
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Comparison of graph-based model
transformation rules

Alexander Schultheißa Alexander Bolla Timo Kehrera

a. Department of Computer Science, Humboldt-Universität zu Berlin,
Germany

Abstract With model transformations arising to primary development
artifacts in Model-Driven Engineering, dedicated tools supporting transfor-
mation developers in the development and maintenance of model transfor-
mations are strongly required. In this paper, we address the versioning of
model transformations, which essentially relies on a basic service for com-
paring different versions of model transformations, e.g., a local workspace
version and the latest version of a repository. Focusing on rule-based
model transformations based on graph transformation concepts, we pro-
pose to compare such transformation rules using a maximum common
subgraph (MCS) algorithm as the underlying matching engine. Although
the MCS problem is known as a non-polynomial optimization problem,
our research hypothesis is that using an MCS algorithm as a basis for
comparing graph-based transformation rules is feasible for real-world model
transformations and increases the quality of comparison results compared
to standard model comparison algorithms. Experimental results obtained
on a benchmark set for model transformation confirm this hypothesis.

Keywords model transformation development, transformation comparison,
graph-based transformation rules, maximum common subgraphs

1 Introduction
Model transformation is a central activity and key technique in all stages of Model-
Driven Engineering (MDE) [BCW12, SK03]. A plethora of model transformation
approaches, languages, and frameworks have emerged to address a multitude of trans-
formation scenarios [CH06]. On the contrary, less effort has been spent in providing
dedicated concepts, techniques and tools supporting transformation developers in the
development and maintenance of model transformations. With model transformations
arising to primary development artifacts in the development of MDE infrastructures,
such tools are strongly required to fully turn the MDE vision into reality. Recently,
the MDE research community has addressed some development and maintenance
tasks, such as clone detection [SPA16], variability management [SRA+16], refactor-
ing [TAEH12] and differencing [KPS17] for and of model transformations. In general,

Alexander Schultheiß, Alexander Boll, Timo Kehrer. Comparison of graph-based model transformation
rules. Licensed under Attribution 4.0 International (CC BY 4.0). In Journal of Object Technology,
vol. 19, no. 2, 2020, pages 3:1–21. doi:10.5381/jot.2020.19.2.a3

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2020.19.2.a3
http://dx.doi.org/10.5381/jot.2020.19.2.a3
http://dx.doi.org/10.5381/jot.2020.19.2.a3


2 · Alexander Schultheiß, Alexander Boll, Timo Kehrer

however, model transformation development and maintenance is not nearly as broadly
supported as developers are used to from sophisticated development environments for
classical code-centric development. This is still one of the major roadblocks to a more
widespread adoption of MDE in practice [WHR+13].

Problem definition and scope. In this paper, we address the versioning of model
transformations, which becomes an indispensable development support discipline with
model transformations arising to primary development artifacts. The CMMI-Dev
(Capability Maturity Model Integration for Development) [Tea10], for instance, men-
tions versioning support as one of the most essential disciplines to lift an unmanaged
development process (CMMI level 1) to a managed one (CMMI level 2). Versioning
essentially relies on a basic service for comparing different versions of model transfor-
mations. Transformation developers, for example, compare revisions of transformation
rules because they want to know which parts of the transformation have remained
unchanged and which ones were added, removed, or modified, e.g., when comparing a
local workspace version with the latest repository version [KKPS12]. Another example
of a typical versioning task which relies on a comparison service is the merging of
parallel edits in distributed development environments. Here, an overview of the
common and specific parts of both versions w.r.t. a common base version serves
as an essential input for a subsequent merging step [ASW09]. In a broader sense,
incremental model transformation techniques, such as studied in [BTW14], also rely
on a comparison service for model transformations in order to re-execute only those
parts of a transformation that have changed with respect to the latest execution.

We focus on rule-based model transformations based on graph transformation
concepts [EEPT06], one of the major model transformation approaches that has been
adopted by several widely used model transformation tools such as Henshin [SBG+17]
and VIATRA2 [VB07]. Although it appears to be a natural choice, existing strategies
for comparing graph-structured models cannot be simply applied to the problem of
comparing graph-based transformation rules (see Sect. 2). Instead of adopting or
tailoring existing comparison heuristics, we propose to compare graph-based transfor-
mation rules using a maximum common subgraph (MCS) algorithm as the underlying
matching engine [CFSV04]. This class of algorithms has been largely ignored by
the model comparison research community, mostly due to their exponential runtime
behavior which does not scale for MDE models comprising hundreds or thousands of
elements [TBWK07]. However, we argue that, in terms of the number of comprised
elements, model transformation rules are typically much smaller than models, and
thus calculating maximum common subgraphs can be achieved within reasonable time.

Contributions. Our central research hypothesis is that using a maximum common
subgraph algorithm as a basis for comparing graph-based transformation rule is
feasible and increases the quality of comparison results compared to standard model
comparison algorithms. To validate this research hypothesis, the paper makes the
following contributions:

• An approach to use maximum common subgraph algorithms for comparing
graph-based transformation rules, including an analysis of the main variation
points of such a comparison service (Sect. 4).

• A prototypical implementation of the approach which is based on an implemen-
tation of the McGregor algorithm and which is integrated with the graph-based
model transformation language Henshin (Sect. 5).

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


Comparison of graph-based model transformation rules · 3

• Experimental results of evaluating the prototype on a model transformation
benchmark set and comparing its accuracy and runtime performance with those
of EMFCompare and the clone detection facilities of RuleMerger (Sect. 6).

2 State of the art
The result of a comparison of two transformation rules, i.e., a matching [KDRPP09],
should deliver a set of pairs of corresponding rule elements which are considered “the
same” in both rules. Kehrer et al. [KPS17] suggest to use existing model comparison
tools for that purpose. As surveyed in [KDRPP09, SC13], there are sophisticated
model comparison approaches which work on a graph-based representation of models
and which therefore appear to be a natural choice for comparing graph-based model
transformation rules. Moreover, the abstract syntax of many model transformation
languages is defined in terms of a meta-model, and transformation rules are instantia-
tions thereof. Thus, existing model comparison tools can be applied out of the box.
The Henshin model transformation language, for instance, is defined using Ecore, the
meta-modeling language of the Eclipse Modeling Framework (EMF). Thus, Henshin
rules can be compared using EMFCompare [BP08], the most widely used tool for
comparing EMF-based models.

However, comparing graph-based transformation rules using generic model com-
parison tools such as EMFCompare only delivers satisfactory matching results under
very restricted conditions, notably when reliable universal unique identifiers (UUIDs)
are attached to rule elements. The limitations of UUIDs have been extensively dis-
cussed in the literature, e.g., in [KDRPP09]. The similarity-based matching results
obtained from EMFCompare in the absence of UUIDs are only of minor quality. As
an example, consider the Henshin rules createExcludeConstraint and deleteExclude-
Constraint shown in Fig. 1, taken from the catalog of edit operations on FODA-like
feature diagrams [KCH+90] presented in [BKL+16] and typed over the meta-model
shown in Fig. 2. EMFCompare delivers only a single rule graph correspondence when
comparing both rules, namely between the nodes of type FeatureModel, although the
rules are highly similar to each other. In fact, having a look at the edit history of
the rules provided as supplementary material of the work of Bürdek et al. [BKL+16],
the rule createExcludeConstraint has been obtained by (i) creating a copy of the

Rule createExcludeConstraint

«preserve»
:FeatureModel

«preserve»
:Feature

«preserve»
:Feature

«create»
:ExcludeConstraint

«forbid»
:ExcludeConstraint

«create»

excludedFeatureB
«create»

excludedFeatureA

constraints

«create»

excludedFeatureB

«forbid»

excludedFeatureA

«forbid»

Rule deleteExcludeConstraint

«preserve»
:FeatureModel

«preserve»
:Feature

«preserve»
:Feature

«delete»
:ExcludeConstraint

«delete»

excludedFeatureB
«delete»

excludedFeatureA

constraints

«delete»

Figure 1 – Henshin rules createExcludeConstraint (left) and deleteExcludeConstraint
(right) taken from the catalog of edit operations on feature diagrams presented
in [BKL+16].

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


4 · Alexander Schultheiß, Alexander Boll, Timo Kehrer

RequireConstraintExcludeConstraint

Feature Constraint

FeatureModel

/tgt {union}
1

/src {union}
1

constraints

*

excludedFeatureA {subsets src}
1

excludedFeatureB {subsets tgt}
1

requiredFeature {subsets tgt}

1 feature {subsets src}1

features

*

children

0..*

Figure 2 – Excerpt of a simple meta-model for FODA-like feature diagrams [KCH+90].

rule deleteExcludeConstraint, (ii) converting all elements which are to be deleted
into elements to be created, and adding the negative application condition (forbidden
elements) which prevents the creation of duplicated exclude constraints between the
same features. Thus, matching the action elements of both rules is highly desirable.

The minor quality of the comparison results can be explained by having a look
at the similarity-based matching algorithm employed by EMFCompare [XS05]. This
algorithm relies on two fundamental assumptions, namely that (a) model elements are
organized in a tree-like containment structure and (b) most of the model elements are
named. The overall matching strategy is to traverse the tree structure in a top-down
manner, and to match the top-level elements first. For each pair of corresponding
elements, the algorithm tries to find further correspondences in the sets of their direct
children, and so on recursively. Within such sets of child elements, correspondences
are established between the mutually most similar elements having the same type.
The similarity of a pair of elements is calculated based on their local properties, most
notably based on the similarity of their names. This strategy works reasonably well
for class diagrams and other types of UML-like models where the above assumptions
(a) and (b) are met, but fails for graph-based model transformation rules. A rule
exposes a plain graph structure without any hierarchical relationships. Most of the
nodes do not have any distinguishing local properties. Even though transformation
languages such as Henshin offer the possibility to assign logical identifiers to nodes,
these identifiers are not commonly used.

The absence of hierarchical structures as well as the existence of “anonymous”
elements has motivated further model matching strategies which globally search for
potential correspondences [MGMR02, KKPS12]. All pairwise similarities of candidates
are computed in an iterative manner, which allows similarities to be propagated
(referred to as “similarity flooding” in [MGMR02]): In each iteration, the similarity
of the neighborhood of two model elements is “added” to their similarity from the
previous iteration. However, due to cyclic dependencies between model elements,
similarity propagation is not guaranteed to converge. Most often, similarity flooding
only works well if at least some “anchor points” can be established [KKPS12]. Anchor
points are model elements which can be matched very reliably, such as initial or final
states in UML statecharts, and which can serve as starting points from where to
propagate similarities. In general, however, there are no elements which can serve as
natural anchor points for the comparison of graph-based transformation rules.

Finally, we can find closely related work in the context of the RuleMerger project
and tool which includes clone detection facilities that have been tailored to graph-
based transformation rules [SPA16]. Here, given a set of rules, a clone is defined as a

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


Comparison of graph-based model transformation rules · 5

subrule which can be embedded into a subset of the given rule set. That is, given two
transformation rules which are to be compared with each other, clone detection can be
utilized to identify the corresponding rule elements in both rules. However, the notion
of a clone is way too restrictive for our purpose of comparing rules in the context
of versioning. Consider again the transformation rules createExcludeConstraint and
deleteExcludeConstraint shown in Fig. 1. The largest common subrule consists of
the preserved elements of type FeatureModel and Feature while, analogously to the
comparison result obtained by EMFCompare, all the other reasonable correspondences
are missed by such a clone-based comparison.

3 Basic definitions
The formal underpinning of our approach is based on graphs and graph transformation.
We draw from the work presented in [CFV07, EEPT06] and briefly recall the needed
concepts in the remainder of this section.

3.1 Graphs, graph morphisms and maximum common subgraphs
As usual in MDE, we consider models as typed graphs whose types are drawn from a
meta-model. Like existing model comparison tools, as studied in the previous section,
we assume graphs to be correctly typed over a fixed meta-model and thus abstain
from a formal definition of typing using type graphs and type morphisms (see, e.g.,
[BET12]). Instead, to keep our basic definitions as simple as possible, we work with a
variant of labeled graphs where the node and edge label alphabets, both finite sets
referred to as LV and LE , represent node and edge type definitions of a meta-model,
respectively. Moreover, as it is common for standard modeling frameworks such as
EMF, we assume that graphs do not contain parallel edges of the same type (i.e., two
edges of the same type linking the same source and target node).

Definition 1 (Graph). A graph is a tuple G = (V,E, τV ) where V is a finite set of
nodes, E ⊆ V × V × LE is a set of labeled edges, and τV : V → LV is a node labeling
function assigning every node in V its label in LV .

An edge is a tuple (s, t, l) having its source in s and its target in t, and the label
l represents the name of its type. Given an edge e = (s, t, l), we use the notations
src(e), tgt(e) and τE(e) to refer to s, t and l, respectively.

Definition 2 (Subgraph). Let G = (V,E, τV ) and G′ = (V ′, E′, τ ′
V ) be graphs. Graph

G′ is a subgraph of G, written G′ ⊆ G, if V ′ ⊆ V , E′ ⊆ E, and τ ′
V (v) = τV (v) for

every v ∈ V ′.

G′ is called an induced subgraph of G if E′ = E ∩ (V ′ × V ′ × LE). It is uniquely
induced by V ′, i.e., every edge in G with source and target nodes in V ′ is also an edge
in G′.

While a graph and its subgraph share elements, a graph morphism relates two
graphs by solely relying on structural properties rather than on globally defined element
identifiers. In our notion of a graph, a graph morphism maps a graph G to a graph
G′ by associating the nodes of G with those of G′ in a structure- and label-preserving
manner.

Definition 3 (Graph morphism). Let G = (V,E, τV ) and G′ = (V ′, E′, τ ′
V ) be graphs.

A graph morphism from G to G′ is a function f : V → V ′ such that

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


6 · Alexander Schultheiß, Alexander Boll, Timo Kehrer

:ExcludeConstraint

:Feature

excludedFeature

:Feature :Feature

childrenchildren

:Feature

:Feature :Feature

childrenchildren

:RequireConstraint

:Feature

requiredFeature

:Feature :Feature

childrenchildren

G' G''G

Figure 3 – Three example graphs where G is a maximum common subgraph of G′ and G′′.
Two variants of subgraph isomorphisms G ↪→ G′ are illustrated by red dashed and blue
dotted arrows, respectively.

(1) τV (v) = τ ′
V (f(v)) for every v ∈ V ,

(2) for every edge e = (u, v, l) ∈ E there exists an edge e′ = (f(u), f(v), l) ∈ E′.

Note that the edges of G are implicitly mapped to those of G′ since we do not
support parallel edges of the same type.

A morphism is called isomorphism if f is a bijection. If f is an isomorphism
between graphs G and G′, and G′ is an induced subgraph of another graph G′′, i.e.,
G′ ⊆ G′′, then f is called a subgraph isomorphism from G to G′′, written G ↪→ G′′.

Definition 4 (Maximum common subgraph). Let G′ = (V ′, E′, τ ′
V ) and G′′ =

(V ′′, E′′, τ ′′
V ) be graphs. A graph G = (V,E, τ) is a common subgraph of G′ and

G′′, written CS(G′, G′′), if there are subgraph isomorphisms cs′ : G ↪→ G′ and
cs′′ : G ↪→ G′′. G is the maximum common subgraph of G′ and G′′, written
MCS(G′, G′′), if there is no other common subgraph of G′ and G′′ having a larger set
of nodes than MCS(G′, G′′).

Note that, for a maximum common subgraph MCS(G′, G′′), the subgraph isomor-
phisms cs′ and cs′′ are not necessarily unique.

Example 1. Our basic notions are illustrated in Fig. 3. Graph G is the maximum
common subgraph of G′ and G′′, type labels are drawn from the meta-model shown in
Fig. 2. The “feature” nodes of G can be mapped in two ways to the “feature” nodes of
G′ and G′′, respectively, as illustrated for the two variants of G ↪→ G′.

3.2 Graph-based transformation rules
Since we aim at a syntactic comparison of graph-based transformation rules, we restrict
ourselves to the formalization of transformation rule structures, while their operational
semantics will be sketched briefly and largely informally. Our definition assumes a
double-pushout (DPO) approach to algebraic graph transformation [EEPT06].

Definition 5 (Transformation rule). A transformation rule is a tuple r = (L ⊇ K ⊆
R,NAC ,PAC ) where

• L, K and R are graphs called the left-hand side, intersection and right-hand side
of a rule, respectively,

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


Comparison of graph-based model transformation rules · 7

0:FeatureModel 3:ExcludeConstraintconstraints

1:Feature

2:Feature

excludedFeatureA

excludedFeatureA

excludedFeatureB

excludedFeatureB

4:ExcludeConstraint

NAC

0:FeatureModel 3:ExcludeConstraintconstraints

1:Feature

2:Feature

excludedFeatureA

excludedFeatureB

R

0:FeatureModel

1:Feature

2:Feature

K

0:FeatureModel

1:Feature

2:Feature

L

Figure 4 – Formal representation of the rule createExcludeConstraint from Fig. 1 (left).

• NAC is a set of negative application conditions of the form (X ⊃ L) embedding
the left-hand side graph L of the rule into a NAC graph X, and

• PAC is a set of positive application conditions of the form (X ⊃ L) embedding
the left-hand side graph L of the rule into a PAC graph X.

The left-hand side of a rule can have several occurrences in a graph G, an occurrence
o being a subgraph isomorphism o : L ↪→ G. A rule is applicable at occurrence o if all
application conditions are satisfied. This is the case if (i) for every positive application
condition (Xi ⊃ L) ∈ PAC the subgraph o(L) ⊆ G induced by o can be extended
to a subgraph X ′

i ∈ G which is isomorphic to the PAC graph Xi, and (ii) for every
negative application condition (Xj ⊃ L) ∈ NAC the subgraph o(L) ⊆ G can not be
extended to a subgraph X ′

j ∈ G which is isomorphic to the NAC graph Xj . The
effects of applying a rule r at occurrence o can be described as follows: The fragment
o(L \K) ⊆ G is deleted from G, while the fragment R \K is inserted into G as a fresh
copy and connected with o(K) as in the rule r.

Example 2. As an example, Fig. 4 shows the formal representation of the rule cre-
ateExcludeConstraint from Fig. 1 (left). Opposite edges of types excludeConstraintsA
and excludeConstraintsB are omitted for the sake of brevity. The common elements of
the graphs L, K, R and NAC are indicated by symbolic identifiers. Note that in the
visual syntax of the Henshin transformation language used in Fig. 1, the graphs L, K,
R and NAC are merged to a unified graph, elements to be preserved, created, deleted
and forbidden are indicated by respective stereotype notations.

4 Approach
In this section, we present our approach of using maximum common subgraph algo-
rithms for comparing graph-based transformation rules. The basic idea of obtaining
rule graph matchings from maximum common subgraphs is presented in Sect. 4.1,
before variation points of a dedicated comparison service are analyzed in Sect. 4.2.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


8 · Alexander Schultheiß, Alexander Boll, Timo Kehrer

4.1 MCS-induced graph matching
Following common definitions from the field of model comparison, the result of a
comparison of two graphs, i.e., a graph matching, is a set of corresponding graph
elements which are considered the same in both graphs. Every graph element may
have at most one corresponding partner.

Definition 6. Let G′ = (V ′, E′, τ ′
V ) and G′′ = (V ′′, E′′, τ ′′

V ) be graphs. A partial
injective function m : V ′ → V ′′ is called a matching. A pair of elements (x, y) with
m(x) = y is called a correspondence, the elements x and y are said to correspond to
each other.

The basic idea of using a maximum common subgraph algorithm for calculating a
graph matching according to Definition 6 is that, given two graphs G′ = (V ′, E′, τ ′

V )
and G′′ = (V ′′, E′′, τ ′′

V ), a maximum common subgraphMCS(G′, G′′) uniquely induces
a graph matching m : V ′ → V ′′: For every x ∈ V ′ and y ∈ V ′′, m(x) = y if and only
if there is a z ∈MCS(G′, G′′) such that cs′(z) = x and cs′′(z) = y.

4.2 Variation points
So far, we have deliberately left open (i) which rule graphs of a transformation rule
shall be compared with each other, and (ii) how to select rule graph elements as
matching candidates. These variation points are documented in the feature diagram
shown in Fig. 5 and analyzed in more detail in the remainder of this section.

4.2.1 Rule graph representation
A first variation point when comparing graph-based transformation rules is the Rule
Graph Representation. In the Separate variant, all the rule graphs (i.e., left- and right
hand sides as well as NAC and PAC graphs) are compared separately with each other.
On the contrary, in the Integrated variant, all the rule graphs are merged into a single
unified graph (as in the visual syntax of the Henshin transformation language, cf.
Fig. 1 and Fig. 6) and two rules are compared based on their unified rule graphs.

Comparing two rules based on their integrated rule graphs has the advantage that
all the graph elements are embedded into the overall context of a transformation rule.
Exploiting this context information during comparison reduces the risk of establishing
wrong correspondences (i.e., false positives). More generally, our hypothesis is that
the integrated variant leads to matching results exposing a higher precision than those

Rule Graph Representa�on

Integrated

Matching Candidates

Comparison Service Constraints:
Ac�on Equality => Integrated

Type Compa�bilityType EqualitySeparate Ac�on Equality

Mandatory feature xor-group (alternative)Optional feature

Figure 5 – Variation points of an MCS-based comparison service for graph-based model
transformation rules.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


Comparison of graph-based model transformation rules · 9

obtained in the Separate variant. On the contrary, the Separate variant may lead to
a better runtime performance in the case of large transformation rules which define
many actions. In such cases, the integrated rule graph is significantly larger than each
of the single rule graphs. Consequently, since the complexity of calculating an MCS is
exponential in the size of the input graphs, comparing several smaller rule graphs may
be more efficient than comparing a single integrated yet significantly larger one.

Formally, an integrated rule graph is a doubly labeled graph, where labels represent
(i) a rule graph element’s type as usual and (ii) the action which is to be performed on
that element (i.e., whether it is to be preserved, created, deleted, forbidden or required
when the rule is applied). As in Definition 1, type labels are drawn from two sets
representing the node and edge type definitions of a meta-model, referred to as LV and
LE . Action labels are drawn from the set LA = {CRE,DEL,PRE,FRB,REQ}.

Definition 7 (Integrated rule graph). An integrated rule graph is a tuple G =
(V,E, τV , αV , αE) where V is a finite set of nodes, E ⊆ V × V ×LE is a set of labeled
edges, and τV : V → LV is a type labeling function assigning every node in V its type
in LV . Moreover, αV : V → A and αE : E → A are action labeling functions assigning
every node in V and every edge in E their action in A.

Given a transformation rule r = (L ⊇ K ⊆ R,NAC ,PAC ), the construction of its
integrated rule graph G = (V,E, τV , αV , αE) is largely straightforward. The nodes
and edges of G are determined as a unification of all the rule graphs in r, preserving
the elements’ types. Elements originating from R \K, L \K, and K are assigned
with action labels CRE, DEL and PRE, respectively. Elements that are specific to a
NAC graph Xi (i.e., Xi \ L) are labeled as FRB, while elements specific to a PAC
graph Xj (i.e., Xj \ L) are labeled as REQ.

Note that all the basic definitions presented in Sect. 3 can be easily transferred to
integrated rule graphs by simply ignoring its action labels.

4.2.2 Matching candidates
Type equality vs. type compatibility. As described in Sect. 3, the graphs of a
graph-based transformation rule are labeled using the node and edge types as labels.
Thus, following our basic definitions of Sect. 3, only graph elements having the same
type are considered as possible matching candidates during rule graph comparison.
However, there are cases where it is reasonable to weaken this Type Equality condition
into what we refer to as Type Compatibility condition. In the latter variant, labels
of graph elements are not compared literally, but they are interpreted w.r.t. the
underlying meta-model. Two types are compatible if they are equal or specializations
of a common supertype. The question of which variant shall be selected depends
on whether one prefers a more liberal (Type Compatibility) or more conservative
matching behavior (Type Equality).

To give an illustration, consider the transformation rules createExcludeConstraint
(see Fig. 1) and createRequireConstraint (see Fig. 6). Since the types ExcludeCon-
straint and RequireConstraint share a common supertype (cf. meta-model shown
in Fig. 2), these nodes will be considered to be corresponding according to the
Type Compatibility strategy, while no correspondence will be established if the Type
Equality strategy is applied. Analogously, the Type Compatibility variant leads to
correspondences between the edges of type excludedFeatureA and feature as well as
excludedFeatureB and requiredFeature. Since MOF-based meta-modeling frameworks
as assumed by our approach do not support edge type inheritance, specialization of

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


10 · Alexander Schultheiß, Alexander Boll, Timo Kehrer

edge types is defined using the MOF 2.0 properties subset and derived union [AP05].
As we can see in Fig. 2, the edge types excludedFeatureA and feature (resp. excluded-
FeatureB and requiredFeature) are compatible since they are subsetting the edge type
src (resp. tgt) which is defined as their derived union.

Rule createRequireConstraint

«preserve»
:FeatureModel

«preserve»
:Feature

«preserve»
:Feature

«create»
:RequireConstraint

«forbid»
:RequireConstraint

requiredFeature
«create» requiredConstraints

«create»

requireConstraints
«create»
feature

«create»

feature

«forbid»

requiredFeature

«forbid»

constraints

«create»

constraints

«create»

feature
«create»

requireConstraints
«create»

requiredFeature
«create» requiredConstraints

«create»

feature

«forbid»

requiredFeature

«forbid»

Figure 6 – Henshin rule createRequireConstraint taken
from the catalog of edit operations on feature models
presented in [BKL+16].

Formally, the Type
Compatibility variant re-
lies on a slightly modi-
fied definition of a graph
morphism which we refer
to as type-compatible mor-
phism.

Definition 8 (Type-com-
patible morphism). Let
G = (V,E, τV ) and G′ =
(V ′, E′, τ ′

V ) be graphs. A
type-compatible graph mor-
phism from G to G′ is a
function f : V → V ′ such
that

(1) for every v ∈ V we have

(1.a) τV (v) = τ ′
V (f(v)), or

(1.b) the node types represented by τV (v) and τ ′
V (f(v)) have a common supertype

according to the type hierarchy defined by the meta-model

(2) for every edge e =∈ E there is an edge e′ ∈ E′ such that f(src(e)) = src(e′) and
f(tgt(e)) = tgt(e′), and

(2.a) τE(e) = τ ′
E(e′) or

(2.b) there is an edge type in the underlying meta-model which is defined as a
derived union of the subsetting edge types represented by τE(e) and τ ′

E(e′).

Type-compatible morphisms differ from type-preserving morphisms (see Defini-
tion 3) in the relaxed conditions (1) and (2) which are extended by the disjunctions
(1.b) (compatibility of node types) and (2.b) (compatibility of edge types). A formal
treatment of typing and type hierarchies (cf. condition (1.b)) as well as of subset and
derived union properties (cf. condition (2.b)) can be found in [BET12] and [AP05],
respectively. Analogously to the basic definitions presented in Sect. 3, the definition
of a type-compatible graph morphism can be transferred to integrated rule graphs by
simply ignoring its action labels.

Action equality. An optional feature is whether the elements of an integrated rule
graph must have the same action in order to be considered as matching candidates.
Note that Action Equality may only be selected if rule graphs are represented in the
Integrated variant (see propositional formula over feature variables in Fig. 5).

One typically abstains from selecting the feature Action Equality if one wants to
match larger structural patterns, regardless of the actions performed by the individual
elements of that pattern. An example has been already discussed in Sect. 2, where large
parts of the rules createExcludeConstraint and deleteExcludeConstraint (cf. Fig. 1)

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


Comparison of graph-based model transformation rules · 11

are structurally equivalent yet performing different actions (creation vs. deletion of
an ExcludeConstraint, cf. Fig. 1). On the contrary, requiring Action Equality leads
to a more conservative selection of matching candidates, and the matching behavior
is similar to the detection of clones in the RuleMerger approach which relies on the
notion of subrules.

Formally, analogously to the Type Compatibility feature, an implementation of
the optional feature Action Equality is based on a slightly modified definition of a
graph morphism to which we refer to as action-preserving morphism.

Definition 9 (Action-preserving morphism). Let G = (V,E, τV , αV , αE) and G′ =
(V ′, E′, τ ′

V , α
′
V , α

′
E) be integrated rule graphs. An action-preserving graph morphism

from G to G′ is a function f : V → V ′ such that

(1): for every v ∈ V we have αV (v) = α′
V (f(v)), and

(2): for every edge e =∈ E there is an edge e′ ∈ E′ such that f(src(e)) = src(e′) and
f(tgt(e)) = tgt(e′), and αE(e) = α′

E(e′).

Note that the definition of an action-preserving morphism ignores the types attached
to nodes and edges. This way, the interaction Action Equality & Type Equality can
be easily realized by conjunctions of the conditions (1) and (2) of Definition 9 and
Definition 3. Likewise, the interaction Action Equality & Type Compatibility can be
realized by conjunctions of the conditions (1) and (2) of Definition 9 and Definition 8.

5 Prototypical implementation
The prototypical implementation of our approach supports the comparison of Henshin
transformation rules and is included in the replication package of this paper [SBK19],
including instructions of how to use the comparison service as a Java library.

Sect. 5.1 motivates our selection of a concrete implementation of a maximum
common subgraph algorithm. Variation points identified in the previous section are
implemented by integrating the algorithmic components with Henshin and EMF, as
we will briefly outline in Sect. 5.2.

5.1 Maximum common subgraph algorithm
Conte et al. [CFV07] report about a performance benchmark of three state-of-the-
art MCS-algorithms — McGregor, Durand-Pasari and Balas Yu — on a large set
of randomly connected graphs with varying size and density. According to the
experimental results, McGregor always performs best on sparse graphs (n = 0.05)
and, for an increasing density (n = 0.1), it is still outperforming Durand-Pasari and
Balas-Yu when the graphs are small or the label alphabets are large.

For our application scenario of comparing graph-based transformation rules, we
expect that graphs are typically sparse and small, which suggests to select the McGregor
algorithm for our purpose. Specifically, we use the implementation of the McGregor
algorithm presented in [Wel11], which is written in Java and based on the widely used
graph library JGraphT, and thus can be easily integrated with the other technologies
used by our prototypical implementation.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


12 · Alexander Schultheiß, Alexander Boll, Timo Kehrer

5.2 Integration with Henshin and EMF
The choice of whether rule graphs are compared based on an integrated representation
or separately is made when converting the Henshin rule graphs to JGraphT. To that
end, we provide two converters covering both rule graph representations. Each of the
converters supports a bidirectional transformation in order to transfer the comparison
results back to the Henshin representation.

As for the selection of matching candidates, we slightly extend the implementation
of the McGregor algorithm of Welling [Wel11]. An extension point enables to register
a custom candidate selection strategy. The check for type and action equality boils
down to a simple check of the equality of labels. The check for type compatibility is
implemented using the reflective API of the EMF runtime.

6 Evaluation
For the evaluation of our approach, we conduct experiments on several sets of trans-
formation rules with the aim of answering the following research questions:

• RQ1: How do the variation points of our approach affect the matching quality
and is there an optimal configuration?

• RQ2: How does our approach perform w.r.t. to competing approaches for the
comparison of model transformations?

• RQ3: Does our approach produce satisfactory results within reasonable time?

6.1 Experimental Setup
6.1.1 Subject Selection.
Strüber et al. [SKA+16] present a model transformation benchmark set which we use
as subject for our experimental evaluation. The benchmark set comprises different
kinds of graph-based model transformation rules, written in the model transformation
language Henshin. In total, we have 9 sets of different kinds of transformation rules.

First, edit rules specify edit operations offered by visual model editors and model
refactoring tools, covering feature models and parts of the UML. Both sets are fur-
ther classified into so-called elementary (fm-edit-atomic and uml-edit-generated) and
composite (fm-edit-complex and uml-edit-manual) edit rules. Second, edit operation
recognition rules derived from these edit rules specify change patterns that can be
observed as a result of executing the respective edit operation [KKT11]. Conse-
quently, there are four different kinds of recognition rules, namely fm-recog-atomic,
fm-recog-complex, uml-recog-generated and uml-recog-manual. Finally, constraint
translation rules (ocl2ngc) support the translation of OCL constraints to nested graph
constraints [AHRT14], which can then be translated to application conditions of
transformation rules.

As argued in related work [SPA16], the rule sets of the selected benchmark comprise
realistic, non-trivial transformation rules of varying size and complexity. The average
number of rule graph nodes ranges from 4.62 (uml-edit-generated) to 58.65 (fm-recog-
complex), while the average number of edges ranges from 1.90 to 111.39. For the
integrated rule graphs which are used internally by some configurations of our matching
algorithm, average numbers (#nodes/#edges) of these rule sets range from 2.53/1.90
to 30.26/62.03.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


Comparison of graph-based model transformation rules · 13

6.1.2 Preparation of Rule Pairs.
To obtain pairs of transformation rules which are supposed to be compared, each of the
transformation rules in our 9 rule sets is first modified by a single permutation, followed
by an increasing number (0, 1, and 3) of mutations. While the permutation only
affects the physical representation of a rule (i.e., the ordering of rule graph elements),
mutations perform (a sequence of) modifications of a rule’s conceptual contents (i.e.,
edit operations available in the visual Henshin editor). In other words, an original rule
and its permutated copy are structurally identical (up to their physical representation)
and thus semantically equivalent, while mutations lead to real structural and thus
semantic changes. For each rule, this modification process is repeated 10 times in order
to mitigate both performance benchmarking issues resulting from the Java just-in-time
compilation, and randomization issues resulting from the permutation and mutation
of rule graph elements. Each of the modified copies is supposed to be compared with
the original version of the rule, leading to 3 × 10 = 30 comparison cases (i.e., rule
pairs) per transformation rule.

Permutation. Although there is no reasonable natural order of how the rule graph
elements of a Henshin transformation rule are arranged, all the elements are implicitly
ordered due to the EMF-based implementation which basically uses an extension of
java.util.List as container class for any element. Since the order in which the
elements are processed may influence both the accuracy of the matching results and
the performance of the matching algorithm, we randomly permute the rule graph
elements of a copied rule to avoid this bias.

Mutation. Henshin rules are mutated by applying three kinds of edit operations
(insert, update, delete) that are also available in the visual editor of the Henshin
tool suite. A mutation step can be considered as one of the atomic changes a user
could apply to a Henshin rule using its visual editor. Technically, the mutator takes
a rule as input and applies a specified number of edit operations. Insert operations
add a new element to the rule (e.g., a new node), update operations locally change
an existing rule element (e.g., the type of an existing node), and delete operations
remove an existing rule element. Inserts and updates of rule graph elements are further
characterized by a new action (create, delete, preserve, require, forbid) which is to be
performed by the inserted or updated element when the rule is applied to a model.
Edit operations as well as the context in which they are to be applied are chosen
randomly. Our mutator applies an edit operation only if its application results in a
graph which is properly typed. Otherwise, another operation is selected randomly.
Since some of the rules of our benchmark set comprise only a very few rule graph
elements, we limit the maximum number of mutations applied to a rule to 3.

6.2 RQ1: Assessing the accuracy of different configurations
To answer RQ1, we assess the accuracy of the different configurations of our matching
algorithm using our prototypical implementation and the rule pairs obtained from our
selected benchmark set as described in the previous section.

Since we aim at experimenting under realistic conditions, we limit the calculation
time for each comparison run to one second. If a timeout is reached, the matching
result is calculated based on the largest common subgraph the algorithm has found so
far. We argue that the selected timeout is reasonable for our envisioned versioning

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


14 · Alexander Schultheiß, Alexander Boll, Timo Kehrer

scenario. For example, if a developer compares a local workspace version with its latest
repository version, we believe that latency times of a second or less are acceptable.

Configurations. According to the variability analysis conducted in Sect. 4.2, binding
the variation points Rule Graph Representation and Matching Candidates leads
to different variants of our matching algorithm. The feature diagram presented
in Fig. 5 yields the following six valid configurations, each of which is supported
by our prototypical implementation: Separate-TE := {Separate, Type Equality},
Separate-TC := {Separate, Type Compability}, Integrated-TE := {Integrated, Type
Equality}, Integrated-TC := {Integrated, Type Compability}, Integrated-TE-AE :=
{Integrated, Type Equality, Action Equality}, and Integrated-TC-AE := {Integrated,
Type Compability, Action Equality}.

Accuracy measures. As already mentioned in Sect. 2, reliable and persistent
UUIDs attached to rule graph elements are not generally available, e.g., due to
exchange across tool boundaries, parallel edits, etc. [KDRPP09]. For our controlled
experiments, however, we attached UUIDs to all graph elements, and the permutations
and mutations described in Sect. 6.1.2 have been implemented in a UUID-preserving
manner. This way, UUIDs can be exploited to serve as an oracle in order to assess the
accuracy of the matching results, according to the following classification scheme:

• True Positive (TP): The comparison algorithm delivers a correspondence and
the corresponding rule graph elements have the same UUID.

• False Positive (FP): The comparison algorithm delivers a correspondence and
the corresponding rule graph elements have different UUIDs.

• False Negative (FN): Two rule graph elements have the same UUID and the
comparison algorithm does not deliver a correspondence between these elements.

Based on the classification into TPs, FPs and FNs, we obtain the following well-
known accuracy metrics:

Precision := #T P
#T P +#F P

Recall := #T P
#T P +#F N

F-Measure := 2·P recision·Recall
P recision+Recall

Results. The results of applying all the six configurations of our comparison al-
gorithm to rule pairs exposing increasing differences (0, 1 and 3 mutations) are
summarized in Table 1. Precision, recall and F-Measure denote average values over
comparison runs on all rule pairs (cf. Sect. 6.1.2).

A first observation when comparing a rule with a modified copy of itself (0
mutations) is that none of the configurations achieves perfect scores for every rule set.
The reason for this is that not all the correspondences are found if the calculation of
the MCS reaches its timeout of one second and thus has to be aborted. Specifically, the
fm-recog-complex rule set causes several timeouts of the MCS calculation, regardless
of the concrete configuration. Moreover, rule graphs may share several maximum
common subgraph mappings that are semantically equivalent. Arguably, each of them
yields a perfect matching, but only one of them is considered to be correct and our
algorithm may choose the “wrong” one. Such deviations from perfect accuracy scores,
however, are rather a problem of our measurement methodology which simply lacks a
better oracle than UUIDs.

Not very surprisingly, although not significantly, the highest accuracy when com-
paring a rule with a copy of itself is achieved by Integrated-TE-AE, which is the most

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


Comparison of graph-based model transformation rules · 15

Table 1 – Results of applying all the six configurations of our comparison algorithm to rule
pairs exposing increasing differences.

0 Mutations 1 Mutation 3 Mutations
Algorithm Prec. Rec. FM Prec. Rec. FM Prec. Rec. FM

Integrated-TE 0.89 0.88 0.88 0.86 0.86 0.86 0.81 0.80 0.80
Integrated-TC 0.88 0.87 0.88 0.86 0.86 0.86 0.81 0.80 0.80
Integrated-TE-AE 0.90 0.89 0.90 0.86 0.75 0.78 0.78 0.55 0.62
Integrated-TC-AE 0.90 0.89 0.89 0.86 0.74 0.78 0.77 0.55 0.61
Separate-TE 0.90 0.89 0.89 0.86 0.86 0.86 0.81 0.81 0.80
Separate-TC 0.90 0.88 0.89 0.86 0.86 0.86 0.81 0.81 0.81

conservative of our six configurations. However, after the first mutation, it turns
out that requiring action equality for integrated rule graphs (Integrated-TE-AE and
Integrated-TC-AE) is way too restrictive (cf. discussion in Sect. 2). The more liberal
variants (Integrated-TE and Integrated-TC) and the variants working on separate rule
graphs (Separate-TE and Separate-TC) are fairly comparable. In sum, similar results
are achieved by all of these configurations. However, a more detailed investigation
shows that the separate variants perform better on rule sets with simple rule graphs,
and the integrated variants perform better on sets with more complex rules. For
complex rules, the integrated graph contains more structural information that can be
used in order to find the correct matching. For simple rule graphs, the integrated rule
graph adds only little structural information.

Finally, there is no significant difference between the integrated variants Integrated-
TE and Integrated-TC. This may be explained by our experimental setup. Our mutator
applies an edit operation only if its application results in a graph which is properly
typed. However, the random selection of a new node type which is permitted in the
given context is not likely.

Integrated representations of rule graphs lead to slightly higher accuracies of matching
results on complex rules than comparing rule graphs separately, due to additional
context information which may be exploited by the matcher. However, integrated
representations lead to lower accuracies on simple rules due to adding only little
structural information. In the case of comparing mutated rules with each other, a
liberal matching strategy needs to be selected which does not require action equality.

6.3 RQ2: Comparison to EMFCompare and RuleMerger
Baseline selection. For answering RQ2, we compare our most accurate configura-
tions Integrated-TE and Separate-TE (see RQ1) with EMFCompare and the three clone
detection algorithms ConQat, EScan and ScanQat supported by RuleMerger [SPA16].
For the latter, correspondences are derived from the largest clone detected for a rule
pair, similar to calculating an MCS-induced matching. For each comparison run,
timeouts are set to one second, analogously to RQ1. Moreover, accuracy measures are
obtained in the same way as for RQ1.

Results. Table 2 presents the average results of the six algorithms over all comparison
runs, grouped by our 9 rule sets. As expected, due to its heuristic approach, which
does not apply well to graph-based transformation rules (see Sect. 2), EMFCompare
delivers highly inaccurate results already for the trivial case of comparing a rule with
a permutated copy of itself. This applies in particular to larger rule graphs with more
than 10 elements. Interestingly, as opposed to the MCS-based algorithms, its accuracy

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


16 · Alexander Schultheiß, Alexander Boll, Timo Kehrer

Table 2 – Results of the comparison algorithms on the 9 rule sets. All results are average
values over the rules of the corresponding rule set and the 10 independent comparisons
of each rule with its modified copies.

0 Mutations 1 Mutation 3 Mutations
Algorithm Prec. Rec. FM Prec. Rec. FM Prec. Rec. FM

fm-edit-atomic - 27 rules, 5.7 Nodes, 4.6 Edges
MCS-Integrated-TE 0.90 0.90 0.90 0.79 0.81 0.80 0.71 0.75 0.73
MCS-Separate-TE 0.89 0.89 0.89 0.80 0.83 0.81 0.69 0.74 0.71
EMFCompare 0.85 0.77 0.80 0.82 0.65 0.71 0.75 0.52 0.60
ConQat 0.81 0.73 0.76 0.54 0.45 0.48 0.36 0.27 0.30
EScan 0.70 0.63 0.66 0.56 0.46 0.50 0.46 0.36 0.39
ScanQat 0.39 0.38 0.38 0.32 0.27 0.29 0.22 0.18 0.19

fm-edit-complex - 31 rules, 11.5 Nodes, 15.6 Edges
MCS-Integrated-TE 0.80 0.80 0.80 0.77 0.78 0.77 0.69 0.69 0.68
MCS-Separate-TE 0.78 0.78 0.78 0.73 0.75 0.74 0.69 0.72 0.70
EMFCompare 0.68 0.50 0.57 0.67 0.45 0.54 0.68 0.42 0.51
ConQat 0.83 0.61 0.69 0.79 0.54 0.63 0.69 0.43 0.51
EScan 0.57 0.40 0.46 0.58 0.40 0.47 0.52 0.35 0.41
ScanQat 0.28 0.20 0.23 0.29 0.21 0.24 0.28 0.19 0.22

fm-recog-atomic - 27 rules, 21.7 Nodes, 29.6 Edges
MCS-Integrated-TE 0.92 0.92 0.92 0.93 0.93 0.93 0.89 0.86 0.87
MCS-Separate-TE 0.93 0.93 0.93 0.91 0.92 0.91 0.88 0.89 0.88
EMFCompare 0.64 0.40 0.49 0.63 0.38 0.47 0.65 0.39 0.48
ConQat 0.95 0.91 0.93 0.96 0.87 0.91 0.96 0.76 0.83
EScan 0.00 0.00 0.00 0.03 0.02 0.02 0.16 0.09 0.11
ScanQat 0.14 0.14 0.14 0.20 0.18 0.19 0.30 0.22 0.25

fm-recog-complex - 31 rules, 58.65 Nodes, 111.39 Edges
MCS-Integrated-TE 0.72 0.66 0.68 0.73 0.67 0.69 0.69 0.60 0.64
MCS-Separate-TE 0.73 0.65 0.68 0.72 0.64 0.67 0.70 0.60 0.64
EMFCompare 0.33 0.17 0.22 0.33 0.17 0.22 0.34 0.17 0.22
ConQat 0.70 0.57 0.62 0.71 0.57 0.62 0.70 0.53 0.59
EScan 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.01
ScanQat 0.05 0.04 0.04 0.05 0.03 0.04 0.05 0.03 0.04

ocl2ngc - 52 rules, 31.9 Nodes, 42.5 Edges
MCS-Integrated-TE 0.94 0.94 0.94 0.93 0.93 0.93 0.88 0.87 0.87
MCS-Separate-TE 0.95 0.95 0.95 0.94 0.95 0.94 0.90 0.88 0.89
EMFCompare 0.62 0.35 0.44 0.62 0.35 0.44 0.63 0.33 0.43
ConQat 1.00 1.00 1.00 1.00 0.94 0.96 0.99 0.81 0.88
EScan 0.08 0.08 0.08 0.14 0.13 0.13 0.21 0.17 0.19
ScanQat 0.07 0.09 0.08 0.18 0.18 0.18 0.30 0.27 0.28

uml-edit-generated - 1379 rules, 4.6 Nodes, 1.9 Edges
MCS-Integrated-TE 0.91 0.91 0.91 0.89 0.90 0.90 0.82 0.85 0.83
MCS-Separate-TE 1.00 1.00 1.00 0.94 0.96 0.95 0.81 0.85 0.83
EMFCompare 0.93 0.86 0.89 0.90 0.79 0.83 0.81 0.65 0.71
ConQat 0.72 0.64 0.67 0.54 0.42 0.46 0.24 0.18 0.20
EScan 0.71 0.63 0.66 0.57 0.46 0.50 0.32 0.24 0.27
ScanQat 0.43 0.39 0.40 0.39 0.31 0.34 0.20 0.15 0.17

uml-edit-manual - 25 rules, 5.2 Nodes, 4.1 Edges
MCS-Integrated-TE 0.92 0.92 0.92 0.90 0.91 0.91 0.82 0.85 0.83
MCS-Separate-TE 0.95 0.95 0.95 0.90 0.91 0.91 0.86 0.90 0.87
EMFCompare 0.81 0.70 0.74 0.81 0.66 0.72 0.82 0.58 0.67
ConQat 0.92 0.85 0.88 0.59 0.48 0.52 0.23 0.16 0.18
EScan 0.74 0.69 0.71 0.59 0.51 0.54 0.27 0.22 0.24
ScanQat 0.49 0.47 0.48 0.38 0.32 0.34 0.18 0.15 0.16

uml-recog-generated - 1379 rules, 18.2 Nodes, 21.5 Edges
MCS-Integrated-TE 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.93 0.94
MCS-Separate-TE 1.00 1.00 1.00 0.99 1.00 0.99 0.94 0.93 0.93
EMFCompare 0.71 0.44 0.54 0.72 0.43 0.54 0.72 0.42 0.53
ConQat 1.00 0.98 0.99 1.00 0.91 0.94 0.99 0.76 0.84
EScan 0.00 0.00 0.00 0.08 0.05 0.06 0.25 0.14 0.17
ScanQat 0.13 0.14 0.14 0.21 0.18 0.19 0.33 0.23 0.26

uml-recog-manual - 25 rules, 26.6 Nodes, 42.2 Edges
MCS-Integrated-TE 0.86 0.84 0.85 0.84 0.83 0.83 0.83 0.80 0.81
MCS-Separate-TE 0.85 0.82 0.83 0.83 0.82 0.82 0.80 0.78 0.78
EMFCompare 0.57 0.35 0.43 0.57 0.35 0.43 0.59 0.34 0.43
ConQat 0.98 0.96 0.97 0.96 0.88 0.91 0.94 0.73 0.81
EScan 0.00 0.00 0.00 0.06 0.04 0.05 0.26 0.16 0.19
ScanQat 0.10 0.11 0.10 0.15 0.14 0.14 0.25 0.17 0.19

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


Comparison of graph-based model transformation rules · 17

does not continuously decrease with an increasing amount of mutations. This is due
to the fact that the heuristic approach employed by EMFCompare is less sensitive
against mutations than our MCS-based approach. Moreover, none of the comparisons
with EMFCompare was aborted by a timeout, demonstrating the runtime efficiency
of its matching algorithm. Nonetheless, MCS-based comparison still outperforms
EMFCompare w.r.t. precision and recall in all the cases, even in those cases where
matchings are derived from an incomplete MCS-calculation.

Among the clone detection variants, the most accurate results are delivered by
ConQat. Given the timeout of one second, EScan suffers from being interrupted for
most larger rules. In such cases, no correspondences are derived at all since EScan
does not deliver any intermediate results. This confirms the theoretical expectation
and experimental results presented in [SPA16] that ConQat tends to provide the
best compromise between accuracy and performance among the three clone detection
algorithms. For most of the cases without any mutation, ConQat even delivers slightly
better results than our MCS-based approach, however, potentially biased by the oracle
problem with UUIDs (see RQ1). On the contrary, compared to our approach, clone
detection is highly sensitive against mutations. Looking at the results for 3 mutations,
ConQat delivers lower accuracy values than our approach, a trend which we expect
to be even more significant with an increasing number of mutations. We see this as
a confirmation of our hypothesis that clone detection is too restrictive in order to
be exploited for the sake of transformation rule comparison in the context of model
transformation versioning.

The MCS-based comparison of graph-based model transformation rules significantly
increases the accuracy of comparison results compared to generic model comparison
with EMFCompare. Clone detection, even when customized to graph-based model
transformations, is too restrictive when the rules to be compared with each each other
expose an edit distance of only a very few edit operations.

6.4 RQ3: Runtime Performance of the Matching Algorithm

0 200 400 600 800 1000
Timeout [ms]

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F-
M

e
a
su

re

rr_Refactoring_1-4_execute.henshin
rr_Refactoring_1-5_execute.henshin
rr_Refactoring_1-7_execute.henshin
rr_Refactoring_1-9_execute.henshin
rr_Generalization_2-1_execute.henshin

Figure 7 – Quality of intermediate matches provided by
MCS-Integrated-TE on five complex rules after differ-
ent timeouts.

In order to answer RQ3,
we first investigated whether
it is possible to improve
the matching results of
our MCS-based approach
by increasing the timeout.
The experimental subject
fm-recog-complex contains
several complex rules with
more than 50 nodes and
100 edges on average. For
these rules, the calculation
of the MCS often fails to
finish in time and only a
intermediate result can be
retrieved. Hence, there
was reason to assume that
our approach could achieve
better matchings if more

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


18 · Alexander Schultheiß, Alexander Boll, Timo Kehrer

computation time is given. However, we were not able to observe a significant im-
provement, even after setting the timeout from one second to 60 seconds. This leaves
us with the question how far we can reduce the timeout without negatively affecting
the matching quality.

Therefore, we selected a subset of fm-recog-complex that contains five of the most
complex rules in this set and evaluated the matchings provided by MCS-Integrated-TE
after varying timeouts. The timeout of each run is selected randomly from the range
of 1ms to 1, 000ms. Figure 7 shows the F-Measures of 1, 000 runs per rule w.r.t. the
selected timeout. The results show that the matching quality increases significantly
in the first 100ms and then starts to converge. This is because the MCS algorithm
quickly finds a large number of matches in a rule for those elements having only a
single matching candidate. Thereafter, the search for further matches among larger
candidate sets requires more time as the algorithm checks each possibility through
backtracking [Wel11]. For four of the rules, there is no noticeable increase in F-Measure
after 800ms, while the F-Measure of the results on Refactoring_1-7 increases only
slightly. In conclusion, a timeout of 1, 000ms provides enough time for our approach
to achieve satisfactory results on even the most complex rules of the benchmark set.

Increasing the timeout from one second to 60 seconds for complex rules shows no
improvement in the match quality of our MCS-based approach. Our approach requires
only a few hundred milliseconds to achieve satisfactory results w.r.t. its best possible
results.

6.5 Threats to Validity
A threat to the external validity pertains the question whether our benchmark set is
representative. However, up to the best of our knowledge, the chosen benchmark set
is the most comprehensive collection of graph-based transformation rules. It contains
a selection of transformation rules which stem from different application scenarios and
are typed over different meta-models.

As for construct validity, the randomly chosen permutation and mutation operators
and their parameters may impact the accuracy of our matching algorithm in the
conducted experiments. We mitigate this by experimenting on many rules and several
runs on each of them.

7 Conclusion
A dedicated comparison service is a key technique to effectively support the version-
ing of model transformations. However, providing such a service for graph-based
transformation languages is highly challenging and hard, if not impossible to realize
using generic model matchers. In this paper, we proposed to use maximum common
subgraph algorithms as a technical basis and discussed major variation points of such
an approach. Our central hypothesis that an MCS-based comparison approach is
feasible for typical graph-based transformation rules is confirmed by our experimental
results. In a comparative study, our approach outperforms the most closely related
competitors for typical comparison scenarios in the context of model versioning.

As for future work, we want to further mitigate the threats to validity of our
experimental results by incorporating additional experimental subjects including
larger rule graphs, and by studying the correlation between the applied mutation

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


Comparison of graph-based model transformation rules · 19

operators and the accuracy of the matching algorithms in more detail. As a technical
enhancement, we pursue a hybrid approach in which MCS-based and similarity-based
comparison are interwined. To support the comparison of transformation systems in
which rules are arranged in “programmed” workflows, correspondences identified by
an MCS-based matching may serve as anchor points for the similarity propagation of a
subsequent similarity-based comparison of an entire transformation system. Moreover,
in order to deal with the problem of meta-model evolution, we want to weaken our
basic assumption that rule graphs are correctly typed over a fixed meta-model.

References
[AHRT14] Thorsten Arendt, Annegret Habel, Hendrik Radke, and Gabriele Taentzer.

From core OCL invariants to nested graph constraints. In ICGT, 2014.
[AP05] Marcus Alanen and Ivan Porres. Subset and union properties in modeling

languages. Technical report, Technical Report 731, TUCS, 2005.
[ASW09] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. A survey on

model versioning approaches. Journal of Web Information Systems, 5(3):271–
304, 2009.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, 2012.

[BET12] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal foundation
of consistent EMF model transformations by algebraic graph transformation.
Software & Systems Modeling, 11(2):227–250, 2012.

[BKL+16] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter,
and Andy Schürr. Reasoning about product-line evolution using complex
feature model differences. ASE J., 23(4):687–733, 2016.

[BP08] Cédric Brun and Alfonso Pierantonio. Model differences in the Eclipse Model-
ing Framework. UPGRADE, 9(2), 2008.

[BTW14] Alexander Bergmayr, Javier Troya, and Manuel Wimmer. From out-place
transformation evolution to in-place model patching. In ASE, pages 647–652.
ACM, 2014.

[CFSV04] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty
years of graph matching in pattern recognition. Journal of pattern recognition
and artificial intelligence, 18(03):265–298, 2004.

[CFV07] Donatello Conte, Pasquale Foggia, and Mario Vento. Challenging complexity
of maximum common subgraph detection algorithms: A performance analysis
of three algorithms on a wide database of graphs. J. Graph Algorithms Appl.,
11(1):99–143, 2007.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model trans-
formation approaches. IBM Systems Journal, 45(3), 2006.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer, 2006.

[KCH+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, Carnegie Mellon University, 1990.

[KDRPP09] Dimitrios S Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard F
Paige. Different models for model matching: An analysis of approaches to
support model differencing. In CVSM@ICSE, 2009.

[KKPS12] Timo Kehrer, Udo Kelter, Pit Pietsch, and Maik Schmidt. Adaptability of
model comparison tools. In ASE, 2012.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


20 · Alexander Schultheiß, Alexander Boll, Timo Kehrer

[KKT11] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. A rule-based approach to
the semantic lifting of model differences in the context of model versioning. In
ASE, 2011.

[KPS17] Timo Kehrer, Christopher Pietsch, and Daniel Strüber. Differencing of model
transformation rules: Towards versioning support in the development and
maintenance of model transformations. In ICMT, 2017.

[MGMR02] S Melnik, H Garcia-Molina, and E Rahm. A versatile graph matching al-
gorithm and its application to schema matching. In Intl. Conf. on Data
Engineering (ICDE), 2002.

[SBG+17] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo
Kehrer, Manuel Ohrndorf, and Matthias Tichy. Henshin: A usability-focused
framework for EMF model transformation development. In ICMT, 2017.

[SBK19] Alexander Schultheiß, Alexander Boll, and Timo Kehrer. Supplementary
material of this paper (replication package). https://www.informatik.hu-
berlin.de/de/forschung/gebiete/mse/MCS.zip, 2019.

[SC13] Matthew Stephan and James R Cordy. A survey of model comparison ap-
proaches and applications. In Modelsward, 2013.

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and
soul of model-driven software development. IEEE Software, 20(5), 2003.

[SKA+16] Daniel Strüber, Timo Kehrer, Thorsten Arendt, Christopher Pietsch, and
Dennis Reuling. Scalability of model transformations: Position paper and
benchmark set. In BigMDE@STAF, 2016.

[SPA16] Daniel Strüber, Jennifer Plöger, and Vlad Acreţoaie. Clone detection for
graph-based model transformation languages. In ICMT, 2016.

[SRA+16] Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik, Gabriele
Taentzer, and Jennifer Plöger. Rulemerger: Automatic construction of
variability-based model transformation rules. In FASE, 2016.

[TAEH12] Gabriele Taentzer, Thorsten Arendt, Claudia Ermel, and Reiko Heckel. To-
wards refactoring of rule-based, in-place model transformation systems. In
AMT@MoDELS, 2012.

[TBWK07] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. Difference
computation of large models. In ESEC/FSE, 2007.

[Tea10] CMMI Product Team. Cmmi for development, version 1.3. Technical Report
CMU/SEI-2010-TR-033, Carnegie Mellon University, 2010.

[VB07] Dániel Varró and András Balogh. The model transformation language of the
viatra2 framework. Science of Computer Programming, 68(3):214–234, 2007.

[Wel11] Ruud Welling. A performance analysis on maximal common subgraph al-
gorithms. In 15th Twente Student Conference on IT, University of Twente,
volume 14, 2011.

[WHR+13] Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Burden, and Rog-
ardt Heldal. Industrial adoption of model-driven engineering: Are the tools
really the problem? In MoDELS, 2013.

[XS05] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented
design differencing. In ASE, 2005.

Journal of Object Technology, vol. 19, no. 2, 2020

http://dx.doi.org/10.5381/jot.2020.19.2.a3


Comparison of graph-based model transformation rules · 21

About the authors

Alexander Schultheiß is a doctoral student at Humboldt-
Universität zu Berlin and is part of the Model-Driven Software
Engineering Group at the Department of Computer Science since
2019. Before that, Schultheiß studied computer science at Friedrich-
Schiller-Universität Jena, where he received his master’s degree
at the chair for software engineering. His research interests are in
the systematic support of clone-and-own development, variability
management, software product lines, model management in MDE,
and empirical software engineering. Contact him at alexander.
schultheiss@informatik.hu-berlin.de, or visit https://www.
informatik.hu-berlin.de/de/org/mitarbeiter/1691806.

Alexander Boll is a doctoral student at Humboldt-Universität
zu Berlin and is part of the Model-Driven Software Engineering
Group at the Department of Computer Science since 2019. Be-
fore that, he studied computer science at Humboldt-Universität
zu Berlin, where he received his diploma degree at the chair
for theory of programming. His research interests are Simulink
modeling and Open Science. Contact him at boll@informatik.
hu-berlin.de, or visit https://www.informatik.hu-berlin.
de/de/forschung/gebiete/mse/mitarb/aboll.

Timo Kehrer is professor at Humboldt-Universität zu Berlin,
heading the Model-Driven Software Engineering Group at the De-
partment of Computer Science. Before that, Kehrer was working
as research assistant in the Software Engineering and Database
Systems Group at University of Siegen from 2011 to 2015, and as
postdoctoral research fellow in the Dependable Evolvable Perva-
sive Software Engineering Group at Politecnico di Milano (Italy)
from 2015 to 2016. He has active research interests in vari-
ous fields of model-driven and model-based software and sys-
tem engineering, with a particular focus on various phenomena
of model evolution. Contact him at timo.kehrer@informatik.
hu-berlin.de, or visit https://www.informatik.hu-berlin.
de/de/forschung/gebiete/mse/mitarb/kehrerti.html.

Acknowledgments This work has been supported by the German Research Foun-
dation (DFG) under grant KE 2267/1-1 and the German Ministry of Research and
Education (BMBF) under grant 01IS18091B.

Journal of Object Technology, vol. 19, no. 2, 2020

mailto:alexander.schultheiss@informatik.hu-berlin.de
mailto:alexander.schultheiss@informatik.hu-berlin.de
https://www.informatik.hu-berlin.de/de/org/mitarbeiter/1691806
https://www.informatik.hu-berlin.de/de/org/mitarbeiter/1691806
mailto:boll@informatik.hu-berlin.de
mailto:boll@informatik.hu-berlin.de
https://www.informatik.hu-berlin.de/de/forschung/gebiete/mse/mitarb/aboll
https://www.informatik.hu-berlin.de/de/forschung/gebiete/mse/mitarb/aboll
mailto:timo.kehrer@informatik.hu-berlin.de
mailto:timo.kehrer@informatik.hu-berlin.de
https://www.informatik.hu-berlin.de/de/forschung/gebiete/mse/mitarb/kehrerti.html
https://www.informatik.hu-berlin.de/de/forschung/gebiete/mse/mitarb/kehrerti.html
http://dx.doi.org/10.5381/jot.2020.19.2.a3

	Introduction
	State of the art
	Basic definitions
	Graphs, graph morphisms and maximum common subgraphs
	Graph-based transformation rules

	Approach
	MCS-induced graph matching
	Variation points
	Rule graph representation
	Matching candidates


	Prototypical implementation
	Maximum common subgraph algorithm
	Integration with Henshin and EMF

	Evaluation
	Experimental Setup
	Subject Selection.
	Preparation of Rule Pairs.

	RQ1: Assessing the accuracy of different configurations
	RQ2: Comparison to EMFCompare and RuleMerger
	RQ3: Runtime Performance of the Matching Algorithm
	Threats to Validity

	Conclusion
	Bibliography
	About the authors

