
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Improving model repair through
experience sharing

Angela Barrigaa Adrian Rutlea Rogardt Heldala

a. Western Norway University of Applied Sciences, Norway

Abstract In model-driven software engineering, models are used in all
phases of the development process. These models may get broken due to
various editions throughout their life-cycle. There are already approaches
that provide an automatic repair of models, however, the same issues might
not have the same solutions in all contexts due to different user preferences
and business policies. Personalization would enhance the usability of
automatic repairs in different contexts, and by reusing the experience from
previous repairs we would avoid duplicated calculations when facing similar
issues. By using reinforcement learning we have achieved the repair of
broken models allowing both automation and personalization of results.
In this paper, we propose transfer learning to reuse the experience learned
from each model repair. We have validated our approach by repairing
models using different sets of personalization preferences and studying how
the repair time improved when reusing the experience from each repair.

Keywords Model Repair; Reinforcement Learning; Transfer Learning

1 Introduction

Models are often used to develop key parts of systems in engineering domains [WHR14].
In model-driven software engineering (MDSE) processes, models become more prone
to errors as changes occur in their development environment, such as growing modeling
teams or modifications in requirements. Tools that automate or support error detection
and repair of models can improve how organizations deal with these errors. Model
repair research has produced diverse tools that tackle repair of faulty models from
different perspectives: e.g., support systems with abstract repairs [OPKK18], rule-
based [NRA17] or automated approaches [MGC13]. Despite the variety of approaches,
the proposed solutions can be arranged in two different lines of research: support
systems where the repair choice is left to the developer’s criteria or fully automatic,
non-interactive model repair. Both approaches present advantages and disadvantages.
Support systems that personalize the repairing process provide tailor-made solutions,
however, they are time-consuming since they require close interaction from the modeler
and are hard to scale for repairing a wider range of models. Automatic solutions improve

Angela Barriga, Adrian Rutle, Rogardt Heldal. Improving model repair through experience sharing.
Licensed under Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). In
Journal of Object Technology, vol. 19, no. 2, 2020, pages 13:1–21. doi:10.5381/jot.2020.19.2.a13

http://www.jot.fm/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a13
http://dx.doi.org/10.5381/jot.2020.19.2.a13


2 · Angela Barriga et al.

repair time, however, they have the drawback of providing the same solutions for the
same errors although different modelers may have different preferences for repairing the
same model. A desirable solution should provide a balance between automation and
personalization of repair [MJC16], facilitating the use of both approaches’ advantages.

This paper follows our previous work [BRH18, BRH19], where we proposed rein-
forcement learning (RL) [SB11] as a solution to allow both automatic and personalized
model repair. RL consists of algorithms able to learn by themselves how to interact in
an environment only needing a set of available actions and rewards for each of these
actions. The structure of RL algorithms provides the necessary flexibility to adapt to
different personalization settings and to perform faster after each execution. Following
this approach, we implemented our tool PARMOREL (Personalized and Automatic
Repair of MOdels using REinforcement Learning) [Bar] where users can personalize
the repairing process. By utilizing RL, the repair gets faster since PARMOREL learns
from the errors which have been already faced. We validated the tool’s usefulness by
repairing randomly generated models under one set of user preferences [BRH19].

In this paper, we focus on repairing and learning from different sets of preferences
by applying transfer learning (TL) to reuse the experience gained from repairing under
different personalization settings. TL is a research line in machine learning (ML)
that focuses on storing knowledge gained while solving one problem and applying
it to a different but related problem to solve it faster. TL permits us to share and
reuse the experience gained in different users’ repairs. Our objective is to improve
the repairing time by avoiding repeated calculations for errors to which a solution is
already learned. The contributions of this paper are hence (i) the application of RL to
produce personalized model repair solutions, (ii) an approach to improve model repair
time with TL, and (iii) a proof of concept implementation.

The remainder of this paper is structured as follows. Section 2 provides a motivating
example for our approach. Section 3 explains the necessary background of PARMOREL
and RL to understand the rest of the paper. In Section 4, we explain our approach of
TL for model repair. Next, Section 5 presents the implementation and testing of our
approach through two different examples. After discussing the threats to validity in
Section 6 and related work in Section 7, we conclude the paper and present future
work plans in Section 8.

2 Motivation

Model repair is a broad field that covers different model issues: syntactic and semantic
errors, design smells, compliance to quality attributes and metrics, co-evolution issues,
etc. We focus on developing a framework that simplifies how modelers repair and
improve their models regardless of the model’s type, the type of issues they repair,
and the user’s expertise. To do so, we utilize ML algorithms which provide enough
flexibility to handle the above-mentioned variety of models and issues.

When following rule-based or quick-fix approaches, the modeler must specify a
series of rules to repair issues in the model or derive them from grammar or constraints.
Although these rules are precise for a single set of requirements they are not universal
and might not satisfy every specific modeler’s requirements. The number of rules to
define can increase rapidly when repairing big models. In contrast, ML algorithms
are easy to scale, as they can target any model size without increasing the number of
rules. This is due to the learning capability of ML algorithms which allows them to
learn how to repair without being explicitly programmed for every situation.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


Improving model repair through experience sharing · 3

Device

id	:	EInt
url	:	EString
pushNotification():	int,	string

Status

name	:	EString
id	:	EInt

Public_Status

id	:	EInt
name	:	EString

Category

id	:	EInt
name	:	EString

Owner

name	:	EString
email	:	EString
address	:	EString
password

Address

street	:	EString
city	:	EString
zip	:	EInt

[1..1]	status [1..1]	public_status

[1..*]	category

[5..5]	device

[0..2]	owner [1..1]	address

[1..1]	address

issue4

issue1

issue2

issue5
issue6

 issue3

Figure 1 – Sample model containing a variety of issues

In our previous work [BRH19], we used RL in our framework and applied it to
repair syntactic errors in models that violated certain constraints of the Ecore meta-
model [SBMP08]. In the current work, we address a wider range of issues, including
design smells and compliance to quality properties [BV10, BDRIP19]. Furthermore,
we take the learning capability of our framework one step further, by utilizing TL,
which enables experience sharing between different users.

Consider as an example the model shown in Fig. 1, which represents a part of a
smart system in which a device has several statuses, categories, owners and an address.
The model contains several types of issues: design smells, i.e. classes with duplicated
attributes and references (issues 1 and 2), syntactic inconsistencies corresponding
to constraints imposed by the language used to define the model, i.e. the Ecore
metamodel [Fou] (issues 3, 4 and 6: operation with two return parameters instead of a
single one, containment reference with an upper bound greater than 1 and attribute
without a type) and violations with respect to some quality properties, i.e. attributes
should not be (potential) associations [LFGDL14] (issue 5).

Each of these issues can be addressed by applying different actions. For example,
issue1 could be handled by deleting or updating one of the duplicated classes Status or
Public_Status or by creating a hierarchy within these classes. This hierarchy could
consist of promoting one of the initial classes to superclass or making both of them
children of a new superclass. References could remain in the children or belong to
the superclass. Likewise, issue4 could be repaired by (i) changing the upper bound
from 2 to 1, (ii) modifying the containment to a regular reference, (iii) deleting the
reference owner or (iv) deleting both owner and device. issue5 by renaming or removing
address in Device, class Address or the address association and issue6 by setting a type
or deleting the faulty attribute or the container class.

This sample model shows that addressing model issues is not a trivial task. There
are multiple, possible repair solutions that a modeler could choose while there might
not exist an objectively best solution to satisfy all modelers. ML algorithms can
provide model repair solutions adapted to each modeler without requiring to specify
beforehand how to act for every specific model and modeler requirement.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


4 · Angela Barriga et al.

broken
model

repaired
model

  PARMOREL

errors,
actions

sequence of repairing actions

preferences

2

1

3

preferencesmodel with
issues issues,

Modeling
framework

Figure 2 – Overview of our approach

3 Reinforcement Learning in PARMOREL

This section introduces a brief notion of RL and PARMOREL in order to provide
a comprehensive guide to understand the rest of this paper. Figure 2 presents an
overview of our approach. PARMOREL uses RL to find a sequence of concrete actions
required to repair the issues present in a model. We rely on an external modeling
framework (i.e. the Eclipse Modeling Framework (EMF) [Fou, SBMP08]) to retrieve
issues in the models (e.g. attribute without a type, duplicated class). The modeling
framework is also responsible for applying the actions selected by PARMOREL (e.g.
setType, delete or addSuperClass) and creating the repaired models. PARMOREL
produces the sequence of actions to repair each model based on preferences introduced
by the user. At the moment, users can select preferences from a catalogue of predefined
options offered through a GUI (see Fig. 6).

In the beginning, RL follows a try-and-fail approach: when a sequence of concrete
action applications leads to a repair which is aligned with the user preferences, the
actions in that sequence will get rewarded, and otherwise punished (negative reward
when punishing, positive when rewarding). Following this approach, the algorithm
learns which actions to apply for each issue. We adapt RL rewards to align with
user preferences; e.g., if a user prefers to preserve the structure of the original model,
we can assign positive rewards to conservative actions. Moreover, we filter actions
obtained from the modeling framework so that PARMOREL only works with those
that can be applied in a concrete type of error (see line 5 in Alg. 1); e.g., if one issue
is present in an attribute, actions invokable in references or classes would be discarded.
This way, we improve performance by reducing the search space.

RL provides structures to store experience gained from each repair, so that the
algorithm can improve its performance in consecutive executions. PARMOREL is
powered by the Q-learning algorithm [SB11], in which experience is stored in a table
structure called Q-table (see example in Fig. 3). We chose Q-learning because it
provides several features that are useful to solve the model repair problem: (i) the
Q-table structure allows us to pair actions with issues and locations in the models
(see below), (ii) the Q-table is highly reusable and easy to import and export into new
executions, (iii) the algorithm is able to find a set of different solutions for the same
issue thanks to its combination of exploitative and explorative policies (i.e., picking
the best-known action vs. finding a new random one) and (iv) it takes into account
the consequences of applying an action to measure its suitability. Traditionally, the
Q-table stores pairs of states (a situation to solve) and actions. An action can be
any editing operation that can be applied to the model and repair an issue, including
element creation and deletion.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


Improving model repair through experience sharing · 5

 entry1 := issue5, class1: Owner, action1: delete

 entry2 := issue5, attrib1: address, action1: delete

0
0

 entry3 := issue5, attrib1: address, action2: setName 0

0
0
0

0
0
0

-130
73
0

-130
73
0

-130
73
0

-130
73
93

-130
73
196

-260
73
196

-260
73
289

-260
73
30

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

-130

 entry4 := issue5, class2: Address, action1: delete 0 0 0 0 23 23 23 23 23 23 23
382

 entry6 := issue6, attrib1: password, action1: delete

 entry7 := issue6, attrib1: password, action3: setType

 entry5 := issue6, class1: Owner, action1: delete

0
0

0
0
0

-130
0
0

-130
0
93

-130
73
93

-130
73
93

-260
73
196

-260
73
289

-260
73
289

-260
73
382

-260
73
-260

475

Figure 3 – Detail of how the Q-table gets populated each episode

In PARMOREL, we use a 3-dimensional Q-table to store entries, which corresponds
with a combination of a concrete action applied in a location to repair a particular
issue in the model. Each entry has a weight which reflects how good an action is for
repairing an issue in a model location according to the user preferences. Actions from
entries in the Q-table are stored individually and they are sequence-independent. To
obtain these repairing actions, the algorithm filters the selected invokable actions to
keep only those that are able to repair at least one error (see lines 6-9 in Alg. 1).
Hence, the Q-table only contains entries that are able to repair an issue. Although
these actions may produce different repairs depending on their application order, it
is not necessary to store the whole sequence since the weights will be updated based
on how good an action is both individually and in the applied repair sequence. For
example, when repairing the model in Fig. 1, one entry in the Q-table would be:
entry3 := issue5, attribute1: address, action2: setName with a final weight of 382 after
10 episodes (see below).

Figure 3 shows how the Q-table would be populated with weights in each episode
of the algorithm when repairing issue5 and issue6 from Fig. 1. Each episode is one
iteration in which the algorithm has successfully repaired the model within a predefined
number of steps (see lines 10-18 in Alg. 1); one step corresponds to the application
of one entry. After each episode, the algorithm starts repairing the model again in
order to find possibly “better” repair sequences; i.e., sequences with entries whose total
weights are higher than the currently found ones. Figure 3 represents 10 episodes
(e0-e10); in the beginning (e0), the Q-table is empty as the algorithm does not know
yet how to repair the model, hence all entries have a weight of 0. Picking the “right”
number of episodes assures that the algorithm has enough time to find different possible
sequences to repair the model; what is right depends on the model size, the number of
errors and actions available. There is no established policy of how many episodes are
best for a given problem [SB11], so according to our experimentation, between 15 and
20 episodes are enough. Likewise, the maximum number of steps is picked based on
the size of the model and number of errors - 10 in the case of this example. Limiting
the number of steps assures that the algorithm does not fall in an infinite loop while
looking for repairing sequences. In the future, the selection of these values could be
automated by implementing a hyperparameter selection method, similar to grid and
random search in other ML algorithms [BBBK11].

For this example, we simulate a user who prefers to repair the model preserving as
much as possible of its original structure (pref1 ) and to address each issue individually,
rewarding entries that repair one issue at a time (pref2 ). His intention is to respect
the original model and to repair in a way that allows him to track independently
the repair of each issue. We would like to remark that the preferences displayed in

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


6 · Angela Barriga et al.

this paper work as a proof of concept to evaluate different repair scenarios with our
approach and they may not substitute the requirements specified by a real modeler.

When an action fulfills pref1, its entry obtains a reward of 10, otherwise, it obtains
a punishment of -10 multiplied by the number of times the entry is unaligned with
the preference. For pref2, entries obtain a positive reward with the percentage of
remaining non-repaired issues after repairing a single issue or a negative reward with
the percentage of repaired issues. For example in e1, applying delete in class Owner
would get -80 from pref1 since it would delete 8 elements of the model (1 class, 4
attributes and 3 references) and -50 from pref2, since we would be repairing 50% of
the issues simultaneously (3 out of 6)—making a total reward of -130. In e3, however,
changing the type of password would get a reward of 10 from pref1, since it solves
the issue by updating an existing element without deleting or adding new ones to the
model, and 83 from pref2 since it repairs just 1 out of 6 issues (13%) and does not
interfere with the resting 83%—making a total reward of 93.

If no preference is involved with the applied entry, there will be a positive default
reward for each repaired error. Picking the right rewards for the preferences is
done based on our experimentation, there is no established policy about defining
rewards in Q-learning [SB11]. For simplicity, we calculate the weights in the Q-table
with an accumulation of the rewards obtained from the user preferences. In the
implementation in PARMOREL, however, these weights are calculated based on the
Bellman Equation [Bel13] where one of the inputs to the equation is the rewards
obtained from user preferences.

The Q-learning algorithm picks the entry with the highest value in the Q-table or
an entry randomly (see line 13 in Alg. 1). This way, it assures applying new entries
that would have otherwise never been picked; in each step, there is 20% chance of
picking an entry which is not having the highest weight in the Q-table. Following this
procedure, Fig. 3 displays how the algorithm picks entries in each episode: highest
in green, random in blue. Once a weight is stored, it is propagated to the following
episodes and if the entry is picked in multiple episodes the weight will be accumulated.
This way, after some episodes the algorithm is able to learn which are the entries most
aligned with user preferences (see lines 23-24 in Alg. 1); for the current user these
entries are entry3 and entry7. Below, we show a pseudo-code of Q-learning within
PARMOREL (see Alg. 1).

Due to the Q-table’s storage procedure, when facing the same error repeated times,
even if it appears in different and unrelated models, PARMOREL will be able to
recognize it and gradually repair it in a more efficient way. For example, issue5 in
Fig. 1 will always follow the same structure —an attribute with the same name as
class/association—regardless of the model where issue5 appears.

In traditional RL, the weight of each entry depends on a single reward ; e.g., for
a robot learning how to escape a maze, it receives a negative reward when stepping
into a wall and a positive one when entering a free space. However, in model repair
one entry’s weight may depend on multiple rewards since it might involve several user
preferences, e.g., recall that entry1 in Fig. 3 got its weight based on two different
preferences. Introducing user preferences complicates reusing experience since what is
a good repair for one user might not be acceptable for another one. This challenge of
reusing experience when the rewards change from one scenario to another is addressed
in the ML field by TL [PY10].

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


Improving model repair through experience sharing · 7

Algorithm 1 Q-learning in PARMOREL
1: INPUT: from User (model, preferences)
2: INPUT: from M. framework (issues Ð getIssues(model), actions Ð getActions(model),
3: locations Ð getLocations(issues))
4: for each i in issues do
5: invokableActions Ð getAllInvokableActions(i)
6: repairingActions Ð getAllRepairingActions(i, invokableActions)
7: for each a in repairingActions do
8: addQtableEntry(i, a, i.location, 0)
9: originalModel Ð model

10: while numberOfEpisodes not 0 do
11: while numberOfSteps not 0 _ issues != H do
12: e Ð selectRandomIssue(model)
13: entry Ð selectEntry(e, Q-table) // random or highest Q-value
14: model.applyAction(entry.getAction(), entry.getLocation)()
15: rewards Ð getRewards(model, preferences)
16: updateQtableWeights(entry, rewards)
17: seq Ð addEntry(entry)
18: if checkNewIssues(model) then repeat lines 4-9
19: sequences Ð addSequence(seq)
20: numberOfEpisodes Ð numberOfEpisodes - 1
21: model Ð originalModel
22: bestSequence Ð getBestSequence(sequences)
23: updateQtableWeights(bestSequence.getEntries, rewards)
24: applySequence(bestSequence, model)
25: OUTPUT: repaired version of model

4 Applying transfer learning in model repair

TL differs from traditional ML in the fact that, instead of learning how to solve a
problem from zero, it reuses experience gained in solving a source task to accelerate
the solution of a new target task. The benefits of TL are that it can speed up the time
it takes to develop and train an ML system by reusing already developed solutions.

There exist many techniques within TL. In PARMOREL we take into account
starting-point and imitation methods [TS10]. Starting-point methods use the solution
found in the source task to set the initial experience in a target task. Imitation
methods use parts of the source task experience to influence the solution of the target
task. Applied to our scenario, following starting-point methods the whole Q-table
from a previous repair would be reused in a new one while following imitation methods
only some parts of the source Q-table would be copied to the new repair.

4.1 Learning through propagating preferences

As mentioned, while repairing models with PARMOREL the Q-learning algorithm
stores weights in the Q-table indicating how good an entry is for repairing an issue.
Working with the same Q-table in different repair scenarios is useful as long as user
preferences remain unchanged. However, it is not convenient to directly reuse the
Q-table (as in starting-point methods) when introducing new sets of preferences since
the repairing process would use the weights calculated with the old preferences and
this could lead to repair decisions unaligned with the new ones. Following imitation
methods would not be convenient either since we would still copy some of the weights
from an old Q-table calculated with old preferences. Our goal is to reuse the experience
obtained from other users’ repairs, therefore we apply our own version of the starting-

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


8 · Angela Barriga et al.

Q-table
User1

e10

 User1 rewards

73
382
23

-186
-146
-143

-260 -90

 User2 rewards

Without TL
User2

e10

-2
6
-12

-32

User2
e0

-188
-140
-155

-122

User2
e10

With TL
accumulated rewards
(reward x episodes)

 from pref1 x0.2

 pref1: -80, pref2: -50 (x2 episodes)
 pref1: -10, pref2: +83 (x1 episode)
 pref1: +10, pref2: +83 (x3 episodes)
 pref1: -60, pref2: +83 (x1 episode)

 pref1: -80, pref3: 50 (x3 episodes)
 pref1: -10, pref3: -83 (x2 episode)
 pref1: +10, pref3: -83 (x2 episodes)
 pref1: -60, pref3: -83 (x1 episode)

entry1
entry2
entry3
entry4

 entry2 := issue5, attrib1: address, action1: delete

 entry3 := issue5, attrib1: address, action2: setName

 entry4 := issue5, class2: Address, action1: delete

 entry1 := issue5, class1: Owner, action1: delete

Figure 4 – Example of differences when initializing the Q-table with and without TL

point method by copying all Q-table entries without their weights so that the algorithm
would not start with a completely empty Q-table. In addition, we apply a variant of the
imitation method in which instead of copying weights from the Q-table, we keep track
of which preferences were used to produce the weights during the episodes, accumulate
their values, and reuse those which are aligned with the new user preferences.

The quality of an entry is no longer tied to a specific set of preferences; the
algorithm is now able to pick the individual rewards used to calculate the weight of
each entry. Since entries represent issues and actions that can potentially appear
in any model, the structure of the Q-table can be reused regardless of the model to
repair.

Note that the sample Q-tables shown in this paper exemplify the entries by
displaying the names of the locations where the actions are applied; e.g., entry3 in the
Q-table in PARMOREL would look like entry3 := issue5, attribute1, action2 rather
than entry3 := issue5, attribute1: address, action2: setName.

As an example, the upper part of Fig. 4 shows the difference in the Q-table of two
users with different preferences for repairing issue5 in Fig. 1. User1 is the same user we
simulated in Fig. 3 with pref1 and pref2 as displayed in Fig. 4. User2 shares pref1 and
in addition prefers to repair as many issues as possible with just one action (pref3).

These users share one of their preferences, but since the other one is different, they
will get different repairs. The Q-table reflects this difference, entry3 is the one selected
for User1, and entry1 for User2, since by deleting the class Owner we repair issue4,
issue5 and issue6 at the same time. User2 preferences are specially interesting because
it shows how RL is able to pick a solution when preferences are contradictory. In this
situation, it is not possible to repair more than one error at a time without deleting
several elements in the model, which goes against pref1.

Additionally, the lower part of Fig. 4 shows how the weights of User2 are changed
when we transfer learning. That is, by transferring the accumulated rewards (multiplied
by the number of episodes they were applied) coming from shared preferences between
both users (pref1 in this example), it is possible to streamline consecutive repairs.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


Improving model repair through experience sharing · 9

When sharing experience, we initialize the Q-table with the accumulated rewards of the
shared preferences multiplied by a discount factor of 0.2. This way we assure previous
repairing processes influence the new repairs by jump-starting the repairing process but
do not interfere with learning new repair sequences. Based on our experimental results,
we found that a value of 0.2 gave the best results for our cases. This parameter’s
value can be modified so that the previous experience affects less or more new repairs.
However, the value should remain a constant during the execution otherwise some
parts of the experience will be more favoured than others. Now, when User2 starts
repairing, PARMOREL will already know that entry3 is the best according to pref1,
but thanks to the discount factor it is still able to find a better solution for this user.

4.2 Integration with PARMOREL

In this section, we detail how PARMOREL shares experience between different users.
We use the model in Fig. 5 to illustrate how PARMOREL supports TL in model
repair. The learning information gained after each repair is represented by the concept
Experience which is composed of one to many entries and preferences. Experience has a
structure that achieves transfer learning from older repairs independent of the models
which we want to repair.

The concept Entry has references to all the elements that are part of the Q-table:
an Issue, a Location and an Action. In addition, an Entry has a zero to many references
to Reward. Weights are not included in this model since we only share the accumulated
rewards which were used to calculate them. Hence, the Reward contains a numerical
value based on the users’ preferences. The model has also the following constraints:

1. There cannot exist two identical Entry elements (formed by the same combination
of Issue, Location and Action).

2. One Entry cannot contain more than one Reward from the same Preference.

When the repairing algorithm is executed for the first time, there is no previous
experience and PARMOREL starts learning from zero; the Q-table is empty and the
algorithm needs to process the model to populate it with entries. When the repair
finishes, the first experience is created. It contains every entry stored in the Q-table
and the accumulated rewards coming from user preferences for those entries. For
second and consecutive executions, the sharing will be different depending on how
much current user preferences coincide with the ones already stored in the Experience:

Entry

Experience

Location

Action

Issue

Preference

Reward

+ value: int

[1..*] preferences

[1..*] entries

[0..*] rewards

[1..1] issue

[1..1] action

[1..1] location 
[1..1] preference

[1..*] rewards

Figure 5 – Model of transferring learning experience in PARMOREL

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


10 · Angela Barriga et al.

• Always, independently of the new preferences chosen, the current Q-table is
initialized with the stored entries (see line 6 in Alg. 2). If there are new entries
in the current model, these are also added to the Q-table and therefore in the
experience (lines 4-8 in Alg. 1).

• If any of the new preferences are shared with the stored ones, the current Q-table
is initialized with all rewards coming from the matching preferences (see lines
7-10 in Alg 2). Returning to the example in Fig. 4, User2’s Q-table is initialized
with rewards correspondent with pref1 since that is the one selected by both
users. These preferences’ rewards will be updated for future propagation (see
line 12 in Alg. 2). If a user introduces preferences not stored yet, these will be
added to the experience.

When sharing experience in PARMOREL, we reduce the random factor of the
Q-learning algorithm from 20% to 10% to enhance the influence of the previous
Experience. The number of episodes is also reduced since due to TL the repairing
process is improved and solutions are found faster.

Regarding Alg. 1, for introducing TL, we add some new code right after the inputs
for checking if any previous Experience exists to initialize the Q-table, see Alg. 2. Lines
4-9 in Alg. 1 are executed for those errors not present in the experience. Then, after
line 16 we store pairs of preference-reward for the selected entry, in order to keep track
of which preferences provided each reward. When facing the same entry, the pairs are
updated, accumulating the rewards. Finally, at the end of the algorithm, we store all
generated experience in a text file with XML format (see output in Alg. 2).

Algorithm 2 Transfer learning in PARMOREL
1: INPUT: from User (preferences)
2: INPUT: from PARMOREL (experience, discountFactor, episodes)
3: Qtable Ð createNewQtable()
4: if experience != H then
5: reduceNumberofEpisodes(episodes)
6: for each entry in experience.entries do
7: addQtableEntry(entry, 0)
8: for each pref in preferences do
9: for each reward in entry.rewards do

10: if reward.preference == pref then
11: updateQtableWeight(entry, reward.value * discountFactor)
12: //Algorithm 1, in line 4: if i exists in the Qtable then skip loop
13: //after line 16: for each entry, store in the experience reward values coming from preferences
14: updateExperience(Qtable.entries, preferences, rewards)
15: OUTPUT: XML with generated experience

5 Implementation and Evaluation

In this section, we present a proof of concept implementation of our approach, testing
it with two examples: we repair a broken model with different sets of preferences and
then we repair 30 randomly mutated models obtained from 3 originals from GitHub.
The objectives of this section are to show that our approach can (i) store and reuse
experience learned from different preferences and (ii) improve the repairing time when
working with different models. The implementation source code and the models are
publicly available in [Bar]. Additionally, PARMOREL is available as an Eclipse plugin
(see Fig. 6).

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


Improving model repair through experience sharing · 11

Figure 6 – Screenshot of PARMOREL Eclipse plugin

In our current PARMOREL implementation, we use the EMF API to obtain issues
present in the model and actions to repair it. For these examples, PARMOREL is run
in Eclipse Oxygen (the Modeling package) on a laptop with the following specifications:
Windows 10 Home, Intel Core i5-6300U @2.4GHz, 64 bits, 16GB RAM.

5.1 Example I: different users repairing the same model

In this example, we use our implementation of TL in PARMOREL to repair the broken
model presented in Section 2 (see Fig. 1). We simulate 7 different users with different
sets of preferences to repair the model. For the sake of brevity, we only display the
first three users in Fig. 7 together with their preferences and the repaired model that
each of them obtains. Our goal with this example is to demonstrate that our approach
is able to produce different repair solutions depending on the preferences selected by
the user and to streamline the repairs the more experience is reused.

Each user preferences are a combination of those displayed in Fig. 6. The
combinations have been chosen so that they are completely different (User1 and User2
in Fig. 7), coincide partially (User2 and User3), and are the same. Also, some users
may completely coincide in some of their preferences while having opposite preferences
in others (User3 and User5 coincide in repair errors individually but one prefers to
preserve the original model and the other to modify it). This diverse set of preferences
allows us to evaluate if our approach is able to: (i) share experience between users
with unrelated preferences, (ii) successfully reuse experience when preferences coincide
completely or partially with the stored experience, and (iii) achieve better performance
when more parts of the experience are reused.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


12 · Angela Barriga et al.

The first repair of our example is executed with User1’s preferences (see Fig. 7),
when there is no previous experience stored. Afterwards, we repair the model using
each set of user preferences in numerical order. The experience gained is stored and
reused in the next repair. Note that repair processes are not concurrent but sequential:
when one user finishes his process the experience is locked until the next user starts
repairing. We also changed the repair order but it did not provide different solutions.

Figure 7 shows, for each user, the applied repairing sequence and the repaired
model which PARMOREL produces. In the repaired models, we show where each
issue was repaired. Below, we detail the repairing process for each user in Fig. 7 :

• User1: Since this is the first repair, there is no experience stored yet. In order
to preserve the original model, PARMOREL avoids to delete or add elements to
the model as much as possible.

• User2: This repair reuses experience obtained from the previous user’s repair
process, however, since User2’s preferences do not coincide with the ones stored
(User1’s preferences), only entries without rewards are reused. User1’s preference
is opposite to User2’s (preservation vs modification of the original model),
therefore, this repair is not influenced by User1’s preference. Since User2 wants
to reward modification, the algorithm chooses to delete elements in the model
and to add a new class to solve issue1 and 2.

• User3: This user is the first one to pick preferences already stored in the
experience, in addition to a new one. As in the previous repair, one of the
preferences selected by User3 is new. Since User3 prefers to reward model
modification and to repair errors individually, there are fewer elements deleted
than in the previous repair.

The random component of RL produces variations in the results, therefore, to get
stable results, we reproduced the following steps 20 times: repairing the broken model
with preferences from User1 to User7 starting with no previous experience in User1.
Results in Fig. 7 are the majority of those that were obtained most frequently.

To check if our approach succeeded in improving the repair time when more
experience is reused, we measured the time used to complete each user’s repairing
process. Figure 8 shows how long it takes to repair the model with the 7 sets of user’s
preferences during three different rounds. Although there are some variations in each
round, we can see a pattern. User1’s execution had no previous experience, therefore
this repair takes longer, where the preprocessing of entries took an average of 570ms.
User2 shows a faster execution than before since they reuse entries and PARMOREL
does not need to calculate them again. From here, we can see how execution time gets
even lower since User3 to User7 have preferences that appear in the stored experience.
User3 introduced new preferences so the repair is not fast as in User4 to User7 since
all their preferences were already stored in the experience. In these last users, their
execution times are not so different. This is because the type of preferences introduced
also influences execution time, e.g., repairing several issues at a time is faster than
individual repair.

In conclusion, each user obtains a customized repairing process and a repaired
Ecore file is exported. PARMOREL allows to automatically store and share experience
in different executions. Sharing is adapted depending on whether users introduce
preferences already stored in the experience (reuse of entries and rewards) or not
(reuse of only entries). With this approach, the repairing time becomes faster when
reusing more experience.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


Improving model repair through experience sharing · 13

Device

id	:	EInt
url	:	EString
pushNotification():	int

Status

name	:	EString
id	:	EInt

Public_StatusCategory

Owner

name	:	EString
email	:	EString
placeholder063	:	EString
password	:	EString

Address

street	:	EString
city	:	EString
zip	:	EInt

[1..1]	public_status
[1..*]	category

[1..1]	address

[1..1]	address

[5..5]	device

[0..1]	owner

Device

id	:	EInt
url	:	EString

StatusCategory

Address

street	:	EString
city	:	EString
zip	:	EInt

Category_Status

id	:	EInt
name	:	EString

[1..1]	status

[1..*]	category [1..1]	address

issue1

issue2

issue3
issue4

issue5
issue6

issue4
issue5
issue6

issue1issue2

issue3

Repairing sequence

 issue1 - make Status superclass of Public_Status, remove ref from
Status, remove attribs from Public_Status
 issue2 - make Category child of Status, remove attribs from Category
 issue3 - delete string return parameter from pushNotification()
 issue4 - change reference owner upper bound to 1
 issue5 - rename attribute address
 issue6 - add type to attribute password

Device

id	:	EInt
url	:	EString

StatusCategory

Owner

name	:	EString
email	:	EString

Address

street	:	EString
city	:	EString
zip	:	EInt

Category_Status

id	:	EInt
name	:	EString

[1..1]	status[1..*]	category

[1..1]	address

[1..1]	address

[5..5]	device

issue1issue2

issue3
issue4

issue5
issue6

Repairing sequence

 issue1 - delete Public_Status
 issue2 - add a new class Category_Status, make it superclass of Category and
Status, add attribs to Catgory_Status, remove attribs from Category and Status
 issue3 - delete operation pushNotification()
 issue4, 5 and 6  - remove class Owner

Repairing sequence

 issue1 - delete Public_Status
 issue2 - add a new class Category_Status, make it
superclass of Category and Status, add attribs
to Catgory_Status, remove attribs from Category and Status
 issue3 - delete  operation pushNotification()
 issue4 - delete reference owner
 issue5 - delete attribute address
 issue6 - delete attribute password

1

3

2

Preserve
original model

Reward model
modification

Reward model modification
Repair errors individually

User

User

User

Figure 7 – Users with different preferences repair the same broken model

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


14 · Angela Barriga et al.

1 2 3 4 5 6 7

1,000

1,500

2,000

Users

E
xe
cu
ti
on

ti
m
e
(m

s)

Round 1
Round 2
Round 3

Figure 8 – Evolution of repair times for model in Fig. 1 with 7 users in 3 different rounds

5.2 Example II: different users repairing randomly mutated models

To evaluate and test the generality and scalability of our approach, we use our im-
plementation of TL in PARMOREL to repair 30 mutant models generated from 3
industry size models (10 mutants per original model) obtained from GitHub: Ran-
domEMF [mar15], OCCIware ecore [Occ17] and amlMetaModel [aml16]. To generate
the mutants, we use AMOR Ecore Mutator [AKK`08], an EMF-based framework
to randomly mutate models conforming to the Ecore meta-metamodel. We refer to
each group of mutants coming from these models as batches A, B, and C, respectively.
AMOR offers different mutation options such as deleting, adding, or moving objects,
however, here we only introduce mutations by updating features of the original models.
This is because updating features would create issues which are similar enough to
demonstrate reuse of experience (in our previous work [BRH19], we demonstrated how
PARMOREL could repair a more diverse variety of mutations through 100 models).
The mutant models contain between 1 and 7 syntactic errors (out of 11 different issues)
and have different sizes ranging from 21 to 36 classes, 21 to 100 attributes and 15 to
197 references. Actions to repair the mutants are directly extracted from the editing
actions available in EMF. Mutants from this example are available to download in
[Bar]. In this example, we simulate 3 users (User1 to User3) to repair each batch of
mutants (each user repairs one batch) with different set preferences based on those
displayed in Fig. 6.

First, we repair each batch without applying TL. Then, we proceed to repair them
in the following order: A-B-C-A, starting from zero with no experience stored in
PARMOREL. We repair batch A twice to measure its repairing time with and without
TL, since in its first repair there is no experience to propagate. Results are displayed
in Table 1 (times displayed are the average after reproducing this cycle 20 times). In
batch A, the repairing time is improved 58,90% when using TL; it benefits from the
experience containing all its errors and preferences since we repair A twice in the cycle.
Batch B contains 10 errors, from which 3 are not present in the experience and User2’s
preference is new, so it only gets an improvement of 9,71%. Finally, for mutants in
batch C, we obtain an improvement of 36,56%, a better result than the previous batch
since PARMOREL does not face any unknown issue and has already processed one
of User3’s preferences. Batch C takes longer to repair with and without TL since it
contains the biggest models.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


Improving model repair through experience sharing · 15

The results of this evaluation indicate that our TL approach accomplishes sharing
the experience learnt by repairing different models, can work with real-world models
and streamlines the repair regardless of the chosen preferences.

Per model Total batch
Elements Issues Without TL With TL Improvement

Batch A 76 1 - 7 7,93s 3,26s 58,90%
Batch B 74 1 - 5 7,41s 6,69s 9,71%
Batch C 336 1 - 6 12,06s 7,65s 36,56%

Table 1 – Comparison of repairing times with and without TL

6 Threats to validity

Although we consider our approach successful in integrating TL in PARMOREL and
streamline the repairing process, we face some validation issues worth discussing in
this section.

Models and errors. Our evaluation focused on repairing a broken model designed
by us (see Fig. 1) and 30 mutant models produced with AMOR. The criteria for
selecting which issues should be present in the first model was to create a broken
model that could be repaired in different ways according to our set of preferences,
making a motivating example for our approach. The reasons for using AMOR are its
easy integration with EMF and the randomness of the introduced mutations. Despite
this randomness, it has a predefined set of mutations, and the issues it produces might
not be as complex as errors introduced by a human. Still, we believe it is realistic to
think these issues could appear in real modeling environments.

Preferences. Since no real users participated during the evaluation, we simulated
different sets of high-level repairing preferences. Although these preferences were
fictitious, we consider them a good example for showing the potential of RL to produce
personalized solutions and how experience sharing works.

Generality. Our approach is evaluated using EMF and Ecore metamodels, however,
PARMOREL should also work with other types of models. The assumption is, as long
as the framework in which the models are defined can detect errors and provide an
API for editing actions, future versions of PARMOREL should be able to repair them
and to apply TL.

Dynamic learning. Although we consider our approach to provide a balance be-
tween automation and personalization, it is obvious that providing a predefined set
of preferences might not be universally applicable in all scenarios. Therefore, we
contemplate the possibility of providing further interactions with users, for example,
offering runtime repair options to the users and learning from their choices.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


16 · Angela Barriga et al.

7 Related work

Model repair is a research field that has drawn the interest of many researchers to
formulate approaches and build tools to repair broken models. Even though some of
these tools offer some degree of automation and customization, we could not find in
the literature any research applying RL or TL to model repair.

One tool that allows customization is Echo [MGC13], in which users can customize
repair operations. They provide concrete repairs and produce well-formed model
instances. The only output is the generated instance of the model, so the user lacks
information about repair plans and causes of the inconsistencies. It has some predefined
metrics such as preferring least-change options, which cannot be modified by users.

Taentzer et al. [TOLR17] present a prototype based on graph transformation
theory for change-preserving model repair. In this approach, the authors check opera-
tions performed on a model to identify which ones caused inconsistencies and apply
the correspondent consistency-preserving operations, maintaining already performed
changes on the model. Although this approach does not offer active customization,
it keeps track of user history and takes their repairing preferences into account. By
obtaining preferences from historical data, this approach assumes user preferences
will not change from one repair to another, which is a situation that could happen
frequently when facing different model repair scenarios.

Other efforts focus on interactive solutions, authors in [CvBLR`17] present an
interactive repairing tool powered by visual comparison of models, performing confor-
mance checking. They claim fully automated methods lead to overgeneralized solutions
that are not always adequate, and strong interaction comes with a high computational
effort, therefore as future work they seek an equilibrium between automation and
interaction. This is exactly our vision: a balance between the algorithm independence
and enough interaction with the user to provide personalized solutions.

Khelladi et al. [KKE19] present a model repair approach that ranks repairs
depending on the positive or negative side effect they produce. They also identify
alternative repair paths and cycles of repairs. This is a very interesting research
line and some of their concepts are also present in PARMOREL’s implementation.
We also avoid falling in cycles of repairs by delimiting the number of steps in the
Q-learning algorithm, repairs with bad side effects will get a poor reward and the
random component of Q-learning lets us explore different alternative repair paths. As
future work, it would be interesting to integrate their concept of positive side effect to
provide good rewards in PARMOREL.

Kretschmer et al. introduce in [KKE18] an approach for discovering and validating
values for repairing inconsistencies automatically. Values are found by using a validation
tree to reduce the state space size. Trees tend to lead to the same solutions once
and again due to their exploitation nature (probing a limited region of the search
space). Differently, RL algorithms include both exploitation and exploration (randomly
exploring a much larger portion of the search space with the hope of finding other
promising solutions that would not be selected normally), allowing to find new and,
sometimes more optimal solutions for a given problem.

Also tree-powered, Model/Analyzer [RE12] is a tool that, by using the syntactic
structure of constraints, determines which specific parts of a model must be checked
and repaired. The user is expected to select a specific violation to be repaired but
does not support user customization.

Puissant et al. propose a tool called Badger based on an artificial intelligence
technique called automated planning [PVDSM15]. Badger generates sequences that

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


Improving model repair through experience sharing · 17

lead from an initial state to a defined goal. It has a set of repaired operations to
which users can assign costs and weights to decide its priority. Badger generates a set
of plans, each plan being a possible way to repair one error. We prefer to generate
alternative sequences to repair the whole model since some repair actions can modify
the model drastically. This makes it difficult for the user to decide which action to
apply without knowing how it affects the rest of the model. Additionally, in Badger
users can personalize parameters of a predefined set of operations, we offer higher-level
preferences that allow a wider range of customization. Also, by combining RL and TL
we are able to streamline the repairing process; while automated planning performance
does not improve with time.

Lastly, it is worth mentioning search-based and genetic algorithm-based approaches
since, although they have not been applied yet to model repair, they can be considered
as possible competitors to RL. These techniques have shown promising results deal-
ing with model transformations and evolution scenarios, for example in [KMW`17]
Kessentini et al. use a search-based algorithm for model change detection. These
algorithms deal efficiently with large state space scenarios, however, they cannot learn
from previous tasks nor improve their performance. While RL is less efficient when
dealing with large state spaces, it can compensate with its learning capability. At the
beginning, performance might be poor, but with time repairing becomes straightfor-
ward. Also, search and genetic algorithms require a fitness function to converge. This
function is more rigid to personalize than RL rewards. While in RL is easy to adapt
different rewards for individual actions or complete sequences, is not so intuitive how
to provide personalization at different levels with a fitness function.

8 Conclusions and future work

In this paper, we presented an approach to repair models using Reinforcement Learning
(RL) and Transfer Learning (TL) in our tool Personalized and Automatic Repair
of MOdels using REinforcement Learning (PARMOREL), together with a proof of
concept implementation. In this approach, experience generated by repairing models
under certain customization preferences can be reused to streamline later repairs.
Different parts of the experience are taken into account depending on user preferences.
Each execution updates the stored experience, hence, the algorithm’s learning becomes
more efficient with time.

In the proof of concept implementation, we repaired broken models with different
user preferences. To show how TL works under different circumstances, we simulated
a set of users with preferences, such as punishing modification of model elements.
The implementation showed how our approach allows us to repair models and to
automatically share experience in different executions and models, achieving better
performance the more experience is reused. Our results are promising and can be seen
as an indicator of the potentials of this research direction, hence, we would like to
continue developing PARMOREL following the next research lines.

Modeling framework. The implementation displayed in Section 5 is tied to EMF
and Ecore metamodels. However, since PARMOREL is built as an Eclipse plugin we are
currently working on implementing features that enable users—through implementing
a series of interfaces—to define both the issues they want to repair, their own catalogue
of actions and types of models.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a13


18 · Angela Barriga et al.

Preferences and dynamic learning. Next, we will work further on how users
define their preferences for model repair. We are developing a domain-specific language
(DSL) to allow users to design their own preferences in addition to offering a predefined
set of preferences (as shown in Fig. 6). Regarding rewards, we would like to apply
apprenticeship learning [AN04] to infer their values from observing users during
repairing processes. Furthermore, we are working on enabling the users to give feedback
to the algorithm by selecting among the repair sequences provided by the algorithm.
This way, the users can determine which of the solutions fit their requirements after
checking the effect of the repair sequence. Moreover, we will investigate how historical
changes in the models could be used to influence the final repair sequence.

Collaborative environment. Currently, PARMOREL works sequentially and con-
current sharing of experience is not supported. That is, we store experience in an
XML file that can be shared via a repository. This method works as a proof of concept,
however, we plan to provide a collaborative environment where experience is gathered
and shared in runtime.

Quality metrics. Moreover, the only measurable quality of the repaired models
is how much they fit user preferences. In future work, we want to also assure these
models’ quality based on metrics [DG18]. The same way we can produce personalized
models by using preferences, we will be able to produce models that improve different
quality metrics at request. Finally, one area we want to study is the refactoring of
models using RL to make them more aligned to architectural and design patterns.
Additional rewards could be related to how well the models meet the coupling and
cohesion criteria.

References

[AKK`08] Kerstin Altmanninger, Gerti Kappel, Angelika Kusel, Werner Rets-
chitzegger, Martina Seidl, Wieland Schwinger, and Manuel Wimmer.
Amor–towards adaptable model versioning. In 1st International Work-
shop on Model Co-Evolution and Consistency Management, in con-
junction with MODELS, volume 8, pages 4–50, 2008.

[aml16] amlModeling. amlmodeling/amlmetamodel, Jan 2016. URL: https:
//github.com/amlModeling/amlMetaModel.

[AN04] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the twenty-first international
conference on Machine learning, page 1. ACM, 2004.

[Bar] Angela Barriga. PARMOREL. Available at: https://ict.hvl.no/
project-parmorel/.

[BBBK11] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In Advances in neural
information processing systems, pages 2546–2554, 2011.

[BDRIP19] Lorenzo Bettini, Davide Di Ruscio, Ludovico Iovino, and Alfonso
Pierantonio. Quality-driven detection and resolution of metamodel
smells. IEEE Access, 7:16364–16376, 2019.

[Bel13] Richard Bellman. Dynamic programming. Courier Corporation, 2013.

Journal of Object Technology, vol. 19, no. 2, 2020

https://github.com/amlModeling/amlMetaModel
https://github.com/amlModeling/amlMetaModel
https://ict.hvl.no/project-parmorel/
https://ict.hvl.no/project-parmorel/
http://dx.doi.org/10.5381/jot.2020.19.2.a13


Improving model repair through experience sharing · 19

[BRH18] Angela Barriga, Adrian Rutle, and Rogardt Heldal. Automatic model
repair using reinforcement learning. In Proceedings of MODELS 2018
Workshops, Copenhagen, Denmark, October, 14, 2018., pages 781–786,
2018. URL: http://ceur-ws.org/Vol-2245/ammore_paper_1.pdf.

[BRH19] Angela Barriga, Adrian Rutle, and Rogardt Heldal. Personalized
and automatic model repairing using reinforcement learning. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engi-
neering Languages and Systems Companion (MODELS-C), pages
175–182, 2019. [Forthcoming]. Available: https://bit.ly/2IPfwMD.

[BV10] Manuel F Bertoa and Antonio Vallecillo. Quality attributes for soft-
ware metamodels. Málaga, Spain, 2010.

[CvBLR`17] Abel Armas Cervantes, Nick RTP van Beest, Marcello La Rosa, Mar-
lon Dumas, and Luciano García-Bañuelos. Interactive and incremental
business process model repair. In OTM Confederated International
Conferences" On the Move to Meaningful Internet Systems", pages
53–74. Springer, 2017.

[DG18] Khanh-Hoang Doan and Martin Gogolla. Assessing uml model quality
by utilizing metrics. In 2018 11th International Conference on the
Quality of Information and Communications Technology (QUATIC),
pages 92–100. IEEE, 2018.

[Fou] The Eclipse Foundation. Eclipse modeling project. URL: https:
//www.eclipse.org/modeling/emf/.

[KKE18] Roland Kretschmer, Djamel Eddine Khelladi, and Alexander Egyed.
An automated and instant discovery of concrete repairs for model
inconsistencies. In Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, pages 298–299. ACM,
2018.

[KKE19] Djamel Eddine Khelladi, Roland Kretschmer, and Alexander Egyed.
Detecting and exploring side effects when repairing model inconsis-
tencies. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering, pages 113–126, 2019.

[KMW`17] Marouane Kessentini, Usman Mansoor, Manuel Wimmer, Ali Ouni,
and Kalyanmoy Deb. Search-based detection of model level changes.
Empirical Software Engineering, 22(2):670–715, 2017.

[LFGDL14] Jesús J López-Fernández, Esther Guerra, and Juan De Lara. Assessing
the quality of meta-models. In MoDeVVa@ MoDELS, pages 3–12.
Citeseer, 2014.

[mar15] markus1978. markus1978/randomemf, Dec 2015. URL: https://
github.com/markus1978/RandomEMF/.

[MGC13] Nuno Macedo, Tiago Guimaraes, and Alcino Cunha. Model repair
and transformation with echo. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering, pages
694–697. IEEE Press, 2013.

[MJC16] Nuno Macedo, Tiago Jorge, and Alcino Cunha. A feature-based clas-
sification of model repair approaches. IEEE Transactions on Software

Journal of Object Technology, vol. 19, no. 2, 2020

http://ceur-ws.org/Vol-2245/ammore_paper_1.pdf
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://github.com/markus1978/RandomEMF/
https://github.com/markus1978/RandomEMF/
http://dx.doi.org/10.5381/jot.2020.19.2.a13


20 · Angela Barriga et al.

Engineering, 43(7):615–640, 2016. doi:https://doi.org/10.1109/
TSE.2016.2620145.

[NRA17] Nebras Nassar, Hendrik Radke, and Thorsten Arendt. Rule-based
repair of emf models: An automated interactive approach. In Interna-
tional Conference on Theory and Practice of Model Transformations,
pages 171–181. Springer, 2017.

[Occ17] Occiware. occiware/ecore, Sep 2017. URL: https://github.com/
occiware/ecore/.

[OPKK18] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, and Timo Kehrer.
Revision: a tool for history-based model repair recommendations. In
Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, pages 105–108. ACM, 2018.

[PVDSM15] Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens.
Resolving model inconsistencies using automated regression planning.
Software & Systems Modeling, 14(1):461–481, 2015.

[PY10] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359,
2010.

[RE12] Alexander Reder and Alexander Egyed. Computing repair trees for
resolving inconsistencies in design models. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engi-
neering, pages 220–229. ACM, 2012.

[SB11] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. 2011.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[TOLR17] Gabriele Taentzer, Manuel Ohrndorf, Yngve Lamo, and Adrian Rutle.
Change-preserving model repair. In International Conference on
Fundamental Approaches to Software Engineering, pages 283–299.
Springer, 2017.

[TS10] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of
Research on Machine Learning Applications and Trends: Algorithms,
Methods, and Techniques, pages 242–264. IGI Global, 2010.

[WHR14] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of
practice in model-driven engineering. IEEE software, 31(3):79–85, 2014.

About the authors

Angela Barriga is a PhD Candidate at Western Norway University of Applied
Sciences. She has experience woring with machine learning, computer vision, geron-
technology and pervasive systems. Barriga’s thesis is focused on model repair, specially
on repairing using reinforcement learning. She has been part of the local organization
of iFM 2019 and is involved in STAF 2020-2021. She is also part of the program
committee of the third international workshop on gerontechnology. You can learn
more about her at https://angelabr.github.io/ or contact her at abar@hvl.no.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/https://doi.org/10.1109/TSE.2016.2620145
http://dx.doi.org/https://doi.org/10.1109/TSE.2016.2620145
https://github.com/occiware/ecore/
https://github.com/occiware/ecore/
https://angelabr.github.io/
mailto:abar@hvl.no
http://dx.doi.org/10.5381/jot.2020.19.2.a13


Improving model repair through experience sharing · 21

Adrian Rutle is a Full-time professor at Western Norway University of Applied Sci-
ences. Adrian holds PhD in Computer Science from the University of Bergen, Norway.
Rutle is professor at the Department of Computer science, Electrical engineering and
Mathematical sciences at the Western Norway University of Applied Sciences, Bergen.
Rutle’s main interest is applying theoretical results from the field of model-driven
software engineering to practical domains and has expertise in the development of mod-
elling frameworks and domain-specific modelling languages. He also conducts research
in the fields of modelling and simulation for robotics, eHealth, digital fabrication,
smart systems and machine learning. Contact him at adrian.rutle@hvl.no

Rogardt Heldal is a professor of Software Engineering at the Western Norway Uni-
versity of Applied Sciences. Heldal holds an honours degree in Computer Science from
Glasgow University, Scotland and a PhD in Computer Science from Chalmers Univer-
sity of Technology, Sweden. His research interests include requirements engineering,
software processes, software modelling, software architecture, cyber-physical systems,
machine learning, and empirical research. Many of his research projects are performed
in collaboration with industry. Contact him at rogardt.heldal@hvl.no

Journal of Object Technology, vol. 19, no. 2, 2020

mailto:adrian.rutle@hvl.no
mailto:rogardt.heldal@hvl.no
http://dx.doi.org/10.5381/jot.2020.19.2.a13

	Introduction
	Motivation
	Reinforcement Learning in PARMOREL
	Applying transfer learning in model repair
	Learning through propagating preferences
	Integration with PARMOREL

	Implementation and Evaluation
	Example I: different users repairing the same model
	Example II: different users repairing randomly mutated models

	Threats to validity
	Related work
	Conclusions and future work
	Bibliography
	About the authors

