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Abstract In object-oriented programs, the relationship of an object to
many objects is usually implemented using indirection through a collec-
tion. This is in contrast to a relationship to one object, which is usually
implemented directly. However, using collections for relationships to many
objects does not only mean that accessing the related objects always re-
quires accessing the collection first, it also presents a lurking maintenance
problem that manifests itself when a relationship needs to be changed from
to-one to to-many or vice versa. Continuing our prior work on fixing this
problem, we show how we have extended the Java 7 programming language
with multiplicities, that is, with expressions that evaluate to a number of
objects not wrapped in a container, and report on the experience we have
gathered using these multiplicities in a case study.

ein Vieles, welches kein Eines ist
(a multitude which is not a one)

— inspired by Georg Cantor’s conception of a set as “jedes Viele, welches sich als
Eines denken läßt”, i.e., any multitude which can be thought of as a one

1 Introduction
Just like English grammar distinguishes singular and plural, object-oriented program-
ming languages distinguish one object and many objects. However, unlike with En-
glish utterances, for which the syntactic difference between the singular and the plural
of a noun phrase is usually small, the difference between program fragments dealing
with one object and dealing with many objects is often substantial. For instance,
while the English utterances “I go to work” and “we go to work” differ only in the
pronoun used, in an object-oriented program, the difference would be that between
i.goto(work) and for (each : we) each.goto(work), which is cumbersome not only by
comparison. The problem, here, is that in object-oriented programming, the multi-
tude denoted by we is reified as a one (usually a collection object), and this one has
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Figure 1 – Relationships to one and to many objects in object-oriented modelling and pro-
gramming languages: differences

different properties (responds to a different protocol) than the objects it comprises.
In particular, the object denoted by we cannot go to work.

Similar to the English language, relational and object-oriented modelling lan-
guages make only a small distinction between singular and plural or, more specifically,
between one object being associated with one other, or any number of other objects [8,
9, 10, 28, 36]. In these languages, multiplicity, also known as cardinality, constrains
the number of times an object, or entity, may occur in a relationship or association.
Hence, a change from singular to plural (or vice versa) requires little more than a
corresponding change in multiplicity, as the top half of Figure 1 suggests. By con-
trast, in object-oriented programming languages multiplicities are commonly coded
in the declared type of a variable (which is the type of the related object if it is only
one, or the type of a sequence, stream, or collection object if there are more). Here,
a change of multiplicity may require a major redesign of the program, as the bottom
half of Figure 1 suggests (several more untoward consequences of such a change will
be presented below).

In previous work [37], we advocated the introduction of multiplicities as annota-
tions of expressions indicating whether an expression is singular or plural, i.e., whether
it is expected to evaluate to at most one object, or to any number of objects (not re-
ified). This is to grant the programmer a more uniform treatment of relationships
to one object and relationships to many objects in object-oriented programs. In this
paper, we present an implementation of our ideas as an extension of the Java pro-
gramming language using the JastAddJ extensible Java compiler [13], and report on
a case study we have conducted.

The remainder of this paper is organized as follows. To motivate our work, we
present in Section 2 the peculiarities we observe when implementing multitudes of ob-
jects using collections. In Section 3, we briefly describe how enhancing object-oriented
programming with multiplicities can generally alleviate the associated problems, with
Section 4 specializing our proposal for Java. Section 5 describes our implementation
of multiplicities as an extension of the JastAddJ compiler for Java 7. In Section 6, we
present qualitative and quantitative findings from a case study extending JUnit with
multiplicities. Notes on related and future work conclude.
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2 Using Collections for Representing Multitudes of Objects
Undoubtedly, collections are among the most useful abstractions in object-oriented
programming: they not only liberate the programmer from manually implementing
multitudes of objects as (static) arrays or dynamic data structures (such as linked
lists or trees), they also offer a uniform protocol for bulk processing of these object
using internal iterators (foreach, select, collect, etc.). And yet, the use of collections
for representing many (rather than one) objects comes with a number of peculiarities
which make dealing with multitudes of objects very different from dealing with single
objects.

2.1 Multiplicity Determines Type
In a program in which every customer can have only a single account, we may see
code like

Account account;
account = new Account();
account.check();

If however a customer can have several accounts, adjustment of just the declaration
to reflect this leads to an ill-typed program (faulty expressions underlined):

Set<Account> accounts;
accounts = new Account();
::::::::::::::::::::::::::::::

accounts.check();
::::::::::::::::::::

Both errors result from the fact that accounts (with a plural “s” appended to express
that there can be more than one) now has type Set<Account>, reflecting the changed
multiplicity. However, intuitively, what is expressed by the ill-typed program is rather
clear: initialize accounts to hold just one account, and then check all accounts (which
happens to be only one here). To translate this to standard Java, we would have to
write

Set<Account> accounts = new HashSet<>();
accounts.add(new Account());
for (Account account : accounts) account.check();

which means quite a change to the original program.

2.2 Multiplicity Determines Meaning of null
When a variable represents an optional relationship to one object, the value null
usually means that there is no relationship (but may also mean failure to initialize):

if (account != null) print(account);
else print("no account");

For a relationship to many accounts, relating to no account is usually represented
using an empty collection:
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if (accounts != null)
if (! accounts.isEmpty())
for (Account account : accounts) account.print();

else print("no account");
else throw new Error("accounts not initialized");

Here, the value null means failure to initialize. Note that having null as an element of
a collection makes no sense if the collection is to represent a relationship.

2.3 Multiplicity Determines Subtyping Conditions
If SavingsAccount is a subtype of Account, writing

SavingsAccount saving = new SavingsAccount();
Account account = saving;

is type-correct. However, when we change to many accounts, the analogue

Set<SavingsAccount> savings = new HashSet<>();
Set<Account> accounts = savings;

is ill-typed. Instead, we would have to write something like

Set<? extends Account> accounts = savings;

[24] which does however preclude write access to the set through the variable accounts,
greatly limiting its use (especially when considering that the singular account can be
used freely).

2.4 Multiplicity Determines Encapsulation Strategy
It is considered good practice in object-oriented programming that the fields of an
object are encapsulated and, if necessary, made accessible for clients using setter and
getter methods. For collection-valued fields, however, this is different [16]: they are to
be updated using add...(. . .) and remove...(. . .) methods offered by the encapsulating
object (where the ellipses are replaced by the field’s name), and if the collection as
a whole is to be retrieved, the getter should return a copy or an immutable wrapper
[16]. This is so because the collection is considered a representation object which
clients should not be able to manipulate directly and of which they should possess no
aliases [25]. This brings us directly to the next point.

2.5 Multiplicity Determines Availability of Relationship Aliasing
While assigning an object to a variable with reference semantics always means creating
an alias for the object, the semantics differ when the variables are uniformly viewed
as implementing relationships to objects, as the following example demonstrates:

Account backup = account;
account = null;
if (mistaken) account = backup;

Here, backup is an alias for the to-one relationship implemented by account. This is
different for
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Collection<Account> backups = accounts;
accounts.clear();
if (mistaken) accounts = backups;

where backups is an alias for the collection denoted, and not for the to-many relation-
ship that is logically established, by accounts. Surely, the problem can be solved by
keeping a copy of the collection as backup, but copying is not needed for the to-one
case.

2.6 Multiplicity Determines Call Semantics
Continuing the previous example, it may seem awkward that the method

void clear(Collection<Account> accounts) {
accounts.clear();

}

performs as intended (i.e., sets the relationship represented by an actual parameter
to “no accounts”), while the analogous method for the to-one case

void clear(Account account) {
account = null;

}

has no effect on actual parameters. While this may look like a newbie’s mistake to the
seasoned programmer, it is still indicative of a conceptual chasm, which culminates
in the fact that in Java, it is impossible to implement

void swap(Object o1, Object o2)

with the suggested semantics, while implementing

void sort(ArrayList<Object> os)

is not a problem. Note that escaping to call-by-reference for swap(. . ., . . .) does not
bridge the chasm — not having to do so for collections is just another peculiarity of
using them for representing multitudes of objects.

2.7 Multiplicity Determines Meaning of the final Modifier
When a variable is declared as final, it means that its value cannot be changed after
its initialization. For a variable representing a relationship to a single object this
means that the owner of the variable is stuck with the related object for its whole
lifetime. For a variable representing a relationship to many objects implemented using
a collection, final means that the holder of the relationship is stuck with the collection
— its elements, and thus the conceptually related objects, may change freely:

final Account forLife = new Account();
forLife = null; // compile error

final Set<Account> allForLife = Arrays.asSet(forLife);
allForLife.clear(); // no problem
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3 Programming with Multiplicities
The core idea of object-oriented programming with multiplicities as put forward in
[37] is that expressions may evaluate directly to any number, or a multitude, of ob-
jects. This is in contrast to standard object-oriented programming, in which every
expression evaluates to either one object or to null and in which multitudes of ob-
jects are reified using special container objects (collections, sequences, iterators, etc.).
Note that, since multitudes are not reified in our approach, they are always flat, i.e.,
there is no multitude of multitudes (though it is possible to create a multitude of
collections).

Terminological Note We use “multitude of objects” to denote many objects; the
term is to be distinguished from “collection of objects” or “set of objects”, which each
denote an entity in its own right. Note that for this reason it makes no sense to
speak of “the elements” or “the members of a multitude”, or even of “the objects of
a multitude” (since the objects of the multitude are the multitude) — if we want to
refer to one of many, we say just that, or “one object among a multitude”.

3.1 Dynamic and Static Multiplicity
With expressions evaluating to any number of objects, the dynamic multiplicity of an
expression is defined as the number of objects it evaluates to. In the general case, the
dynamic multiplicity of an expression can only be determined at runtime. Therefore,
we complement dynamic multiplicity with static multiplicity, which can be declared
and inferred at compile-time. In the following, the term multiplicity refers to static
multiplicity unless stated otherwise.

While dynamic multiplicities are cardinals, we distinguish mainly two (symbolic)
static multiplicities, which we call option and any. Option stands for no or one ob-
ject, while any stands for any number of objects. Other static multiplicities are also
conceivable (in particular, multiplicity one, for precisely one, will be useful; see below);
however, since our focus here is on eliminating as much as possible the differences
between relating to zero or one and to any number of objects, option and any suffice.

3.2 Separation of Multiplicity and Type
As long as multitudes of objects are reified, the multiplicity of an expression (i.e.,
whether it evaluates to one or many objects) is coded in its type: for multiplicity any,
this type is a collection type (commonly parameterized with the member type, i.e.,
the type of the elements of the collection), whereas for multiplicity option, the type is
the type of the optional object (see Section 2.1). Object-oriented programming with
multiplicities as put forward in [37] separates multiplicity from type in the declaration
of variables and methods: for instance, it allows one to write

any Account accounts;

instead of

Collection<Account> accounts;

for declaring that accounts can hold any number of Account objects (note that it
cannot hold a collection!), whereas

option Account account;
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which differs only in the multiplicity, is roughly equivalent to

Account account;

meaning that account can hold either no or one account (see Section 3.4 for the
important difference). Note that using multiplicities, both account and accounts have
the same type Account; they differ only in their declared multiplicities.

3.3 Assignment Compatibility
While the types of account and accounts are the same and, therefore, do not oppose
their mutual assignment compatibility, their multiplicities differ — since option is
subsumed by any, account can be assigned to accounts, and

any Account accounts = new Account();

is a legal assignment (cf. Section 2.1). An assignment from any to option is illegal,
however; here, a multiplicity downcast (from any to option) as in

account = (option) accounts;

is required, but may fail at runtime (namely when accounts holds more than one
object).

For variables with multiplicity any, assignment is complemented with adding to
(+=) and subtracting from (−=) a multitude of objects, where the right-hand side
of the update operations can have multiplicity any or option.

null remains assignment compatible with every reference type; also, it is assignment
compatible with both multiplicity option and any (and means “related to no object”
in both cases; cf. Section 2.2).

3.4 Member Access
That account and accounts have the same type means that they respond to the same
protocol, i.e., that the same set of methods can be invoked and the same set of fields
can be accessed on them. For instance, if class Account defines a method check(),
both account.check() and accounts.check() are well-typed; the latter simply means
that check() is separately invoked on all objects accounts holds. If Account declares
an option field bank, accounts.bank returns a multitude of bank objects, namely the
banks each account among the multitude of accounts held by accounts is related to.
Note that if accounts holds no object, or no account referred to by accounts has a
bank associated with it, accounts.bank will evaluate to no object. Since option is
subsumed by any, account.bank will also evaluate to no object if account does not
hold an account; note in particular that no null pointer exceptions can arise from
dereferencing expressions whose multiplicity is option or any.1

3.5 Aliasing
In object-oriented programming with multiplicities, multitudes of objects are not re-
ified, so multitudes cannot be aliased. This retires the problems noted in Sections 2.3–
2.6. In particular,

1For the relationship of the multiplicity option with the type Option of some functional program-
ming languages (including Scala), see the related work in Section 7
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any SavingsAccount savings;
any Account accounts = savings;

does not cause a covariance problem, since the assignment does not create an alias for
a container, but instead assigns accounts the same multitude of objects that savings
refers to (by copying pointers just like in the option case). It follows that

accounts += new Account();

does not also add an account to savings (cf. Section 2.3). Likewise, returning accounts
as in

any Account getAccounts() { return accounts; }

does not expose representation to clients (there is no representation object represent-
ing the multitude held by accounts) and, in particular,

any Account temp = getAccounts();
temp += new Account();

does not update the field accounts returned by the getter (Section 2.4). Similarly,
after the assignment

any Account backups = accounts;

(Section 2.5), clearing accounts (by assigning it null; cf. Section 3.3) does not also clear
backups, which is therefore still available for restoration. Also, passing a variable into
the method clear(. . .) of Section 2.6, now defined as

void clear(any Account accounts) {
accounts = null;

}

does not affect the number of objects that this variable holds, thereby unifying the
behaviour for one and many objects. Lastly, the fact that multitudes of objects are
not reified unifies the meaning of the final modifier (Section 2.7), which now pertains
to variables holding single object and multitudes of objects alike.

3.6 When to and When Not to Use Multiplicities
Our motivation of introducing multiplicities to object-oriented programming is to
allow the programmer

• the implementation of relationships (or, more precisely, directed associations
[28]) to many objects in a more direct way, and further

• the implementation of relationships to one and to many objects in as much the
same way as possible.

This raises the question of what is a relationship, or when multiplicities are to be
used.

Experience teaches that programmers will use a construct wherever they deem
its use advantageous, so we attempt no dogmatism here. We still make one excep-
tion, though: value types, like int, float, boolean (including their wrapper types), or
String (whose instances are usually immutable) cannot be the target of a relationship
(note that they cannot act as entity types in the entity-relationship model [8]) and
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hence cannot be used in combination with option or any multiplicity annotations.
While there are conceptual justifications for this (e.g., people do not relate to their
age, an integer value), the main technical reason is that this saves us from defining
special semantics for operations on value types (such as +) for operands with op-
tion or any multiplicity (which both include “no object” as a possible value), and
also from introducing a ternary logic for handling the case that a boolean expression
used in a conditional evaluates to no object. For instance, for a variable declared as
option boolean error, it is unclear what if (error) ... means if error has dynamic multi-
plicity 0. For the same reason, we must exclude that value-typed members are accessed
via receiver expressions with option or any multiplicity, since this can likewise result
in dynamic multiplicity 0 (namely when the receiver evaluates to “no object”).

4 Multiplicities for Java
While the idea of object-oriented programming with multiplicities as presented in
the previous section is language-independent, its adoption in any concrete language
invariably requires an individualized integration with existing language constructs.
In the following, we present our extension of Java 7 with multiplicities, whose design
was driven by our objective to allow a smooth transition between Java programming
without and Java programming with multiplicities. Figure 2 has the extended syntax;
Figure 3 shows some sample code using it.

Modifier ::= ...
| MultiplicityAnnotation;

MultiplicityAnnotation ::=
"@any" "(" ReferenceType ")"

| "@any"
| "@option"
| "@bare";

Primary ::=
| "[[" UnaryExpressionNotPlusMinus "]]"
| "|[" UnaryExpressionNotPlusMinus "]|";

CastExpression ::= ...
| MultiplicityCastExpr;

MultiplicityCastExpr ::=
"(" MultiplicityAnnotation ")" UnaryExpression

| "(" MultiplicityAnnotation TypeName ")"
UnaryExpression;

Figure 2 – Extension of concrete syntax.

4.1 Multiplicity Annotations
For compatibility with existing Java code, we implemented four static multiplicities:

• none, the multiplicity of null (representing no object);

• bare, the default multiplicity (and, in particular, the multiplicity of all standard,
or legacy, declarations);

• option, the multiplicity of entities and expressions representing relationships to
no or to one object; and
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• any, the multiplicity of entities and expressions representing relationships to
any number of objects.

Multiplicities determine assignment compatibility according to the order

none < bare < option < any

i.e., every multiplicity is assignment compatible with itself and all greater ones.

Hidden Collections To give the programmer control over the nature of multitudes,
and also for interfacing with legacy Java code that uses collections (see below), any
multiplicities may be parameterized with a collection type C whose definition has
a single type parameter (e.g., List<E>). This type will be used to instantiate a
hidden collection holding the multitude of objects. To acknowledge the widespread
use of abstract collection types in Java programs, C may be an abstract class or an
interface.

Syntactic Integration The multiplicity none does not occur in program texts;
the other multiplicities appear as annotations @bare, @option, and @any, respectively
(see Figure 2). Since bare is the default multiplicity, it occurs only in multiplicity
downcasts from option or any to bare (see below).

original (without using multiplicities) using multiplicities
class Subject implements Observable {
Set<Observer> obs = new HashSet<>();

public void addObserver(Observer o) {
if (o == null)
throw new NullPointerException();

obs.add(o);
}

public void deleteObserver(Observer o) {
obs.remove(o);

}

public void notifyObservers(Object arg) {
for (Observer o : obs)
o.update(this, arg);

}

public void deleteObservers() {
obs.clear();

}

public int countObservers() {
return obs.size();

}
}

class Subject implements Observable {
@any(HashSet) Observer obs;

public void addObserver(@option Observer o) {

obs += o;
}

public void deleteObserver(@option Observer o) {
obs -= o;

}

public void notifyObservers(Object arg) {

obs.update(this, arg);
}

public void deleteObservers() {
obs = null;

}

public int countObservers() {
return |[obs]|;

}
}

Figure 3 – Example of implementing class Subject of the Observer Pattern, with and with-
out using multiplicities (differences highlighted)
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4.2 Declarations
The multiplicity annotations @option and @any may appear (in the position of mod-
ifiers; cf. Figure 2) in all declarations of reference-typed entities, except where the
type is a wrapper type (such as Boolean) or String (see Section 3.6 for the reasons). If
an entity is annotated with @any(C) and C is a concrete collection class, the compiler
uses C as the class of the hidden collection that holds the multitude of objects the
annotated entity denotes; if C is abstract or not provided, the compiler automatically
picks a suitable concrete class (note that the single type parameter of C is instantiated
with the type of the declaration). Thus, multitudes of objects are implemented using
collections; however, this implementation is strictly under the hood and, in partic-
ular, these collections cannot be accessed from the program as objects (they cannot
be aliased). Entities annotated with @option are not implemented using collections;
however, the compiler gives their value null a special meaning (see below).

Final Declarations A declaration final @option T v means that, after its initializa-
tion, the value of v cannot change (i.e., v always refers to the same object). That v is
not assigned new values after initialization is ensured (by the compiler) as usual. A
declaration final @any T v likewise means that v cannot be updated after its initializa-
tion (i.e., it always refers to the same objects), where updating includes assignment
(=), adding objects (+=), and removing objects (−=); this is ensured by the very
same means. Hence, no immutable collections are required to express the immutabil-
ity of a multitude.

4.3 Interfacing with Collections: Wrapping and Unwrapping
To interface multiplicity any with code that uses (bare) collections for representing
multitudes of objects, we must be able to wrap a multitude in a collection object,
and to unwrap it from a collection object. We use double square brackets (“[[. . .]]”)
for both purposes (see Figure 2). If the argument expression has static multiplicity
any(C), the result is a (fresh) collection of type C holding the objects the expression
evaluates to; if it has multiplicity option, the result is a new instance of class ArrayList
which either holds the object the expression evaluates to, or is empty if it evaluates
to null. We call this wrapping. If the argument expression has static multiplicity bare
and is a collection, the result is the multitude of objects that the collection holds
(which is internally represented using a fresh collection of the same type). We call
this unwrapping. Unwrapping is particularly useful for initializing final variables with
multiplicity any:

final @any Account accounts =
[[Arrays.asList(new Account(), new Account())]];

The expression [[null]] is not allowed.

4.4 Number of Objects
The dynamic multiplicity, or the number of objects an expression evaluates to, is com-
puted using “|[. . .]|” (see Figure 2). In case the argument expression has multiplicity
any, it returns the size of the underlying collection; if the expression has multiplicity
option, it returns 0 if it evaluates to null, and 1 else.
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4.5 Casts
As for types, multiplicity upcasts (e.g., from option to any) are always safe and
therefore may remain implicit. Multiplicity downcasts from any to option or bare,
however, may fail, namely when the any expression being cast evaluates to more than
one object. Therefore, the compiler inserts a runtime multiplicity check for all such
casts which, upon failure, throws a multiplicity cast exception. Casts from option to
bare are also always safe; since unlike for option receivers, accessing members on bare
receivers can lead to null pointer exceptions, we will require explicit downcasts from
option to bare (see below for examples of where this is needed).

4.6 Expressions
With new syntax given meaning as above, we now turn to the impact multiplicities
have on standard Java expressions.

Update Assignment (=) makes the variable on the left-hand side refer to the objects
the right-hand side refers to. Given the arbitrariness of the definition of “identity
of multitudes of objects” for multiplicity any (see below), we defined assignment
pragmatically: the hidden collection holding the multitude of the left-hand side is
first emptied (cleared), and then all objects of the hidden collection representing the
right-hand side are copied into it using its addAll(. . .) method. If the right-hand side
has multiplicity option, its object (if any) is added to the collection using add(. . .). If
the left-hand side has multiplicity option, the object that the right-hand side evaluates
to is assigned to it.

Adding (+=) is only allowed for left-hand sides with any multiplicity and adds
the object(s) of the right-hand side (if any) to it, again using add(. . .) or addAll(. . .).
Removing (−=) works accordingly, using the corresponding remove methods. Note
that the programmer can override the meaning of += and −= by supplying her own
collection implementations to the any annotations in the declarations.

Member Access Accessing a member m on a receiver r with multiplicity any un-
folds to accessing m on every object among the multitude r evaluates to, in the order
provided by the iterator of the hidden collection holding the multitude. If m is a
field or a non-void method, r.m evaluates to a multitude of objects, independently of
whether m has multiplicity option or any (recall that multiplicities are always flat).
As argued in Section 3.6, m must not be bare; if it is, the receiver must be cast to
bare first (cf. Section 4.5 and 6.2.2).

Since option is subsumed by any, accessing m on r having multiplicity option
behaves exactly as if r had static multiplicity any and dynamic multiplicity 0 or 1. In
particular, if r is null, evaluating r.m does not raise a null pointer exception — it simply
evaluates to null (for “no object”). However, deviating from receiver multiplicity any,
r.m has multiplicity option for option members (see Table 1).

aaaa
r m bare option any
bare bare option any
option N/A option any
any N/A any any

Table 1 – Multiplicity of member access
expressions r.m

If m is a method, parameter passing
works according to the rules of assignment
(see under “Update” above). In particu-
lar, the formal parameters do not receive
aliases to the hidden collections holding the
objects of formal parameters having multi-
plicity any. Similarly, m does not return
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aliases to the hidden collection representing the returned expression. Note that, with
respect to multiplicity, overriding methods must be contravariant in the formal pa-
rameter multiplicities (i.e., option can be overridden with any etc.) and covariant in
the return multiplicities (i.e., any can be overridden with option etc.). Figure 4 has
an example of a covariantly overridden method (getLeaves()).

Test for Identity Strictly speaking, a test for identity (“==”) does not make sense
for multitudes of objects: if multitudes are not reified, how can they be identical? On
the other hand, if the dynamic multiplicities of the left-hand side and the right-hand
side of such a test are 0 or 1, there seems little choice in defining the meaning of ==:
it is true if and only if either both evaluate to the same object, or both evaluate to null.
For greater numbers of objects, it would seem reasonable to require that both sides
have the same dynamic multiplicities; yet, this means that even immediately after
an assignment of an expression having multiplicity @any(List) to a variable having
multiplicity @any(Set), identity may not be given (due to the dropping of duplicate
objects). In practice, what it means for two multitudes to be identical (or only equal) is
at least as variable as what it means for two collections to be equal, so that eventually,
the programmer must be given control over this question (by letting her implement
her own tests). Therefore, we made an arbitrary choice for == and implemented it as
each object from each multitude occurring exactly the same number of times in both
multitudes. Note that for a test of equality using the equals(. . .) methods provided
for collections, the multitudes must be wrapped first (see Section 4.3).

Iteration over Multitudes While member access on a multitude results in an
implicit (hidden) iteration over its objects (see “Member Access” above), there are
iterations that require explicit access to the individual objects of the multitude, for
instance to apply a filter, because there are case analyses to be made, or because the
objects are to be used as arguments to operations or method calls (see Section 6.1.1 for
examples). In these cases, wrapping a multitude in a collection (see Section 4.3) allows

original (without using multiplicities) using multiplicities
abstract class Composite {
abstract List<Leaf> getLeaves();

}

class Component extends Composite {
List<Composite> children = new ArrayList<>();
List<Leaf> getLeaves() {
List<Leaf leaves = new ArrayList<>();
for (Composite child : children)
leaves.addAll(child.getLeaves());

return leaves;
}

}

class Leaf extends Composite {
List<Leaf> getLeaves() {
return Arrays.asList(this);

}
}

abstract class Composite {
abstract @any Leaf getLeaves();

}

class Component extends Composite {
@any Composite children;
@any Leaf getLeaves() {

return children.getLeaves();
}

}

class Leaf extends Composite {
@option Leaf getLeaves() {
return this;

}
}

Figure 4 – Example of implementing a composite structure with and without using multi-
plicities (differences highlighted)
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us to iterate over its objects as usual, i.e., using for, while, and do. For the special
(and presumably most frequent) case of using the enhanced for loop, multitudes can
be used in place of an iterable object without prior wrapping in a collection.
E.g., we can write

for (Account account : accounts) ...

if accounts is declared as @any Account accounts. Note that, if the type of accounts was
a subtype of Iterable, the for-loop would still iterate over the multitude, and not the
elements of the iterable(s). This is also true if the (declared) multiplicity of accounts
is @option (in which case the for-loop behaves more like an if-statement).

While the Java 8 Stream API adds another abstraction over collections which
makes them more convenient to use by removing the need for external iteration in
many cases, a stream is just another container — and hence another reification —
of a multitude of objects. However, using the wrapping mechanism (see above and
Section 4.3), the full repertoire of stream operations can be invoked on multitudes; in
case of the above accounts example, one simply needs to write [[accounts]].stream()....

5 Implementation
We implemented multiplicities for Java as described above as an extension to Jast-
AddJ [13], an extensible Java compiler implemented using reference attribute gram-
mars [12, 20], and which currently supports Java 7 [30]. The extension comprises 44
source lines of JastAdd code for the syntax, 672 lines for the static semantics, and
1,180 lines for code generation. The multiplicity compiler can be downloaded from
https://bitbucket.org/joqvist/multiplicities.

Abstract Syntax Abstract syntax is added to support multiplicity modifiers and
expressions for wrapping/unwrapping, cardinality, and multiplicity casts, as shown in
Figure 5. Each rule corresponds to a class representing an abstract syntax tree (AST)
node, extending and reusing existing classes in the JastAddJ compiler, like Modifier,
Access, and Expr. Much of the static semantics behaviour, like name analysis, is
reused as is from JastAddJ, but type analysis is refined in the extension, supplying
new attribute grammar equations that define appropriate attribute values to handle
multiplicities.

abstract MultiplicityModifier extends Modifier;
AnyModifier extends MultiplicityModifier ::=
ContainerType:Access;

AnyDefaultModifier extends MultiplicityModifier;
OptionModifier extends MultiplicityModifier;
BareModifier extends MultiplicityModifier;
MultiplicityWrap extends Expr ::= Expr;
MultiplicityCardinality extends Expr ::= Expr;
MultiplicityCast extends Expr ::=
Modifier:MultiplicityModifier
[TypeAccess:Access]
Expr;

Figure 5 – Abstract syntax of extension with multiplicities

Type Analysis In JastAddJ, each type is represented by a unique AST node. Type
checking, as used in assignment, parameter passing, etc., relies on the binary property
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of assignment compatibility which is implemented by comparing two type nodes, using
double dispatch to encode the type lattice in an extensible way [13]. To handle types
with multiplicities (other than bare), we construct synthetic multiplicity nodes that
decorate ordinary type nodes. This allows us to compare different multiplicities with
each other and with bare (non-decorated) types, again using the double dispatch
pattern.

The synthetic nodes are constructed using the attribute grammar mechanism of
non-terminal attributes (NTAs) [40], i.e., attributes whose values are new AST chil-
dren. In JastAddJ, all attributes are computed automatically by the attribute gram-
mar evaluator, and on demand, constructing only the synthetic decorating nodes that
are needed for a particular program.

As an example, consider the following code fragment:
@any Account accounts;
...
accounts += new Account();

Figure 6 shows parts of the corresponding attributed AST. While the new expression
is bound to the (bare) Account type, the declaration and access of accounts are bound
to the AnyMult node that decorates the Account type.

..VarDecl
”accounts”

.

Modifier

.

TypeAccess
”Account”

.

AssignPlus

.

VarAccess
”accounts”

.

New
”Account”

. TypeDecl
”Account”

.

AnyMult

...

node

.

NTA node

.

type attribute

Figure 6 – AST with reference attributes (see text)

Member Access Multiplicities affect the analysis of member accesses (qualified
expressions). In regular Java code, the type of any qualified expression is the type of
the object on the right-hand side of the rightmost dot. The qualifiers are only used
for looking up the declaration of the rightmost part. However, with multiplicities it
is not sufficient to only look at the multiplicity of the rightmost part – the qualifying
expression multiplicities may affect the multiplicity of the whole expression. For
example, as discussed in Section 3.4, if the Account class has a field @option Bank bank,
the expression accounts.bank will have the multiplicity any, although bank has the
multiplicity option. This is handled by extending the type analysis with attributes
to find the multiplicity of the left-hand part of a dot expression. The multiplicity of
the entire dot expression is computed using both the multiplicity of the left and right
parts, following Table 1.

Code Generation The code generation constitutes the bulk of the multiplicities
implementation, translating from the higher-level operations on multitudes to cor-
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responding lower-level for-loops, and handling all the different combinations of mul-
tiplicities in assignments and expressions. The implementation largely follows the
translation scheme to a multiplicity-free program proposed in [37]; it is not repeated
here for space reasons (Section 4 provided an outline, however).

Copying Hidden Collections In the bytecode, multiplicity any is represented by
a collection object (the hidden collection), and care must be taken to not create aliases
of these objects when multiplicity values are copied. For this reason, we create a copy
of the collection object

• when passing an any as an argument to a method or constructor,

• when returning an any from a method,

• at an explicit (@any) cast, and

• when the multiplicity wrap expression either wraps or unwraps an any.

The assignment to an any does not need to create a copy of the hidden collection of
the right-hand side — instead, the objects of this collection are added to the cleared
hidden collection of the left-hand side.

Copying of collections can in many cases be avoided through static analysis and/or
lazy copying: In certain cases, we can deduce statically that the original collection
cannot be used anymore, for instance when returning the value of a local variable.
In these cases, copying is not needed. Another optimization strategy is to represent
a multitude by a wrapper object that contains an internal collection. Copying can
then be implemented lazily by doing a shallow copy of the wrapper object, delaying
the copying of the internal object until it is modified. By letting the wrapper keep
a reference count, copying of the internal collection can be avoided for wrappers
whose internal collection is not shared by other wrappers. We implemented such
lazy collections as a library that we then benchmarked against the regular, non-lazy
collections in our case study (see Section 6.3 for the performance discussion).

6 Case Study
To assess the impact of using multiplicities in a representative case study, we looked
for a subject program

1. that uses a wide array of accepted object-oriented coding idioms so that multi-
plicities can be evaluated in a spectrum of constructions typically encountered
in object-oriented programming,

2. that is tightly covered by test cases so that accidental changes of functional
behaviour induced by the use of multiplicities would quickly be discovered, and

3. that can be run using file-based input that is openly available for reproduction
of our performance observations (replication).

Given these criteria, we selected the widely known regression testing framework JUnit
4.0

1. since it is renowned for its consistent use of design patterns and, generally, for
its exemplary object-oriented style,
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2. since its own test suite is comprehensive, and

3. since open-source programs are available whose test suites execute it, giving us
the standardized program runs we wanted.

Note in particular that every JUnit test suite tests not only the program under test,
but also JUnit itself against the suite’s oracle: all and only the tests of a program that
pass using the original version of JUnit should also pass using our modified version
using multiplicities. We selected JUnit 4.0 rather than one of its successors since it
is manageable in size and since it contains fewer features that are not used by the
majority of available JUnit test suites.

To manually obtain a version of JUnit that utilizes multiplicities in a way that is
both reproducible and that we deem to be representative of how multiplicities will
be used in practice, we changed the multiplicity of every field having a collection
type whose element type (type parameter) is not a value type to @any (and removed
the collection type from the type declaration), and every other field not having a
value type to @option. We then changed the multiplicity of every other variable and
method return as required by the assignment compatibility and overriding rules of
multiplicities (see Section 4.6), unless where use of APIs (method invocation and
subclassing) required bare parameters (in which case a cast to bare was introduced).
The results of this procedure are summarized in Table 2.

any option bare total value-typed†

fields 11 44 121 176 29
returns 9 34 249 292 108
formals 3 83 642 728 403
locals 7 34 482 523 380
casts to 2§ 21$ 92 115
total 32 216 1586 1834 920

† included in bare
§ implicit upcasts
$ all downcasts from any

Table 2 – Multiplicities in declarations and casts

6.1 How Introduction of @any Changes Program Source
There were 11 collection-typed fields whose type parameter (element type) was not a
value type (cf. Section 3.6), and which we changed to multiplicity any. Of these, 5 were
originally declared final; in 4 of these cases, the final modifier had to be dropped since
the multitudes were actually modified after initialization (cf. Section 2.7). Introducing
the multiplicity @any (and changing the types; cf. Section 3.2) for these 11 fields
required the subsequent change of 3 formal parameters (one of which involved the
removal of a wildcard; cf. Section 2.3), of 9 method returns, and of 7 local variables
(giving us a total of 30 introduced @any annotations; see Table 2). Of the remaining
27 uses of collections, 9 were required by APIs, 5 held instances of value types, 3 were
required by concurrent modification (iter/remove; see Section 6.1.2), and the rest was
used by local variables that never got a field assigned to it (they could also have been
changed to multiplicity any).
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Together with the introduction of @any annotations, we replaced 12 invocations of
add(. . .) and 1 of addAll(. . .) with +=, and 2 invocations of remove(. . .) with −=; at
the same time, 10 invocations of size() where replace with |[. . .]| and 5 invocations of
isEmpty() were replaced with a test for null (cf. Section 3.2). There were 27 indexed
accesses to list elements (using get(. . .)) in the original program where the list was
replaced by an any multitude; all but 5 of these could be removed using multiplicity
downcasting (see Section 6.1.3); the remaining 5 required wrapping (see Section 6.1.2).

6.1.1 Loop Elimination
One of the supposed benefits of introducing any multiplicity is the elimination of loops
(see Sections 2.1 and 3.4). And indeed, 5 for-loops over the elements of collections
could be replaced by plain member access on a corresponding multitude of objects.
For instance, we replaced the loop

for (Runner each : fRunners)
each.run(notifier);

(from CompositeRunner.run(RunNotifier)) with

fRunners.run(notifier);

In addition, even where the iteration variable is not used as the left-most receiver
in the loop expression (as above), it may still be possible to eliminate the loop. For
instance,

for (Runner runner : fRunners)
spec.addChild(runner.getDescription());

(from CompositeRunner.getDescription()) was rewritten to

spec.addChild(fRunners.getDescription());

after the multiplicity of the formal parameter description in

public void addChild(Description description) {
fChildren += description;

}

had been changed to @any (note how this does not affect the implementation of
addChild(. . .)).2 However, because bare members may not be accessed on option or
any receivers (Section 4.6), this required the declaration of @option as the returned
multiplicity of getDescription(. . .) which, since option is not assignment compatible
with bare (Section 4.1), required the subsequent introduction of 32 more @option
annotations throughout the program. Yet, given that @any and @option annotations
are designed to be used together, this does not appear to be counterproductive.

With a little redesign of programs, loop elimination can be pushed even further.
For instance, we found (in method createTest(. . .) from class JUnit4TestAdapterCache)
the loop

for (Description child : description.getChildren())
suite.addTest(asTest(child));

2In fact, increasing parameter multiplicity of add...(@option) methods like the above allowed us
to drop two addAll...(@any) methods from the JUnit 4.0 source (they are now subsumed by the
add...(@any) methods).
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Here, the loop variable child is the argument of another method so that introduc-
ing multiplicity @any for the parameter of addTest(. . .) as above is not sufficient —
asTest(. . .) would need to be changed to accept and return any multiplicity as well,
which would require a major reworking of its implementation. However, as it turned
out, asTest(. . .) can straightforwardly be moved to class Description (the class of its
formal parameter, using the refactoring Move Method [16]), so that the loop can be
replaced by

suite.addTest(description.getChildren().asTest(this));

which is not only more succinct, but also more fluent3 than the original phrasing. In
fact, this minor refactoring even allowed us to remove a loop that was designed to fill
a collection: we turned

List<Test> returnThis = new ArrayList<Test>();
for (Description child : description.getChildren())
returnThis.add(child.asTest(this));

return returnThis;

(from JUnit4TestAdapterCache.asTestList(. . .)) into

return new ArrayList<Test>(
[[description.getChildren().asTest(this)]]

);

in which the any multitude returned by asTest(. . .) is wrapped in a collection (note
that API calls explicitly expect the collection here; hence the name of the method,
“asTestList”!).

Of the 11 loops on the elements from a multitude that could not be removed, 2
contained accesses of value-typed members (methods for counting the number of leaves
in a composite structure; see Figure 4 for how this can be simplified using collections),
3 used explicit iterators for removing elements from the originally underlying collection
(cf. Section 6.1.2), and 6 had complex loop bodies that would have required major
refactorings to cast them to member access on any expressions.

6.1.2 Wrapping and Unwrapping Multitudes
We required a total of 15 wrappings or unwrappings:

• In 5 cases, wrapping a multitude in a list was necessary because indexed access
to individual objects was required and the dynamic multiplicity was not known
to be 0 or 1 (in which case a downcast to option would have been sufficient;
cf. Section 4.5).

• In 3 cases, wrapping a multitude into and subsequently unwrapping it from a
local list-typed variable was necessary because of iter.remove() loops.

• The remaining 4 wrappings and unwrappings were due to API calls.
3“fluent” in the sense of a “fluent API”: see http://www.martinfowler.com/bliki/

FluentInterface.html
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6.1.3 Multiplicity Casting
In Java without multiplicities, a multiplicity upcast (from option to any) requires the
wrapping of a single object in a collection. For instance, the method whose header is
declared as

List<Throwable> getCauses(Throwable cause)

(from class ErrorReportingRequest) returns the expression Arrays.asList(cause) as a
special case. In case cause was null, it would need to return an empty list, involving
yet another clumsy construction (see Section 6.1.5). Using multiplicities, the same
method is declared as

@any(List) Throwable getCauses(@option Throwable cause)

for which cause is a type-correct and multiplicity-correct return expression (the mul-
tiplicity upcast is implicit here).

Multiplicity downcasts (from any to option) are somewhat more involved. In
standard Java, this would require the test of the size of a collection and, in case it is
1, the extraction of the sole element of the collection (the cast would result in null if
size is 0, or else raise an exception). Indeed, we found 24 of constructions such as

Failure failure= result.getFailures().get(0);
assertEquals(expected, failure.getDescription());

in JUnit, which silently assumes that there is at least one failure and ignores possible
failures beyond the first (actually, it leaves unstated whether there may be additional
failures). Using multiplicities, we can rewrite the first line to

@option Failure failure= (@option) result.getFailures();

which makes the cast explicit and states that there should be at most one failure
(which proved to be the correct assumption in 17 out of the 24 occurrences of this
pattern).

6.1.4 Enforce Proper Encapsulation of Multitudes
As noted in Section 2.4, fields holding collections should be encapsulated and not be
passed to clients via getters. Nevertheless, we find in JUnit’s class Description the
method

public ArrayList<Description> getChildren() {
return fChildren;

}

allowing clients to bypass the public method addChild(. . .) supplied by the same class
for directly manipulating the children of Description objects. After replacing the
declaration of the field fChildren in Description with

@any(ArrayList) Description fChildren;

and adjusting the above declaration of getChildren() accordingly, an invocation of
getChildren().add(. . .) will have no effect on fChildren, since getChildren() no longer
returns an alias of it (Section 3.5). As it turns out, however, the sole occurrence of
a manipulation of fChildren in JUnit via getChildren() is in the body of addChild(. . .)
itself:
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public void addChild(Description description) {
getChildren().add(description);

}

Here, the idea of Self Encapsulate Field [16] clearly conflicts with how collections
should be encapsulated (see Section 2.4). Using multiplicities, the body of addChild(. . .)
is rewritten to

fChildren += description;

while that of getChildren() can remain as is, without granting true clients access to
fChildren.

While the use of multiplicities enforces proper encapsulation as shown above, it
can also help avoid explicit cloning, as found in class TestResult:
synchronized List<TestListener> cloneListeners() {
List<TestListener> result= new ArrayList<>();
result.addAll(fListeners);
return result;

}

Here, using multiplicity any it suffices to return fListeners in the body of the method
(which needs to remain synchronized — all multiplicity operations are non-synchronized
by default).

6.1.5 Uniform Use of null
The fact that relating to no object in a to-many relationship is commonly represented
by an empty collection (cf. Section 2.2) has led to the introduction of special collection
classes (e.g., Collections.EmptyList, Collections.EmptySet, both from java.util) whose
sole instances represent an empty collection. For instance, the method declared as

List<Throwable> validateAllMethods(Class<?> clazz)

(from class ParameterizedTestMethodTest) returns Collections.emptyList() as a special
case (an upcast from multiplicity none to any). Replacing the declaration of the
method with

@any(List) Throwable validateAllMethods(Class<?> clazz)

allows the method to return null instead, which has the same meaning as null for
@option, i.e., is subsequently interpreted as no object (and, unless it is cast to @bare,
cannot cause a null pointer exception). Note that the fact that, unlike Collections
.emptyList(), the returned multitude is mutable maintains behavioural subtyping [22]:
while

@any(List) Throwable result = null;
result += new Throwable("it's OK!");

is indeed OK, the seeming equivalent

List<Throwable> result = Collections.emptyList();
result.add(new Throwable("not OK!!"));

causes an “unsupported operation” exception.
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6.1.6 Uniform Call Semantics
The fact that method calls are by value effectively (i.e., a method cannot mod-
ify the multitude that it gets passed; cf. Section 3.5) means that methods such as
void Collections.sort(List<T>) (which would need to be rewritten to void Collections
.sort(@any(List) T)) no longer work, simply since sorting has no effect on the multitude
that is passed into the method. To fix this, we wrote our own sort method that returns
a sorted multitude which can be assigned back to the variable holding the original
multitude. Specifically, we changed 2 invocations of the kind

Collections.sort(fRunners, . . .)

(here from class CompositeRunner) to

fRunners = Multiplicities.sort(fRunners, . . .)

where Multiplicities is a helper class analogous to Collections. Note how this makes clear
why fRunners cannot be declared final, since the multitude is in fact changed (even
though the collection secretly holding it has remained the same object; cf. Section 2.7).

6.2 How Introduction of @option Changes Program Source
Changing the remaining fields that did not have value types to multiplicity option, and
subsequently also formal parameters, method returns, and local variables as required
by the rules of Section 4.1, gave us a total of 44 fields, 34 returns, 83 formal parameters,
and 34 locals, all with multiplicity option (see Table 2).

6.2.1 Elimination of Tests for Not Null
Just like the use of any can eliminate loops, the use of option can eliminate tests for
not null (Section 4.6). As it turns out, however, JUnit does not make much use of
the value null representing “no object”: in fact, in the whole of JUnit there is no test
for not null on a field that could be declared with @option, and only a single test for
null (which is however only used for lazy initialization of the field). However, there
are some tests for not null on local variables, one of which,

Runner childRunner= Request.aClass(each).getRunner();
if (childRunner != null)
runner.add(childRunner);

(from method ClassesRequest.getRunner()), we could rewrite to

runner.add(Request.aClass(each).getRunner());

This was possible since method add(. . .) accepts any multiplicity and getRunner()
returns option multiplicity, and since null uniformly means “no object” for option and
any multiplicities (see Sections 3.2 and 4.6).

6.2.2 Multiplicity Casting
While explicit and implicit multiplicity casts to option and any avoid clumsy coding
idioms (Section 6.1.3), the current well-formedness rules of multiplicities may also
require explicit downcasts to bare (cf. Section 4.5), which can be a nuisance. Specifi-
cally, the fact that value-typed members (which must be bare) may not be accessed
on receiver expressions with multiplicity option (Sections 3.6 and 4.6) can require
annoying casts. For instance, in
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public int countTestCases() {
return ((@bare) fRunner).testCount();

}

(from class JUnit4TestAdapter) the cast (@bare) is required since fRunner has multi-
plicity option (meaning that it may evaluate to no object) and testCount() returns an
integer. Even though the cast (@bare) can be read as a warning that a null pointer
exception may occur here (which can never occur when dereferencing option or any
receivers; see Section 3.4), given that we needed to insert 62 such casts in JUnit
(cf. Table 2; the remaining 30 casts to bare were needed for interfacing the JDK and
assertions), not all programmers will regard this aspect of our language design as
ideal. An elegant solution to this problem seems to be the introduction of one as
an additional multiplicity annotation (for relating to precisely 1 object) and to allow
access of bare members on one receivers with resulting multiplicity bare. However,
since this would require our notion of multiplicities to be integrated with existing
not-null annotations and checks, we have left this to future work (Section 8.1).

6.3 Performance Observations
To check the correctness of our multiplicity compiler, we ran JUnit’s own test suite
on our multiplicity-enhanced version of JUnit (named “JUnit-M”), and also on the
test suites of three additional multiplicity-free benchmark programs listed in Table 3.
All tests gave the same results, suggesting that the modified and the original version
of JUnit are functionally equivalent. There were 25 test cases that failed in both
versions (for AC Lang), because they require a newer runtime version of JUnit. We
decided to keep these tests since they exercise failing behaviour in JUnit. All other
tests that could be compiled with JUnit 4.0 (cf. Table 3) passed.

To check how multiplicities affected the execution time of JUnit-M, we compared
running the following different compiled versions of JUnit:

• ju4jc: original JUnit 4.0 compiled using javac from OpenJDK 7, i.e., the refer-
ence compiler for Java.

• ju4jj: original JUnit 4.0 compiled using JastAddJ for Java 7.

• ju4m: JUnit-M 4.0 compiled with our multiplicity-enhanced compiler

• ju4l: JUnit-M 4.0 compiled with a variant of our multiplicity-enhanced compiler
that uses lazy copying of collections, as described at the end of Section 5.

We used these four different versions of compiled JUnit to run the test suites in
Table 3, all of which were compiled using javac.

Steady-state performance We measured execution time in steady state, i.e., after
running for a while so that the optimizing JIT compiler has warmed up, and reached
a stable state. This is a relevant test scenario for long running applications. However,
to use this method on the JUnit test suite, we had to remove two test cases that
include an infinite loop that can be stopped only by a call to System.exit() (thereby
terminating the host JVM).

To measure on steady state, we used the multi-iteration determinism method for
benchmarking from Blackburn et al. [5], which includes the following steps:
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Subject program and Version Number of Test Cases
Apache Commons Codec 1.3 191
Apache Commons Lang 3.0 1923†§
Jaxen 1.1.6 716$
JUnit 4.0 255

† excluding 10 that we had to remove because they could not be
compiled with JUnit 4.0
§ 25 of these tests fail both with and without multiplicities be-
cause they should normally be run with JUnit 4.7 (see text)
$ excluding 2 that were removed because they contain an infinite
loop (see text)

Table 3 – Subject programs used in the evaluation.

1. The benchmark is iterated N − 1 times in the same JVM to achieve steady-
state for the JIT.

2. JIT optimization is then turned off to not further affect the measurements.

3. One more iteration of the benchmark is made, but is not measured.

4. Finally, K iterations are made, measuring the execution time of each.

During different runs (consisting of N +K iterations of the benchmark), the JIT may
stabilize on different states, due to the non-determinism of the JIT optimization. For
this reason, we make R runs for each benchmark, and compute the arithmetic mean
of the means of the K iterations in each run, and the 95% confidence interval, as
suggested by Georges et al [17]. For our measurements we chose R = 15, N = 30,
and K = 20. Table 4 shows the results of our steady-state experiments.

ju4jc ju4jj ju4m ju4l ju4m/ju4jj loss
AC Codec
mean 172 169 178 204 0.0530
conf. int. ±16.5 ±15.2 ±15.5 ±2.7
AC Lang
mean 6747 6748 6750 6758 0.0003
conf. int. ±2.6 ±2.6 ±2.2 ±2.3
Jaxen
mean 249 248 249 258 0.0033
conf. int. ±3.1 ±1.0 ±1.3 ±1.3
JUnit
mean 845 848 853 867 0.0053
conf. int. ±2.2 ±2.3 ±2.6 ±3.1

Table 4 – Execution times (in msecs).
In comparing ju4jj and ju4m, we anticipated there to be a performance loss due

to copied collections and extra null checks. We can see that there is a tendency to a
slight performance loss when using multiplicities for all four benchmarks. However,
the confidence intervals overlap, and the difference between the means is only 5%
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for AC Codec, and less than 1% for the other benchmarks. We therefore regard the
performance loss as negligible. We can also note that the performance of the javac
compiler and the JastAddJ compiler (ju4jc and ju4jj) are almost the same, indicating
that the results should transfer to javac, should one wish to implement multiplicities
there.

Using Lazy Copying Table 4 also shows the results from running ju4l, i.e., JUnit-
M compiled with a variant of our multiplicity-enhanced compiler that implements
lazy copying of collections, as discussed at the end of Section 5. Unfortunately, the
results show that the use of lazy copying degrades the performance, rather than
improving it. We measured the number of copied collections (Table 5) and their sizes,
and found that around half of the collections had size 0 and that less than 1% had
a size larger than 10. Apparently, because the collections are so small, the cost of
copying the hidden collection is lower than the cost of delegating all method calls
through an intermediate lazy collection. Further investigation is needed to see if the
implementation of the lazy copying can be improved, and if it can be useful for other
benchmarks.

AC Codec AC Lang Jaxen JUnit
collection copies 1007 20326 8038 8105
avoided using lazy 778 16516 6554 6884
checking not null 1045 8417 3112 3310

Table 5 – Instruction overhead

6.4 Discussion
As the examples of Figure 3 and Figure 4 suggest, savings in terms of the number of
tokens used in a program fragment can be considerable. Also, Section 6.1.1 presented
several interesting examples of loop elimination enabled by member access on multi-
tudes of objects. In a complete program, however, savings are diluted, and the total
number of tokens can even increase because of the additional annotations required
in declarations. In fact, in our case study the multiplicity-enhanced version has 151
more tokens than its original. However, this increase is explained by the additional
annotations used in declarations, whereas the number of tokens in the other state-
ments (instructions) are reduced. The possible reduction of tokens in the instructions
is currently diminished by the casts to bare that we had to introduce for interfacing
with API code and accessing bare members (Section 6.2.2). We expect these numbers
to improve with the introduction of one as an additional multiplicity, and of course
with the migration of APIs.

7 Related Work
Smalltalk not only comes with a powerful collections library, with its indexed instance
variables it also offers a way of directly associating one object with a multitude of other
objects, without reifying this association [19]. However, since indexed integer variables
are unnamed (they are similar to the so-called indexers of the .NET languages [23]),
there can be only one set of indexed instance variables per object, limiting their use
for implementing relationships (of which an object may have many). And yet, indexed
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instance variables share with our any fields that two objects cannot share the same
set of indexed instance variables (i.e., there is no aliasing of multitudes).

The object constraint language (OCL) [6, 27], which is used to express conditions of
well-formedness of UML models, allows the dereferencing (“navigation”) of attributes
and associations with arbitrary multiplicities using the dot notation. However, OCL
still reifies multitudes of objects using collections; the difference between one and
many objects (singular and plural) is mitigated only slightly by allowing collection
operations to be applied to single objects also. This is different for Alloy [21], a textual
modelling language which maps object-orientation to relational logic and in which
the notion of multiplicity is also prominent. Unlike OCL, Alloy does not distinguish
between scalars and sets, and treats scalars as singletons. This largely removes the
differences between one and many objects from Alloy expressions (which we strive for
also); however, like OCL, Alloy is not a programming language.

The programming languages JavaFX™ [38] and Cω [2] offer sequences, or streams,
as array-like type constructors for variables with multiplicities greater than 1. Like
arrays, sequences are reified multitudes of objects; however, unlike arrays, they are
immutable and have value semantics. Sequences cannot be nested — any attempt to
do so results in a flat sequence. null in the context of a sequence means the empty
sequence and a scalar value means a singleton sequence, so that both can be assigned
to a sequence-typed variable. In Cω, a stream can occur as the receiver of a member
access; this access is then mapped over the elements of the stream, yielding a stream
of the member type (so that chained member accesses on streams are possible). While
this generalized member access has the same semantics as corresponding expressions
in OCL and Alloy, the suitability of streams (which have been subsumed by iterators
in C# 3.0 [4]) for implementing relationships to many objects is limited by their
immutability.

The semantics of our static multiplicity option is somewhat similar to using the
Option class in Scala [29]: a receiver of type Option can be None, in which case applying
a function (using map or flatMap) produces None. Similarly, a function can be applied
to a collection (again using map or flatMap), resulting in a collection of the same type,
containing the return values. The main difference to object-oriented programming
with multiplicities as put forward here is that we use no container types, but instead
separate type from multiplicity, avoiding the awkward dominance of the container
type over the content type [37] imposed by wrappers such as Option and collections.
Another difference is that in object-oriented programming with multiplicities as we
implemented it, the use of flatMap to apply functions to option and any multiplicities
is implicit.

Ungar and Adams have recently presented a parallel programming language Ly
that offers so-called ensembles as an alternative to collections [39]. Ensembles accom-
modate member objects that, when the ensemble is sent a message, all respond in
parallel. However, unlike our multitudes of objects, an ensemble in Ly is a first-class
object, and a singleton ensemble is different from the object that it contains. Since
Ly is untyped, runtime checks are required to avoid that an ensemble contains it-
self (which may lead to infinite recursion when a message received by an ensemble is
forwarded to itself). Also, empty ensembles are currently not integrated seamlessly,
and demand further dynamic checks. It seems that the multiplicities described in this
paper would solve at least some of the problems incurred by ensembles (but notably
not those related to parallelism).

While implementing relationships to many objects using collections (or similar
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reifications of multitudes) is by far the most commonly used pattern [26], automatic
mappings from object-oriented models to programs may introduce other, more so-
phisticated patterns [18]. Both are however challenged by integrating relationships in
object-oriented programming as a native concept.

As far back as 25 years ago, Rumbaugh argued for the lifting of the field-and-
collection based relationship encodings of object-oriented programs to the level of
a first class language construct [34]. For this purpose he introduced relations as
instances of a special class Relation that has fields holding a relation declaration
(i.e., the types of the participants, role names, cardinalities, etc.), as well as a field
holding the extension of the relation (i.e., its tuples). Unlike in many other approaches
that followed, an instance of Relation represents a relation, not a tuple; standard
operations Rumbaugh defined on these instances included the adding and removal of
tuples, indexed access to tuples of the relation, and scanning of the relation (iterating
over its tuples). Later, Rumbaugh also added propagation attributes to relations
which allowed the controlled recursive propagation of certain method invocations
through object graphs [35]; however, this is not to be confused with our lifting of
method invocations from single objects to multitudes of objects. While Rumbaugh’s
proposals amount to embedding a native implementation of (parts of) a relational
database system in object-oriented programs, our approach of implementing to-many
references is lightweight. Also, our relationships (represented by multitudes of objects)
are not first-class.

Østerbye picked up Rumbaugh’s proposals and presented a Smalltalk-based associ-
ation compiler that can choose between internal and external implementations of rela-
tionships [32]. An internal implementation keeps the information which other objects
an object is related to local to the object, whereas an external implementation uses
first class relationship objects for this purpose. Independent of the implementation
choice, Østerbye, like Rumbaugh before him, offers role-based and association-based
access to relationships. However, in his role-based access protocol, he distinguishes
between to-one and to-many relationships, continuing the discontinuity we want to
rid programming of. This discontinuity is preserved in Østerbye’s subsequent work
[31], in which he leaves the untyped realm of Smalltalk to present a library-based
approach for C#. In his library, association classes are complemented by role classes
providing for internal implementation of relationships. However, given the funda-
mental meaning relationships have in most problem domains, we argue for a native,
rather than a library-based, integration of relationships.

Bierman and Wren’s RelJ is based on a formalized notion of relationships as first
class types whose instances, called relationship instances, are tuples [3]. These tuples,
which — like objects — can have state and behaviour, are created and returned by
adding a pair of objects to a relationship. Navigation of a relationship always results
in a set having value semantics, making the result of navigation covariant with the
target type of the navigation [3]. However, sets cannot be the source of navigation, so
that navigation cannot be chained as in our approach. Bierman and Wren also suggest
how multiplicities can be restricted statically, using one (for [0, 1], analogous to our
option) and many (for [0, ∗], analogous to our any) annotations; the invariant imposed
by one is then enforced by changing the semantics of adding to a relationship with
that of replacing an instance of a relationship (destructive update, or assignment).
By contrast, we have restricted the additive update (+=) to any multiplicities, and
require a downcast from any to option for an assignment to option, protecting us from
a silent change of behaviour when a multiplicity is changed from any to option.
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The relationship aspects of Pearce and Noble use the intertype declarations of
AspectJ to shift the bookkeeping necessary for maintaining relationships between ob-
jects from the objects to relationships [33]. The relationships are coded as aspects
which can carry additional, relationship-specific behaviour. Class definitions remain
ignorant of the relationships for which they supply the participants, which is consid-
ered an increase in the separation of concerns. This separation goes too far, however,
when an object needs access to others it is related to — in that case, it has to query
the relationship it was to be kept unaware of.

In the language Rumer, references to objects are completely expelled from so-called
entity types (conventional classes), and objects are related exclusively through rela-
tionship types [1]. It follows that, analogous to the relationship aspects of Pearce and
Noble [33], only relationships know which entities are related (referred to as strat-
ification in [1]). Entity and relationship types have associated extent types which
are instantiated and populated explicitly by the programmer. Relationships can be
nested, and relationship extents can be owned by relationships, so that they cannot
escape the owning relationship. While owned relationship extents bear some resem-
blance to our multiplicities (which likewise cannot be aliased), the whole approach
seems rather heavy weight — in particular, with all knowledge about relationships
fully encapsulated in relationships (so that objects are ignorant of whether and how
they are related), much of an application’s logic (including that captured in most
methods) has to be moved to relationships, with objects being degraded mostly to
passive data containers with identity. This means a fundamental paradigm shift for
object-oriented programming, and migrating an existing application to the concepts
embodied in Rumer will amount to a major redesign effort.

8 Future Work
8.1 Integrating NonNull
As noted in Section 6.2.2, introduction of multiplicity one would help avoid an un-
pleasant restriction concerning the access of bare members via option receivers. The
multiplicity one is equivalent to annotating a type use as being NonNull like in, for
example, the Checker framework [11]. Additionally, (@one) can be used as a cast on
an expression. Fähndrich and Leino showed how NonNull can be implemented to
handle initialization correctly, introducing the notion of raw types [15]. This solution
has been implemented for a previous version of JastAddJ [14]. A natural next step for
us is thus to extend our implementation of multiplicities with this solution, support-
ing multiplicity one. We expect this to allow us to replace the multiplicity of most
bare variables with one, and hence to reduce the number of casts substantially, as one
expressions can safely be used as arguments to library methods requiring bares, and
bare members (value types!) can safely be accessed on one receivers. Additionally,
by adding type annotations, as introduced in Java 8, @NonNull annotations can be
represented by one multiplicities, and be typechecked by the compiler.

8.2 Qualified Access
As noted in Section 4.1, a collection C used in an @any(C) annotation must have a
single type parameter representing the type of the elements of the collection. This
requirement excludes maps from a key type to a value type (such as HashMap<K, V>).
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Not excluded, but not especially supported are indexed collections (like ArrayList<E>),
which are special maps (with positive integers as keys): read access of the ith object
to which an expression e with multiplicity any(List) evaluates currently requires the
clumsy workaround [[e]].get(i); write access is even clumsier (not shown here). For
qualified access of the objects among a multitude, lists and maps can be generalized
to associative arrays, effectively implementing the qualified associations of UML [28].
However, we have not yet investigated the language extensions this would require.

8.3 Case Studies on Modelling and Grammar Frameworks
Our current case study focuses on making use of multiplicities for ordinary Java code.
Another interesting focus for case studies would be to focus on modelling frameworks
such as EMF, where an API is generated from a metamodel expressing relations with
cardinalities. It would be interesting to investigate how multiplicities could be used to
simplify both the API and its usage. Furthermore, an interesting avenue of research
would be to investigate to what extent metamodels can be automatically computed
from code using multiplicities, reducing the gap between models and code.

In a similar manner, it would be interesting to investigate how multiplicities can
simplify abstract syntax tree APIs, as generated by many compiler tools from EBNF-
like formalisms. Here, there is a natural match between the typical child, optional
and list constructs and the one, option and any multiplicities.

8.4 Refactoring to Multiplicities
In our experiment described in Section 6 we refactored JUnit manually from ordinary
Java code to code using multiplicities. An interesting opportunity for further research
is to design automated refactorings for this purpose. Based on the current case study
we can see that most of these refactoring cases are fairly simple (they are related to
a Change Declared Type refactoring), but also that there are a number of challenges
that need to be addressed to find a general refactoring approach.

9 Conclusion
Letting expressions evaluate to any number of objects (rather than just one), and
handling multitudes of objects that are not reified as one object, means a departure
from object-oriented programming as we know it. In this paper, we have picked up a
proposal for implementing object-oriented programming with multiplicities presented
at last year’s Onward! conference [37], and turned it into a fully functional compiler
of Java 7 that can handle multitudes of objects as proposed. We tested this compiler
by changing the source code of JUnit 4.0 so that it utilizes multiplicities, and by using
the binaries produced by the compiler in place of the original binaries for running a
number of different open source test suites on their programs under test. Functionally,
both binaries are equivalent; furthermore, observed performance measures suggest
that using multiplicities in JUnit 4.0 imposes only minor penalties. At the same
time, a detailed analysis of the changes performed on the JUnit sources suggests
that programs can indeed be simplified using multiplicities, avoiding many of the
peculiarities imposed by using collections as containers of multitudes.
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