are considered as 
representatives of other use cases. The efficiency of SCI-GA was evaluated by using 
three real-world OBS, RAS and AgriInsurance System case studies; therefore, the 
evaluation results demonstrated that it outperforms other methods such as FCA-
Based and Clustering-Based methods. Additionally, it has an ability to 
automatically identify the near-optimal number of logical components for all three 
case studies (see Table 5), as opposed to the other methods, in which the number 
of components is manually determined according to the number of components 
identified by experts. Moreover, in SCI-GA, a novel fitness function was proposed, 
and the evaluation results revealed that it is a close metric to expert opinions. 

In a future work, we intend to use other optimization algorithms like Ant 
Colony or GA hybrid algorithms to improve the search performance and apply the 
idea of automatic design pattern selection [HJ99, HJ12] in order to design classes of 
each component. 

 
 

ACKNOWLEDGEMENT 
The research was supported by Iran Telecommunication Research Centers 

(ITRC). 
 

 

References 
 
[ABA04] M AlSharif, WP Bond, and T Al-Otaiby. Assessing the Complexity of 

Software Architecture. In Proceedings of the 42nd annual Southeast 
regional conference, ACM, pages 98-103, 2004. doi: 
10.1145/986537.986562. 

[AIF13]  Agricultural Insurance Fund.  
URL:http://www.aiiri.gov.ir/HomePage.aspx?TabID=1&Site=aiiriPortal
&Lang=en-US, Accessed by May 2013. 

[AOB08] A Albani, S Overhage, and D Birkmeier. Towards a systematic method 
for identifying business components. In Proceedings of CBSE, LNCS 
5282, pages 262–277, 2008. doi: 10.1007/978-3-540-87891-9_17. 



31  SCI-GA: Software Component Identification using Genetic Algorithm 

Journal of Object Technology vol. 12, no.2, 2013 

[Bal96] NV Balasubramanian. Object-oriented metrics. In Proceedings of 
Software Engineering Conference, pages 30-34, 1996. doi: 
10.1109/APSEC.1996.566737. 

[BO09] D Birkmeier and S Overhage. On Component Identification Approaches–
Classification, State of the Art, and Comparison. In Proceedings of CBSE 
2009, LNCS 5582, pages 1-18, 2009. doi: 10.1007/978-3-642-02414-6_1. 

[CC11] JF Cui and HS Chae: Applying agglomerative hierarchical clustering 
algorithms to component identification for legacy systems. Information 
and Software Technology. 53:601-614, 2011.  

  doi: 10.1016/j.bbr.2011.03.031. 
[CKH09] M Choi, IJ Kim, J Hong, and J Kim. Component-based metrics applying 

the strength of dependency between classes. In Proceedings of ACM 
symposium on Applied Computing, pages 530-536, 2009. doi: 
10.1145/1529282.1529392. 

[CK94] SR Chidamber and CF Kemerer: A metrics suite for object oriented 
design. IEEE Transactions on Software Engineering. 20(6):476-492, 1994. 
doi: 10.1109/32.295895. 

[CL06] M Choi and S Lee. A coupling metric applying the characteristics of 
components. In Proceedings of Workshop on Component Based Software 
Engineering and Software Process Model, pages 966-975, 2006. doi: 
10.1007/11751632_104. 

[CSC13] Case Studies of Component Identification Project. URL:  
http://www.modares.ac.ir/en/Schools/ece/grp/cmp/res/lab/SCSLAB/Pr
oject/Project2, Accessed by May 2013. 

[CYW11] Z-g Cai, X-h Yang, X-y Wang, and A Kavs: A Fuzzy-based Approach for 
Business Component identification. Journal of Zhejiang University-
SCIENCE C (Computers & Electronics). 12(9):707-720, 2011. doi: 
10.1631/jzus.C1000337. 

[Deb01] K Deb. Multi-objective optimization using evolutionary algorithms.  
Chichester, England: John Wiley & Sons, Ltd, 2001. 

[DMM99] D Doval, S Mancoridis, and BS Mitchell: Automatic Clustering of 
Software Systems Using a Genetic Algorithm. In Proceedings of Int’l 
Conf. Software Tools and Eng. Practice. 1999. doi: 
10.1109/STEP.1999.798481. 

[DSK10] K Deb, A Sinha, PJ Korhonen, and J Wallenius: An Interactive 
Evolutionary Multiobjective Optimization Method Based on Progressively 
Approximated Value Functions. IEEE Transactions On Evolutionary 
Computation. 14(5):723-739, 2010. doi: 10.1109/TEVC.2010.2064323. 

[Gre86] JJ Grefenstette: Optimization of control parameters for genetic 
algorithms. IEEE Trans Syst Man Cybern. 16(1):122–128, 1986. doi: 
10.1109/TSMC.1986.289288. 



32  S.M.H. Hasheminejad, S. Jalili 

Journal of Object Technology, vol. 12, no.2, 2013 

[GS01] R Ganesan and S Sengupta. O2BC: a Technique for the Design of 
Component-Based Applications. In Proceedings of the 39th Int. Conf. and 
Exhibition on Technology of Object-Oriented Languages and Systems, 
pages 46-55, 2001. doi: 10.1109/TOOLS.2001.941658. 

[Ham09] HS Hamza. A Framework for Identifying Reusable Software Components 
Using Formal Concept Analysis. In Proceedings of the 6th International 
Conference on Information Technology: New Generations, pages 813-818, 
2009. doi: 10.1109/ITNG.2009.276. 

[HCF09] ER Hruschka, RJGB Campello, AA Freitas, and ACPLF de Carvalho: A 
Survey of Evolutionary Algorithms for Clustering. IEEE Transactions on 
Systems, Man, and Cybernetics, Part C: Applications and Reviews. 
39(2):133-155, 2009. doi: 10.1109/TSMCC.2008.2007252. 

[HE03] ER Hruschka and NFF Ebecken: A genetic algorithm for cluster analysis. 
Intell. Data Anal. 7(1):15-25, 2003. URL: 
http://iospress.metapress.com/content/adhnkma5h48f1l0q/. 

[HJ09] SMH Hasheminejad and S Jalili. Selecting Proper Security Patterns Using 
Text Classification. In Proceedings of International Conference on 
Computational Intelligence and Software Engineering, CiSE 2009, pages 
1-5, 2009. doi: 10.1109/CISE.2009.5363861. 

[HJ12] SMH Hasheminejad and S Jalili: Design patterns selection: An automatic 
two-phase method. Journal of Systems and Software. 85(2):408-424, 2012. 
doi: 10.1016/j.jss.2011.08.031. 

[HMZ12] M Harman, SA Mansouri, and Y Zhang: Search-based software 
engineering: Trends, techniques and applications. ACM Computing 
Surveys (CSUR). 45(4):11, 2012. doi: 10.1145/2379776.2379787. 

[JCI01] H Jain, N Chalimeda, N Ivaturi, and B Reddy. Business Component 
Identification a Formal Approach. In Proceedings of the 5th IEEE Int. 
Enterprise Distributed Object Computing Conf., pages 183-187, 2001. doi: 
10.1109/EDOC.2001.950437. 

[Kar93] G Karner. Resource Estimationfor Objectory Projects.  Objectory 
Systems, 1993. 

[KC04] S Kim and S Chang. A Systematic Method to Identify Software 
Components. In Proceedings of the 11th Software Engineering Conf., 
pages 538-545, 2004. doi: 10.1109/APSEC.2004.11. 

[KPS08] J Kim, S Park, and V Sugumaran: DRAMA: A framework for domain 
requirements analysis and modeling architectures in software product 
lines. The Journal of Systems and Software. 81(1):37-55, 2008. doi: 
10.1016/j.jss.2007.04.011. 

[Kru00] P Kruchten. The Rational Unified Process An Introduction. 2nd ed. 
Addison Wesley, 2000. 

[LJK01] JK Lee, SJ Jung, SD Kim, WH Jang, and DH Ham. Component 
Identification Method with Coupling and Cohesion. In Proceedings of the 



33  SCI-GA: Software Component Identification using Genetic Algorithm 

Journal of Object Technology vol. 12, no.2, 2013 

8th Asia-Pacific Software Engineering Conference, pages 79-86, 2001. doi: 
10.1109/APSEC.2001.991462. 

[LYC99] SD Lee, YJ Yang, ES Cho, SD Kim, and SY Rhew. COMO: A UML-
Based Component Development Methodology. In Proceedings of the 6th 
Asia Pacific Software Engineering Conference, Washington, DC, USA, 
IEEE Computer Society, Los Alamitos, pages 54-61, 1999.  

  doi: 10.1109/APSEC.1999.809584. 
[MHH03] K Mahdavi, M Harman, and RM Hierons. A Multiple Hill Climbing 

Approach to Software Module Clustering. In Proceedings of IEEE Int’l 
Conf. Software Maintenance, pages 315-324, 2003. doi: 
10.1109/ICSM.2003.1235437. 

[Mic96] Z Michalewicz. Genetic Algorithms + Data Structures = Evolution 
Programs.  New York: Springer-Verlag, 1996. 

[MM06] BS Mitchell and S Mancoridis: On the Automatic Modularization of 
Software Systems Using the Bunch Tool. IEEE  Trans. Software Eng. 
32(3):193-208, 2006. doi: 10.1109/TSE.2006.31. 

[PB07] S Parsa and O Bushehrian: Genetic clustering with constraints. Journal 
of research and practice in information technology. 39(1):47-60, 2007. 
URL: 
http://ws.acs.org.au/jrpit/JRPITVolumes/JRPIT39/JRPIT39.1.47.pdf. 

[PHY11] K Praditwong, M Harman, and X Yao: Software Module Clustering as a 
Multi-Objective Search Problem. IEEE  Trans. Software Eng. 37(2):264-
282, 2011. doi: 10.1109/TSE.2010.26. 

[PTZ08] L Peng, Z Tong, and Y Zhang. Design of Business Component 
Identification Method with Graph Segmentation. In Proceedings of the 
3rd Int. Conf. on Intelligent System and Knowledge Engineering, pages 
296-301, 2008. doi: 10.1109/ISKE.2008.4730944. 

[Räi10] O Räihä: A survey on search-based software design. Computer Science 
Review, Elsevier 4(4):203-249, 2010. doi: 10.1016/j.cosrev.2010.06.001. 

[RW10] X Rui and DC Wunsch: Clustering Algorithms in Biomedical Research: A 
Review. IEEE Reviews in Biomedical Engineering. 3:120-154, 2010. doi: 
10.1109/RBME.2010.2083647. 

[Sal09] S Salcedo-Sanz: A survey of repair methods used as constraint handling 
techniques in evolutionary algorithms. Computer Science Review, 
Elsevier. 3(3):175-192, 2009. doi: 10.1016/j.cosrev.2009.07.001. 

[SJH10] GR Shahmohammadi, S Jalili, and SMH Hasheminejad: Identification of 
System Software Components Using Clustering Approach. Journal of 
Object Technology (JOT). 9(6):77-98, 2010. doi: 10.5381/jot.2010.9.6.a4. 

[SP13] SBSE Publications. URL: www.sebase.org/sbse/publications, Accessed by 
May 2013. 



34  S.M.H. Hasheminejad, S. Jalili 

Journal of Object Technology, vol. 12, no.2, 2013 

[SPG10] CL Simons, IC Parmee, and R Gwynllyw: Interactive, Evolutionary 
Search in Upstream Object-Oriented Class Design. IEEE Transactions on 
Software Engineering. 36(6):798-816, 2010. doi: 10.1109/TSE.2010.34. 

[TH99] V Tzerpos and RC Holt. MoJo: A distance metric for software 
clusterings. In Proceedings of the 6th Working Conference on Reverse 
Engineering, pages 187-193, 1999. doi: 10.1109/WCRE.1999.806959. 

[WXZ05] Z Wang, X Xu, and D Zhan: A Survey of Business Component 
Identification Methods and Related Techniques. International Journal of 
Information Technology. 2(4):229-238, 2005.  

  URL: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.5794&rep
=rep1&type=pdf. 

[WYF03] H Washizaki, H Yamamoto, and Y Fukazawa. A metrics suite for 
measuring reusability of software components. In Proceedings of the 9th 
International Software Metrics Symposium, pages 211-223, 2003. doi: 
10.1109/METRIC.2003.1232469. 

 
 
 
 
About the author(s)  

 
Saeed Jalili received the Ph.D. degree from Bradford University in 
1991 and the M.Sc. degree in computer science from Sharif 
University of Technology in 1979. Since 1992, he has been 
associate professor at the Tarbiat Modares University. His main 
research interests are software testing, software runtime 
verification and quantitative evaluation of software   architecture. 

E-mail: Sjalili@modares.ac.ir 
 

 
Seyed Mohammad Hossein Hasheminejad is a Ph.D. Candidate of 
computer engineering at Tarbiat Modares University (TMU). He 
received the M.Sc. degree in Software engineering from TMU in 
2009, and the B.Sc. degree in Software engineering from Tarbiat 
Moalem University in 2007. His main research interests are Formal 
Methods for Software Engineering, Object-Oriented Analysis and 

Design, Search-Based Software Engineering, and Self-Adaptive Systems. 
E-mail: SMH.Hasheminejad@Modares.ac.ir 

 
 
 


