JOURNAL OF OBJECT TECHNOLOGY

Published by AITO — Association Internationale pour les Technologies Objets
http://www.jot.fm/

Do Tools Support Code Integration?
A Survey

Martin Dias® Stéphane Ducasse® Damien Cassou?
Verénica Uquillas-Gomez®

a. RMoD team, Inria Lille Nord Europe, University of Lille, CRIStAL

b. Norizzk.com

Abstract

Integrating changes made by other developers is a difficult and tedious process.
To understand how to help integrators, we first need to know the main questions
they ask themselves while integrating and then relate these questions to the tool
support that is needed. With this information, researchers and tool developers
will be able to focus on the important questions that have little tool support.

In this paper, we report on a 2-step study. In the first step, we did an open
call to integrators. We ask them to list questions they ask themselves when they
integrate a change. In the second step, based on the questions gathered during the
first step and a literature survey, we built a list of 46 questions and run a survey to
rank the importance of each question and if the level of tool support was adequate.
We present the results we collected. Additionally, we present a taxonomy of the
questions according to the kind of information that tools need to answer such
questions.

We found out that some questions like “Who is the author of this changed
code?” are important and have good tool support whereas others like “Do all the
changes within the commit belong together? (Can we split the commit?)” are
moderately to extremely important and have no tool support.

1 Introduction

Software is in constant evolution [DDNO2]. In a software project, code changes represent bug
fixes, enhancements, new features and adaptations due to changing domains. The evolution
of a project codebase is usually managed in a revision control system that supports branches.
Developers perform code changes in a branch and often such changes should be merged into
another branch. This activity is called integration. Integration of changes is a difficult activity
and poses substantial challenges [UG12, GZSvD15]. Focused on understanding development
challenges, several research works [LM10, PTL+11,SMDV0S,FM10] systematically charac-
terize what questions developers need to answer when working. These works present catalogs
(i.e., lists) of questions that serve as a basement for research on new tools to improve the

Martin Dias, Stéphane Ducasse, Damien Cassou, Verénica Uquillas-Gémez. Do Tools Support Code Integration? A Survey.
Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). In Journal of Object Technology, vol. 15, no. 2,
2016, pages 2:1-20. doi:10.5381/j0t.2016.15.2.a2

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2016.15.2.a2
http://dx.doi.org/10.5381/jot.2016.15.2.a2
http://dx.doi.org/10.5381/jot.2016.15.2.a2

2 - Martin Dias, Damien Cassou, Verénica Uquillas-Gémez and Stéphane Ducasse

performance of developers. Besides these results are useful for development in general, there
are no catalogs focused specifically on integration. A recent survey [GZSvD15] proposes
some questions to characterize pull requests but the authors do not focus on a systematic
characterization of questions that integrators ask themselves. There is not enough research
done for knowing qualitatively and quantitatively these challenges.

The main contributions of this paper are:

1. A catalog of 46 questions that integrators ask when performing integration of changes.
The main motivation behind obtaining these questions is to identify and understand
what are the information needs and tool support of developers that deal with integration
activities (Section 4).

2. An evaluation of each question of this catalog. For each question, the participants
had to rank the importance and the support that tools offer. In a period of 5 months
we received the answers of 42 integrators who integrate changes on diverse software
projects (Section 5).

3. A taxonomy of the questions according to the kind of information that tools need
to answer such questions. Since the final purpose of collecting and evaluating the
integrator’s questions is to improve their tools, we present a tentative classification of
the information required to answer such questions (Section 6).

2 Vocabulary

In this section we introduce the definitions and terminology that we use in the rest of this
article. Not all of them are well-known or standard terminology in the context of integration
of software changes, therefore we define them explicitly.

Code Changes. A code change is any alteration to the codebase of a program. Often,
development tools manipulate code changes as mere text changes i.e., as insertion and
removal of lines of text in the a sources file. However, since the source files represent
code entities of the program, code changes are removals, additions and modifications to
code entities.

Commits. A commit in the context of version control systems (VCS) refers to the act of
submitting code changes to a repository. A commit can also refer to the group of
additions, modifications and removals made to the source code that developers submit to
the repository and result in a new revision (also known as version). For example, if a set
of changes (commit) cross-cuts three packages, such changes are submitted separately
resulting in three package versions.

Deltas. A delta is a set of changes representing the differences between two successive
commits in the history.

Sequences of changes. Sometimes, developers perform a single task (e.g., implementing a
new feature) spread over several commits. We call sequence of changes (or sequence of
commits) to several commits in the history of a program which are related to a single
task.

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

Do Tools Support Code Integration? ASurvey - 3

3 Related Work

Questions about Code. LaToza and Myers [LM10] conducted a survey to investigate the
questions that developers consider hard-to-answer. From the answers of 179 developers at
Microsoft, the authors collected 371 questions like “Are the benefits of this refactoring worth
the time investment?”, “Is this functionality already implemented?”” or “How does this code
interact with libraries?”. The authors classified these questions in 10 categories: rationale,
debugging, policies, history, implications, implementing, refactorings, teammates, building
and branching, and testing. They concluded that having a better understanding of developers’
information needs may lead to new tools, programming languages, and processes that make
hard-to-answer questions less time consuming or error prone to answer.

Study on Pull-Request. Gougios et al. [GZSvD15] performed a study focused on the quality
model that developers have in mind when they accept pull-requests on GitHub. Some questions
characterize the projects (frequency of pull-requests, tools used to assess and perform the
merge, kind of requests). Then, they asked developers to rank factors of acceptance or rejection:
presence of tests, number of commits, comments, etc. They asked how the code is reviewed,
how the requests are sorted. The work style of the developer is also considered. While the
poll focuses on pull-requests, it is difficult to classify the underlying questions according to
different perspectives.

Costs and Benefits of Branching. Bird and Zimmermann [BZ12] presented a survey on
how developers use branches, and an empirical analysis of cost and benefit of branches in
diverse scenarios. The analysis aims at determining the usefulness of a branch in terms of
cost-benefit. The rationale is that useless (high-cost-low-benefit) branches can produce severe
impact on the development process of a large project (e.g., missing deadlines and increased
failures). The authors consider integration as an error-prone activity and propose high-level
operations to restructure branches to reduce the number of useless branches. While the survey
is restricted to developers at Microsoft, the results are generalizable.

Study on Integration Decisions. Phillips ef al. [PRS12] performed a study focused on how
developers of a large-scale system make branching and integration decisions while managing
releases. They evaluated a survey they previously elaborated [PSW11] by conducting semi-
structured interviews with seven developers of a company. The authors found that developers
making decisions need to consider 10 factors, such as potential conflicts, bug counts, and
dependencies between branches. The authors also identified the information needed to support
integration. Release decision makers need to predict storms of conflicts, detect pressure
building up from non-integrated changes, monitor code flow between branches (what is the
frequency of integrations), and track branch health (metrics such as test results, bugs, and task
completion at branch level).

Empirical Study on Branching and Merging. Premraj et al. [PTL*11] presented an em-
pirical study that observed developers branching without considering the consequences on
merging. The goal of the study was to understand the implications of such branching for the
cost of merging changes. The study had two parts: 1) A qualitative study where 16 developers
were surveyed (5 questions oriented to branchers and 3 questions oriented to integrators) to
learn their views on branching and merging files, and their experience with the development
overhead from branching and merging; 2) a quantitative study that calculated the number of
branches, the number of merges on a number of files, and the time spent on merging files.
From the study they established (a) the roles of the branchers and mergers (i.e., architects,

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

4 . Martin Dias, Damien Cassou, Verénica Uquillas-Gémez and Stéphane Ducasse

configuration managers, integrators and developers), and (b) the types of files that dictate
the cost of merging (e.g., configuration files). They concluded that VCS tools and VCS best
practices (e.g., branch only when necessary, branch late, propagate early and often) are not
sufficient to share files in an agile development environment. They also suggested that contents
of shared files must be aligned with the responsibilities of the primary owners of those files, as
a way to decrease conflicts of branching and merging files.

Questions Related to Evolution Tasks. Sillito e al. [SMDV08] proposed a catalog of 44
types of questions programmers ask during software evolution tasks. The authors’ goals were
to better understand what a programmer needs to know about a code base when performing a
change task, how a programmer goes about finding that information, and how well today’s
programming tools support evolution. They performed two qualitative studies [SVFMOS5,
SMDVO06] observing 9 and 16 programmers respectively, making changes to medium and
large sized code bases. From the analysis of the empirical information collected during
both studies, they established the used tools, types of change tasks, paired versus individual
programming, and the level of prior knowledge of the code base. 44 questions were classified
in 4 categories: (a) finding focus points (e.g., “Where in the code is the text in this error
message or Ul element?”), (b) expanding focus points (e.g., “Where is this method called
or type referenced?”), (c) understanding a subgraph (e.g., “How are instances of these types
created and assembled?”’), and (d) questions over groups of subgraphs (e.g., “What will the
total impact of this change be?””). They also established that 34% of the questions was fully
addressed by tools and 66% of the questions only partially addressed. From the results, they
found that programmers need better tool support for asking more refined or precise questions,
maintaining context, and piecing information together.

Information Fragment Model. Fritz and Murphy [FM10] presented a study in which
they interviewed 11 professional developers to identify different kinds of questions they
need answered during development, but for which support is weak. From the results, they
established a catalog of 78 questions classified in several categories such as: (a) people specific
(12 questions e.g., “Which code reviews have been assigned to which person?”); (b) code
change specific (35 questions e.g., “What are the changes on newly resolved work items related
to me?”); and (c) work item progress (11 questions e.g., “Which features and functions have
been changing?”). Alongside this study, they introduced the information fragment model (i.e.,
a subset of development information for the system of interest) and associated prototype tool
built on top of Eclipse for answering the identified questions by composing different kinds
of information needed. This model provides a representation that correlates various software
artifacts (source code, work items, team membership, comments, bug reports, and others). By
browsing the model, developers can find answers to particular development questions.

As summarized in this section, several related works present catalogs of questions as a
means to understand development activities (e.g., maintenance or code comprehension) and to
identify the developers’ information needs. However, these works are not focused specifically
in integration activities but on development activities in general.

4 Qualitative Study on Integrator Questions
In this section, we present a catalog of questions that integrators ask when performing inte-

gration of changes. The main motivation behind obtaining these questions is to identify and
understand which are the information needs of developers that deal with integration activities.

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

Do Tools Support Code Integration? ASurvey - 5

Integration of changes is a difficult and tedious activity. By knowing which real questions are
raised during integration and are troublesome to answer, the complexity of this process can be
understood, common factors can be extracted to characterize changes, and future solutions can
be assessed.

4.1 Methodology

This catalog is based on work done by V. Uquillas-Gomez for her PhD thesis [UG12]. We
conducted an open call to the developers of three Smalltalk communities to compile the
questions. Specifically, we sent a mail to three development mailing-lists (VisualWorks Users',
European Smalltalk User Group?, and Pharo project®) requesting input on the questions they
ask themselves when integrating. We first provided an overview of the reasons of our study;
next, we asked “What are the questions that you ask yourselves when you are merging (or
want to merge) changes into your projects?”’; finally, we added six typical questions raised by
one of the main Pharo integrators (e.g., “Is this change impacted by a change that happened in
another branch of my software?”) as a way to guide their answers.

In a period of 10 days we received the responses of 20 participants who integrate changes
on small, medium and large Smalltalk projects. The answers were diverse among the group:
(a) 8 participants provided concrete questions; (b) 9 participants provided concrete questions
and extra feedback (merge situations they deal with, policies they follow when merging,
explanations of why they ask these questions or think they are challenging, and broad ideas for
tools supporting merging); (c) 3 participants did not list any question at all but rather included
general feedback regarding their desiderata for merging tool support. This information was
analyzed and yielded 56 questions. Moreover, we took into account related studies presented
above [FM10,LM10,SMDVO0S], extending our findings with 8 questions taken from these
studies. Finally, a Pharo integrator helped refining and verifying the questions.

The resulting catalog is composed of 46 questions that we clustered into 5 different
categories: (a) authorship/ownership, (b) structural change characterization, (c) behavioral
change characterization, (d) bug tracking infrastructure, and (e) temporal and change sequence.

4.2 Results

Following, we briefly describe each category prior to introducing its respective questions.
Each question is accompanied by an identifier (e.g., A1) that is used to refer to the question in
later sections.

Authorship/Ownership. The first category of questions is related to the owner of the orig-
inal code, to the author of the changes, and to the committer. These questions assess the
author’s quality and the reliability level of his changes.

Authorship/Ownership questions

Ay, Who is the author of this changed code?

Ay Who was the previous owner of the changed code?

As Has my own code been changed?

A, What is the general quality of the change committer?

As How many people have contributed to this group of commits?

'vwnc@cs.uiuc.edu
2esug-list@lists.esug.org
3pharo-project@lists.gforge.inria.fr

Journal of Object Technology, vol. 15, no. 2, 2016

vwnc@cs.uiuc.edu
esug-list@lists.esug.org
pharo-project@lists.gforge.inria.fr
http://dx.doi.org/10.5381/jot.2016.15.2.a2

6 - Martin Dias, Damien Cassou, Verénica Uquillas-Gémez and Stéphane Ducasse

Structural change characterization. The second category of questions is related to the
structure of the original code as well as the changes. They cover various aspects in terms of
volume, impact volume, dependencies (which packages, classes should be loaded before), and
so on. From that perspective, they are not tailored to a sequence of changes but more to a
single delta [UGDD10].

Structural change characterization questions

S1 How large is the change?

S> How many entities (packages/classes/methods) are impacted by the commit?
(Impacted in the sense they can stop compiling, for example)

Ss Is this commit confined to a single package or spread over the entire system?

Sy What is the complexity of the changes?

Ss Do all the changes within the commit belong together? (Can we split the
commit?)

Se¢ Are there other packages that will need to change as well to integrate this
commit? (Can we identify the users of the changed code?)

S7 Will the code compile after applying this commit?

Ss Is the commit conflict free? (Does this change generate any syntactic merge
conflicts when integrating?)

Sg Which entities (packages/classes/methods) have been changed?

S10 Does this change depend on other changes (in the source branch) to be functional
(in the target branch)?

Behavioral change characterization. The third category of questions is related to the
nature, behavior and intent of a change. Such questions can be mostly applied to changes
within a single delta. Note that some of these questions are open-ended and therefore inherently
difficult to answer automatically. Moreover they may require up front knowledge of the system
as well.

Behavioral change characterization questions

By Does this commit follow rules and conventions?

Bs Is the vocabulary used in the commit consistent with the one on the system?

Bs Does this commit improve the quality of the system?

By Does this commit correctly fulfil its goal? (Does it fix correctly a particular
problem?)

Bs What is the intention of this commit?

Bg Inacommit with ’strange code’, was the strange code intentional (it has to be
like that to turn around a special aspect of the system), or accidental (the author
did not really know what he was doing)?

B; Whatkind of commit is it? (Bug fix/New feature/Refactoring/Documentation/...)

Bg Did this commit fix/break tests? Which tests?

Bg Is the commit covered by tests? What is the coverage? How can I test it?

Bjo If I apply the commit, what are the parts of my current system that it affects?
What are the users (classes/methods/functions) potentially impacted by this
change in the destination branch/fork?)

continued on next page. ..

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

Do Tools Support Code Integration? ASurvey - 7

... continued from previous page

Behavioral change characterization questions

Bj11 What are the implications of this commit on the (potentially undeclared) API?
(Are there any unknown users of the API that will be impacted by the changes?)

Bug tracking infrastructure. The fourth category of questions is related to bug tracking
trazability of changes.

Bug tracking infrastructure questions

I; To which bug entry does this change relate?
I, What bug fixes also affected the part of the system that is being impacted by this
change?

Temporal and change sequence. The final category of questions is related to situating
changes within the context of a sequence of changes, as well as to the time at which the
changes occur. Indeed, often a change does not happen in isolation, other changes may depend
on it and fork analysis requires to understand change dependencies [UGDK14]. In particular,
when working on a sequence of changes, these questions capture the place of a change within
the sequence.

Temporal and change sequence questions

71 How old is this commit (compared to the version to which it should be inte-
grated)?

T> In which commit/version of the system was this method/function previously
changed?

T3 Did this class/method/function change (a lot) recently/in the past?

Ty Is this change to a class/method/function the most recent one (in the branch)?

Ts Is there any pending change in the sequence of commits (in the branch) that
supersedes this one?

Ts Isthis commit part of a whole series of commits?

T7 Does this commit depend on previous ones? (What are the other commits needed
first to merge this commit?)

Ts Is the change to a class/method/function ever used in subsequent changes?

Ty Is this change to a class/method/function reverting the code to an old state?

Ti1o What else changed when this code was introduced or modified (e.g., documenta-
tion, website, database schema)?

111 What other classes/methods/functions changed when this code was introduced
or modified?

T15 What are the changes made by the same authors/during the same time period?

T13 Did the changing classes/methods/functions of this commit change together in a
previous commit?

Ty, If there were changes to class/methods/functions happening together in the past,
can we suspect that there is still something missing in the current commit?

T15 Were the classes/methods/functions affected by this change renamed in the past
and, if so, in which version of the system?

continued on next page. ..

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

8 - Martin Dias, Damien Cassou, Verénica Uquillas-Gémez and Stéphane Ducasse

... continued from previous page

Temporal and change sequence questions

Ti16 What were the users (callers) of a changed method/function in a particular
version of the system?

Ty7 What are the current users (callers) of a changed method/function?

T1s What commits of another branch have been integrated into this branch?

4.3 Threats to Validity

The fact that all the participants are Smalltalk experts, and that their answers are focused on
the integration of changes in of Smalltalk projects may be considered a threat to validity of
our study. However, our audience was diverse in several ways. The participants work on
different Smalltalk projects which follow different development policies. This is a positive
aspect because we received different points of view regarding the integration process. In
addition, often programmers work with several programming languages.

Our study was performed by an heterogenous group of participants from both industry
and academia. Since our academia participants integrate changes in open-source projects
with many users, we consider their answers have the same weight as the answers of industry
participants. Besides, academia participants were a minority.

Furthermore, this study covers a topic that is present in any collaborative development
process independently of the programming language and infrastructure used. The related work
discussed before also proposed the identification of developers’ information needs by means
of questions. Even though their studies covered other broad aspects, our participants proposed
questions also present in these studies. This shows the generalizability of such studies, and the
questions gathered in our study can be used to assess future solutions.

5 Quantitative Study of Integrator Questions

The questions presented in Section 4 express needs of integrators. Such needs may have
different importance for the everyday’s work of the integrators. Additionally, some of those
questions may be currently supported by development tools, whereas others may not. Since
the final purpose of our work is the improvement of integration toolset, we decided to evaluate
the questions. Thus, we conducted a survey where integrators ranked each question of the
catalog in two dimensions:

e [mportance: Nothing, Little, Moderate, and Extreme.

e Tool support: No, Partially, and Yes.

5.1 Methodology

We called for participation in several software development communities, which include
Smalltalk-related mailing-lists, the Twitter accounts of the Apache Software Foundation and
the Eclipse Foundation. In a period of 5 months we received the responses of 42 participants
who integrate changes on very diverse software projects. The survey included a “Participant
Profile” part to categorize participants and their projects. We start by structuring the results of
this part because of its impact on the results. The full and detailed results of this study are
available in a technical report [DUGCD14].

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

Do Tools Support Code Integration? ASurvey - 9

5.2 Participant and System Profiles

As can be seen in Figures 1 and 2, the experience of the participants is quite diverse, both
in development and in integration. The distribution still shows that the participants had a
serious experience in development. Figure 2 shows that integration has a smaller spread period
(from 2 to 20 years compared to the 5 to 45 years of experience) and that the duration of the
integration activity is shorter (from 2 years compared to 5).

Most of the participants (88%), answered they are (or they were) developers of the
system where they integrate changes; this is a result that we expected due to the complexity
of integration activity, which requires a deep knowledge of the codebase of a project that
generally only a developer that worked on it has. Turnover and open-source projects may
change such fact. Future and broader studies may contradict this fact.

System characterization. Figure 3 reveals that most of participant’s systems have between
3 and 16 developers. The participants reported to work in systems with around 5 forks
(median). About the frequency of integrations, participants answered performing them mostly
on demand, i.e., not regularly but when necessary. Around 20% of the participants answered
that they never perform integrations between forks. In the answers, approximately half of the
systems are open-source. About the size (in lines of code), most of the projects have between
10k and 450k LOC. When we asked for the kind of software were they integrated changes,
three quarters answered they work in End user applications, and the same number of responses
for Libraries, frames and platforms. This means that many participants integrated changes
both in client- and in provider-side of their software.

o | w
ol «

40
Il
20
L
3

30

L

- 8
15

L

Figure 1 — How many years have Figure 2 — How long have you been
you been developing software? integrating changes?

]

o oa .

Figure 3 — How many developers
are working on this system?
(we removed two outliers: 250
and 600)

Figure 4 — How many integrators
are working on this system?
(we removed one outlier: 60)

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

10 - Martin Dias, Damien Cassou, Verénica Uquillas-Gémez and Stéphane Ducasse

Approximately 26% of participants answered they are not the main integrator of their
system. This percentage shows how much the role of integration is shared by several project
members. In fact, Figure 4 reveals that there is a median of 2 integrators per system. 93%
of participants reported that they interact with developers when integrating changes. In
the survey we asked what are the reasons of such interaction with developers. The main
reason participants answered was solving merging conflicts. They answered as well that
understanding the changes, and giving feedback about the quality of the changes are other
reasons for interacting. Figure 5 shows that “Development” and “Release” are the most used
types of branches, although “Feature”, “Bug fix”” and “Experimental/Prototype” are common
as well. Figure 6 shows that the participants consider merge conflicts and regressions as the
most significant problems.

In the results, we observe the same number of participants use general-purpose VCS (CVS,
Git, SVN and TFS) and Smalltalk-specific VCS (Monticello, StORE and ENVY) (Figure 7).
On the one hand, we can extract from this observation that half of the responses correspond to
integrators working in projects that involve Smalltalk code. On the other hand, the fact that all
(or most) of the Smalltalk environments only support a Smalltalk-specific VCS indicates that
around half of the responses correspond to non-Smalltalk projects.

AccuRev

Development l:l 29 Bazaar ‘ 0
Feature l:l 16 ClearCase ‘
Bug fix l:l 15 Ccvs 4
Merge D 9 darcs ‘ 0
Release [] 20 o s
Experimental/Prototype [LL1] 15 Merge conflicts [|23 Mercurial | 0
Contributor/Personal - 9 Test regressions :] 22 Monticello I:l 9
platorm [l 3 Cross—cutting regressions |:| 17 subversion [N 8
Customer-specific* I 2 Compilation errors - 10 TFS - 2
otmer] 3 sore: [©
0 10 20 30 T T T T envy- [N 5
0 10 20 omer [l 2
T T T T 1
Figure 5 — What types of 0 5 10 15 20
branches are defined for Figure 6 — What are the most
this system? (category significant problems that Figure 7 — Which versioning
“Customer specific” was you have had with merges? tool(s) are using for this sys-
extracted from “Other” tem? (categories “StORE” and
field) “ENVY” were extracted from

“Other” field)

5.3 Results

We published all the collected data from this survey as a technical report [DUGCD14]. In this
section, we classify the questions and report only the questions identified as important and
with little tool support. We focus on them since they express how to improve the integration
toolset.

Importance: If a question’s responses are concentrated among No and Little importance,
we say the question has Agreed No-Importance; if responses are concentrated between
Moderate and Extreme importance, we say the question has Agreed Importance. Instead,
when there is not a clear agreement among the answers, we say the question has
Disagreed Importance.

Tool Support: If a question’s responses are concentrated around No, we say the question has
Agreed No-Support; if responses are concentrated around Yes, we say the question has

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

Do Tools Support Code Integration? ASurvey - 11

Agreed Support. Instead, when there is not a clear agreement among the answers, we
say the question has Disagreed Support.

0 0 34
™ ™ z -
o o
™ ™
o _l v =
N ~N ‘6

Q.
Q 1 E { s
o o 17} o - .
— — _—

3
S S =

5
w0 - . 3 w -
- e I -
N L M E N P Y N L M E
Importance Tool Support Importance
(a) A1 Who is the author of this changed code?

[To R v
® ® z A .
o _l Q4
w _ o _ <
N o 6

Q.
& 1 & 2
o o 1%} a - L]
= = 12 12 12 5
S 8 S 1 e
n - v -

o 1
o d— = o > ®
N P Y

Importance Tool Support Importance
(b) Bs Did this commit fix/break tests? Which tests?

Title Legend
Importance Nothing (N), Little (L), Moderate (M), Extreme (E)
Tool Support ~ No (N), Partially (P), Yes (Y)

Figure 8 — Participant responses to two questions. From the survey we conclude that question A; has
Agreed Importance and Agreed Support question, while By has Agreed Importance and Disagreed
Support.

We illustrate our classification criteria in Figure 8, which presents the responses to two
integration questions:

A : Who is the author of this changed code?

Bg : Did this commit fix/break tests? Which tests?

For A;, participants mostly agreed that this question has from moderate to extreme
importance, and that it does have tool support. Thus, we classify A; as a question with Agreed
Importance and Agreed Support. For Bg, participants also agreed that it is an important
question, but they disagreed in the tool support. Then, we classify Bg as a question with
Agreed Importance and Disagreed Support.

We applied this criteria to all the questions of the catalog. Results are presented in Table 1.
Overall, in the dimension of Importance, 33 questions (72%) have Agreed Importance, 10 have
Disagreed Importance (21%), and only 3 have Agreed No-Importance (7%). In the dimension
of Tool Support, 12 questions (26%) have Agreed Support, 9 have Disagreed Support (20%),
and 25 have Agreed No-Support (54%). In the following Subsection, we use this categorization
to discuss the most relevant results.

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

12 - Martin Dias, Damien Cassou, Verénica Uquillas-Gémez and Stéphane Ducasse

Agreed Disagreed

No-Importance Importance Agreed Importance
S4, S5, Se, S10, Bi,

Ay, Bo, Bg, T, Bs,By, By, Bio,

Agreed No-Support Tio, T

& PP 12 213 T1s By, Iy, T, T, T7,

Ty, Ty, Tho, T

: Sa, S7, Bs, I, T3
Disagreed Support A > e T T o

§ op > Ty, Tir, Thg
Agreed Support Ao, A3, S1,Th, Ts A1, 53, S8, S, Bs,
B7, T}

Table 1 — Classification of the questions according to surveyed integrators.

5.4 Top 9 Important Questions without Tool Support

In the following, we discuss 9 questions that are important and have no tool support. These
questions are all in the upper-right corner of Table 1. The answers to these questions are
summarized in Figure 9.

We found three conceptual axis in these questions, which we use to interpret the survey
results: understanding change impact; understanding change dependencies with cherrypicking;
and understanding change scattering.

5.4.1 Understanding Change Impact

Understanding the impact of applying a code change on the current system is a key concern of
integrators. The effects of a change are of crucial importance since it can introduce unexpected
behavior in the system. The following questions capture the problems faced by integrators
when assessing the impact of code changes.

Se : Are there other packages that will need to change as well to integrate this commit? (Can
we identify the users of the changed code?)

B : If I apply the commit, what are the parts of my current system that it affects? What
are the users (classes/methods/functions) potentially impacted by this change in the
destination branch/fork?)

Bj1 : What are the implications of this commit on the (potentially undeclared) API? (Are
there any unknown users of the API that will be impacted by the changes?)

Ty : Is the change to a class/method/function ever used in subsequent changes?

T16 : What were the users (callers) of a changed method/function in a particular version of
the system?

These five questions share the need of understanding the impact of integrating a change in
the destination branch. However, these questions do not refer to the same kind of impact: In
one hand, B1g and Ty refer to the local impact, i.e., which are the entities in the codebase (in
the target branch) that are affected by the change. In the other hand, Sg and B, refer to the
external impact, i.e., which entities in other codebases are affected with the change. The latter
is usually called ripple effect. [YCM78]

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

Do Tools Support Code Integration? ASurvey - 13

z A .) z —-—.‘ z A ® o
o . [o . . . o . .
> . > . >
T T T T
N L M E N L M E N L M E
(@) Se (b) B1o (c) Bu
z —W z . D) z —0—.‘
o . .] a . [] o Y . [
T T T T > T T T L T
N L M E N L M E N L M E
(d) Ts (e) S1o () T7
a -) . ° o - . . . o . [] []
T T T T T T T T T T * T
N L M E N L M E N L M E
(9 Tie (h) S5 (i) Ts
Axis Title Legend
T Importance Nothing (N), Little (L), Moderate (M), Extreme (E)

Y Tool Support ~ No (N), Partially (P), Yes (Y)

Figure 9 — Top 9 questions with Agreed Importance and Agreed No-Support.

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

14 . Martin Dias, Damien Cassou, Verénica Uquillas-Gémez and Stéphane Ducasse

Questions 75 and 7T}1¢ complement each other: the former talks about impact in future
commits of a branch, while the latter talks of impact in past commits. These questions address
important issues when the commits around a change have to be understood.

5.4.2 Understanding Change Dependencies when Cherrypicking

Sometimes an integrator has to apply in a branch (i.e., target or destination branch) some
code changes selected from another branch (i.e., source branch). This action is known as
cherrypicking code changes. The main difference with a plain merge is that not every change
from the source branch is reapplied in the destination branch, but only a selection of such
changes.

Given a piece of code often depends on other pieces of code (e.g., a method that invokes
other methods during execution), cherrypicking is an error-prone and difficult activity. For
example, the cherrypick of a method modification which adds a reference to a class that does
not exist in the destination branch will lead to a compilation error. Since a commit can depend
on other commits, and the identification of such dependencies is a complex task, the support
from tools is important [UGDK14]. The following questions capture such problems.

S10 : Does this change depend on other changes (in the source branch) to be functional (in
the target branch)?

T7 : Does this commit depend on previous ones? (What are the other commits needed first to
merge this commit?)

These two questions have much in common. Both focus in the understanding of the
dependencies of a change. The main difference is that 77 refers in general to dependencies in
any commit of the source branch, while S is limited to the changes in the source commit (of
the cherry-picking operation).

5.4.3 Understanding Change Scattering

Developers often bundle changes of unrelated tasks (e.g., bug fix and refactoring) in a single
commit, thus creating a so-called tangled commit. In a study, Herzig and Zeller [HZ13]
analyzed several open-source projects and found that 20% of the bug-fixing commits are
tangled, i.e., these commits contain unrelated changes apart of the bug fix changes. In other
cases, however, developers perform a single task (e.g., implementing a new feature) spread
over several commits, which also poses difficulties to understand changes.

The following questions can be interpreted as two sides of the same problem: the wrong
spread of code changes along commits.

Ss : Do all the changes within the commit belong together? (Can we split the commit?)

Ts : Is this commit part of a whole series of commits?

In one hand, question S5 is related to understanding changes in a tangled commit. In the
other hand, question Tg is about understanding changes related to one task, that are spread in
several commits.

Question S5 is the most important question without tool support according to the partic-
ipants of our survey. Unlike the other questions discussed above, S5 and T have no direct
reference to change dependencies or impact. However, any tool that answers such questions
will certainly benefit from this information.

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

Do Tools Support Code Integration? ASurvey - 15

5.4.4 Conclusion

In this Section we presented a quantitative evaluation of the catalog of integration questions
introduced in Section 5. We described and discussed the most relevant results obtained from
the survey, highlighting some questions that integrators agree in that they are important and
have little tool support. We think these highlights can be a guideline for new research on
improving the work of integrators. We further analyze the information needs for answering all
catalog questions in Section 6.

6 How to Answer Integrator Questions?

Since the final purpose of collecting and evaluating the questions of Section 4 is to improve
the tools for integration, we have elaborated a taxonomy of the information required to answer
such questions. We established four high-level categories: (1) descriptive information, (2)
structural information, (3) semantic information, and (4) historical information. While the
last category includes information related to changes in the context of a sequence of changes,
the other categories provide information that can be used for characterizing changes within a
single delta and within a sequence. In the following subsections, we explain the mentioned
categories, and we conclude with a summary of the taxonomy.

6.1 Descriptive Information

Author/Owner. The developers who produced a code change (i.e., the author) and the one
who committed the code change to the VCS repository (i.e., the committer) may be different
persons. The owners of a piece of code are developers that had changed it in the past. Not
every VCS support the distinction between author and committer. For example, CVS and
SVN do not support this feature, while in Git a commit does have both author and committer
signatures.

Information regarding code owner as well as code change author and committer is specially
relevant in large development teams, where many people interact. With this information,
integrators can take better decisions about code changes: For example, changes made by
the owner of a piece of code could be considered more reliable than changes made by other
developers [BNM™11]. Ownership can be derived by metrics that consider the number or size
of changes that a developer has committed for a particular piece of code.

Time. The point in time at which a change happened is key to establish the order of a change,
and helps identifying sequences of changes during the evolution of a system. IDEs may record
the time when a source code change is made, and VCSs register the time when changes are
submitted to the repository. Temporal information is heavily used to support several activities
in the development process, such as untangling changes [HZ13,DBG*15] and change impact
analysis [CRR05, GHR09,HZ11]. Additionally, temporal information is useful to establish
the history of a system and dependencies of changes.

6.2 Structural Information

Structure. The packages, classes and methods are the core of programs. Identifying which
entities changed and how they relate to each other can ease understanding these changes.
For example, a pull up/push down method refactoring can be detected by identifying if their
respective classes belong to the same class hierarchy [UGDD10]. Several recent approaches
for untangling changes use structural information [BBBL15,DBG™15,HZ13].

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

16 - Martin Dias, Damien Cassou, Verénica Uquillas-Gémez and Stéphane Ducasse

Change Scope. ldentifying if the changed source code is local to a method, class, hierarchy,
or package, or that it cross-cuts multiple entities establishes the scope of a change (e.g.,
multiple changes are contained in one single package) [DGKO06]. Assessing a local change is
often simpler than assessing one cross-cutting several packages. Cross-cutting changes that are
not necessarily structurally related but evolve together may indicate a coupling between these
changes [GDMRO04, GJK03]. Knowing this information may help identify missing changes.
Therefore, getting a fast overview of the location of changed program entities in the context of
the hierarchy and package structure is important to assess changes.

Kind of Action. Understanding whether the changes are mainly adding, removing or modify-
ing behavior is another level of characterization. Whether changes are at the level of entire
methods (i.e., a method was added or removed) or intra method (i.e., a method’s body was
modified) is another element. Whether the changes were actually changing the semantics
of the system (e.g., not just changes to license or comments) is complementary to the other
information. Identifying specific actions such as renamings (a renaming is usually stored as a
removal and an addition) would definitely improve any characterization of changes. However,
this can be a challenging process when the addition differs a lot from the removal.

Kind of Entity. Characterizing changes by kind of entity (e.g., fields, methods, comments,
etc.) they affect is straightforward. This, combined with previous characterizations such as
kind of action, can ease in assessing the impact of changes. For example, if only comments
were affected at class or method level, developers can rapidly identify that these changes have
no semantical impact on the system. Therefore, they can integrate these changes without
dedicating time to understand and assess their impact.

6.3 Semantic Information

Vocabulary. Identifiers (class names, field names, function names and parameter names) and
comments are important elements of the source code that give hints about semantics and intent
of the developers [TGM96, AL98, KDGOS5]. They represent the vocabulary present in a system,
and such vocabulary is affected when the system evolves [AHM™09] (e.g., if new features
are introduced or if existing behavior is removed is reflected as additions and removals of
identifiers). Assessing the difference in vocabulary between a change and the target branch
can give information about whether or not the integrator should merge that change. Moreover,
the amount of introduced or removed vocabulary can provide an overview of the changes
and their impact. For example, having a large number of changes with a limited number of
affected vocabulary (e.g., one added and one removed identifier) could mean that a function
was renamed, or that a call was replaced among its clients.

Reason. A system is constantly evolving due to fixes of bugs, enhancements, new features
or adaptations to changing environment. The reason behind why a piece of code changed is
fundamental to aid in understanding and assessing the impact of a change. Committers can
add a description (i.e., commit message) about the changes they submit into the repository.
Unfortunately, committers may omit important details of what and why changed, even more
when they submit multiple unrelated changes in one commit.

6.4 Historical Information

History. The history of a system contains a wealth of information that can be used to
understand the system and its evolution, to detect problems in the system, to predict future

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

Do Tools Support Code Integration? ASurvey - 17

problems, and so on. A representation of the history, where the subjects of change are code
entities instead of just files, can help integrators to better understand the changes and their
potential impact.

Change Dependency. A specific change can require several other prior changes. This is more
relevant in the case when changes come from different branches or forks. For example, if class
C subclasses class B, then class C depends on class B. If the branch in which class C is intended
to be integrated does not contain class B, then the change adding class C must be integrated
with its dependency (i.e., change adding class B). To support the integration of changes
from one branch into another — cherry picking — it is fundamental to establish dependencies
between changes. Such dependencies can be used to characterize changes and deltas within
the sequence, and partition changes that should be integrated. The characterization of deltas
can guide integrators to prioritize changes, for example deltas that do not depend on any prior
change can be tagged as the easy ones. Therefore the integrator could first concentrate on
the complex cases, or vice-versa. Moreover, by means of dependencies it can be possible to
establish which entities have been changing together. This can be key in spotting problems
with a change, and help integrators assessing these changes.

6.5 Classification of Top 9 Questions

Making use of the taxonomy of information described above in this section, we present in
Table 2 a classification of the top 9 questions presented in Section 5.4.

Descriptive Information

Author/Owner S0, T7

Time Ss, Ts, S1o

Structural Information

Structure S5, S10, T16, B1o
Change Scope Bio, S10

Kind of Actions Ss, S10, 16, 17, T3, Big
Kind of Entities B, B11, S5, Ss, S10, Ts, T7, T, T16
Semantic Information

Vocabulary Bi1, S6, S1o

Reason S1o

Historical Information

History S5, S10, T, T7, Ts, The

Change Dependencies Ss, S10, T, T

Table 2 — Classification of the Top 9 questions according to the information that tools need to answer
such questions.

7 Conclusion

Git’s strong capabilities to support and encourage branching as well as a the expansion of Git
as a distributed VCS stress the task of integrators. Based on a large literature analysis and
an open call, in this article we presented a catalog of 46 questions that integrators may need
to answer when they integrate changes. We then performed a validation of these questions
by asking developers to assess the importance and tool support for each of the questions in
the catalog. We also discussed a subset of 9 questions that are both important and have no

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.5381/jot.2016.15.2.a2

18 - Martin Dias, Damien Cassou, Verénica Uquillas-Gémez and Stéphane Ducasse

tool support. Finally, we presented a taxonomy of the questions according to the kind of
information that tools need to answer them.

We hope that other researchers will conduct alternate surveys based on our catalog and
develop new generation tools to help integrating changes.

Acknowledgments We thank Nicolas Anquetil for his help in the survey.

References

[AHM109]

[AL9S]

[BBBL15]

[BNM*11]

[BZ12]

[CRRO5]

[DBGT15]

[DDNO2]

Surafel Lemma Abebe, Sonia Haiduc, Andrian Marcus, Paolo Tonella, and
Giuliano Antoniol. Analyzing the evolution of the source code vocabulary. In
Proceedings of the 2009 European Conference on Software Maintenance and
Reengineering, CSMR’09, pages 189-198. IEEE Computer Society, 2009.
doi:10.1109/CSMR.2009.61.

Nicolas Anquetil and Timothy C. Lethbridge. Assessing the relevance of
identifier names in a legacy software system. In Proceedings of the 1998
conference of the Centre for Advanced Studies on Collaborative research,
CASCON’98, pages 213-222. IBM Press, 1998. URL: http:/portal.acm.org/citation.
cfm?id=783160.783164.

Mike Barnett, Christian Bird, Jodo Brunet, and Shuvendu K. Lahiri. Help-
ing developers help themselves: Automatic decomposition of code review
changesets. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE 15, pages 134—144, Piscataway, NJ, USA,
2015. IEEE Press. doi:10.1109/ICSE.2015.35.

Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. Don’t touch my code!: examining the effects of
ownership on software quality. In Proceedings of the 19th ACM SIG-
SOFT symposium and the 13th European conference on Foundations of
software engineering, ESEC/FSE’11, pages 4-14. ACM, 2011. doi:
10.1145/2025113.20251109.

Christian Bird and Thomas Zimmermann. Assessing the value of branches
with what-if analysis. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE *12, pages
45:1-45:11, New York, NY, USA, 2012. ACM. doi:10.1145/2393596.
2393648.

Ophelia C. Chesley, Xiaoxia Ren, and Barbara G. Ryder. Crisp: A debug-
ging tool for Java programs. In Proceedings of the 21st IEEE International
Conference on Software Maintenance, ICSM’05, pages 401-410, 2005.
doi:10.1109/ICSM.2005.37.

Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and
Stéphane Ducasse. Untangling fine-grained code changes. In SANER’15:
Proceedings of the 22nd International Conference on Software Analysis,
Evolution, and Reengineering, Montreal, Canada, 2015. (candidate for IEEE
Research Best Paper Award). doi:10.1109/SANER.2015.7081844.

Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002. URL: http://www.iam.unibe.ch/
~scg/OORP.

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.1109/CSMR.2009.61
http://portal.acm.org/citation.cfm?id=783160.783164
http://portal.acm.org/citation.cfm?id=783160.783164
http://dx.doi.org/10.1109/ICSE.2015.35
http://dx.doi.org/10.1145/2025113.2025119
http://dx.doi.org/10.1145/2025113.2025119
http://dx.doi.org/10.1145/2393596.2393648
http://dx.doi.org/10.1145/2393596.2393648
http://dx.doi.org/10.1109/ICSM.2005.37
http://dx.doi.org/10.1109/SANER.2015.7081844
http://www.iam.unibe.ch/~scg/OORP
http://www.iam.unibe.ch/~scg/OORP
http://dx.doi.org/10.5381/jot.2016.15.2.a2

[DGKO06]

[DUGCD14]

[FM10]

[GDMRO4]

[GHRO09]

[GJKO03]

[GZSvD15]

[HZ11]

[HZ13]

[KDGO5]

[LM10]

[PRS12]

Do Tools Support Code Integration?A Survey - 19

Stéphane Ducasse, Tudor Girba, and Adrian Kuhn. Distribution map. In Pro-
ceedings of 22nd IEEE International Conference on Software Maintenance,
ICSM’06, pages 203-212, Los Alamitos CA, 2006. IEEE Computer Society.
doi:10.1109/ICSM.2006.22.

Martin Dias, Verénica Uquillas-Gomez, Damien Cassou, and Stéphane
Ducasse. Software integration questions: A quantitative survey. Technical
report, INRIA Lille, 2014. URL: nttps:/hal.inria.fr/hal-01093496.

Thomas Fritz and Gail C. Murphy. Using information fragments to answer the
questions developers ask. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, ICSE’ 10, pages 175-184. ACM, 2010.
doi:10.1145/1806799.1806828.

Tudor Girba, Stéphane Ducasse, Radu Marinescu, and Daniel Ratiu. Identi-
fying entities that change together. In Ninth IEEE Workshop on Empirical
Studies of Software Maintenance, 2004. URL: http:/scg.unibe.ch/archive/papers/
Girb04dEntitiesChangeTogether.pdf.

Daniel M. German, Ahmed E. Hassan, and Gregorio Robles. Change impact
graphs: Determining the impact of prior code changes. Journal of Information
Software Technology, 51(10):1394-1408, October 2009. doi:10.1016/7.
infsof.2009.04.018.

Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data
for detecting logical couplings. In IWPSE °03: Proceedings of the 6th Inter-
national Workshop on Principles of Software Evolution, pages 13-23. IEEE
Computer Society, 2003. doi:10.1109/IWPSE.2003.1231205.

Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van
Deursen. Work practices and challenges in pull-based development: The
integrator’s perspective. In ICSE’15: Proceedings of the 37th International
Conference on Software Engineering, pages 358-368, 2015. doi1:10.1109/
ICSE.2015.55.

Kim Herzig and Andreas Zeller. Mining cause-effect-chains from version
histories. In Proceedings of the 22nd International Symposium on Software
Reliability Engineering, ISSRE’11, pages 60-69. IEEE, 2011. doi:10.
1109/ISSRE.2011.16.

Kim Herzig and Andreas Zeller. The impact of tangled code changes. In
Proceedings of the 10th Working Conference on Mining Software Reposi-

tories, MSR *13, pages 121-130, Piscataway, NJ, USA, 2013. IEEE Press.
doi:10.1109/MSR.2013.6624018.

Adrian Kuhn, Stéphane Ducasse, and Tudor Girba. Enriching reverse engineer-
ing with semantic clustering. In Proceedings of 12th Working Conference on
Reverse Engineering (WCRE’05), pages 113-122, Los Alamitos CA, Novem-
ber 2005. IEEE Computer Society Press. doi:10.1109/WCRE.2005.16.

Thomas D. LaToza and Brad A. Myers. Hard-to-answer questions about

code. In Evaluation and Usability of Programming Languages and Tools,
PLATEAU 10, pages 8:1-8:6. ACM, 2010. doi1:10.1145/1937117.
1937125.

Shaun Phillips, Guenther Ruhe, and Jonathan Sillito. Information needs
for integration decisions in the release process of large-scale parallel de-
velopment. In Proceedings of the ACM 2012 conference on Computer

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.1109/ICSM.2006.22
https://hal.inria.fr/hal-01093496
http://dx.doi.org/10.1145/1806799.1806828
http://scg.unibe.ch/archive/papers/Girb04dEntitiesChangeTogether.pdf
http://scg.unibe.ch/archive/papers/Girb04dEntitiesChangeTogether.pdf
http://dx.doi.org/10.1016/j.infsof.2009.04.018
http://dx.doi.org/10.1016/j.infsof.2009.04.018
http://dx.doi.org/10.1109/IWPSE.2003.1231205
http://dx.doi.org/10.1109/ICSE.2015.55
http://dx.doi.org/10.1109/ICSE.2015.55
http://dx.doi.org/10.1109/ISSRE.2011.16
http://dx.doi.org/10.1109/ISSRE.2011.16
http://dx.doi.org/10.1109/MSR.2013.6624018
http://dx.doi.org/10.1109/WCRE.2005.16
http://dx.doi.org/10.1145/1937117.1937125
http://dx.doi.org/10.1145/1937117.1937125
http://dx.doi.org/10.5381/jot.2016.15.2.a2

20 - Martin Dias, Damien Cassou, Verénica Uquillas-Gémez and Stéphane Ducasse

[PSW11]

[PTL*T11]

[SMDVO06]

[SMDVO08]

[SVFMO5]

[TGM96]

[UG12]

[UGDD10]

[UGDK 14]

[YCMT78]

Supported Cooperative Work, CSCW’12, pages 1371-1380. ACM, 2012.
doi:10.1145/2145204.2145408.

Shaun Phillips, Jonathan Sillito, and Rob Walker. Branching and merg-
ing: an investigation into current version control practices. In Proceed-
ings of the 4th International Workshop on Cooperative and Human As-
pects of Software Engineering, CHASE’11, pages 9-15. ACM, 2011.
doi:10.1145/1984642.1984645.

Rahul Premraj, Antony Tang, Nico Linssen, Hub Geraats, and Hans van
Vliet. To branch or not to branch? In Proceedings of the 2011 International
Conference on Software and Systems Process, ICSSP’11, pages 81-90. ACM,
2011. doi:10.1145/1987875.1987890.

J. Sillito, G.C. Murphy, and K. De Volder. Questions programmers ask during
software evolution tasks. In Proceedings of the 14th International Symposium
on Foundations on Software Engineering, SIGSOFT ’06/FSE-14, pages 23—
34. ACM, 2006. doi:10.1145/1181775.1181779.

J. Sillito, G.C. Murphy, and K. De Volder. Asking and answering questions dur-
ing a programming change task. IEEE Transactions on Software Engineering,
34(4):434-451, jul 2008. doi:10.1109/TSE.2008.26.

Jonathan Sillito, Kris De Volder, Brian Fisher, and Gail Murphy. Managing
software change tasks: An exploratory study. In Proceedings of the Interna-
tional Symposium on Empirical Software Engineering, pages 23-32. IEEE
Computer Society, 2005. doi:10.1109/ISESE.2005.1541811.

Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie. The effects
of comments and identifier names on program comprehensibility: an experi-
mental investigation. Journal of Programming Languages, 4(3):143-167, 1996.
URL.: http://dblp.uni-trier.de/rec/bibtex/journals/jpl/TakangGM96.

Veroénica Uquillas Gémez. Supporting Integration Activities in Object-Oriented
Applications. PhD thesis, Vrije Universiteit Brussel - Belgium & Univer-
sité Lille 1 - France, October 2012. URL.: http:/rmod.lille.inria.fr/archives/phd/
PhD-2012-Uquillas-Gomez.pdf.

Veroénica Uquillas Gémez, Stéphane Ducasse, and Theo D’Hondt. Visually sup-
porting source code changes integration: the Torch dashboard. In Proceedings
of the 17th Working Conference on Reverse Engineering (WCRE’10), pages
55-64, October 2010. doi:10.1109/WCRE.2010.15.

Verénica Uquillas Gémez, Stéphane Ducasse, and Andy Kellens. Supporting
streams of changes during branch integration. Journal of Science of Computer
Programming, 2014. doi1:10.1016/3j.scico.2014.07.012.

Stephen S. Yau, J. S. Collofello, and T. MacGregor. Ripple effect analysis of
software maintenance. In The IEEE Computer Society’s Second International
Computer Software and Applications Conference, pages 60-65. IEEE Press,

nov 1978.

Journal of Object Technology, vol. 15, no. 2, 2016

http://dx.doi.org/10.1145/2145204.2145408
http://dx.doi.org/10.1145/1984642.1984645
http://dx.doi.org/10.1145/1987875.1987890
http://dx.doi.org/10.1145/1181775.1181779
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1109/ISESE.2005.1541811
http://dblp.uni-trier.de/rec/bibtex/journals/jpl/TakangGM96
http://rmod.lille.inria.fr/archives/phd/PhD-2012-Uquillas-Gomez.pdf
http://rmod.lille.inria.fr/archives/phd/PhD-2012-Uquillas-Gomez.pdf
http://dx.doi.org/10.1109/WCRE.2010.15
http://dx.doi.org/10.1016/j.scico.2014.07.012
http://dx.doi.org/10.5381/jot.2016.15.2.a2

	Introduction
	Vocabulary
	Related Work
	Qualitative Study on Integrator Questions
	Methodology
	Results
	Threats to Validity

	Quantitative Study of Integrator Questions
	Methodology
	Participant and System Profiles
	Results
	Top 9 Important Questions without Tool Support
	Understanding Change Impact
	Understanding Change Dependencies when Cherrypicking
	Understanding Change Scattering
	Conclusion

	How to Answer Integrator Questions?
	Descriptive Information
	Structural Information
	Semantic Information
	Historical Information
	Classification of Top 9 Questions

	Conclusion
	Bibliography

