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Abstract Making Domain-Specific Modeling Languages a part of a tool
chain, a part of a proven development process, or the subject of verifica-
tion cannot be achieved without the precise specification of the language
and the models expressed in it. Defining formal semantics for modeling
languages is a widely accepted solution to this problem. We have devel-
oped methods, techniques and processes to provide a systematic mapping
– which we call semantic anchoring – that support the scaling of these for-
mal definitions to large modeling languages. Although a semantic mapping
is a definition and behaves as a set of axioms for formal verification, we
argue that a semantic mapping can conflict with the informal intentions of
the language designer, resulting in a counterintuitive DSML, and should
therefore be validated. This paper proposes a solution that involves for-
malizing the language designer’s intentions about the semantic mapping
and validating the consistency between the two by applying model finding
techniques.

1 Introduction

Domain-Specific Modeling Languages (DSML) distance engineers from low-level im-
plementation details by creating high-level abstractions that are familiar to experts
in the corresponding field. Naturally, when designing these DSMLs, we must spec-
ify what these abstractions mean. Sometimes, informal or implicit descriptions will
suffice. In domains with high-confidence requirements (e.g. flight systems, medical
devices) it is common to specify precise and formal semantics for the language.

A semantics should contain the language designer’s intentions about the meaning
of the language’s abstractions. This can be accomplished by mapping the language
elements to structures which describe their meaning. We have found that such a
semantic mapping can sometimes become large and complex, allowing it to contain
subtle and obfuscated inconsistencies with the designer’s intentions, resulting in a
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counterintuitive or even harmful semantics. This introduces validation requirements
on the semantic mapping itself.

Our solution is to create, in addition to the semantic mapping, a more direct
formalization of the language designer’s intentions expressed as a set of validation
axioms about the semantic mapping and then validate the semantic mapping’s con-
sistency with these axioms. We illustrate this approach with a case study on a simple
statecharts [Har87] language, the semantics for which we specify via a mapping to
the abstract syntax formalized in [HR07]. We use FORMULA [JS09, JSB12] as a
specification language and make use of its goal-based model finding features to search
for counterexamples to the consistency of the semantic mapping and its validation
axioms.

The rest of the paper is organized as follows. Section 2 gives an overview of the
context within which our work is framed. In Section 3 we give an introduction to the
specification and analysis features of FORMULA that we use throughout the paper.
We describe our process for translating visual modeling artifacts to a corresponding
encoding in FORMULA in Section 4 and in Section 5 we detail the different types of
semantic specifications that we deal with and how we encode them in FORMULA.
Section 6 describes the axiomitization of the intentions about a semantic mapping’s
behavior. We present examples of our validation process in Section 7. A critical
discussion of our contribution can be found in Section 8. Section 9 discusses the
related literature and we discuss our conclusions in Section 10.

2 Background

The power of DSMLs lies in the flexibility stemming from the customizable infras-
tructure. However, the same flexibility makes it difficult to identify the interpretation
of the information that an often evolving domain-specific model represents. As a
database can have a schema that specifies the structure and value domains of valid
data, the well-formedness rules of DSMLs are also specified by some means of lan-
guage definition, typically a metamodel. It is important to note that while an integer
column contains only numbers in a database table, its interpretation (e.g. that it
is a social security number) is not attached to the schema or the data: it is usually
encoded in the program which uses it or, even more frequently, in the mind of the
user who uses the data. Similarly, a DSML metamodel/model does not inherently
have an interpretation for its modeling elements, such as a box or a line: it may be
implicit in model translators or understood by the human end-user.

In certain domains, such as Cyber-Physical Systems (CPS) [KS08], this impre-
ciseness is unacceptable: formal verification tools and rigorous certification processes
are built on the information stored in a DSM – its interpretation must be precise and
unambiguous. In principle, the specification of the interpretation can be of any form
as long as it holds these two properties. One approach is to map the DSM elements
to some mathematical structure, such as equations or an automaton, or to another
language with its own semantic specification. This method is referred to as assigning
a semantic mapping to the language [HR04], and the target of the mapping is called
the semantic domain. The semantic domain and the semantic mapping together are
called the (formal) semantics of the language.

Figure 1 shows a visualization of our systematic approach to defining a formal
semantics, which we refer to as semantic anchoring. First we have to create a formal
representation of the language specification and the models. Note that conceptually
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Figure 1 – Semantic Anchoring Dissected

this formal representation has nothing to do with the interpretation: it only describes
formally the structure and well-formedness of the information represented, also known
as the abstract syntax of the language. In the context of databases this could be the
relational data model [Che76]; for DSMLs, they can be labeled graphs or certain
algebraic structures such as term algebra [SB81], or certain categorical constructs
(category of typed attributed graphs, [EEPT06]). In practice, however, language
designers try to make sure that the modelers cannot express models that cannot be
mapped to a valid semantic interpretation. Therefore, the interpretation (and thus
the formal semantics) usually motivates many of the well-formedness constraints of
the language. For example, we may want to ensure that language users cannot create
models containing a multiplier block with a corresponding DAE system that does not
have a unique solution. This is a realistic expectation – it is typically undesirable
to create models that are ambiguous (have multiple interpretations) or cannot be
implemented (have no interpretation). In the context of domains such as Cyber-
Physical Systems, the formal representation of the language and the well-formedness
constraints are referred to as structural semantics. Note that a structural semantics
does not assign any interpretation to the language; it is in fact an abstract syntax
specification motivated by semantic considerations. The name comes from modeling
languages similar to Simulink, where structural semantics describes what type of block
can be connected to what other type of block to create a model structure that can be
simulated (implemented by code generators), while the behavioral semantics describes
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how to simulate (what code to generate from) the model.
Having formalized the specification and the abstract syntax of the language, we

have to create a mapping from the language to the semantic domain such that for each
model of the language, a member of the semantic domain and their correspondence
can be derived. This can be done in several ways and is a popular application of
graph/model transformations, logic programs, and the fusion of the two. We have
taken the latter approach provided by the tool FORMULA [JSB12] developed by
Microsoft Research.

FORMULA has been created for the semantic mapping problem described above
[JS09]. The language specification – called a domain – is expressed by term algebras,
and the well-formedness constraints can be expressed by logic statements defined over
the term algebras. It can also express the models of the specification, and is able to
verify the well-formedness constraints, i.e. if the model conforms to its domain. The
semantic mapping is expressed as transformations built on logic programs. Seman-
tic domains can be expressed as FORMULA domains specifying the mathematical
structures as described in [VP03b]. The members of the semantic domains are FOR-
MULA models. For operational semantic domains such as automata, the execution
transitions can also be defined with transformations.

When modeling languages become large, scaling the semantic anchoring tech-
nique becomes challenging. In many cases, we have found that these large modeling
languages can be divided into several interrelated sublanguages. We have developed
techniques for organizing structured semantic specifications for such languages, which
we call a semantic backplane. These techniques are explained in [SLN+12].

3 FORMULA Language

FORMULA [JS09, JSB12] is a constraint-logic programming language based on ab-
stract data types and restricted domains, making it highly applicable to the specifi-
cation and analysis of DSMLs. Here we provide a brief introduction to its syntax and
analysis features.

The basic organizational concepts in FORMULA are domains and transforma-
tions, each of which contain type signatures and inference rules. Intutively, a domain
is a specification for a set of models and a transformation specifies a mapping from
models belonging to one domain to models belonging to another domain. Practically,
domains and transformations are logic programs, the input for which is a model.
These programs are executed by inferring terms until a logical fixpoint is reached.
FORMULA enforces stratified programs which ensures that this fixpoint is unique.

A domain’s type signatures are divided, by use of the primitive keyword, into those
which can be used to build a model’s initial knowledge set and those which can be
used by inference rules. Consider the following domain specification:

domain DirectedGraph {
primitive Vertex ::= (index:Integer).
[Closed(src,dst)]
primitive Edge ::= (src:Vertex, dst:Vertex).

Path ::= (src:Vertex, dst:Vertex).

Path(src, dst) :-
Edge(src, dst);
Edge(src, v), Path(v, dst).

}
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We have two type signatures, Vertex and Edge, which define the typing requirements
for the terms constituting the initial knowledge of a DirectedGraph model. (e.g. Edge
terms are composed of two Vertex subterms.) The Closed directive preceding the Edge
signature indicates that the src and dst subterms of Edge terms must also be top-level
terms within a model. The Path signature, by absence of the primitive keyword, defines
a type for derived terms. The domain also contains a single rule, identified by the :-
symbol, which specifies the logical conditions (right-hand side) under which Path terms
(left-hand side) should be inferred. (The semi-colon denotes top-level alternation.)

A domain can also contain queries, indicated by the := symbol, which are similar
to rules except that the left-hand side is a named constant rather than a term instan-
tiation. For example, we could define the following query for determining whether or
not a DirectedGraph model contains a cycle:

ContainsCycle := Path(v, v).

The special query conforms is used to identify valid models. It can be specified man-
ually to realize correctness constraints and is also populated with various constraints
derived from the type signatures of the domain.

A transformation contains the same types of elements as a domain, but with
important differences. All type signatures are for derived terms since transformations
have no instance models. Additionally, rules are allowed to derive primitive-type terms
in the transformation’s output domain. These inferred terms are collected together
and form the transformation’s output model. The following transformation maps an
input DirectedGraph model to a corresponding output model of the same domain with
all of the edges reversed:

transform ReverseGraph from igraph::DirectedGraph to ograph::DirectedGraph
{

ograph.Vertex(idx) :- igraph.Vertex(idx).
ograph.Edge(v1,v2) :- igraph.Edge(v2,v1).

}

The from igraph::DirectedGraph fragment specifies that the transformation takes an
input model of the DirectedGraph domain and that its type signatures can be referenced
within the transformation by using the igraph. prefix as can be seen in the right-hand
side of the rules. Similarly, the fragment to ograph::DirectedGraph specifies an output
model of the DirectedGraph domain and gives places its type signatures within the
ograph namespace.

A model in FORMULA is a collection of terms corresponding to the type sig-
natures of precisely one domain. Note that FORMULA will process a model which
does not adhere to the conforms query of its assigned domain. However, failure of the
model to adhere to the domain’s type restrictions will result in a compilation error.
For example, consider the following model:

model m1 of DirectedGraph {
Vertex(1)
Edge(Vertex(1), Vertex(2))

}

This example is valid FORMULA, although checking the conforms query for the
model m1 returns false because Vertex(2) is not a top-level term in the model. This
is because the Closed directive does not effect FORMULA’s typing mechanism, but
rather adds constraints to conforms.

In addition to executing domain and transformation programs on models, FOR-
MULA supports integration with the Z3 [DMB08] SMT solver for synthesizing input
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models that satisfy certain desired properties. First we create a partial model, such
as the following:

partial model m2 of DirectedGraph {
Vertex(1) Vertex(2) Vertex(3) Vertex(4)
Edge(_,_) Edge(_,_) Edge(_,_)

}

The underscores indicate unspecified parts of the model. This differs from under-
scores which appear within rules, which are variables that are not bound to an alias.
In this case we have a partial model specifying a search space over 4-vertex, 3-edge
graphs. Actually, 4-vertex graphs with between 1 and 3 edges since FORMULA could
complete the Edge terms in the same way. (Models function as sets of terms; redundant
terms are ignored). There are ways to avoid this behavior, but we will not discuss
them here. We have specified the vertex indices since we consider them unimportant,
provided they are different, as it reduces some unnecessary complexity in the search
space.

We must also select a goal query for the search. We could, for example, use the
ContainsCycle query to get a completion which contains a cycle in it. Alternately,
consider the following additional queries:

Connected := v1 is Vertex, v2 is Vertex, no Path(v1, v2), no Path(v2, v1).
Goal := Connected & ContainsCycle.

As demonstrated by the Goal query, in addition to the logic rule based syntax, we
can also specify a query as the logical composition of other queries using the &, |, and
! operators. In this case, Goal is the logical conjunction of Connected and ContainsCycle.
If we use it as our goal query for the partial model m2, FORMULA will fail to find
a valid completion. This effectively proves that no such configuration exists for the
specific case of 4 vertices and up to 3 edges.

4 Translating Visual Modeling Artifacts to FORMULA

Metamodeling is the preferred method of specifying the abstract syntax of a DSML,
typically paired with a query language such as OCL [OMG03] for expressing addi-
tional well-formedness constraints. In order to be useful, our approach must support
languages that are specified in such a way.

We accomplish this with an automated translation from metamodels created in
the Generic Modeling Environment (GME) [LBM+01] to FORMULA domains. Con-
straints on the language can be expressed directly within the FORMULA domain as
a combination of rules and queries. As of this writing, our tool does not support au-
tomatic translation of OCL constraints, but this has been accomplished by others as
described in [PP13], so there is no theoretical barrier to this. In our framework, we en-
code constraints in FORMULA manually, so we do not demonstrate a correspondence
here.

We demonstrate this translation on a simplified statecharts language taken from
CyPhyML, our Cyber-Physical Systems integration and simulation language described
in [LNS+12, WNO+12]. The metamodel can be seen in Figure 2. The modeling
paradigm consists of states, transitions, junctions, and a TransStart type which is
used as the source of a transition to indicate a default transition. The State, Junction,
and TransStart classes all derive from TransConnector, which can be contained by State
objects and can be the source or destination of Transition objects.
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Figure 2 – GME metamodel of statecharts language

The FORMULA code generated from this metamodel can be seen in Figure 3, with
some minor simplifications, explained in the following paragraphs. The attributes of
the MetaGME classes are inserted into corresponding FORMULA type signatures,
along with attributes that are implicit for certain types of class blocks, such as Source
and Destination for Connection classes like Transition. We also generate additional
type signatures for certain associations, such as StateToTransConnectorContainment, which
clearly corresponds to the containment association between State and TransConnector.
GME objects have hidden unique identifiers, and these are added to the FORMULA
type signatures by the translator. We have removed them as, for this example, they
add needless bulk to the code excerpts.

GME has three types of attribute: Boolean, Enum, and Field. Boolean and Enum
attributes correspond to FORMULA’s built-in Boolean type and enumerated type
signatures, respectively. The Field type represents a generic serializable attribute
and so by default we translate these to FORMULA strings, as can be seen for most of
the attributes in the example. However, sometimes, this is not an ideal solution. In
the case of the Order attribute, we would like to leverage the fact that it is an integer
value without parsing it within FORMULA. We accomplish this by way of translator
plug-ins which can be configured to operate on particular attributes of certain object
types and generate arbitrarily complex FORMULA terms from them. In this case,
we perform only a simple type conversion, converting the Order string to a Natural.
Technically, the Field attribute has a data type setting supporting integers, strings,
and doubles. In practice, the attribute is often left as a string in the metamodel even
when the data value is always a number, as is the case with the Order attribute in this
example.

FORMULA does not support inheritance between type signatures. We resolve this
discrepancy with union types and copying of base class attributes to each derived class.
If the base class is abstract, as with TransConnector, we can simply create a union type
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1 domain StatechartLanguage
2 {
3 StateDecomposition ::= { AND_STATE, OR_STATE }.
4
5 TransConnector ::= State + Junction + TransStart.
6
7 primitive State ::= (Name:String, EnterAction:String, DuringAction:String,
8 ExitAction:String, Decomposition: StateDecomposition, Order:Natural).
9 [Closed(Source,Destination)]

10 primitive Transition ::= (Name:String, Source:TransConnector,
11 Destination:TransConnector, Trigger:String, Guard:String,
12 ConditionAction:String, Action:String, Order:Natural).
13 primitive Junction ::= (Name:String, Order:Natural).
14 primitive TransStart ::= (Name:String).
15 [Closed(Container,Contained)]
16 primitive StateToTransConnectorContainment ::= (
17 Container:State, Contained:TransConnector).
18 }

Figure 3 – Generated FORMULA domain for the Statecharts language

for it as it does not need its own concrete type signature. We have made this simplifica-
tion here, although it is not the default behavior of the translator. The default behav-
ior is to generate union types as needed, such as Transition_Source consisting of all types
allowed to be the source of a Transition, or StateToTransConnectorContainment_Contained.
This technique can result in verbose specifications, but is explicit and works well in
general.

The GME-to-FORMULA translator also supports translation of GME models to
FORMULA models. In fact, the translator always takes a model and its paradigm-
defining metamodel as input and returns the corresponding FORMULA model and
domain, but it is perhaps simpler to think of the translations separately. Figure 4a
contains a visualization of a statechart model which might be built in our simplified
paradigm. This model implements a simple timer mechanism which counts the num-
ber of ticks since it was started with the power button. There are two top-level states:
timer_off and timer_on. The default transition into timer_off initializes the value of
ticks to zero. The substates within the timer_off state implement a transition to the
timer_on state when the power button is pressed and then released. The timer_on state
contains two parallel substates, one substate which implements a similar mechanism
to the one in timer_off and transitioning back to it, additionally resetting the value
of ticks to zero, and one substate which contains a state-transition loop that incre-
ments the value of ticks every time the tick event is processed. There are also default
transitions within the timer_off, timer_on_a, and timer_on_b states.

Figure 4b contains the generated FORMULA code corresponding to this model.
The visual model elements become terms in the FORMULA model. For example,
the timer_on state is translated to the term State("timer_on", "", "", "", AND_STATE, 2)
in line 4 and the elements contained within it (e.g. its substates) are indicated by
StateToTransConnectorContainment terms as seen in lines 12 and 20. The number at the
end of State and Transition terms is used for determining evaluation order in otherwise
nondeterministic conditions. Typically, it is configurable within visual modeling tools,
but is not shown in the diagram, as is the case here.

As of this writing, we have made no attempt to formalize the correspondence
between GME artifacts and the generated FORMULA code. We consider the two
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1 model m1 of StatechartLanguage {
2 ts is TransStart("ts")
3 timer_off is State("timer_off", "", "", "", OR_STATE, 1)
4 timer_on is State("timer_on", "", "", "", AND_STATE, 2)
5 power_up is State("power_up", "", "", "", OR_STATE, 1)
6 StateToTransConnectorContainment(timer_off, power_up)
7 power_down is State("power_down", "", "", "", OR_STATE, 2)
8 StateToTransConnectorContainment(timer_off, power_down)
9 timer_off_ts is TransStart("timer_off_ts")

10 StateToTransConnectorContainment(timer_off, timer_off_ts)
11 timer_on_a is State("timer_on_a", "", "", "", OR_STATE, 1)
12 StateToTransConnectorContainment(timer_on, timer_on_a)
13 timer_on_a_ts is TransStart("timer_on_a_ts")
14 StateToTransConnectorContainment(timer_on_a, timer_on_a_ts)
15 on_power_down is State("on_power_down", "", "", "", OR_STATE, 1)
16 StateToTransConnectorContainment(timer_on_a, on_power_down)
17 on_power_up is State("on_power_up", "", "", "", OR_STATE, 2)
18 StateToTransConnectorContainment(timer_on_a, on_power_up)
19 timer_on_b is State("timer_on_b", "", "", "", OR_STATE, 2)
20 StateToTransConnectorContainment(timer_on, timer_on_b)
21 timer_on_b_ts is TransStart("timer_on_b_ts")
22 StateToTransConnectorContainment(timer_on_b, timer_on_b_ts)
23 counter is State("counter", "", "", "", OR_STATE, 1)
24 StateToTransConnectorContainment(timer_on_b, counter)
25 Transition("", ts, timer_off, "", "", "", "ticks = 0", 1)
26 Transition("", timer_off_ts, power_up, "", "", "", "", 1)
27 Transition("", power_up, power_down, "power_press", "", "", "", 1)
28 Transition("", power_down, timer_on, "power_release", "", "", "", 1)
29 Transition("", timer_on_a_ts, on_power_up, "", "", "", "", 1)
30 Transition("", on_power_up, on_power_down, "power_press", "", "", "", 1)
31 Transition("", on_power_down, timer_off, "power_release", "", "", "ticks = 0", 1)
32 Transition("", timer_on_b_ts, counter, "", "", "", "", 1)
33 Transition("", counter, counter, "tick", "", "", "++ticks", 1)
34 }

(b) Generated FORMULA code

Figure 4 – Statechart example model
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to be different representations of the same information. While some projects may
require a level of certainty which demands verification of this, we leave it as a matter
for future work.

5 Semantic Specifications in FORMULA

We distinguish between several different types of semantic specifications which we can
define in FORMULA. The structural semantics is a formalization of the well-formed
structures that a language model can consist of [JS09]. In FORMULA, this is realized
with a domain specification, consisting of a set of type signatures for constructing
models and a set of constraints for determining which model configurations are well-
formed. We can generate the type signatures from a metamodel as described in
Section 4. Constraints are realized with FORMULA queries (as well as logical rules
if implication is needed). For example, in our statecharts language, a TransStart is
intended to be used as the source of a transition to flag it as a default transition. It
does not make sense to use it as the destination of a transition, but the specification
given by the MetaGME diagram in Figure 2 does not prevent this (nor does the
corresponding FORMULA domain in Figure 3). We could identify the models with
such a configuration with the following simple query:

TransStartIsDst := Transition(_,_,dst,_,_,_,_,_), dst in TransStart.

We can then add this restriction to the structural semantics by including the
logical negation of the above query in the domain’s conforms query.

If a modeling language describes computation, then its semantics can be specified
by pairing the language domain with the necessary constructs to describe its execution
state and defining a set of mappings from one execution state to the next (based on
model structure and input). This is called an operational semantics. In the case of
our statechart language, we would need to add some sort of active state indicator to
the domain. We could then define a transformation from the language domain back
to itself which alters the active state based on some input event (e.g. power_release
as seen in the diagram in Figure 4a) and the structure of the model. To completely
specify the operational semantics of this language (such that it is executable), we
would also need to specify the semantics of the action/condition language.

Another way to specify the semantics of a modeling language is by mapping it to
another language. In general, this is known as translational semantics. Of course,
the usefulness of such a specification depends on the target language of the mapping,
which we call the semantic domain. One option is to use a formal mathematical nota-
tion as the semantic domain, in which case we usually call the semantics a denotational
semantics. Another option is to combine this approach with operational semantics
by specifying a mapping from the language domain to one that has a well-defined op-
erational semantics. This is essentially what a programming language compiler does,
translating from some programming language to a machine language for which the
operational semantics is realized by the hardware.

We have found that translational semantics is effective for specifying the meaning
of modeling languages for which an operational specification is either inconvenient or
infeasible. In the case of CPS, we integrate models which describe physical processes
alongside those which describe computational processes. The behavior of these phys-
ical processes is described by continuous trajectories, and so we specify the semantics
of these languages via a mapping to a system of differential equations. More details
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on this topic can be found in [SLL+13a].
The techniques described in this paper are based on translational semantics. For

our statecharts language, we have used the specification approach involving a combi-
nation of translational and operational semantics, although the operational semantics
is not specified in FORMULA. This is not a problem since our discussion in this paper
is only concerned with the translational aspect of the semantics.

An operational semantics for a subset of the Stateflow language, a common variant
of statecharts, is defined in [HR07]. The authors develop a mathematical notation,
shown in Figure 5a, corresponding to Stateflow’s standard visual representation and
define execution step mappings on this notation. Their specification is sufficient to
define the behavior of our language. To use their notation as a semantic domain,
we have created a FORMULA domain matching its structure, which can be seen in
Figure 5b. In some cases, our encoding adds subscripts to differentiate elements. (e.g.
The source notation denotes (a, a, a) a triple of actions within a state definition that
gives the enter action, during action, and exit action respectively. We distinguish
between them as a_en, a_du, and a_ex.) This notation is essentially at the same level of
abstraction as our language, but has significant notational differences, some of which
include:

1. In our language, transitions are top-level elements which have a source and
destination attribute whereas in this notation they are owned by the source and
have a destination attribute.

2. The source and destination attributes of transitions in our language refer directly
to the relevant state or junction whereas in this notation the destination either
directly refers to a junction or gives a list, called a path, giving the containment
hierarchy of the relevant state in top-down sequence.

3. Our language uses a set of relation terms to describe concepts such as the set
of elements contained within another element whereas this notation uses lists
(e.g. as an attribute on the container).

The source paper [HR07] should be consulted for further details.
Unfortunately, the mapping to this domain, which we call the semantic mapping,

is too large to be included in its entirety, partly because the semantic domain uses a
list-based notation which requires considerable work to construct in the FORMULA
transformation. On the other hand, the notational disparities between the two lan-
guage domains makes for a good example as there are many opportunities for errors.
Some of the details of the transformation, however, are described as needed in Sections
6 and 7.

6 Validation Axioms

The semantic mapping is typically considered an axiom/definition – the reference
point for which implementation behavior is compared to determine correctness. How-
ever, it may be that it does not properly implement, or contradicts, the informal
interpretation held by the language designer. We emphasize that the formal frame-
work may be flawless: precise, unambiguous, even formal. But if it contradicts the
intentions of the language designer, the result is a counterintuitive DSML. This situ-
ation imposes real validation requirements on the semantic mapping itself.
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composition C = Or(sa, p, T, SD) | And(b, SD)

state definition sd = ((a, a, a), C, Ti, To, J)
state definition list SD = {s0 : sd0; ...; sn : sdn}

junction definition list J = {j0 : T0; ...; jn : Tn}

transition t = (et, c, a, a, d)
transition list T = ∅T | t.T

state s active state sa = ∅s | s
junction j
path p = ∅p | s.p destination d = p | j
event e transition event et = ∅e | e
action a condition c

(a) Mathematical notation as defined by Hamon in [HR07]

1 domain Stateflow
2 {
3 NullType ::= {NULL}.
4
5 Composition ::= OrComp + AndComp.
6 primitive OrComp ::= (s_a:ActiveState, p:Path, T:TransitionList,
7 SD:StateDefList).
8 primitive AndComp ::= (active:Boolean, SD:StateDefList).
9

10 primitive StateDef ::= (a_en:String, a_du:String, a_ex:String, C:Composition,
11 T_i:TransitionList, T_o:TransitionList, J:JuncDefList).
12 StateDefList ::= StateDefListNode + NullType.
13 primitive StateDefListNode ::= (s:String, sd:StateDef, rest:StateDefList).
14
15 JuncDefList ::= JuncDefListNode + NullType.
16 primitive JuncDefListNode ::= (j:String, T:TransitionList, rest:JuncDefList).
17
18 primitive Transition ::= (e_t:TransitionEvent, c:String, a_c:String,
19 a_t:String, d:Destination).
20 TransitionList ::= TransitionListNode + NullType.
21 primitive TransitionListNode ::= (t:Transition, rest:TransitionList).
22
23 Path ::= NullType + PathNode.
24 primitive PathNode ::= (s:String, rest:Path).
25
26 ActiveState ::= String + NullType.
27 Destination ::= Path + String.
28 TransitionEvent ::= String + NullType.
29 }

(b) FORMULA domain describing notation structure

Figure 5 – Stateflow language used as semantic domain
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Axiom Description Inconsistency Query
Each State element from the input model must be
mapped to an output model element of the appro-
priate type. (e.g.: State → Path is not allowed.)

WrongStateMapping

Each Transition from the input model should only
be mapped to an output model element of the
appropriate type. (e.g.: Transition → StateDef is
not allowed.)

WrongTransitionMapping

Each Transition from the input model must map
to a Transition in the output model.

MissingTransitionMapping

No Transition from the input model should be
mapped to more than one Transition in the output
model.

TooManyTransitionMappings

Each State from the input model should be
mapped to both a StateDef and a Composition.

MissingStateMapping

No State from the input model should be mapped
to more than one StateDef or Composition.

TooManyStateMappings

The length of a Path to a state must match the
depth of the state in the input model.

WrongStatePathLength

Table 1 – Validation axioms

One solution that FORMULA provides is the ability to execute the transformation
on test cases. This, while useful in itself, provides no formal or precise mechanism to
conclude that the transformation is consistent with the language designer’s assump-
tions for the semantic mapping. Of course, in order to achieve this, we first need to
identify the designer’s informal assumptions and formalize them as a set of axioms.
Table 1 gives an overview of some of these axioms we have identified for the semantic
mapping of our statecharts language.

We note that we are not presenting a technique for deriving a meaningful and
complete set of validation axioms. This is left to the intuition of the language designer,
although it can have other sources as well (e.g. the language requirements). We have
not changed the language designer’s responsibility to create a meaningful specification.
What we present is an approach for mitigating the abstraction level gap between a
detailed semantic specification and its author’s intentions and validating that this gap
does not introduce inconsistencies.

If the semantic mapping were specified in QVT [OMG08], as is common for visual
modeling language transformations, we could encode these axioms as OCL constraints
and check that they are preserved for specific input models. We use FORMULA
instead as it supports a higher level validation approach by searching for instances
which violate the constraints. This is described in Section 7.

We formalize these validation axioms within FORMULA as queries which iden-
tify the conditions under which they are violated and insert them into the semantic
mapping transformation. For example, the following query identifies situations in
which a transition from the input model is mapped to an incorrect element type in
the semantic domain:

WrongTransitionMappingTypes ::= out1.NullType + out1.StateDef + out1.Composition
+ out1.StateDefList + out1.JuncDefList + out1.TransitionList + out1.Path.

WrongTransitionMapping :=
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MappingRelation(trans, target), trans in in1.Transition,
target in WrongTransitionMappingTypes.

We specify all of the invalid types in a union type signature and query over in-
stances of the MappingRelation term which relate an in1.Transition term to any term
belonging to this union type. The identifiers in1 and out1 refer to the input and output
namespaces within the transformation. The MappingRelation term is generated by each
rule in the transformation which generates output model terms. This is accomplished
manually with rules that take the following form:

MappingRelation(in_trans, out1.Transition(a,b,c,d,e)),
out1.Transition(a,b,c,d,e) :-

...

In this way, for each matching of the right-hand side of the rule we generate a
transition in the output model as well as a temporary term which records the input
model term that we mapped to it. Summarizing, we identify cases where a transition
from the input model is mapped to something it should not be in the output model.

This approach of instrumenting the transformation with inconsistency queries
could be compared to assertions about the run-time behavior of a program inserted
into the text of the program. It is distinguished significantly in two ways: (i) FOR-
MULA’s declarative nature means that the location of the queries within the trans-
formation is not important and (ii) assertions are typically checked at run-time to
validate that a program behaves correctly on a given input configuration, whereas
we use these queries as a search goal for synthesizing input configurations for which
the transformation does not behave correctly. Section 7 contains examples of this
validation process.

7 Resolving Errors

We claim that a semantic specification can have errors, in particular with respect to
agreement with the informal assumptions made by the language designer. We have
shown how we formalized the designer’s assumptions in order to pose the issue as
a validation problem. We will now present some examples illustrating synthesized
counterexamples and the resolution of inconsistencies between the semantic mapping
and the formalized assumptions about it.

7.1 Semantic Mapping Errors

In FORMULA, we can define partial models, which are simply models that leave some
details unspecified. Figure 6 contains an example of a partial model in our statecharts
language. The _ character represents an unspecified subterm within a term. This par-
tial model contains three states with unspecified decomposition, ordering index, and
containment hierarchy as well as two transitions with unspecified source, destination,
and ordering index. It is not interesting from a behavioral perspective, but we are
concerned primarily with structural properties of the semantic mapping, which are
realized by the validation axioms. The key idea is that this partial model specifies
a search space which may contain instances under which the structural properties in
question do not hold.

The operational semantics specified for the semantic domain in [HR07] leaves the
condition/action language abstract. As such, the particular values of the actions and
conditions for states and transitions are of little importance to this exercise. We
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1 partial model m2 of StatechartLanguage {
2 State("s1", "s1_enter", "s1_during", "s1_exit", _, _)
3 State("s2", "s2_enter", "s2_during", "s2_exit", _, _)
4 State("s3", "s3_enter", "s3_during", "s3_exit", _, _)
5 StateToTransConnectorContainment(_, _)
6 StateToTransConnectorContainment(_, _)
7 Transition("t1", _, _, "t1_trig", "t1_cond", "t1_cond_action", "t1_action", _)
8 Transition("t2", _, _, "t2_trig", "t2_cond", "t2_cond_action", "t2_action", _)
9 }

Figure 6 – Partial model of statecharts language domain

have used simple identifiers in this example such as s1_enter to indicate the enter
action of state s1, in order to easily discern what these items are mapped to by the
transformation.

We can use FORMULA to try to find a completion for this partial model under
specific search goals, such as conformance to its domain. We can also supply an
expression indicating the application of the semantic mapping transform to the partial
model as a search term and use the transform’s validation axiom queries (Table 1) as
search goals. Since the queries identify the conditions under which the axioms do not
hold, we effectively synthesize a model which proves the inconsistency between the
language designer’s intentions and the behavior of the semantic mapping.

To illustrate the use of this model finding approach to identify and correct errors in
the semantic mapping, we can search for a completion of the partial model which will
satisfy the conformance requirements of its domain as well as violate the validation
axiom that each state’s path in the semantic mapping should have a length equal to
the state’s containment depth in the input model by using the following query as a
goal:

Goal := WrongStatePathLength & in1.conforms.

Figure 7a shows a completion for this search problem. The key feature of this
completion is that we have a state (s1) contained within a state (s2) contained within
a state (s3), as can be seen in its diagram in Figure 7b. The semantic mapping
achieved by applying our transformation to this completion can be found in Figure 7c.
We have added aliases to the FORMULA models where possible to make them more
compact and easier to read, and the abstract actions and conditions are not shown in
the diagram as they add unnecessary clutter.

The problem with the semantic mapping of this model is that the PathNode list to
each state is of length 1 (second subterm of each OrComp term), despite the varying
containment depths of the states. Based on the validation axioms, we would expect
state s2 to have a path length of 2 since it is contained within state s1 and we would
expect state s1 to have a path length of 3 since it is further contained within state s2.
We consider this an error in the semantic mapping.

The root cause of this error was with the way the FORMULA transformation
computed a PathNode list to a state. In the semantic domain, this list gives a path to
a state starting at a top-level state and traversing down the containment hierarchy,
which is used in the operational semantics in [HR07] to easily determine the lowest
common ancestor between transitioned states. The transformation first computes
these paths in a bottom-up direction and then reverses them for each state. The
rule which reverses the paths maps individual nodes in the bottom-up list to their
corresponding nodes in the top-down list, and thus the first node in the former maps
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1 model m2comp of StatechartLanguage {
2 s1 is State("s1","s1_enter","s1_during","s1_exit",OR_STATE,1)
3 s2 is State("s2","s2_enter","s2_during","s2_exit",OR_STATE,1)
4 s3 is State("s3","s3_enter","s3_during","s3_exit",OR_STATE,1)
5 StateToTransConnectorContainment(s2,s1)
6 StateToTransConnectorContainment(s3,s2)
7 Transition("t1",s1,s1,"t1_trig","t1_guard","t1_action_cond","t1_action",2)
8 Transition("t2",s1,s1,"t2_trig","t2_guard","t2_action_cond","t2_action",1)
9 }

(a) Completion of partial model

s1

s2

s3

(b) Visualization of model completion

1 model m2sem of Stateflow {
2 s1comp is OrComp(NULL,PathNode("s1",NULL),NULL,NULL)
3 s2comp is OrComp(NULL,PathNode("s2",NULL),NULL,StateDefListNode("s1",s1sd,NULL))
4 s3comp is OrComp(NULL,PathNode("s3",NULL),NULL,StateDefListNode("s2",s2sd,NULL))
5 s1sd is StateDef("s1_enter","s1_during","s1_exit",s1comp,NULL,
6 TransitionListNode(t2,TransitionListNode(t1,NULL)),NULL)
7 s2sd is StateDef("s2_enter","s2_during","s2_exit",s2comp,NULL,NULL,NULL)
8 s3sd is StateDef("s3_enter","s3_during","s3_exit",s3comp,NULL,NULL,NULL)
9 StateDefListNode("s3",s3sd,NULL)

10 t1 is Transition("t1_trig","t1_guard","t1_action_cond","t1_action",
11 PathNode("s1",NULL))
12 t2 is Transition("t2_trig","t2_guard","t2_action_cond","t2_action",
13 PathNode("s1",NULL))
14 }

(c) Semantic mapping

Figure 7 – Error-causing example
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to the last node in the latter, which is a one-element list. We resolved this error by
taking the mapping of the last node in the bottom-up list instead of the first.

This illustrates the concept that when a semantic specification is expressed on
a low level of abstraction, it can start to resemble an implementation and exhibit
defects in much the same way. By this we mean that the specification disagrees with
its author’s understanding of it. This is why we promote the use of a redundant,
higher-level specification which corresponds more directly to the intentions of the
language designer.

7.2 Structural Semantics Errors

Our validation efforts in this paper are primarily focused on the semantic mapping
transformation, but this approach often uncovers issues in the structural semantics
specification of the language. We demonstrate this with an example that is somewhat
at the discretion of the language designer, but which we choose to resolve in the
structural semantics.

We use the same partial model as before from Figure 6 and search for a completion
which satisfies the conformance of of the language domain and results in a semantic
mapping which has more state definitions than the input model. This is accomplished
using the following query as a goal:

Goal := TooManyStateMappings & in1.conforms.

The completion we found can be seen in Figure 8a with its diagram in Figure 8b.
Notably, there are two states, s2 and s3, contained within a parent state s1, and the
order indices on states s2 and s3 are not adjacent. We can see in its semantic mapping,
shown in Figure 8c, that the state s1 is mapped to two different state definitions: one
which contains state s2 and one which contains state s3. Additionally, two top-level
state lists are created.

The reason for this is that the transformation created separate substate lists for
each of s2 and s3. In the semantic domain, the execution order of parallel states
and multiple active transitions is determined by the order of items in lists. As such
the transformation bases the ordering of the lists on the Order attribute of states (or
transitions). However, the transformation is written such that it assumes that these
values will be adjacent among items that go into the same list. The result is that
when they are not adjacent, a list is created for each set of adjacent values. We
create temporary terms in the transformation that pair these lists with the element
they belong to. These temporary terms appear on the right-hand side of rules that
generate output model elements, resulting in multiple output model elements being
generated (since the right-hand side is matched for each additional list pairing).

This can be considered a problem in either the input domain’s structural seman-
tics specification or in the semantic mapping transformation. More accurately, the
problem is a disagreement between the two which could be resolved by a change to
either. We take the position that it is better in this case to alter the structural se-
mantics for multiple reasons, namely: (i) it is easier in FORMULA to build a list
ordered by sequential values than it is to do so from arbitrary values which must be
sorted, and (ii) the necessary changes for the structural semantics constitute adding
constraints, which will reduce the language domain; on the other hand, changing the
transformation would require that any other validation exercises be repeated.

Our solution is to extend the structural semantics with the requirement that within
particular contexts (e.g. states contained by the same parent state, transitions from
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1 model m2comp2 of StatechartLanguage {
2 s1 is State("s1","s1_enter","s1_during","s1_exit",OR_STATE,1)
3 s2 is State("s2","s2_enter","s2_during","s2_exit",OR_STATE,1)
4 s3 is State("s3","s3_enter","s3_during","s3_exit",OR_STATE,3)
5 StateToTransConnectorContainment(s1,s2)
6 StateToTransConnectorContainment(s1,s3)
7 Transition("t1",s1,s1,"t1_trig","t1_guard","t1_action_cond","t1_action",2)
8 Transition("t2",s1,s1,"t2_trig","t2_guard","t2_action_cond","t2_action",1)
9 }

(a) Completion of partial model

s3s2

s1

(b) Visualization of model completion

1 model m2comp2sem of Stateflow {
2 s1compa is OrComp(NULL,PathNode("s1",NULL),NULL,
3 StateDefListNode("s2",s2sd,NULL))
4 s1compb is OrComp(NULL,PathNode("s1",NULL),NULL,
5 StateDefListNode("s3",s3sd,NULL))
6 s2comp is OrComp(NULL,PathNode("s1",PathNode("s2",NULL)),NULL,NULL)
7 s3comp is OrComp(NULL,PathNode("s1",PathNode("s3",NULL)),NULL,NULL)
8 s1sda is StateDef("s1_enter","s1_during","s1_exit",s1compa,NULL,
9 TransitionListNode(t2,TransitionListNode(t1,NULL)),NULL)

10 s1sdb is StateDef("s1_enter","s1_during","s1_exit",s1compb,NULL,
11 TransitionListNode(t2,TransitionListNode(t1,NULL)),NULL)
12 StateDefListNode("s1",s1sda,NULL)
13 StateDefListNode("s1",s1sdb,NULL)
14 t1 is Transition("t1_trig","t1_guard","t1_action_cond","t1_action",
15 PathNode("s1",NULL))
16 t2 is Transition("t2_trig","t2_guard","t2_action_cond","t2_action",
17 PathNode("s2",NULL))
18 }

(c) Semantic mapping

Figure 8 – Example exhibiting structural semantics issue
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the same source), the order value must be an increasing sequence of adjacent integers
starting at 1. We add this requirement to the structural semantics by creating queries
which identify models that violate it and then adding the logical negation of these
queries to the language domain’s conforms query. The following query applies to the
particular context of states contained by the same parent state:

InvalidSubstateOrder :=
in1.StateToTransConnectorContainment(parent,in1.State(_,_,_,_,_,n)), n!=1,
m=n-1, no in1.StateToTransConnectorContainment(parent,in1.State(_,_,_,_,_,m)).

conforms :=
!InvalidSubstateOrder & ...

We note that there are other constraints for the language domain which could be
discovered using this approach. For example, states (and other TransConnector types)
should not be contained within more than one state. We could discover this particular
problem with the same goal query used above, since states contained within more than
one parent would result in multiple paths to each state, which would also result in
mappings to duplicate state definitions in the semantic domain. This is clearly a
structural semantics issue since it does not make sense for states to be contained
within more than one parent.

8 Critical Discussion

The key insight we propose is that a semantic mapping for a modeling language can be
validated against the informal intentions of its designer. We demonstrate that these
intentions can be formalized as a set of axioms over the semantic mapping in order to
facilitate reasoning about the consistency between the two. Validating (or verifying)
this consistency increases confidence in the semantic mapping in two respects:

1. The validation axioms constitute a redundant semantic specification for the
modeling language in axiomatic form. Inconsistency between redundant speci-
fications implies an error in at least one of them.

2. The language designer’s intentions for the semantic mapping can become ob-
fuscated by the details necessary to precisely and completely realize it. The
validation axioms are less detailed and thus it is easier for the designer to judge
the correspondence of them to his intentions.

We emphasize that this consistency does not imply correctness of the semantic map-
ping (which is in principle a tautology), but rather that inconsistency implies and
helps to identify mistakes.

We present a framework prototype, based on FORMULA, which supports the
proposed validation approach. This framework allows for partial automation of the
workflow. The modeling language domain specification in FORMULA is automati-
cally generated from a metamodel. We specify the semantic domain and the semantic
mapping manually as we do not have counterparts for them in visual modeling tools.
The framework could be extended to translate these artifacts as well, if desired. Val-
idation axioms are specified as queries in the semantic mapping. Finally, we specify
partial models manually and perform automated goal-based completion on them.
This exposes the analyst to some of the features of SMT solvers without requiring
expertise in them. Expertise with FORMULA is required, but we have found it to
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be a relatively easy language to learn, especially given prior experience with logic
programming.

Despite its advantages, we have encountered challenges within our FORMULA-
based framework. In general, the automated formal validation or verification of a
model transformation is a hard problem. In particular, the partial model completion
operation scales poorly based on the size of the language domain specification, the
semantic mapping, and the partial model. A detailed exploration of this scalability is
beyond the scope of this work. There are also techniques which can be used to mitigate
this issue, an investigation of which we leave as a topic for further research. These
could include decomposing the semantic mapping based on independent components,
using many small, focused partial models as opposed to a few large ones, and creating
custom search algorithms for the partial models. We emphasize, however, that our
semantic mapping validation approach is independent of the particular formalization
framework and analysis workflow, the choice of which should be based on the needs
of individual projects.

9 Related Work

There are numerous papers that deal with semantic mappings. For this paper we
summarized a few that help to clarify the main concepts in Section 2. In addition to
those, [HKR+07] adds algebraic operators for model compositions.

There are several environments that support automated semantic transformations
besides FORMULA, such as Maude [RGdLV09] and Alloy [ABK07]. FORMULA
differs from these tools by featuring integration with an SMT-solver and a logic-
programming paradigm over algebraic data types.

This paper includes a description of our approach to specifying modeling languages
and their semantics within FORMULA. We have published a number of papers previ-
ously which deal with this topic from different perspectives. We consider the advan-
tages of parallel operational and denotational semantic specifications in [LSM+13].
We present a framework for the specification of DSMLs based on Cyber-Physical Sys-
tems in [SLL+13a] and in [SLL+13b] we describe the specification of formal semantics
for Cyber-Physical components. In [SLN+12] we discuss our structured approach for
specifying the semantics of large, heterogeneous, and continuously evolving modeling
languages, which we have termed semantic backplane.

The approach presented in this paper is comparable to one found in [CCGT09]
by Combemale et al. in that both address the issue of affirming a semantic mapping.
The cited paper deals with verifying the equivalence between a reference semantics
and a secondary semantics. The idea is that the reference semantics is an operational
semantics at the abstraction level of the language and the secondary semantics is
specified via a mapping to another domain with operational semantics. The mapping
is verified with a bisimulation proof. We consider this approach to be more effective
in the case where the domain and range of the semantic mapping have operational
specifications, but it is not applicable if either does not. (They could be added, but
we consider this infeasible in some cases.) Our approach, by contrast, constitutes a
validation of the semantic mapping against the informal intentions of the language
designer. We accomplish this by creating a formalized set of axioms which reflect
these intentions and reasoning about the consistency of the semantic mapping with
these axioms. As such, our approach is applicable in cases where there is no method
for defining the equivalence of language models and semantic models other than the
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semantic mapping itself.
There are tools and methods for automated and semi-automated verification of

model transformations [Sch10, ALL10, GdLW+13, VP03a] as categorized in [ALS+12].
Schätz discusses the verification of declarative relational model transformations using
an interactive theorem prover in [Sch10]. Our work differs primarily by considering
the special case where the transformation is a semantic mapping and by the use of
informal design intentions as a validation basis.

Guerra et al. propose a declarative language in [GdLW+13] for expressing “trans-
formation contracts” in a way that is independent of the language used by the trans-
formation. These contracts are compiled to QVT in order to verify them on a set of
models. Again, our work differs by considering the special case of a semantic map-
ping. Futhermore, we strive for a higher level of validation by searching for models
which demonstrate inconsistency.

An automated approach for verifying that model transformations preserve proper-
ties is presented by Varró and Pataricza [VP03a] which consists of verifying a property
P on an input model using a model checker, transforming the model, and validating
a corresponding property Q on the output model, also using a model checker. (The
intent is that Q is equivalent to P , but in the output modeling domain.) The paper
places the focus on determining whether a transformation preserves certain prop-
erties in particular transformed models, which differs from our focus of validating
correspondence properties of the transformation in general.

A recent overview of the approaches to model transformation verification can
be found in [CS13]. We are not aware of any other contributions that provide a
discussion of formal semantics, emphasize the translation of informal design intentions
and intuitions into formal validation axioms, and provide methods for validating the
consistency of the specification.

10 Conclusion

In the DARPA Adaptive Vehicle Make (AVM) program, we have addressed the chal-
lenge of specifying the semantics of a Cyber-Physical Systems integration language
[SLN+12]. The method described in this paper was developed in this context, where
we must maintain a structured semantic specification of a large, heterogeneous, and
continuously evolving modeling language. The size and complexity of this specifica-
tion requires that we validate that it behaves as expected.

In this paper we have detailed an approach for validating that the semantics of
a modeling language is consistent with the designer’s intentions (or potentially with
the behavior of already-existing tools). To this end, we advocate formalizing a set
of axioms that directly reflect the designer’s informal intentions about the semantic
mapping. Our case study outlines a framework for validating the consistency of these
axioms with the semantic mapping. Alternately, this consistency could be established
formally as a verification. This would still constitute a validation of the semantic
mapping since we cannot in principle know that the validation axioms are correct any
more than we can know that the semantic mapping is correct.

We have provided a formalization framework based on FORMULA and presented
a case study for our validation approach within this framework. The case study
regards a statecharts language which we specify the semantics of via a mapping to
Stateflow as defined in [HR07]. We demonstrate with examples that it is possible
for a semantic mapping to behave in unintended ways and that our approach can be
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instrumental in identifying this unintended behavior.
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