
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Detecting Metamodel Evolutions in
Repositories of Model-Driven Projects

Lorenzo Bettinib Davide Di Ruscioc Ludovico Iovinoa

Alfonso Pierantonioc

a. Gran Sasso Science Institute, Italy

b. Università degli Studi di Firenze, Italy

c. Università degli Studi dell’Aquila, Italy

Abstract Model-Driven Engineering (MDE) is a discipline that lever-
ages abstraction and automation in software development. Projects are
typically composed of inherently different artifacts, including models, meta-
models, model transformations, code generators, and concrete syntax
definitions. Despite the increasing availability of reusable projects (e.g.,
through GitHub), their reuse possibilities depend on the availability of
accurate, high-level metadata describing architectural information about
the project at hand. In this paper, we enhance an existing approach for
extracting relevant architectural information from model-driven projects
to detect subsequent metamodel versions in evolution paths. In particular,
we are interested in those refactorings that enhance the intrinsic quality of
metamodels. The approach has been implemented by extending the exist-
ing MDEprofiler tool and has been validated on a dataset consisting of
metamodels with different size and covering distinct application domains.

Keywords Model-Driven Engineering, reverse engineering, megamodels,
evolution, quality.

1 Introduction

The sheer complexity of software systems requires leveraging abstraction and introduc-
ing automated processes in software development. Model-Driven Engineering [Sch06]
(MDE) is a discipline that prescribes models as first-class entities to support the
development and analysis of complex software systems. Model-driven projects are
typically composed of inherently different artifacts, including models, metamodels,
model transformations, code generators, and concrete syntax definitions. As in the
case of software development that benefits from the availability of source code reposi-
tories, having reusable modeling artifacts available can speed-up modeling activities
as well as increase the quality of the system being modeled [VSB+13]. Over the last

Lorenzo Bettini, Davide Di Ruscio, Ludovico Iovino, Alfonso Pierantonio. Detecting Metamodel
Evolutions in Repositories of Model-Driven Projects. Licensed under Attribution 4.0 International (CC
BY 4.0). In Journal of Object Technology, vol. 19, no. 2, 2020, pages 14:1–22.
doi:10.5381/jot.2020.19.2.a14

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a14
http://dx.doi.org/10.5381/jot.2020.19.2.a14

2 · Iovino et al.

decade, several both academic and commercial model repositories have been proposed
(e.g., [KMB+08, KC13, KH10, HRW09], and the versioning capabilities provided by
commercial tools like Enterprise Architect1, MagicDraw2, MetaEdit+3, QualiWare4,
SystemWeaver5) so that developers, instructors, and researchers can rely on existing
artifacts to support the modeling tasks being undertaken. Despite the increasing
availability of reusable projects, their reuse depends on the possibility of retrieval mech-
anisms based on accurate, high-level metadata describing architectural information
about the project at hand.

Unfortunately, understanding how collections of models can be robustly and
efficiently managed is still a problem that needs to be better understood and ad-
dressed [Ste18]. In particular, as stated in [DRDRH+19] “the ability of carefully
analyzing projects to identify their components and their interrelationships is key to
obtain representations at a higher level of abstraction that can support reuse processes”.
In [DRDRH+19], an approach called MDEprofiler is given for the automated re-
trieval of architectural information about model-driven projects. A megamodel-based
representation is used for capturing the different types of artifacts and their interrela-
tionships. Heuristics are used to enable the recovery of specific types of architectural
information about the analyzed projects. In particular, current heuristics in MDE-
profiler identify a diversity of relationships involving metamodels, including the
conformance relation between models and metamodels, and the domain/co-domain
conformance between model transformations and metamodels.

In this paper, we extend our approach to the detection of metamodel evolution
patterns. In particular, understanding the intents behind modification actions may
reveal useful insights about how quality factors are affected by the way a metamodel is
modified [BDD+19]. Thus, the discovery capabilities of MDEprofiler are enhanced
in order to detect metamodel evolutions in repositories. More specifically, the research
problem we want to address in this paper can be summarized as

How to detect quality enhancing metamodel evolutions?

that can be distilled into the following research challenges:

• RC1: How to automatically detect metamodel evolutions? Not all metamodel
modification can be considered as part of an evolution process [Her11]. In
this paper, we consider two subsequent versions of a metamodel being part
of an evolution pattern whenever enough information in the final version can
be traced back to the initial one. In essence, the two metamodels must share
some commonalities. As a consequence, it is necessary to conceive an automated
mechanism that is able to automatically detect when a metamodel is the evolution
of another one.

• RC2: How to automatically detect quality improving metamodel evolutions?
Among metamodel evolutions, we want to characterize those that have been op-
erated with the aim to enhance certain quality factors in the original metamodel,
e.g., reusability, complexity.

Outline. The structure of the paper is as follows. Section 2 presents a motivational
example; whereas the next section illustrates the proposed approach to the detection of

1https://sparxsystems.com/
2https://www.nomagic.com/products/magicdraw
3https://www.metacase.com/
4https://www.qualiware.com/
5https://www.systemweaver.se/

Journal of Object Technology, vol. 19, no. 2, 2020

https://sparxsystems.com/
https://www.nomagic.com/products/magicdraw
https://www.metacase.com/
https://www.qualiware.com/
https://www.systemweaver.se/
http://dx.doi.org/10.5381/jot.2020.19.2.a14

Detecting metamodel evolutions in repositories of MDE projects · 3

quality-driven metamodel evolutions. Section 4 illustrates an experimental validation
of the proposed techniques. A discussion about the related work is given in Section 5.
Finally, Section 6 discusses future work and draws some conclusions.

2 Motivating scenario

As mentioned above, the approach implemented in MDEprofiler allows to harvest
relevant architectural information from projects stored in a modeling repository.
Such knowledge can be useful for extending the analyzed repository with elicited
structures that can better characterize and leverage the nature of the artifacts and
their interrelationships. As an example, consider the project scenario in Fig. 1.a
where different artifacts are involved, including EMF-based metamodels, Acceleo6

model-to-code transformations, and ATL7 model-to-model transformations. Users
who are interested in reusing such a project may have difficulties in understanding its
structure and the role of the different artifacts therein. At this stage, MDEprofiler is
able to reverse engineer the project and to represent its architectural structure, as
shown in Fig. 1.b. Designers can then analyze the different project components and
how they are related to each other, with a consequent increase of reuse possibilities.

a) Sample MDE project shown
 in the Eclipse Project Explorer

b) Automatically recovered architecture and visualization
of the recovered project

Figure 1 – An explanatory MDE project (borrowed from [DRDRH+19])

MDEprofiler relies on an extensible library of heuristics, each devoted to discov-
ering specific kinds of artifacts and relationships. The application of each heuristic
contributes to the creation of models representing graphs: for each object that can
be identified by the heuristics, the recovery approach generates a corresponding node
in the model being created. Heuristics are also used to locate artifacts that encode
relationships (e.g., build scripts with model transformation applications). MDEpro-

6https://www.eclipse.org/acceleo/
7https://www.eclipse.org/atl/

Journal of Object Technology, vol. 19, no. 2, 2020

https://www.eclipse.org/acceleo/
https://www.eclipse.org/atl/
http://dx.doi.org/10.5381/jot.2020.19.2.a14

4 · Iovino et al.

tasks.model

Tasks.ecore

Task2XML

Task2Java

HTMLGenerator

TaskManagement.ecore

taskmanagement.model

XML.ecore

tasks.xml

conformanceinMM

inM

outMinM

conformance

conformance

inM

inMM outMM

inMM

Repository

task-management2xmlTaskWebView

Modeler

upload

Figure 2 – Simple model repository content

filer, as defined in [DRDRH+19], is not able to detect relationships related to the
evolutionary nature of modeling artifacts. In particular, MDEprofiler is not able to
put in relation metamodels that are evolved versions of already stored ones.

Figure 2 shows a motivating example supporting the need for retrieving relationships
among metamodels that might even belong to different projects stored in the same
repository. In the initial setting shown in Fig. 2, the explanatory repository contains
artifacts that are organized in different projects. On the left-hand side of the figure,
the content of the simple TaskWebView project is shown, and it consists of the
taskmanagement model conforming to the TaskManagement metamodel, which is shown
in Fig. 3. The project includes also the HTMLGenerator Acceleo transformation, which
is able to generate target HTML representations from source TaskManagement models.

According to the right-hand side of Fig. 2, the modeler uploads a new project
to share it with other users of the repository. The project being uploaded consists
of several artifacts including the ATL transformation Task2XML generating XML

Figure 3 – The TaskManagement metamodel

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

Detecting metamodel evolutions in repositories of MDE projects · 5

Figure 4 – The Tasks metamodel

documents from input models conforming to the Tasks metamodel. The project
includes also the models tasks.model and tasks.xml conforming to these metamodels.
The Acceleo transformation Task2Java is also part of the project, and it generates
Java code for programmatic task definition.

The Tasks metamodel being uploaded in the repository (see Fig. 4) permits modelers
to specify projects in terms of composite and straightforward tasks. By analyzing
the content of the TaskManagement and Tasks metamodels, it is possible to notice
that they are both related to the same application domain (i.e., task management).
Moreover, they share several structural similarities: both permit to distinguish projects
to be developed in a team or for individual purposes. Moreover, each project can be
composed of Tasks, and a single task can contain other tasks (see the relationship
subtasks between the Composite and Simple metaclasses).

The example shows a concrete case of two metamodels that are in relationships
but they belong to different projects. In the specific case shown in Fig. 2, the two
metamodels should be linked using an evolution relation to capture the information
that one metamodel is an evolved version of the other one.

The benefits related to the availability of such information are many, especially for
locating specific artifacts for reuse purposes. In fact, expressive requirements can be
formulated to discover metamodels that are, for instance, part of an evolution path or
that are endowed with support tools.

3 Understanding Metamodel Evolution

The problem of managing the evolution of modeling artifacts has been largely investi-
gated from different perspectives [PMR16]. Several approaches have been proposed to
deal with the coupled evolution problem, especially to migrate existing artifacts (e.g.,
models, transformations, graphical and textual editors) that have lost conformance
after a metamodel underwent modifications [HKB17]. Most of the existing approaches
compare two versions of the same metamodel in order to understand how to migrate
those artifacts that lost validity with respect to the modified metamodel. Such ap-
proaches typically work when the given input metamodels are already known to be
related through some evolution.

In [VWV12, KHB+16], the authors deal with the problem of metamodel evolution

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

6 · Iovino et al.

Metamodel
Similarity
Matrix

Metamodel
Similarity
Calculator

threshold

evo
luti

on

evolution

evolution

Discovered
Metamodel Evolution

RelationsMetamodel Evolution Discoverer

Metamodels stored in
the repository
under analysis

Discoverer of Quaility Improving Metamodel Evolutions

evo
lutio

n

evolution

qi_evolution

Enhanced
Metamodel Evolution

Relations

Smell
Detector

Smell
Analyzer

Detected
Metamodel

smells

Figure 5 – Overview of the proposed approach

with the main goal of understanding and reproduce the modifications between two
versions of the same metamodel. Typically, the detection of the differences between
two metamodels can be done through operation- or state-based methods [KHL+10].
In the former ones, the differences are represented in procedural terms using operation
recorders, whereas, in the latter ones, metamodels are unrelated, and the differencing
is performed by using a matching algorithm [KDRPP09]. However, evolutionary
patterns in metamodel repositories are not known beforehand, therefore evolution
relationships must be elicited by analyzing and comparing the metamodels with a
state-based approach.

Figure 5 shows an overview of the proposed approach, which consists of two main
phases: i) identification of evolution relations occurring among metamodels stored in
a repository (see the evolution labeled relations in Fig. 5); ii) analysis of the detected
evolution relations with the aim of detecting those that have occurred to improve
quality factors of the involved metamodels (labeled with qi_evolution in Fig. 5). The
proposed approach is independent from the repository storing the input metamodels.
The only requirement that need to be satisfied is that the metamodels under analysis
have to be expressed in ECore since both the metamodel evolution and smell detection
mechanisms are based on EMF technologies. In the following sections, the two phases
of the proposed approach are presented separately.

3.1 Discovering Metamodel Evolutions

The Metamodel Evolution Discoverer component shown on the upper side of Fig. 5
implements the techniques we have conceived for detecting if two metamodels are
related through some evolution. The component relies on the application of a similarity
technique able to recognize to what extent the given metamodels are similar. Such
a similarity measure is expressed in terms of a value ranging from 0 (the analysed
metamodels are completely different) to 100 (the metamodels are exactly the same).
Deciding which is the most appropriate similarity function is a difficult task that
might depend on several factors not excluding semantic considerations about the
application domains [CDRDR+20], and the size and quality of the available data
sets [NDRRDR20].

Based on previous work [BDRDR+16] on the unsupervised clusterization of reposi-
tories, the approach proposed in Fig. 5 places reliance on the possibility of substituting

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

Detecting metamodel evolutions in repositories of MDE projects · 7

the employed similarity component depending on the context, and on the possibility
of customizing the similarity threshold, which needs to be empirically identified to
assess when two similar metamodels are actually one the evolution of the other.

In the context of this paper, we employed the match-based similarity function
[BDRDR+16] that relies on a matching model calculated by means of an algorithm
developed in ECL [Kol09]. It is defined as the total number of matched elements
identified by the algorithm divided by the total number of elements contained in the
analysed pair of metamodels. The implementation of such a similarity function consists
of two main components i.e., i) the matching algorithm, and ii) the calculation of
the similarity value depending on the matched elements. Listing 1 shows a fragment
of the ECL-based implementation of the matching algorithm, which employs the
Levenshtein8 edit distance [Lev66] when calculating the name similarity of different
elements including classes, attributes, and references (see e.g., lines 19,30 of Listing 1).

1pre variables {

2 var simmetrics : new

↪→ Native(’org.epsilon.ecl.tools.textcomparison.simmetrics.SimMetricsTool’);

3}
4rule EClass

5 match s : Source!EClass

6 with v : Target!EClass {

7 compare {

8 if(s.name.fuzzyMatch(v.name)){

9 return true;

10 }else{

11 return false;

12 }

13 }

14}
15rule EAttribute

16 match s : Source!EAttribute

17 with v : Target!EAttribute {

18 compare {

19 if(s.name.fuzzyMatch(v.name) and s.etype.isDefined() and v.etype.isDefined() and

↪→ s.etype.name.fuzzyMatch(v.etype.name) and

↪→ s.eContainingClass.name.fuzzyMatch(v.eContainingClass.name)){

20 return true;

21 }else{

22 return false;

23 }

24 }

25}
26rule EReference

27 match s : Source!EReference

28 with v : Target!EReference {

29 compare {

30 if(s.name.fuzzyMatch(v.name) and s.etype.name.fuzzyMatch(v.etype.name) and

↪→ s.eContainingClass.name.fuzzyMatch(v.eContainingClass.name) and

↪→ s.lowerBound==v.lowerBound and s.upperBound==v.upperBound){

31 return true;

32 }else{

33 return false;

8This functionality is loaded in the preamble (line 2) as a native Java library

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

8 · Iovino et al.

34 }

35 }

36} ...

Listing 1 – Fragment of the ECL implementation of the matching algorithm

The outcome of such a phase is a matching model given as input to the calculateS-
imilarity Java method shown in Listing 2. The final similarity index is calculated as
shown in Line 29 of Listing 2. It is important to remark that the proposed matching-
based similarity mechanism relies on matching rules covering packages, metaclasses,
and structural references. OCL constraints (specifying e.g., invariants and complex
restrictions of the artefacts that will conform to the metamodel being specified) are
not covered yet and their management is planned as future work.

1public int calculateSimilarity(IModel modeltocheck, MatchTrace matchModel) {

2
3 int simIndex=0;

4 Double classsim=0.0;

5 Double featuresim=0.0;

6 int nrclasses=0;

7 int nrfeats=0;

8
9 try {

10 nrfeats=modeltocheck.getAllOfKind("EStructuralFeature").size();

11 Collection<EClass> classes;

12 classes = (Collection<EClass>) modeltocheck.getAllOfKind("EClass");

13 nrclasses=classes.size();

14 for (EClass eClass : classes) {

15 if(matchModel.getMatch(eClass)==null) {

16 ...

17 }else {

18 classsim++;

19 for (EStructuralFeature f : eClass.getEStructuralFeatures()) {

20 if(matchModel.getMatch(f)==null) {

21 ...

22 } else {

23 featuresim++;

24 }

25 }

26 }

27 }

28 } catch (EolModelElementTypeNotFoundException e) { ... }

29 simIndex= (int) ((((classsim*100)/nrclasses)+((featuresim*100)/nrfeats))/2);

30 return simIndex;

31}

Listing 2 – Fragment of the Java implementation of the matching-based similarity

In order to identify the threshold value, which permits us to asses when two
metamodels are one the evolved version of the other, we considered a data set consisting
of 31 metamodels (see Section 4.2). For all of the possible metamodel pairs, we applied
the similarity function previously presented and manually checked the corresponding
similarity values with respect to the actual content of the analysed metamodels. For
instance, Table 1 shows a fragment of the obtained similarity matrix related to 4

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

Detecting metamodel evolutions in repositories of MDE projects · 9

Metamodel (1) (2) (3) (4)
taskmodel.ecore (1) 100 0 0 0
Task.ecore (2) 0 100 66 12
TaskManagement.ecore (3) 0 77 100 16
task.ecore (4) 0 7 7 100

Table 1 – Metamodel similarity matrix of the considered task management domain

metamodels contained in the considered dataset (including Tasks and TaskMagament
of the motivating example), all related to the domain of task management. Table 1 has
to be read to check if the metamodels in the columns are evolutions of the metamodels
in the rows. The similarity values that are in bold represent metamodel evolution
cases that can be considered as such according to a performed manual inspection of
the metamodel contents. This means that for such a metamodel cluster, the similarity
threshold for identifying evolution cases should be at least 66. More details about the
identification of threshold values and the related experiments are given in Section 4.

3.2 Discovering Quality Improving Metamodel Evolutions

The reasons behind the need for metamodel evolutions are many including accom-
modating new requirements in the considered modeling language or improving the
quality of the metamodel at hand. In software development, refactoring operations
are also performed to solve code smells i.e., structural characteristics of the analyzed
source code that might make the system hard to evolve and maintain, and that can
be resolved by means of code refactoring [AFBZ12].

In [BDRIP19] we lifted the concept of smell to metamodeling with the aim of
identifying metamodel design decisions that might have negative impacts on the quality
of the metamodel being developed [BV10]. In particular, we presented an approach
able to detect metamodel smells and to properly resolve them by means of a curated
catalogue of smell definitions. Metamodel elements that can be affected by smells
are structural elements constituting the domain model, e.g., packages, metaclasses,
structural features. Among the smells that the approach is able to manage are the
following ones:

– SM1) Duplicated features in metaclasses : it occurs when a feature with the same
name and type is present in different metaclassess. In such a case, duplication
of information might be induced by negatively affecting the maintainability and
reusability of the considered metamodel [SHL+16];

– SM2) Dead metaclass: it occurs when there are metaclasses completely dis-
connected from the other modeling elements of the metamodel. According to
[SHL+16], this smell can have a negative impact on at least the metamodel
understandability ;

– SM3) Redundant container relation: when defining container relations in EMF
it is possible to define a corresponding eOpposite reference. If not specified,
two unidirectional references are defined without providing the bidirectional
navigation of the wanted containment relation. According to [BDRIP19], such a
situation can represent a smell with a negative impact on the complexity and on
the maintainability of the considered metamodel;

– SM4) Classification by enumeration or by hierarchy : model elements can be
classified by means of enumeration or by hierarchies [BDRIP19]. Depending

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

10 · Iovino et al.

on the particular case at hand, the by enumeration classification can be less
appropriate than the by hierarchy one, and vice versa. In such cases, the smell
can have a negative impact on the complexity of the considered metamodels that
might contain more metaclasses than those actually needed [BDRIP19].

– SM5) Concrete Abstract Metaclass : depending on the particular situation being
modeled, it can happen to have the superclass of a given class hierarchy being
specified as concrete instead of abstract.

Intuitively, a quality improving evolution occurs when the smells that are identified
in the initial version of the analysed metamodel do no longer exist in the evolved
one. Consequently, given two subsequent versions of the same metamodel, quality
improving evolutions can be detected by identifying and analyzing the smells occurring
in the two metamodels. Such an approach is the viable solution when there is not a
common agreement about a precise definition of metamodel quality, and consequently
the assumption is that less smells occur the better. Thus, by relying on the availability
of an extensible catalogue of metamodel smells, the approach shown in the lower
side of Fig. 5 permits the analysis of the metamodel evolution relations, which are
identified as explained in Section 3.1, and select those occurring because of changes that
have been operated to improve quality factors of the initial version of the considered
metamodel. By referring to the motivating example and the similarity values shown in
Table 1, two possible metamodel evolutions have to be analysed, i.e., from Task.ecore
to TaskManagement.ecore and vice-versa. However, for the sake of presentation only
the direction from Task.ecore to TaskManagement.ecore is discussed with detail.

3.2.1 Smell detector

The Smell Detector shown in the lower side of Fig. 5 is based on Edelta [BDRIP17],
a domain-specific language to specify an extensible catalogue of smells and to automat-
ically detect their occurrences. Listing 3 shows a fragment of the Edelta source code
implementing the detector for finding occurrences of the classification by hierarchy
smell (i.e. all the hierarchies that have been used instead of enumerations).

1def findClassificationByHierarchy(EPackage ePackage) {

2 val classification= ePackage.allEClasses

3 .filter[

4 ESuperTypes.size == 1 &&

5 EStructuralFeatures.empty &&

6 isNotReferenced

7]

8 .groupBy[ESuperTypes.head].filter[p1, p2| p2.size > 1]

9 classification.entrySet.forEach[

10 logInfo["Classification by hierarchy: "

11 + getEObjectRepr(key) + " - "

12 + "subclasses["

13 + value.map[getEObjectRepr(it)].join(",")
14 + "]"

15]

16]

17 return classification

18}

Listing 3 – Edelta-based classification by hierarchy smell detector

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

Detecting metamodel evolutions in repositories of MDE projects · 11

legend

{Smell s1}

{Smell s1} {Smell s2}

{Smell s1}

{Smell s1} {Smell s1}

(a) (b)

(c) (d)

Similarity relationship over the threshold Metamodel

Figure 6 – Representative cases of smell occurrences in metamodel evolutions

The detector collects all the metaclasses of the metamodel and then it selects
those with a super type, featureless, and not referenced by any metaclasses (see lines
2–7). Subsequently, it filters this list to get metaclasses having at least two sub-classes
satisfying such characteristics. Lines 9–16 produce a log of the matched elements, and
returns the found smell together with the meta-elements, which have been matched.

By referring to the Tasks metamodel in Fig. 4, all the smells previously discussed
occur. In particular, SM1 occurs because of the attribute name contained in the Task
and Project metaclasses. Because of the metaclass Label, the dead metaclass smell
also occurs (SM2). The relations TasksModel.projects and Project.model contribute
to the occurrence of the redundant container relation smell (SM3). The hierarchy
of the Project metaclass, which is specialized as TeamProj and PersonalProj, can be
considered as an occurrence of the smell classification by hierarchy presented above
(SM4) and SM5 occurs in the concrete metaclass Task, with two concrete subclasses.

3.2.2 Smell analyzer

In general, the cases that can happen during metamodel evolutions with respect to
metamodel smells can be classified as follows:

– Detected smells have been resolved by the metamodel evolution: As shown in Fig.
6.a, smells that are detected in the initial version of the considered metamodel
have been resolved and do not occur in the new version of the metamodel. In
that case, the shown metamodel evolution is considered as a quality improving;

– New smells are introduced by the metamodel evolution: Figure 6.b shows the case
when new smells are introduced by the operated metamodel evolution. Even
though the new version of the metamodel can be still considered as an evolution,
different smells are introduced in the new metamodel with a possible reduction
of the corresponding quality [BDRIP19];

– Removal and addition of different smells: Figure 6.c depicts the situation when
existing smells are removed, but different ones get added during the evolution
process;

– Quality idempotent evolutions : When operating metamodel evolutions, modelers
can add new functionalities or in general modify the expressive power of the

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

12 · Iovino et al.

tasks.model

Tasks.ecore

Task2XML

Task2Java

HTMLGenerator

TaskManagement.ecore

taskmanagement.model

XML.ecore

tasks.xml

conformanceinMM

inM

outM
inM

conformance

conformance

inM

inMM outMM

inMM

Repository

task-management2xml
TaskWebView

Modeler
upload

qi_evolution

Figure 7 – Repository after the application of the proposed approach

considered metamodel without solving the smells that are in the initial version
of the metamodel (see Fig. 6.d).

The Smell Analyzer component shown in Fig. 5 is in charge of recognizing such
situations and refine the previously identified metamodel evolution relations when
the case shown in Fig. 6.a occurs. In such a situation, the previously detected
evolution relation is refined as quality improving metamodel relation. By referring to
the motivating example in Fig. 4, the smells occurring in the Tasks metamodel do
not occur in the evolved one as shown in Fig. 3. Thus, the evolution relation between
such metamodels identified as presented in the previous section, can be considered
as improving the quality. Accordingly, the explanatory repository shown in Fig. 2
has been extended by explicitly adding the quality improving relation, labeled with
qi_evolution, as shown in Fig. 7.

As previously presented, the detection capabilities of metamodel evolutions and
smells rely on the availability of an extensible library implementing the matching
mechanisms and the definition of the smells of interest. The discussed cases mainly
refer to structural and syntactical features of the considered metamodels. However,
modeleres might have the needs of dealing with cases, which can be treated only if
some semantic knowledge is also available. Renaming metaclasses with better names
to best fit the considered application domain is an example of situations that require
the codification of a “goodness function” measuring the appropriateness of the used
names with respect to the considered application domain. However, we defer as future
work the study of investigating the applicability of the proposed approach when such
a kind of semantic knowledge is also needed.

4 Experiments

In this section, we discuss experiments that we have performed to assess the accuracy
of the proposed evolution detection mechanisms. The section is organized as follows:
Section 4.1 presents the research questions we wanted to answer by means of the
performed experiments. Section 4.2 introduces the dataset we curated to serve as

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

Detecting metamodel evolutions in repositories of MDE projects · 13

input for the experiments. Section 4.3 and Section 4.4 present the obtained results,
whereas Section 4.5 presents the threats to validity of the performed experiments.

4.1 Research Questions

By performing the experiments, we aim at answering the following research questions:

• RQ1: What is the impact of the similarity threshold on the accuracy of the
mechanism for detecting metamodel evolutions? To answer this question, we
varied the value of the similarity threshold and calculated the corresponding
precision and recall of the detection mechanisms applied on the considered
datasets;

• RQ2: What is the accuracy of the approach in detecting quality-improving
metamodel evolutions? The detection of quality improving metamodel evolutions
is based on the ability of the approach to detect metamodel smells. To answer
this question, we mutated input metamodels and applied the smell detection
mechanism;

4.2 Dataset

The performed evaluation is based on a curated set of metamodels consisting of 31
items, which are part of a bigger dataset already considered for evaluating other
works of the authors [NDRDR+19, BDRDR+16]. The dataset consists of metamodels
covering different application domains and technologies i.e., task management, Petri
net modeling, entity-relationships modeling, and different versions of Eclipse GMF. The
selection criterion of the considered dataset was to choose metamodels with different
size and complexity, and covering different application domains. The considered
dataset is available for download9 and Table 210 shows an overview of its contents
and how each metamodel has been assigned to a cluster. Specifically in this context, a
cluster is a group of metamodels showing similarities [BDRDR+16].

Cluster #Subjects Size of the smallest subject Size of the largest subject

Task management 4 14 111
Petrinet 9 10 42
Entity/Relationship 7 3 64
Eclipse GMF 6 169 190
GWPN 5 12 24

Table 2 – Overview of the considered dataset

4.3 RQ1: Impact of the similarity threshold value on the evolution detection
accuracy

To answer RQ1, we applied the evolution detection approach presented in Section 3.1
to all the possible pairs of metamodels belonging to the 5 metamodel clusters of the
considered dataset. For each cluster, we considered different thresholds in order to
analyse how the accuracy of the evolution detection mechanism is correspondingly
affected. For instance, Table 3 shows the produced similarity matrix of the metamodels

9https://github.com/gssi/metamodelsdataset-ECMFA2020
10The metamodel sizes have been calculated by summing the number of classes, structural features,

and packages just to give an example of the considered metamodel complexities.

Journal of Object Technology, vol. 19, no. 2, 2020

https://github.com/gssi/metamodelsdataset-ECMFA2020
http://dx.doi.org/10.5381/jot.2020.19.2.a14

14 · Iovino et al.

Subject 1 2 3 4 5 6 7 8 9
1 petrinet2.ecore 100 33 33 66 33 50 33 33 50
2 PetriNet.ecore 20 100 64 20 37 30 47 54 27
3 petrinet_extendable.ecore 10 41 100 10 20 20 35 20 15
4 PetriNets.ecore 48 25 25 100 43 37 43 43 25
5 petri_nets.ecore 25 47 37 47 100 50 70 80 35
6 PetrinetDsl.ecore 17 18 18 18 25 100 25 18 17
7 PetriNet_extended.ecore 15 24 26 28 34 15 100 40 15
8 PetriNetModel.ecore 20 52 40 36 58 30 68 100 26
9 petri.ecore 47 40 50 33 40 47 33 40 100

Table 3 – PetriNet cluster similarity matrix

belonging to the PetriNet cluster. By manually analysing all the metamodel pairs
therein, the real evolution cases are six. Depending on the selected similarity threshold,
it is possible to have the following results: i) the analyzed metamodel pair is considered
to be linked by an evolution relation and it is confirmed by manual inspection (true
positive, TP); ii) the metamodel pair at hand is an evolution relation but this is not
confirmed by looking at their content (false positive, FP); iii) the two metamodels
are not in evolution relation but the manual inspection does not confirm such a result
(false negative, FN). Then, we compute precision (P) as #TP

#TP+#FP , and recall (R)
as #TP

#TP+#FN . By considering 60 as a threshold value, 5 evolution cases are detected
for the PetriNet cluster, with a consequent precision of 1 and recall 0.83. With lower
threshold values the precision decreases, whether the recall decreases with higher
values of the threshold.

T=20 T=40 T=50 T=60 T=70 T=80
Cluster P R P R P R P R P R P R
Task management 0.5 1 0.5 1 1 1 1 1 1 0.5 0 0
PetriNet 0.1 1 0.22 1 0.5 1 1 0.83 1 0.33 1 0.16
Entity/Relationship 0.14 1 0.16 1 0.3 1 1 0.5 1 0.5 1 0.5
Eclipse GMF 0.65 1 0.65 1 0.65 1 0.65 1 0.65 1 0.65 1
GWPN 0.5 1 0.6 1 0.7 1 0.7 1 0.8 1 1 0.8

Table 4 – Precision and Recall for different thresholds

Table 4 shows the precision and recall for different threshold values applied on the
different metamodel clusters. According to the shown values, it is evident that the
accuracy of the proposed evolution detection mechanism depends on the selection of
the correct threshold value. Moreover, according to Table 4, the similarity threshold
is sensible to the application domain and to the available datasets. Thus, in case of
repositories consisting of heterogeneous metamodels, it is necessary to select a threshold
value that maximizes the average precision and recall. Such an activity would be
easier if the managed metamodels belong to the same application domain. However, by
relying on our experience on classifying metamodels by means of machine learning (ML)
techniques [NDRDR+19], we believe that the overall accuracy of the proposed evolution
detection mechanism can be improved by employing machine learning techniques. The
architecture of the approach shown in Fig. 5 is open to such improvements. In that
particular case, it would mean replacing the Metamodel Similarity Calculator component
with a ML-based one. However, this is up to future work.

4.4 RQ2: Accuracy of the detection mechanism for quality improving rela-
tionships

To answer RQ2, our evaluation considered the metamodel clusters mentioned in the
previous section. For each metamodel in the cluster, we randomly applied metamodel

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

Detecting metamodel evolutions in repositories of MDE projects · 15

Kind Meta-model modification
Additive Add obligatory / non-obligatory metaclass

Add obligatory / non-obligatory metaproperty
Generalize metaproperty
Pull metaproperty
Extract abstract / non-abstract superclass

Subtractive Eliminate metaclass
Eliminate metaproperty
Push metaproperty
Flatten hierarchy
Restrict metaproperty

Updative Rename metaelement
Move metaproperty
Extract/inline metaclass

Table 5 – Metamodel change operators used in the evaluation

mutations by systematically applying the metamodel modifications shown in Table
5. Such changes consist of the modifications presented in [CDREP08]. Our aim was
to generate many slightly different variants of the original metamodel. Finally, we
assessed whether a metamodel mutant is a quality improving evolution of the initial
metamodel.

To determine if a metamodel mutant is of higher quality than the initial version of
the analyzed metamodel, we adopted the quality assessment approach presented in
[BDD+19] as an oracle: if the measured quality value of the mutant is higher than
the initial metamodel, it means that the considered evolution is a quality improving
one, not otherwise. Altogether, for each meta-model mutant, we may obtain one of
the following results: i) the mutant is a quality improving evolution and it is correctly
detected by the proposed approach (true positive, TP); ii) the mutant is not a quality
improving evolution but it is detected as a such (false positive, FP); iii) the mutant
is a quality improving evolution but the proposed approach considers it as not (false
negative, FN). Then, we compute precision and recall as also done for answering RQ1.

Table 6 shows a fragment of the obtained results by focusing on the metamodels
related to task management and Petri net modeling. For each metamodel, the table
shows the smells that occur both on the initial version of it and on the corresponding
mutants (see the columns Detected smells). The number of mutants that have been
obtained for each subject has been randomly generated in the range [1, 5]. The
column Quality Variation shows if the quality of the obtained mutant has increased (↑),
decreased (↓), or unchanged (=) according to the oracle. The Quality Improvement
column shows if, according to the proposed approach, a quality improving relationship
can be established between the considered subject and the corresponding mutant. The
column Result puts in relation the outcomes of the approach with those of the oracle.

There are some false positives, meaning that for some mutants the approach wrongly
identified evolution cases. After a manual investigation, we discovered that such cases
occurred when the mutations introduced additional occurrences of existing smells by
nullifying the effects of having completely removed other smells. For instance, this is
what happened for the mutant #2 of the tasks metamodel. For three cases the approach
wrongly considered evolutions as not quality improving (false negatives) as for instance
the mutant #3 of the PetriNets metamodel. According to the proposed detection
mechanism, the fact that the operated mutation does not introduce any smells to the
initial subject would mean that the evolution is not quality improving. However, in
those particular cases, the mutants have been obtained by removing some structural
features that induced an enhancement of the metamodel qualities. Nevertheless, the
overall accuracy of the approach is still good (see the precision and recall values in
Table 6) even though there is room for improvement as discussed in the next section.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

16 · Iovino et al.

Table 6 – Fragment of the experiment results

4.5 Threats to validity

In this section, potential threats to validity associated with the experimental validation
are discussed. In particular, we distinguish threats among internal and external
validity, as follows.
Internal validity. Such threats are the internal factors that could have influenced the
final outcomes of the preformed experiments. We have used a relatively low number of
metamodels. The reason is that we wanted to operate manual checks on the obtained

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

Detecting metamodel evolutions in repositories of MDE projects · 17

results. However, we considered different sets of metamodels with the aim of covering
different domains and metamodels with different structural characteristics. Another
threat to internal validity is that the evaluation for RQ2 has used the quality assessment
approach in [BDD+19] as oracle. To avoid distortions on the evaluation results due to
possible errors in our oracle, we have manually checked dubious cases and have not
found any incorrect result. We believe that by increasing the number of detectable
smells, the accuracy of the approach can increase even though providing evidence of
that is up to future work.
External validity. The main threat to external validity concerns the generalizability
of our findings, i.e., whether they would still be valid outside the scope of this study. We
attempted to moderate the threat by considering different kinds of metamodels that
are of different size and cover different domains. However, it is essential to evaluate
the approach by considering a bigger dataset. Also, this task is considered as a
future work. Moreover, the metamodel mutations that have been operated for the
presented evaluation might not reflect all the evolution situations that can occur
in practice. Unfortunately, differently from source code development that can rely
on advanced platforms like GitHub, we do not have the availability of similar open
infrastructures to store and share with the community the history of modeling artifacts
including metamodels. To the best of our knowledge, model mutation is a technique,
which is commonly used to artificially create artifacts that are needed for performing
experiments like those presented in this paper.

5 Related Work

This section discusses relevant works that are related to megamodels and recovery
approaches, understanding metamodel evolutions, and metamodel matching and artifact
similarity.
Megamodels and recovery approaches The adoption of megamodeling was ini-
tially promoted in [BJV04] to support the management of different kinds of modeling
artifacts. Megamodels are also used to orchestrate the subsequent applications of
modeling tasks e.g., transformations, querying, merging and constraint checking (see
e.g., [BJRV05]). In the context of model repositories, in [KJW+12] the authors propose
the adoption of a layer on top of heterogeneous repositories to get a homogenous
and uniform way to access the system by means of model operations specified in a
domain-specific language. Megamodeling is discussed for MDE technologies (including
EMF, ATL, and Xtext) in [HHH+17], but reverse engineering is not leveraged, despite
being stated as a direction for future work. In [Ste20] authors propose the adoption
of build systems in combination with a megamodel to restore desired consistency
relationships between models (in case of modification). Further than our previous work
[DRDRH+19], to the best of our knowledge there is no related work on megamodels
that employ heuristics to identify model elements and to recover relationships among
them.
Understanding metamodel evolutions Over the last decade, undertanding meta-
model evolutions has been the subject of intense research especially to deal with the
coupled evolution problem of metamodels and related modeling artifacts including
models, model tranformations, and code generators [DRIP11]. In [VWV12, KHB+16]
the authors deal with the problem of metamodel evolutions with the main goal of
reconstructing complex evolution between two versions of the same metamodel. Simi-
larly, in [KHB+16] the authors propose an approach to detect complex changes from

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

18 · Iovino et al.

sequences of atomic ones operated by users. Differently from the work proposed in
this paper, such approaches take as input two versions of the same metamodel that
are already known to be one the evolved version of the other. In this paper, we focus
on understanding if given any pair of metamodels, a quality improving evolution
relationship can be established between them.
Metamodel matching and artifact similarity Metamodel matching and similar-
ity underpin different approaches that aim at automating the migration of models in
response to metamodel evolution. In particular, matching approaches try to automati-
cally derive a model migration from the difference between two metamodel versions. A
detailed survey of available model migration approaches is presented in [HKB17]. Dif-
ferent techniques and similarity functions are available for calculating the similarity
value between two input metamodels [FHLN08, MGMR02]. In [FHLN08] the authors
propose a technique that converts the input metamodels into graphs and apply on
them the similarity flooding algorithm [MGMR02]. As already mentioned, identifying
the right similarity function for the problem at hand is a difficult task. In this paper,
we relied on that successfully employed in the context of model repositories and in par-
ticular for supporting the clusterization of metamodels [BDRDR+16]. Calculating the
similarity of software artifacts is of interest also in the domain of software development
in general. Recently, in [NDRRDR20, NRRD20] the authors proposed an approach to
classify open source projects (OSS) that are stored in software repositories like GitHub
and Maven. The used similarity approach is based on a graph-based representation
of the considered OSS ecosystem, which is then used to feed a collaborative-filtering
algorithm to provide developers with useful recommendations. We see promising
applications of similar techniques to support the detection of evolving metamodels.
We intend to pursue this as a future work.

6 Conclusions and Future Work

Model-driven projects are typically stored in model repositories without any high-level
description that might help modelers understand the structure and the roles of the con-
tained artifacts. Thus, given a project of interest, modelers are supposed to manually
explore it and to figure out the kinds of contained artifacts and how they are interre-
lated. Consequently, reuse possibilities of already developed model-driven projects are
largely limited. MDEprofiler is an approach based on megamodels to enable the
recovery of the structure of model-driven projects, which are thus represented as typed
nodes and relationships among them. However, understanding the evolution of the
stored metamodels is not supported by MDEprofiler as presented in [DRDRH+19].
In this paper, we increased the discovery capabilities of MDEprofiler by means of
an automated approach able to detect metamodel evolutions by distinguishing those
that have been operated to improve the quality of the initial version of the considered
metamodels. The approach has been validated by means of a data set consisting of
31 metamodels. As future work, we plan to apply the approach on a bigger dataset
and to other kinds of modeling artifacts including models, transformations, and code
generators. Furthermore, we plan to investigate the application of machine learning
techniques to increase the accuracy of the proposed approach, as already done by the
authors to manage similar problems (e.g., see [NRRD20, NDRDR+19, NDRRDR20]).

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

Detecting metamodel evolutions in repositories of MDE projects · 19

References

[AFBZ12] F. Arcelli Fontana, P. Braione, and M. Zanoni. Automatic detection
of bad smells in code: An experimental assessment. The Journal of
Object Technology, 11(2):5:1, 2012.

[BDD+19] F. Basciani, J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pieran-
tonio. A Tool-Supported Approach for Assessing the Quality of
Modeling Artifacts. Journal of Visual Languages and Computing,
51:173–192, 2019.

[BDRDR+16] F. Basciani, J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pieranto-
nio. Automated clustering of metamodel repositories. In Advanced
information systems engineering, pages 342–358. Springer Int. Pub-
lishing, 2016.

[BDRIP17] L. Bettini, D. Di Ruscio, L. Iovino, and A. Pierantonio. Edelta: An
approach for defining and applying reusable metamodel refactorings.
In MODELS (satellite events), pages 71–80, 2017.

[BDRIP19] L. Bettini, D. Di Ruscio, L. Iovino, and A. Pierantonio. Quality-
driven detection and resolution of metamodel smells. IEEE Access,
7:16364–16376, 2019.

[BJRV05] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in
the Large and Modeling in the Small. In European MDA workshops
MDAFA 2003 and MDAFA 2004, revised selected papers, volume
3599 of LNCS, pages 33–46. Springer, 2005.

[BJV04] J. Bézivin, F. Jouault, and P. Valduriez. On the need for megamodels.
In Procs. of 19th annual ACM Conf. on object-oriented programming,
systems, languages, and applications, pages 1–9, 2004.

[BV10] Manuel F. Bertoa and Antonio Vallecillo. Quality attributes for
software metamodels. In QAOOSE’10 workshop proceedings, 2010.

[CDRDR+20] A. Capiluppi, D. Di Ruscio, J. Di Rocco, P. T. Nguyen, and
N. Ajienka. Detecting Java Software Similarities by using Differ-
ent Clustering Techniques. Information and Software Technology,
February 2020.

[CDREP08] A Cicchetti, D. Di Ruscio, R Eramo, and A. Pierantonio. Automating
co-evolution in model-driven engineering. In 12th Int. IEEE enter-
prise distributed object computing Conf., EDOC 2008, pages 222–231.
IEEE Computer Society, 2008.

[DRDRH+19] J. Di Rocco, D. Di Ruscio, J. Haertel, L. Iovino, R. Lämmel, and
A. Pierantonio. Understanding MDE projects: megamodels to the
rescue for architecture recovery. Software & Systems Modeling, July
2019.

[DRIP11] D. Di Ruscio, L. Iovino, and A. Pierantonio. What is needed for
managing co-evolution in MDE? In Procs. of the 2nd Int. workshop on
model comparison in practice, IWMCP ’11, pages 30–38. ACM, 2011.

[FHLN08] J.-Rémy Falleri, M. Huchard, M. Lafourcade, and C. Nebut. Meta-
model matching for automatic model transformation generation. In

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

20 · Iovino et al.

Model driven engineering languages and systems, volume 5301 of
LNCS, pages 326–340. Springer, 2008.

[Her11] M. Herrmannsdoerfer. Evolutionary Metamodeling. PhD thesis, 2011.
[HHH+17] J. Härtel, L. Härtel, M. Heinz, R. Lämmel, and A. Varanovich. Inter-

connected linguistic architecture. The Art, Science, and Engineering
of Programming Journal, 1(1), 2017.

[HKB17] R. Hebig, D. E. Khelladi, and R. Bendraou. Approaches to Co-
Evolution of Metamodels and Models: A Survey. IEEE Transactions
on Software Engineering, 43(5):396–414, May 2017.

[HRW09] Christian Hein, Tom Ritter, and Michael Wagner. Model-driven tool
integration with modelbus. In Workshop future trends of model-driven
development, pages 50–52, 2009.

[KC13] B. Karasneh and M. RV Chaudron. Online Img2UML repository: An
online repository for UML models. In EESSMOD@ MoDELS, pages
61–66, 2013.

[KDRPP09] D. S Kolovos, D. Di Ruscio, A. Pierantonio, and R. F Paige. Different
models for model matching: An analysis of approaches to support
model differencing. In 2009 ICSE Workshop on Comparison and
Versioning of Software Models, pages 1–6. IEEE, 2009.

[KH10] M. Koegel and J. Helming. EMFStore: a model repository for EMF
models. In 2010 ACM/IEEE 32nd Int. Conf. on software engineering,
volume 2, pages 307–308, 2010.

[KHB+16] D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, and M-P Gervais.
Detecting complex changes and refactorings during (Meta)model
evolution. Information Systems, 62:220 – 241, 2016.

[KHL+10] M. Koegel, M. Herrmannsdoerfer, Y. Li, J. Helming, and J. David.
Comparing state-and operation-based change tracking on models. In
2010 14th IEEE Int. Enterprise Distributed Object Computing Conf.,
pages 163–172. IEEE, 2010.

[KJW+12] W. Kling, F. Jouault, D. Wagelaar, M. Brambilla, and J. Cabot.
MoScript: A DSL for querying and manipulating model repositories.
In Proc. SLE 2011, volume 6940 of LNCS, pages 180–200. Springer,
2012.

[KMB+08] R. Kutsche, N. Milanovic, G. Bauhoff, T. Baum, M. Cartsburg,
D. Kumpe, and J. Widiker. Bizycle: Model-based interoperability
platform for software and data integration. Procs. of the MDTPI at
ECMDA, 430, 2008.

[Kol09] D. S. Kolovos. Establishing correspondences between models with
the epsilon comparison language. In Model driven architecture -
foundations and applications, pages 146–157. Springer, 2009.

[Lev66] VI Levenshtein. Binary codes capable of correcting deletions, inser-
tions and reversals. Soviet Physics Doklady, 10:707, 1966.

[MGMR02] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: a
versatile graph matching algorithm and its application to schema
matching. In Procs. 18th Int. Conf. on data engineering, 2002, pages
117–128, 2002.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a14

Detecting metamodel evolutions in repositories of MDE projects · 21

[NDRDR+19] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, A. Pierantonio, and
L. Iovino. Automated Classification of Metamodel Repositories:
A Machine Learning Approach. In IEEE / ACM 22nd Int. Conf.
on Model Driven Engineering Languages and Systems (MODELS),
page 12, 2019.

[NDRRDR20] P. T. Nguyen, J. Di Rocco, R. Rubei, and D. Di Ruscio. An au-
tomated approach to assess the similarity of GitHub repositories.
Software Quality Journal, February 2020.

[NRRD20] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, and M. Di Penta. Cross-
Rec: Supporting software developers by recommending third-party
libraries. Journal of Systems and Software, 161:110460, March 2020.

[PMR16] R. F. Paige, N. Matragkas, and L. M. Rose. Evolving models in
Model-Driven Engineering : State-of-the-art and future challenges.
Journal of Systems and Software, pages 272–280, January 2016.

[Sch06] D. C. Schmidt. Guest noeditor’s introduction: Model-driven engineer-
ing. Computer, 39(2):25–31, February 2006.

[SHL+16] M. Strittmatter, G. Hinkel, M. Langhammer, R. Jung, and R. Hein-
rich. Challenges in the evolution of metamodels: Smells and anti-
patterns of a historically-grown metamodel. In CEUR workshop
proceedings, volume 1706, pages 30–39. CEUR, 2016.

[Ste18] P. Stevens. Towards sound, optimal, and flexible building from meg-
amodels. In Procs. of the 21th ACM/IEEE Int. Conf. on Model
Driven Engineering Languages and Systems, pages 301–311, 2018.

[Ste20] P. Stevens. Maintaining consistency in networks of models: bidirec-
tional transformations in the large. Software and Systems Modeling,
19(1):39–65, 2020.

[VSB+13] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen. Model-driven
software development: technology, engineering, management. John
Wiley & Sons, 2013.

[VWV12] S. D. Vermolen, G. Wachsmuth, and E. Visser. Reconstructing com-
plex metamodel evolution. In Software language engineering, pages
201–221. Springer, 2012.

About the authors

Lorenzo Bettini is an Associate Professor in Computer Science
at DISIA Dipartimento di Statistica, Informatica, Applicazioni
’Giuseppe Parenti’, Università di Firenze, Italy, since February 2016.
Previously, he was an Assistant Professor (Researcher) in Computer
Science at Dipartimento di Informatica, Università di Torino, Italy.
His research interests cover design, theory and implementation of
programming languages (in particular Object-Oriented languages
and Network aware languages). Contact him at lorenzo.bettini@
unifi.it, or visit http://www.lorenzobettini.it.

Journal of Object Technology, vol. 19, no. 2, 2020

mailto:lorenzo.bettini@unifi.it
mailto:lorenzo.bettini@unifi.it
http://www.lorenzobettini.it
http://dx.doi.org/10.5381/jot.2020.19.2.a14

22 · Iovino et al.

Davide Di Ruscio is Associate Professor at the University of
L’Aquila. His main research interests include software engineer-
ing, and several aspects of Model Driven Engineering including
domain-specific languages, model transformations, and model evo-
lution. He has published more than 100 papers in various journals,
conferences and workshops on such topics. Over the last decade
he has worked on several European projects by contributing the
application of MDE in different application domains like service-
based software systems, autonomous systems, and open source
software (OSS). Contact him at davide.diruscio@univaq.it, or
visit http://people.disim.univaq.it/~diruscio/.

Ludovico Iovino is Assistant Professor at the GSSI – Gran Sasso
Science Institute, L’Aquila - in the Computer Science department.
His interests include Model Driven Engineering (MDE), Model
Transformations, Metamodel Evolution, code generation and soft-
ware quality evaluation. Currently he is working on model-based
artifacts and issues related to the metamodel evolution problem.
He has been included in program commitees of numerous confer-
ences and in the local organisation of the STAF 2015 and iCities
2018 conferences, he organised also the models and evolution
workshop at MODELS 2018. He is part of different academic
projects related to Model Repositories, model migration tools and
Eclipse Plugins. Contact him at ludovico.iovino@gssi.it, or visit
http://www.ludovicoiovino.com.

Alfonso Pierantonio is Professor at the University of L’Aquila,
Italy. His interests include Model-Driven Engineering with a
specific emphasis on co-evolution problems, bidirectionality, and
megamodeling. He has chaired a number of international con-
ferences and organized numerous scientific events (including
ICMT and STAF). He is in the editorial board of several sci-
entific journals (including SoSyM and JOT). Contact him at
alfonso.pierantonio@univaq.it, or visit http://pieranton.io.

Journal of Object Technology, vol. 19, no. 2, 2020

mailto:davide.diruscio@univaq.it
http://people.disim.univaq.it/~diruscio/
mailto:ludovico.iovino@gssi.it
http://www.ludovicoiovino.com
mailto:alfonso.pierantonio@univaq.it
http://pieranton.io
http://dx.doi.org/10.5381/jot.2020.19.2.a14

	Introduction
	Motivating scenario
	Understanding Metamodel Evolution
	Discovering Metamodel Evolutions
	Discovering Quality Improving Metamodel Evolutions
	Smell detector
	Smell analyzer

	Experiments
	Research Questions
	Dataset
	RQ1: Impact of the similarity threshold value on the evolution detection accuracy
	RQ2: Accuracy of the detection mechanism for quality improving relationships
	Threats to validity

	Related Work
	Conclusions and Future Work
	Bibliography
	About the authors

